

Mike	McGrath

C#
Programming

In	easy	steps	is	an	imprint	of	In	Easy	Steps	Limited
16	Hamilton	Terrace	.	Holly	Walk	.	Leamington	Spa
Warwickshire	.	CV32	4LY
www.ineasysteps.com

Copyright	©	2016	by	In	Easy	Steps	Limited.	All	rights	reserved.	No	part	of	this	book	may	be	reproduced	or	transmitted
in	any	form	or	by	any	means,	electronic	or	mechanical,	including	photocopying,	recording,	or	by	any	information	storage
or	retrieval	system,	without	prior	written	permission	from	the	publisher.

Notice	of	Liability
Every	effort	has	been	made	to	ensure	that	this	book	contains	accurate	and	current	information.	However,	In	Easy	Steps
Limited	and	the	author	shall	not	be	liable	for	any	loss	or	damage	suffered	by	readers	as	a	result	of	any	information
contained	herein.

Trademarks
All	trademarks	are	acknowledged	as	belonging	to	their	respective	companies.

http://www.ineasysteps.com

Contents

1	Getting	started
Introducing	C#
Installing	Visual	Studio
Exploring	the	IDE
Starting	a	Console	project
Writing	your	first	program
Following	the	rules
Summary

2	Storing	values
Creating	variables
Reading	input
Employing	arrays
Casting	data	types
Fixing	constants
Summary

3	Performing	operations
Doing	arithmetic
Assigning	values
Comparing	values
Assessing	logic
Examining	conditions
Setting	precedence
Summary

4	Making	statements
Branching	with	if
Switching	branches
Looping	for
Looping	while
Iterating	for	each
Summary

5	Devising	methods
Creating	function
Passing	arguments
Overloading	methods
Refactoring	code
Summary

6	Handling	strings

Discovering	string	features
Manipulating	strings
Joining	and	comparing	strings
Copying	and	swapping	strings
Finding	substrings
Formatting	strings
Formatting	date	strings
Summary

7	Accessing	files
Writing	a	file
Appending	to	a	file
Reading	text	and	lines
Streaming	lines
Manipulating	input	and	output
Summary

8	Solving	problems
Detecting	real-time	errors
Fixing	compile-time	errors
Debugging	code
Setting	breakpoints
Catching	run-time	errors
Getting	help
Summary

9	Creating	objects
Encapsulating	data
Creating	multiple	objects
Initializing	class	members
Inheriting	class	properties
Calling	base	constructors
Hiding	base	methods
Directing	method	calls
Providing	capability	classes
Employing	partial	classes
Summary

10	Controlling	events
Starting	a	Forms	project
Adding	visual	controls
Writing	functional	code
Gathering	text	entries
Ticking	option	boxes
Showing	user	messages
Calling	system	dialogs
Creating	application	menus
Making	menus	work
Importing	audio	resources
Summary

11	Building	an	application
Planning	the	program
Assigning	fixed	properties
Designing	the	layout
Setting	dynamic	properties
Adding	runtime	function
Testing	the	program
Publishing	the	application
Summary

12	Targeting	devices
Starting	a	Universal	project
Inserting	page	components
Importing	program	assets
Designing	the	layout
Adding	runtime	function
Testing	the	program
Adjusting	the	interface
Deploying	the	application
Summary

1

Getting	started

Welcome	to	the	exciting	world	of	C#	programming.	This	chapter	introduces	the	Visual	Studio	Integrated	Development

Environment	and	shows	you	how	to	create	a	real	Windows	application.

Introducing	C#
Installing	Visual	Studio
Exploring	the	IDE
Starting	a	Console	project
Writing	your	first	program
Following	the	rules
Summary

Introducing	C#
The	introduction	of	the	Microsoft	.NET	framework	at	the	Professional	Developers	Conference	in
July	2000	also	saw	Microsoft	introduce	a	new	programming	language	called	C#	(pronounced
“see-sharp”).	The	name	was	inspired	by	musical	notation	where	a	#	sharp	symbol	indicates	that	a
written	note	should	be	a	semitone	higher	in	pitch.	This	notion	is	similar	to	the	naming	of	the	C++
programming	language	where	the	++	symbol	indicates	that	a	written	value	should	be	incremented
by	1.

• C#	is	designed	to	be	a	simple,	modern,	general-purpose,	object-oriented	programming
language,	borrowing	key	concepts	from	several	other	languages	–	most	notably	the	Java
programming	language.	Consequently,	everything	in	C#	is	a	class	“object”	with	“properties”
and	“methods”	that	can	be	employed	by	a	program.

• C#	is	an	elegant	and	“type-safe”	programming	language	that	enables	developers	to	build	a
variety	of	secure	and	robust	applications.	You	can	use	C#	to	create	Windows	client
applications,	XML	web	services,	distributed	components,	client-server	applications,	database
applications,	and	much,	much	more.

• C#	is	specifically	designed	to	utilize	the	proven	functionality	built	into	the	.NET	framework
“class	libraries”.	Windows	applications	written	in	C#	therefore	require	the	Microsoft	.NET
framework	to	be	installed	on	the	computer	running	the	application	–	typically	an	integral
component	of	the	system.

The	source	code	of	all	examples	in	this	book	is	available	for	free	download	at
www.ineasysteps.com/resource-center/downloads

The	Microsoft	.NET	Framework
Each	version	of	the	Microsoft	.NET	framework	includes	a	unified	set	of	class	libraries	and	a
virtual	execution	system	called	the	Common	Language	Runtime	(CLR).	The	CLR	allows	the	C#
language	and	the	class	libraries	to	work	together	seamlessly.

http://www.ineasysteps.com/resource-center/downloads

To	create	an	executable	program,	source	code	written	in	the	C#	language	is	compiled	by	the	C#
Compiler	into	Intermediate	Language	(IL)	code.	This	is	stored	on	disk,	together	with	other
program	resources	such	as	images,	in	an	“assembly”.	Typically,	the	assembly	will	have	a	file
extension	of	.exe	or	.dll.	Each	assembly	contains	a	“manifest”	which	provides	information	about
that	program’s	security	requirements.

When	a	C#	program	is	executed,	the	assembly	is	loaded	into	the	Common	Language	Runtime
(CLR),	and	the	security	requirements	specified	in	its	assembly	manifest	are	examined.	When	the
security	requirements	are	satisfied,	the	CLR	performs	Just-In-Time	(JIT)	compilation	of	the	IL
code	into	native	machine	instructions.	The	CLR	then	performs	“garbage	collection”,	exception
handling,	and	resource	management	tasks	before	calling	upon	the	operating	system	to	execute	the
program:

As	language	interoperability	is	a	key	feature	of	the	Microsoft	.NET	framework,	the	IL	code
generated	by	the	C#	Compiler	can	interact	with	code	generated	by	the	.NET	versions	of	other
languages	such	as	Visual	Basic	and	Visual	C++.	The	examples	throughout	this	book	demonstrate
Visual	C#	program	code.

Just-In-Time	compilation	is	also	known	as	“Dynamic	Translation”.

Just-In-Time	compilation	occurs	during	program	execution,	rather	than	prior	to	its
execution.

Installing	Visual	Studio
In	order	to	create	Windows	applications	with	the	C#	programming	language,	you	will	first	need	to
install	a	Visual	Studio	Integrated	Development	Environment	(IDE).

Microsoft	Visual	Studio	is	the	professional	development	tool	that	provides	a	fully	Integrated
Development	Environment	for	Visual	Basic,	Visual	C++,	Visual	J#,	and	Visual	C#.	Within	its
IDE,	code	can	be	written	in	Visual	Basic,	C++,	J#	or	the	C#	programming	language	to	create
Windows	applications.

Visual	Studio	Community	edition	is	a	streamlined	version	of	Visual	Studio,	specially	created	for
those	people	learning	programming.	It	has	a	simplified	user	interface	and	omits	advanced	features
of	the	professional	edition	to	avoid	confusion.	C#	code	can	be	written	within	the	Code	Editor	of
either	version	of	the	Visual	Studio	IDE	to	create	Windows	applications.

Both	Visual	Studio	and	Visual	Studio	Community	provide	an	IDE	for	C#	programming	but,	unlike
the	fully-featured	Visual	Studio	product,	the	Visual	Studio	Community	edition	is	completely	free
and	can	be	installed	on	any	system	meeting	the	following	minimum	requirements:

Component: Requirement:

Operating	system

Windows	10
Windows	8/8.1
Windows	7	Service	Pack	1
Windows	Server	2012/2012	R2
Windows	Server	2008	R2	SP1

CPU	(processor) 1.6	GHz	or	faster

RAM	(memory) 1024	MB	(1	GB)	minimum

HDD	(hard	drive) 4	GB	available	space,	5400	RPM	speed

Video	Card DirectX	9-capable,	and	a	screen	resolution	of	1024	x	768	or	higher

The	Visual	Studio	Community	edition	is	used	throughout	this	book	to	demonstrate	programming
with	the	C#	language,	but	the	examples	can	also	be	recreated	in	Visual	Studio.	Follow	the	steps
opposite	to	install	the	Visual	Studio	Community	edition.

The	New	icon	pictured	above	indicates	a	new	or	enhanced	feature	introduced	with	the
latest	version	of	C#	and	Visual	Studio.

Open	your	web	browser	and	navigate	to	the	Visual	Studio	Community	download	page	–	at
the	time	of	writing	this	can	be	found	at	visual-studio.com/vs

Scroll	down	the	page	then	click	the	button	to	download	a	vs_community	installer	file

Click	on	the	vs_community	file	to	run	the	installer

Accept	the	suggested	installation	location,	then	click	Next

Choose	the	Default	type	of	installation,	then	click	Install	to	begin	the	download	and
installation	process

http://www.visual-studio.com/vs

Choosing	a	different	destination	folder	may	require	other	paths	to	be	adjusted	later	–	it’s
simpler	to	just	accept	the	suggested	default.

The	Visual	Studio	2015	installer	allows	you	to	install	just	the	components	you	need.

You	can	re-run	the	installer	at	a	later	date	to	add	or	remove	features.

Exploring	the	IDE
Go	to	the	Start	menu,	then	select	the	Visual	Studio	2015	menu	item	added	there	by	the
installer:

Sign	in	with	your	Microsoft	Account,	or	register	an	account	then	sign	in,	to	continue

Click	the	Start	Visual	Studio	button	to	launch	the	application

The	first	time	Visual	Studio	starts	it	takes	a	few	minutes	as	it	performs	configuration
routines.

The	Visual	Studio	Integrated	Development	Environment	(IDE)	appears,	from	which	you	have
instant	access	to	everything	needed	to	produce	complete	Windows	applications	–	from	here	you
can	create	exciting	visual	interfaces,	enter	code,	compile	and	execute	applications,	debug	errors,
and	much	more.

The	Visual	Studio	IDE	initially	includes	a	default	Start	Page,	along	with	the	standard	IDE
components,	and	looks	like	this:

To	change	the	color,	choose	the	Tools,	Options	menu	then	select	Environment,
General,	Color	theme.

Start	Page	elements
The	default	Start	Page	provides	these	useful	features:

• Start	–	provides	links	you	can	click	to	begin	a	new	project	or	reopen	an	existing	project.

• Recent	–	conveniently	lists	recently	opened	projects	so	you	can	quickly	select	one	to	reopen.

• News	–	feeds	the	latest	online	news	direct	from	the	Microsoft	Developer	Network	(MSDN).

You	can	return	to	the	Start	Page	at	any	time	by	selecting	View,	Start	Page	on	the	Menu
Bar.

Visual	Studio	IDE	components
The	Visual	Studio	IDE	initially	provides	these	standard	features:

• Menu	Bar	–	where	you	can	select	actions	to	perform	on	all	your	project	files	and	to	access
Help.	When	a	project	is	open,	extra	menus	of	Project	and	Build	are	shown,	in	addition	to	the
default	menu	selection	of	File,	Edit,	View,	Debug,	Team,	Tools,	Test,	Analyze,	Window,	and
Help.

• Toolbar	–	where	you	can	perform	the	most	popular	menu	actions	with	just	a	single	click	on	its
associated	shortcut	icon.

• Toolbox	–	where	you	can	select	visual	elements	to	add	to	a	project.	Place	the	cursor	over	the
Toolbox	to	see	its	contents.	When	a	project	is	open,	“controls”	such	as	Button,	Label,
CheckBox,	RadioButton,	and	TextBox	are	shown	here.

• Solution	Explorer	–	where	you	can	see	at	a	glance	all	the	files	and	resource	components
contained	within	an	open	project.

• Status	Bar	–	where	you	can	read	the	state	of	the	current	activity	being	undertaken.	When
building	an	application,	a	“Build	started”	message	is	displayed	here,	changing	to	a	“Build
succeeded”	or	“Build	failed”	message	upon	completion.

The	menus	are	once	again	in	Title	Case,	rather	than	the	ALL	CAPS	style	of	the	previous
version.

Online	elements	of	the	Start	Page	require	a	live	internet	connection	–	if	the	hyperlinks	do
not	appear	to	work,	verify	your	internet	connection.

Starting	a	Console	project

GettingStarted

On	the	Menu	Bar,	click	File,	New,	Project...,	or	press	the	Ctrl	+	Shift	+	N	keys,	to	open
the	“New	Project”	dialog	box

In	the	“New	Project”	dialog	box,	select	the	Installed,	Template,	Visual	C#,	Console
Application	item

Enter	a	project	name	of	your	choice	in	the	Name	field	–	in	this	case	the	project	name	will
be	“GettingStarted”

Click	the	OK	button	to	create	the	new	project

Leave	the	Create	directory	for	solution	option	checked	to	create	a	folder	named	as
the	project	name,	and	located	by	default	in	your	Documents,	Visual	Studio	2015,	Projects
directory.

Visual	Studio	now	creates	your	new	project	and	loads	it	into	the	IDE.	A	new,	tabbed	Code	Editor
window	appears	(in	place	of	the	Start	Page	tabbed	window)	containing	default	skeleton	project
code	generated	by	Visual	Studio.

Drag	the	Code	Editor	window	tab	to	undock	the	Code	Editor	window	from	the	Visual
Studio	IDE	frame

The	source	code	of	all	examples	in	this	book	is	available	for	free	download	at
www.ineasysteps.com/resource-center/downloads

The	undocked	window	title	displays	the	project	name,	and	the	tab	displays	the	file	name	of	the
code	as	“Program.cs”.

The	code	namespace	is	declared	using	your	chosen	project	name	–	in	this	case	it’s
“GettingStarted”.

Select	the	View,	Solution	Explorer	menu	to	open	a	Solution	Explorer	window	to
discover	all	the	items	in	your	project

Select	the	View,	Properties	menu	to	open	a	Properties	window,	then	select	any	item	in
the	Solution	Explorer	window	to	see	its	properties	in	the	Properties	window

http://www.ineasysteps.com/resource-center/downloads

The	Code	Editor	window	is	where	you	write	C#	code	to	create	an	application.	The	Visual	Studio
IDE	has	now	gathered	all	the	resources	needed	to	build	a	default	Console	application.	You	can
click	the	Debug,	Start	Debugging	menu	to	see	Visual	Studio	build	the	application,	but	it	will	do
nothing	until	you	add	some	code.

You	can	drag	the	title	bar	of	any	window	to	undock	that	window	from	the	Visual	Studio
IDE	frame.	When	dragging,	you	can	drop	a	window	on	the	“guide	diamond”	(shown
below)	to	dock	the	window	in	your	preferred	position.

Alternatively,	you	can	press	the	F5	shortcut	key	to	start	Debugging.

Writing	your	first	program
In	order	to	create	a	working	Console	application	you	need	to	add	C#	code	to	the	default	skeleton
project	code	generated	by	the	Visual	Studio	IDE:

Hello

On	the	Menu	Bar,	click	File,	New,	Project,	or	press	the	Ctrl	+	Shift	+	N	keys,	to	open	the
“New	Project”	dialog	box

In	the	“New	Project”	dialog	box,	select	the	Installed,	Template,	Visual	C#,	Console
Application	item

Enter	a	project	name	of	your	choice	in	the	Name	field	–	in	this	case	the	project	name	will
be	“Hello”

Click	the	OK	button	to	create	the	new	project	and	see	the	Code	Editor	display	the	default
skeleton	project	code

Position	the	cursor	between	the	innermost	{	}	curly	brackets	(braces),	then	hit	Enter	to	add
a	new	line

On	the	new	line,	precisely	type	this	C#	code
Console.WriteLine(“Hello	World!”)	;
Console.WriteLine(“Press	Any	Key	To	Continue...”)	;

Hit	Enter	to	add	another	new	line,	then	precisely	type	this	C#	code
Console.ReadKey()	;

As	you	type	the	code	a	suggestion	box	will	appear.	This	is	the	“IntelliSense”	feature.
You	can	select	an	item	then	insert	it	into	your	code	by	pressing	the	Tab	key	or	the
Spacebar.

The	Main()	method	is	automatically	called	whenever	a	C#	program	is	run	–	to	execute
the	instructions	contained	within	its	{	}	braces.

Now,	select	File,	Save	Hello,	or	press	the	Ctrl	+	S	keys,	to	save	the	completed	C#
Console	application

Then,	select	the	 	Start	button	on	the	Toolbar,	or	press	the	F5	key,	to	build	and	run
the	application

A	Console	window	like	the	one	shown	above	should	now	appear,	displaying	a	traditional
programming	greeting.

Hit	Enter,	or	click	the	 	Stop	button,	to	close	the	application	and	see	the	Console
window	disappear

To	edit	the	default	Console	window	colors	and	font,	right-click	its	window	Titlebar	and
choose	Properties.	For	clarity,	all	other	Console	window	screenshots	in	this	book
feature	Lucida	Console	14-pixel	Font	in	black	Screen	Text	on	a	white	Screen
Background.

Code	analysis
Examination	of	the	code	helps	to	understand	what	is	happening:

• using	System	;	This	is	a	directive	allowing	the	System.Console	class	object	to	be	written	without
the	System.	prefix.

• namespace	Hello	{	}	This	is	a	declaration	that	creates	a	unique	namespace	wrapper	in	which	to
enclose	your	program.

• class	Program	{	}	This	declaration	creates	a	“Program”	class	in	which	to	create	your	own
program	properties	and	methods.

• static	void	Main(string[]	args)	{	}	This	declaration	creates	a	standard	Main()	method	in	which	to
write	your	C#	code.

• Console.WriteLine(“Hello	World!”)	;	This	is	a	statement	that	calls	upon	the	WriteLine()	method	of
the	Console	class	to	output	text	enclosed	in	quote	marks	within	its	parentheses.

• Console.ReadKey()	;	This	statement	calls	upon	the	ReadKey()	method	of	the	Console	class	to	wait
for	any	key	to	be	pressed.

Code	listed	throughout	this	book	is	colored	to	match	the	default	syntax	highlight	colors
of	the	Visual	Studio	Code	Editor,	for	easy	recognition.

Calling	the	ReadKey()	method	is	a	little	trick	to	keep	the	Console	window	open	until
you	press	any	key.	Without	this	statement	the	application	would	output	its	message	then
immediately	exit.

Following	the	rules
As	with	all	programming	languages,	C#	has	a	number	of	syntax	rules	that	must	be	precisely
followed	to	ensure	the	code	is	correctly	formatted	for	the	C#	compiler	to	clearly	understand:

• Case-sensitivity	–	C#	is	a	case-sensitive	language,	which	means	that	uppercase	“A”	and
lowercase	“a”	are	regarded	as	totally	different	items.

• Termination	–	All	statements	in	C#	language	must	be	terminated	by	a	;	semicolon	character,
just	as	all	sentences	in	English	language	must	be	terminated	by	a	.	period	character.
For	example:	Console.WriteLine(“Hello	World!”)	;

• Single-line	comments	–	Brief	comments	on	a	single	line	must	begin	with	//	two	forward	slash
characters.
For	example:	//	Output	the	traditional	greeting.

• Block	comments	–	Extended	comments	on	multiple	lines	must	begin	with	/*	forward	slash
and	asterisk	characters,	and	must	end	with	the	reverse	*/	asterisk	and	forward	slash.
For	example:
/*
C#	Programming	in	easy	steps.
Getting	started	with	the	traditional	greeting.

*/

• White	space	–	Spaces,	tabs,	newline	characters,	and	comments	are	ignored	by	the	C#
compiler,	so	can	be	used	extensively	to	organize	code	without	performance	penalty.

• Escape	sequences	–	The	C#	compiler	recognizes	\n	as	a	newline	character	and	\t	as	a	tab
character,	so	these	can	be	used	to	format	output.
For	example:	Console.WriteLine(“Line	One	\n	Line	Two”)	;

• Naming	conventions	–	A	programmer-defined	identifier	name	in	C#	code	may	begin	with	an	_
underscore	character	or	a	letter	in	uppercase	or	lowercase.	The	name	may	also	contain	an
underscore,	letters	and	numerals.
For	example:	class	MyNo1_Class

• Keywords	–	The	C#	language	has	a	number	of	keywords	(listed	opposite)	that	have	special
syntactic	meaning	and	may	not	be	used	to	name	programmer-defined	items	in	code.

It	is	recommended	that	you	comment	your	code	to	make	it	readily	understood	by	others
or	when	revisiting	your	own	code	later.

The	WriteLine()	method	automatically	adds	a	newline	after	its	output.

C#	Reserved	Keywords

abstract as base bool

break byte case catch

char checked class const

continue decimal default delegate

do double else enum

event explicit extern false

finally fixed float for

foreach goto if implicit

in int interface internal

is lock long namespace

new null object operator

out override params private

protected public readonly ref

return sbyte sealed short

sizeof stackalloc static string

struct switch this throw

true try typeof uint

ulong unchecked unsafe ushort

using virtual void volatile

while 	 	 	

If	you	absolutely	must	use	a	keyword	to	name	a	programmer-defined	element,	it	may

be	prefixed	by	an	@	character	to	distinguish	it	from	the	keyword	–	but	this	is	best
avoided.

C#	Contextual	Keywords

add alias ascending async

await descending dynamic from

get global group into

join let orderby partial

remove select set value

var where yield 	

Contextual	keywords	have	special	significance	in	certain	code.	For	example,	get	and	set
in	method	declarations.

Summary
• C#	is	an	object-oriented	programming	language	that	utilizes	the	proven	functionality	of	the

Microsoft	.NET	class	libraries.

• The	C#	compiler	generates	Intermediate	Language	(IL)	code	that	is	stored	on	disk
alongside	resources	in	an	assembly.

• The	Common	Language	Runtime	(CLR)	examines	an	assembly’s	security	requirements
before	JIT	compilation.

• Just-In-Time	compilation	translates	IL	code	into	native	machine	code	for	execution	by	the
operating	system.

• Microsoft	Visual	Studio	provides	a	fully	Integrated	Development	Environment	(IDE)	for
C#	programming.

• A	new	Visual	C#	Console	application	generates	default	skeleton	project	code	in	the	Visual
Studio	Code	Editor.

• The	Visual	Studio	Solution	Explorer	shows	all	files	in	a	project	and	the	Properties	window
shows	their	properties.

• C#	code	needs	to	be	added	to	the	default	skeleton	code	in	the	Code	Editor	to	create	a	C#
program.

• The	using	System	directive	allows	the	System.Console	class	to	be	written	in	the	code	without	its
System.	prefix.

• The	Console	class	has	a	WriteLine()	method	that	can	be	used	to	output	a	specified	text	string,
and	a	ReadKey()	method	that	can	recognize	when	the	user	presses	any	key.

• A	C#	program	can	be	run	in	the	Visual	Studio	IDE	by	selecting	the	Debug,	Start	Debugging
menu,	or	by	clicking	the	Start	button,	or	by	pressing	the	F5	key.

• C#	is	a	case-sensitive	programming	language	in	which	all	statements	must	be	terminated	by	a	;
semicolon	character.

• Single-line	//	comments	and	/*	*/	block	comments	can	be	incorporated	to	explain	C#	program
code.

• C#	has	keywords	that	have	special	syntactic	meaning,	so	cannot	be	used	to	name	programmer-
defined	code	items.

2

Storing	values

This	chapter	demonstrates	how	to	store	various	types	of	data	within	a	C#	program.

Creating	variables
Reading	input
Employing	arrays
Casting	data	types
Fixing	constants
Summary

Creating	variables
A	“variable”	is	like	a	container	in	a	C#	program	in	which	a	data	value	can	be	stored	inside	the
computer’s	memory.	The	stored	value	can	be	referenced	using	the	variable’s	name.

The	programmer	can	choose	any	name	for	a	variable,	providing	it	adheres	to	the	C#	naming
conventions	–	a	chosen	name	may	only	contain	letters,	digits,	and	the	underscore	character,	but
must	begin	with	a	letter,	underscore,	or	@	character.	Also	the	C#	keywords	must	be	avoided.	It’s
good	practice	to	choose	meaningful	names	to	make	the	code	more	comprehensible.

To	create	a	new	variable	in	a	program	it	must	be	“declared”,	specifying	the	type	of	data	it	may
contain	and	its	chosen	name.	A	variable	declaration	has	this	syntax:

data-type	variable-name	;

Multiple	variables	of	the	same	data	type	can	be	created	in	a	single	declaration	as	a	comma-
separated	list	with	this	syntax:

data-type	variable-name1	,	variable-name2	,	variable-name3	;

The	most	common	C#	data	types	are	listed	in	the	table	below,	together	with	a	brief	description
and	example	content:

Data	Type: Description:

int An	integer	whole	number,	e.g.	100

char A	single	character,	e.g.	‘A’

float A	floating-point	number	of	7-digit	precision

double A	floating-point	number	of	15-digit	precision

decimal A	floating-point	number	of	28-digit	precision

bool A	Boolean	value	of	true	or	false

string A	string	of	characters,	e.g.	“In	Easy	Steps”

Variable	declarations	must	appear	before	executable	statements	–	so	they	will	be	available	for
reference	within	statements.

Names	are	case-sensitive	in	C#	–	so	variables	named	num,	Num,	and	NUM	are	treated	as
three	individual	variables.	Traditionally,	C#	variable	names	are	created	in	all	lowercase
characters.

Character	values	of	the	char	data	type	must	be	enclosed	in	single	quotes,	but	character
strings	of	the	string	data	type	must	be	enclosed	between	double	quotes.

The	decimal	data	type	is	preferred	for	storage	of	monetary	values.

When	a	value	is	assigned	to	a	variable	it	is	said	to	have	been	“initialized”.	Optionally,	a	variable
may	be	initialized	in	its	declaration.	The	value	stored	in	any	initialized	variable	can	be	displayed
using	the	WriteLine()	method,	which	was	used	here	to	display	the	“Hello	World!”	greeting:

Variables

Open	the	Visual	Studio	IDE,	then	start	a	new	Console	Application	project	and	name	it
“Variables”

Position	the	cursor	between	the	{	}	curly	brackets	of	the	Main()	method,	then	type	this	code
to	name	the	Console
Console.Title	=	“Variables”	;

Next,	precisely	type	these	statements	to	declare	and	initialize	variables	of	common	C#
data	types
char	letter	; letter	=	‘A’	; //	Declared	then	initialized.
int	number	; number	=	100	; //	Declared	then	initialized.
float	body	=	98.6f	; //	Declared	and	initialized.
double	pi	=	3.14159	; //	Declared	and	initialized.

decimal	sum	=	1000.00m	; //	Declared	and	initialized.
bool	flag	=	false	; //	Declared	and	initialized.
string	text	=	“C#	Is	Fun”	; //	Declared	and	initialized.

Now,	insert	statements	to	display	each	stored	value
Console.WriteLine(“char	letter:\t”	+	letter)	;
Console.WriteLine(“int	number:\t”	+	number)	;
Console.WriteLine(“float	body:\t”	+	body)	;
Console.WriteLine(“double	pi:\t”	+	pi)	;
Console.WriteLine(“decimal	sum:\t”	+	sum)	;
Console.WriteLine(“bool	flag:\t”	+	flag)	;
Console.WriteLine(“string	text:\t”	+	text)	;
Console.ReadKey()	;

Press	Start	to	run	the	application	and	see	the	stored	values

Suffix	f	to	a	float	value	and	m	to	a	decimal	value	to	distinguish	them	from	a	double	value.

The	inclusion	of	\t	in	the	string	is	an	“escape	sequence”	that	prints	a	tab	in	the	output.
The	+	symbol	is	a	“concatenation”	operator,	which	adds	the	stored	value	to	the	string	for
output.

Reading	input
In	order	to	interact	with	the	user,	C#	programs	will	typically	require	the	user	to	input	some
values.	The	ReadLine()	method,	a	companion	to	the	ReadKey()	method,	can	be	used	to	read	user
input.	User	input	within	the	Console	can	be	assigned	to	a	string	variable	by	the	ReadLine()	method
when	the	user	hits	Enter	to	complete	a	line.

It	is	important	to	recognize	that	the	ReadLine()	method	always	reads	input	as	a	string
value.

When	requesting	user	input,	it’s	preferable	to	prompt	the	user	without	adding	a	newline	after	the
request.	This	is	easily	achieved	using	the	Console.Write()	method:

Input

Open	the	Visual	Studio	IDE,	then	start	a	new	Console	Application	project	and	name	it
“Input”

Position	the	cursor	between	the	{	}	curly	brackets	of	the	Main()	method,	then	type	this	code
to	name	the	Console
Console.Title	=	“Input”	;

Next,	precisely	type	these	statements	to	request	user	input	for	assignment	to	a	variable
Console.Write(“Please	Enter	Your	Name:	“)	;
string	name	=	Console.ReadLine()	;

Now,	add	statements	to	display	a	message	containing	the	stored	user	input	value
Console.WriteLine(“Welcome	”	+	name	+	“!”)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	stored	user	input	value	displayed	in
output

Numerical	values	input	by	the	user	are	assigned	to	the	string	variable	as	characters	–	so	arithmetic
cannot	be	performed	on	these.

Notice	how	two	+	concatenation	operators	are	used	here	to	insert	input	into	a	string.

When	you	require	the	user	to	input	numerical	values	it	is	necessary	to	convert	the	string	values
read	by	the	ReadLine()	method	into	numerical	data	types.	The	System.Convert	class	provides	a
number	of	useful	methods	for	this	purpose,	including:

Method: Returns:

Convert.ToInt32() A	32-bit	signed	integer

Convert.ToDouble() A	floating-point	precision	number

Convert.ToDecimal() A	decimal	precision	number

There	is	also	a	useful	Convert.ToString()	method	to	translate	values	to	string	type.

The	string	value	read	by	the	ReadLine()	method	needs	simply	to	be	specified	within	the
parentheses	of	the	appropriate	method:

Conversion

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Conversion”

Type	these	statements	to	request	user	input	for	conversion	and	assignment	to	two	variables
Console.Write(“Please	Enter	A	Number:	“)	;

double	num	=	Convert.ToDouble(Console.ReadLine())	;
Console.Write(“Now	Enter	Another	Number:	“)	;
double	sum=

num	+	Convert.ToDouble(Console.ReadLine())	;

Now,	add	statements	to	display	a	message	containing	the	sum	total	of	the	user	input	values
Console.WriteLine(“Total	=	”	+	sum)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application,	then	enter	two	values	to	see	the	converted	input
added	in	output

Here,	the	second	input	number	gets	converted	to	a	numerical	value	before	addition	to
the	first	input	number.

Employing	arrays
An	array	is	a	variable	that	can	store	multiple	items	of	data	–	unlike	a	regular	variable,	which	can
only	store	one	piece	of	data.	The	pieces	of	data	are	stored	sequentially	in	array	“elements”	that
are	numbered,	starting	at	zero.	So	the	first	value	is	stored	in	element	zero,	the	second	value	is
stored	in	element	one,	and	so	on.

An	array	is	declared	by	stating	the	data	type,	suffixed	by	[]	square	brackets	to	denote	an	array.
This	alone	does	not	initialize	the	array	variable	in	memory	until	an	array	“instance”	is	created	by
specifying	an	element	size	using	the	new	keyword,	like	this:

data-type	[]	array-name	=	new	data-type[size]	;

Values	can	then	be	individually	assigned	to	each	available	element:

array-name[element-number]	=	value	;

Array	numbering	starts	at	zero	–	so	the	final	element	in	an	array	of	six	elements	is
number	five,	not	number	six.	This	numbering	is	known	as	a	“zero-based	index”.

Alternatively,	an	array	can	be	initialized	and	values	assigned	to	each	element	when	it	is	declared
by	stating	values	for	each	element	in	a	comma-separated	list,	grouped	within	braces:

data-type	[]	array-name	=
new	data-type[size]	{	value	,	value	,	value	}	;

Any	individual	element’s	value	can	be	referenced	using	the	array	name	followed	by	square
brackets	containing	the	element	number.	For	example,	to	reference	the	value	within	the	first
element:

array-name[0]

Collectively,	the	elements	of	an	array	are	known	as	an	“index”.	Arrays	can	have	more	than	one
index	–	to	represent	multiple	dimensions,	rather	than	the	single	dimension	of	a	regular	array.
Multi-dimensional	arrays	of	three	indices	and	more	are	uncommon,	but	two-dimensional	arrays
are	useful	to	store	grid-based	information,	such	as	coordinates.

You	can	only	store	data	within	array	elements	of	the	data	type	specified	in	the	array
declaration.

To	create	a	multi-dimensional	array,	the	[]	square	brackets	following	the	data	type	in	the
declaration	must	contain	a	comma	for	each	additional	index.	Similarly,	the	size	of	each	index	must
be	specified	as	a	comma-separated	list,	like	this:

data-type	[,]	array-name	=	new	data-type[size	,	size]	;

Values	can	then	be	individually	assigned	to	each	available	element:

array-name[element-number	,	element-number]	=	value	;

A	special	foreach	loop	construct	allows	you	to	easily	iterate	through	all	elements	of	an
array	–	see	here	for	details.

Alternatively	a	multi-dimensional	array	can	be	initialized	and	values	assigned	to	each	element
when	it	is	declared	by	stating	values	for	each	index	in	a	comma-separated	list,	grouped	within
braces	–	in	a	comma-separated	group	enclosed	within	braces:

data-type	[,]	array-name	=	new	data-type[size]
{	{	value	,	value	,	value	}	,	{	value	,	value	,	value	}	}	;

The	number	of	specified	values	must	exactly	match	the	specified	array	size	to	avoid	an
error.

Any	individual	element’s	value	can	be	referenced	using	the	array	name	followed	by	square
brackets	containing	the	element	number	for	each	index.	For	example,	to	reference	the	value	within
the	first	element	of	the	second	index:

array-name[1	,	0]

Arrays

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Arrays”

Next,	type	this	statement	to	create	a	string	array
string	[]	cars	=	new	string[3]	{	“BMW”,	”Ford”,	”Opel”	}	;

Now,	type	this	statement	to	create	a	2-dimensional	array
int	[,]	coords	=	new	int[2,	3]	{	{	1,	2,	3	}	,	{	4,	5,	6	}	}	;

Add	statements	to	display	output	containing	the	stored	array	element	values
Console.WriteLine(“Second	Car:	”	+	cars[1])	;
Console.WriteLine(“X1,Y1:	”	+	coords[0,	0])	;
Console.WriteLine(“X2,Y3:	”	+	coords[1,	2])	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	values	stored	within	array	elements

Casting	data	types
A	value	stored	in	a	variable	can	be	forced	(coerced)	into	a	variable	of	a	different	data	type	by
converting	the	value	to	a	different	type.	This	process	is	known	as	“casting”	and	may	be	implicit
or	explicit.

Casting	is	also	known	as	“type	conversion”.

• Implicit	casting	is	automatically	performed	by	C#	in	a	type-safe	manner	when	converting
numbers	from	smaller	to	larger	precision	data	types.	For	example,	when	adding	an	int	to	a
double.

• Explicit	casting,	on	the	other	hand,	requires	a	cast	operator	to	be	included	in	a	statement	to
specify	the	data	type	to	which	the	value	should	be	cast.	The	required	new	data	type	must	be
specified	in	parentheses	preceding	the	name	of	the	variable	containing	the	data	to	be	cast,	so
its	syntax	looks	like	this:

variable-name	=	(data-type)	variable-name	;

This	is	the	traditional	form	of	casting	that	is	also	found	in	the	C	programming	language.	Casting	is
often	necessary	to	accurately	store	the	result	of	an	arithmetic	operation	to	prevent	data	loss.
Division	of	one	integer	by	another	integer	will	always	produce	an	integer	result,	which	may	be
truncated.	For	example,	the	integer	division	7/2	produces	the	truncated	integer	result	of	3.

To	store	the	accurate	floating-point	result	would	require	the	result	be	cast	into	a	suitable	data
type,	such	as	a	double,	like	this:

double	sum	=	(double)	7	/	2	; //	Sum	is	3.5

The	result	of	dividing	an	integer	by	another	integer	is	truncated,	not	rounded	–	so	a
result	of	9.9	would	become	9.

It	should	be	noted	that	operator	precedence	casts	the	first	operand	7	into	the	specified	data	type
before	implementing	the	arithmetic	operation	/2	division,	so	effectively	the	statement	is:

double	sum	=	(double)	(7)	/	2	; //	Sum	is	3.5

Bracketing	the	expression	as	(7	/	2)	would	perform	the	arithmetic	first	on	integers,	so	the	integer
result	would	be	truncated	before	being	cast	into	the	float	variable	–	not	the	desired	effect!

double	sum	=	(double)	(7	/	2)	; //	Sum	is	3.0

Single	character	values	can	usefully	be	explicitly	cast	to	an	int	data	type	to	reveal	their	ASCII
code	value.	Similarly,	the	process	can	be	reversed	to	reveal	the	character	value	of	an	integer.

Cast

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Cast”

Type	these	statements	to	create	and	initialize	an	integer	variable	and	a	double-precision
floating-point	variable
double	num	=	10.5	;
int	integer	=	2	;

Next,	add	statements	to	implicitly	cast	the	integer	value	into	a	double-precision	value,	and
display	the	result
num	=	num	+	integer	;
Console.WriteLine(“Implicit	Cast:	”	+	num)	;

Now,	explicitly	cast	the	result	of	an	integer	division	into	a	double-precision	value,	and
display	that	result
num	=	(double)	7	/	integer	;
Console.WriteLine(“Explicit	Cast:	”	+	num)	;

Cast	an	integer	value	into	a	char	data	type	and	display	its	ASCII	equivalent	character
char	letter	=	(char)	65	;
Console.WriteLine(“Cast	Integer:	”	+	letter)	;

Cast	a	character	value	into	an	int	data	type	and	display	its	ASCII	equivalent	code	number
int	ascii	=	(int)	‘A’	;
Console.WriteLine(“Cast	Letter:	”	+	ascii)	;	Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	values	cast	into	other	data	types

Remove	the	(double)	cast	from	Step	4	to	see	the	result	become	truncated.

ASCII	(pronounced	“askee”)	is	the	American	Standard	Code	for	Information
Interchange,	which	is	the	accepted	standard	for	plain	text.	In	ASCII,	characters	are
represented	numerically	within	the	range	0-127.	Uppercase	‘A’	is	65	so	that	integer
value	gets	cast	into	an	int	variable.

Fixing	constants
Variable	declarations	explicitly	specify	their	permissible	data	type	using	keywords,	such	as	string,
int,	or	double,	to	ensure	the	program	cannot	accidentally	assign	inappropriate	data.	Where	you	are
certain	this	will	never	occur,	you	may	use	the	var	(variant)	keyword	when	declaring	a	variable,	to
implicitly	specify	its	data	type	according	to	the	data	type	of	its	initial	value.	In	this	case,	the	C#
compiler	will	automatically	determine	the	appropriate	data	type.	The	var	keyword	is	most	useful
to	store	a	value	that	is	other	than	of	the	standard	C#	numerical,	Boolean,	or	string	data	types.	All
variable	declarations	made	using	the	var	keyword	must	assign	an	initial	value	to	immediately
determine	that	variable’s	data	type.

Declaring	variables	using	the	var	keyword	can	make	the	program	code	less	readable,	as
it	does	not	indicate	data	types.

The	data	type	of	any	variable	can	be	revealed	by	dot-suffixing	the	GetType()	method	onto	the
variable	name.	For	example,	where	a	num	variable	is	a	double	data	type,	calling	num.GetType()
will	return	a	System.Double	result.

When	a	stored	value	is	never	intended	to	be	changed,	a	“constant”	container	can	be	created	to
safeguard	it	from	change.	Its	declaration	is	similar	to	that	of	a	variable,	but	begins	with	the	const
keyword.	All	declarations	made	using	the	const	keyword	must	assign	an	initial	value	to
immediately	fix	its	constant	value.

Multiple	constant	values	can	be	defined	in	an	enumerator	list	using	the	enum	keyword	and	a
specified	identifier	name.	This	creates	a	data	type	that	consists	of	a	comma-separated	list	of
named	constants	within	{	}	braces.	The	enumerator	list	has	an	underlying	default	int	value	that
numbers	the	list	names	from	zero,	much	like	the	elements	in	an	array.	Any	name	within	the	list	can
be	referenced	by	dot-suffixing	it	to	the	list	name,	and	its	underlying	value	revealed	by	casting.

An	enumerator	list	cannot	be	declared	within	any	method	block,	so	must	be	declared
outside	the	Main()	method.

The	C#	Enum	class	provides	several	methods	to	work	with	enumerator	lists.	Many	of	these
require	the	data	type	of	the	list	as	an	argument	so	this	can	usefully	be	assigned	to	a	var	variable	by

specifying	the	list	name	as	an	argument	to	the	typeof()	method.	The	Enum	class	GetName()	method
can	reveal	the	name	at	a	specified	index	position,	and	the	IsDefined()	method	can	be	used	to	test
whether	the	list	contains	a	specified	name.	An	enumerator	list	declaration	must	be	written	directly
within	the	program	namespace	or	within	a	class	block.

Constant

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Constant”

Type	this	statement	within	the	class	block,	before	the	Main()	method	block,	to	create	an
enumerator	list
enum	Days	{	Sat,	Sun,	Mon,	Tue,	Wed,	Thu,	Fri	}	;

Now,	turn	your	attention	to	the	Main()	method,	then	declare	and	initialize	a	constant	and	a
variable
const	double	pi	=	3.14159265358979	;
var	daysType	=	typeof(Days)	;

Next,	add	statements	to	reveal	the	constant’s	data	type	and	use	its	value	for	output
Console.WriteLine(“Pi	Type:	”	+	pi.GetType())	;
Console.WriteLine(“Circumference:	”	+	(pi	*	3))	;

Then,	add	statements	to	display	the	name	and	index	position	of	the	first	item	in	the
enumerator	list
Console.WriteLine(“\nFirst	Name:	”	+	Days.Sat)	;
Console.WriteLine(“1st	Index:	”	+	(int)	Days.Sat)	;

Finally,	add	statements	to	display	the	name	at	the	second	index	position	and	to	query	the
enumerator	list
string	name	=	Enum.GetName(daysType	,	1)	;
Console.WriteLine(“\n2nd	Index:	”	+	name)	;
bool	flag	=	Enum.IsDefined(daysType	,	“Mon”)	;
Console.WriteLine(“Contains	Mon?:	”	+	flag)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	constant	values	in	operation

The	enumerator	list	contains	names,	not	strings,	so	they	need	not	be	enclosed	in	quote
marks,	but	the	name	must	be	supplied	as	a	string	argument	to	the	IsDefined()	method.

You	may	want	to	avoid	the	var	keyword	where	possible	to	be	sure	of	variable	data
types.	For	example,	with	the	line	var	id	=	getID()	;	the	assigned	value	(and	therefore	the
variable	data	type)	could	be	numeric	or	a	string.

Summary
• A	variable	stores	a	data	value	within	the	computer’s	memory,	and	the	value	can	be	referenced

using	that	variable’s	name.

• A	variable	declaration	must	specify	the	type	of	data	it	may	contain,	and	a	valid	programmer-
specified	name.

• Common	C#	data	types	include	int,	char,	float,	double,	decimal,	bool,	and	string.

• Variables	must	be	declared	before	they	can	be	referenced.

• A	variable	becomes	initialized	when	it	is	assigned	a	value.

• The	Console.ReadLine()	method	can	be	used	to	assign	user	input	to	a	variable.

• The	Console.WriteLine()	method	adds	a	newline	after	its	output,	but	the	Console.Write()	method
does	not.

• The	System.Convert	class	provides	a	number	of	useful	methods	to	convert	string	values	to
numerical	data	types.

• An	array	variable	can	store	multiple	items	of	data	within	sequential	elements	of	a	zero-based
index.

• An	array	declaration	must	specify	the	type	of	data	it	may	contain,	followed	by	[]	and	a
programmer-specified	name.

• An	array	is	not	initialized	until	an	array	instance	is	created	using	the	new	keyword	to	specify
data	type	and	element	size.

• Values	can	be	assigned	to	individual	array	elements	using	the	array	name	and	the	element
index	number.

• An	array	declaration	can	assign	values	to	all	of	its	array	elements	as	a	comma-separated	list
of	values	within	{	}	braces.

• Arrays	can	have	more	than	one	index,	to	represent	multiple	dimensions,	where	each	index	is
separated	by	a	comma.

• Casting	is	the	conversion	of	one	data	type	to	another.

• Implicit	casting	is	performed	automatically	by	C#.

• Explicit	casting	is	performed	by	including	a	cast	operator	within	a	statement,	to	specify	the
required	new	data	type.

3

Performing	operations

This	chapter	introduces	C#	operators	and	demonstrates	the	operations	they	can	perform.

Doing	arithmetic
Assigning	values
Comparing	values
Assessing	logic
Examining	conditions
Setting	precedence
Summary

Doing	arithmetic
The	arithmetic	operators	commonly	used	in	C#	programs	are	listed	in	the	table	below,	together
with	the	operation	they	perform:

Operator: Operation:

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

-- Decrement

The	%	modulus	operator	is	also	known	as	the	“remainder”	operator.

The	+	operator	is	dual-purpose	–	it	is	also	used	to	concatenate	strings.

The	operators	for	assignment,	addition,	subtraction,	multiplication,	and	division	act	as	you	would
expect,	but	care	must	be	taken	to	group	expressions	where	more	than	one	operator	is	used	–
operations	within	innermost	()	parentheses	are	performed	first:

a	=	b	*	c	-	d	%	e	/	f	; //	This	is	unclear.

a	=	(b	*	c)	-	((d	%	e)	/	f)	; //	This	is	clearer.

Values	used	with	operators	to	form	expressions	are	called	“operands”	–	in	the
expression	2	+	3	the	numerical	values	2	and	3	are	the	operands.

The	%	modulus	operator	will	divide	the	first	given	number	by	the	second	given	number	and	return
the	remainder	of	the	operation.	This	is	useful	to	determine	if	a	number	has	an	odd	or	even	value.

The	++	increment	operator	and	--	decrement	operator	alter	the	given	number	by	one	and	return	the
resulting	value.	These	are	most	commonly	used	to	count	iterations	in	a	loop	–	counting	up	on	each
iteration	with	the	++	increment	operator,	or	counting	down	on	each	iteration	with	the	--	decrement
operator.

The	++	increment	and	--	decrement	operators	can	be	placed	before	or	after	a	value	to	different
effect	–	placed	before	the	operand	(prefix)	its	value	is	immediately	changed;	placed	after	the
operand	(postfix)	its	value	is	noted	first,	then	the	value	is	changed.

Arithmetic

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Arithmetic”

Type	these	statements	to	create	and	initialize	two	integer	variables
int	a	=	8	;
int	b	=	4	;

Next,	add	statements	to	output	the	result	of	each	basic	arithmetical	operation
Console.WriteLine(“Addition:\t:	”	+	(a	+	b))	;
Console.WriteLine(“Subtraction:\t:	”	+	(a	-	b))	;
Console.WriteLine(“Multiplication:\t:	”	+	(a	*	b))	;
Console.WriteLine(“Division:\t:	”	+	(a	/	b))	;
Console.WriteLine(“Modulus:\t:	”	+	(a	%	b))	;

Now,	add	statements	to	output	the	result	of	a	postfix	increment	operation
Console.WriteLine(“\nPostfix:\t:	”	+	(a++))	;
Console.WriteLine(“Postfix	Result.....:\t:	”	+	a)	;

Finally,	add	statements	to	output	the	result	of	a	prefix	increment	operation	–	for
comparison	with	postfix
Console.WriteLine(“\nPrefix:\t:	”	+	(++b))	;
Console.WriteLine(“Prefix	Result.....:\t:	”	+	b)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	results	produced	by	each	arithmetic
operator

Here,	the	\t	escape	sequence	is	used	to	output	a	tab	space,	and	the	\n	escape
sequence	is	used	to	output	additional	newlines.

Remember	that	a	prefix	operator	changes	the	variable	value	immediately	but	a	postfix
operator	changes	the	value	subsequently.

Assigning	values
The	operators	that	are	used	in	C++	programming	to	assign	values	are	listed	in	the	table	below.
All	except	the	simple	=	assignment	operator	are	a	shorthand	form	of	a	longer	expression	so	each
equivalent	is	given	for	clarity:

Operator: Example: Equivalent:

= a	=	b a	=	b

+= a	+=	b a	=	(a	+	b)

-= a	-=	b a	=	(a	-	b)

*= a	*=	b a	=	(a	*	b)

/= a	/=	b a	=	(a	/	b)

%= a	%=	b a	=	(a	%	b)

The	+=	combined	operator	is	dual-purpose	–	it	can	also	be	used	to	concatenate	strings.

In	the	assignment	example	above,	where	a	=	b,	the	variable	named	“a”	is	assigned	the	value	that	is
contained	in	the	variable	named	“b”	–	so	that	is	then	the	value	stored	in	the	a	variable.
Technically	speaking,	the	assignment	operator	stores	the	value	of	the	right-hand	operand	in	the
memory	location	denoted	by	the	left-hand	operand,	then	returns	the	value	as	a	result.

It	is	important	to	regard	the	=	operator	to	mean	“assign”	rather	than	“equals”	to	avoid
confusion	with	the	==	equality	operator	that	is	described	here.

The	+=	combined	operator	is	useful	to	add	a	value	onto	an	existing	value	that	is	stored	in	the	a
variable.	In	the	example	above,	where	a	+=	b,	the	value	in	variable	b	is	added	to	that	in	variable	a
–	so	the	total	is	then	the	value	stored	in	the	a	variable.	The	arithmetic	operation	is	performed	first
with	the	grouped	operands.	The	result	is	then	stored	in	the	memory	location	denoted	by	the	first
variable	and	returned.

All	the	other	combined	operators	work	in	the	same	way	by	making	the	arithmetical	operation

between	the	two	values	first,	then	assigning	the	result	of	that	operation	to	the	first	variable	–	to
become	its	new	stored	value.

With	the	%=	combined	operator,	the	grouped	left-hand	operand	a	is	divided	by	the	grouped	right-
hand	operand	b,	then	the	remainder	of	that	operation	is	assigned	to	the	a	first	variable.

Assign

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Assign”

Type	these	statements	to	declare	two	integer	variables
int	a	;
int	b	;

Next,	add	statements	to	output	simple	assigned	values
Console.Write(“Assign	Values:	”)	;
Console.Write(“\t	a	=	”	+	(a	=	8))	;
Console.WriteLine(“\t	b	=	”	+	(b	=	4))	;

Now,	add	statements	to	output	combined	assigned	values
Console.Write(“\n\nAdd	and	Assign:	”)	;
Console.Write(“\t	a	+=	b	(8	+=	4)\t	a	=	”	+	(a	+=	b))	;

Console.Write(“\n\nSubtract	and	Assign:	”)	;
Console.Write(“\t	a	-=	b	(12	-=	4)\t	a	=	”	+	(a	-=	b))	;

Console.Write(“\n\nMultiply	and	Assign:	”)	;
Console.Write(“\t	a	*=	b	(8	*=	4)\t	a	=	”	+	(a	*=	b))	;

Console.Write(“\n\nDivide	and	Assign:	”)	;
Console.Write(“\t	a	/=	b	(32	/=	4)\t	a	=	”	+	(a	/=	b))	;

Console.Write(“\n\nModulus	and	Assign:	”)	;
Console.Write(“\t	a	%=	b	(8	%=	4)\t	a	=	”	+	(a	%=	b))	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	results	produced	by	each	assignment
operator

Notice	how	\n\n	escape	sequences	are	used	here	to	add	two	newlines	for	spacing
output.

The	operands	must	be	of	the	same	data	type,	or	the	right-hand	operand	must	be
implicitly	convertible	to	the	type	of	the	left-hand	operand.

Comparing	values
The	operators	that	are	commonly	used	in	C#	programming	to	compare	two	numerical	values	are
listed	in	the	table	below:

Operator: Comparative	test:

== Equality

!= Inequality

> Greater	than

< Less	than

>= Greater	than	or	equal	to

<= Less	than	or	equal	to

The	comparison	operators	are	also	known	as	“relational	operators”.

The	==	equality	operator	compares	two	operands	and	will	return	true	if	both	are	equal	in	value,
otherwise	the	==	operator	will	return	false.	If	both	are	the	same	number,	they	are	equal,	or	if	both
are	characters,	their	ASCII	code	values	are	compared	numerically.

Conversely,	the	!=	inequality	operator	returns	true	if	two	operands	are	not	equal,	using	the	same
rules	as	the	==	equality	operator,	otherwise	it	returns	false.	Equality	and	inequality	operators	are
useful	in	testing	the	state	of	two	variables	to	perform	conditional	branching	in	a	program.

You	can	specify	a	Boolean	value	to	the	Convert.ToDouble()	method	to	discover	that	true	is
represented	numerically	as	1,	and	false	is	represented	as	0.

The	>	“greater	than”	operator	compares	two	operands	and	will	return	true	if	the	first	is	greater	in
value	than	the	second,	or	it	will	return	false	if	it	is	equal	or	less	in	value.	The	<	“less	than”
operator	makes	the	same	comparison	but	returns	true	if	the	first	operand	is	less	in	value	than	the
second,	otherwise	it	returns	false.	Typically,	a	>	“greater	than”	or	<	“less	than”	operator	is	used	to
test	the	value	of	an	iteration	counter	in	a	loop	structure.

Adding	the	=	assignment	operator	after	a	>	“greater	than”	operator	or	a	<	“less	than”	operator
makes	it	also	return	true	if	the	two	operands	are	exactly	equal	in	value.

Comparison

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Comparison”

Type	these	statements	to	declare	three	integer	variables	and	two	character	variables	to	be
compared
int	nil	=	0	,	num	=	0	,	max	=	1	;
char	cap	=	‘A’	,	low	=	‘a’	;

Next,	add	statements	to	output	the	result	of	equality	comparisons	of	integers	and	characters
Console.Write(“Equality:”)	;
Console.Write(“\t	(0	==	0)	:	”	+	(nil	==	num))	;
Console.Write(“\n\t\t	(A	==	a)	:	”	+	(cap	==	low))	;

Now,	add	statements	to	output	the	result	of	other	integer	comparisons
Console.Write(“\n\nInequality:”)	;
Console.Write(“\t	(0	!=	1)	:	”	+	(nil	!=	max))	;

Console.Write(“\n\nGreater:”)	;
Console.Write(“\t	(0	>	1)	:	”	+	(nil	>	max))	;

Console.Write(“\nLess:”)	;
Console.Write(“\t\t	(0	<	1)	:	”	+	(nil	<	max))	;

Console.Write(“\n\nGreater/Equal:”)	;
Console.Write(“\t	(0	>=	0)	:	”	+	(nil	>=	num))	;

Console.Write(“\nLess	or	Equal:”)	;
Console.Write(“\t	(1	<=	0)	:	”	+	(max	<=	nil))	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	results	produced	by	each	comparison

The	ASCII	code	value	for	uppercase	‘A’	is	65	but	for	lowercase	‘a’	it’s	97	–	so	their
comparison	here	returns	false.

When	comparing	numbers,	remember	to	test	for	equality	as	well	as	testing	for	higher
and	lower	values.

Assessing	logic
The	logical	operators	most	commonly	used	in	C#	programming	are	listed	in	the	table	below:

Operator: Operation:

&& Logical-AND

|| Logical-OR

! Logical-NOT

The	logical	operators	are	used	with	operands	that	have	Boolean	values	of	true	or	false,	or	are
values	that	convert	to	true	or	false.

The	&&	logical-AND	operator	will	evaluate	two	operands	and	return	true	only	if	both	operands
themselves	are	true.	Otherwise,	the	&&	logical-AND	operator	will	return	false.	This	is	used	in
conditional	branching	where	the	direction	of	a	program	is	determined	by	testing	two	conditions	–
if	both	conditions	are	satisfied,	the	program	will	go	in	a	certain	direction,	otherwise	it	will	take	a
different	direction.

The	term	“Boolean”	refers	to	a	system	of	logical	thought	developed	by	the	English
mathematician	George	Boole	(1815-1864).

Unlike	the	&&	logical-AND	operator,	which	needs	both	operands	to	be	true,	the	||	logical-OR
operator	will	evaluate	its	two	operands	and	return	true	if	either	one	of	the	operands	itself	returns
true.	If,	however,	neither	operand	returns	true,	then	the	||	logical-OR	operator	will	return	false.
This	is	useful	in	C#	programming	to	perform	a	certain	action	if	either	one	of	two	test	conditions
has	been	met.

The	!	logical-NOT	operator	is	a	unary	operator	that	is	used	before	a	single	operand.	It	returns	the

inverse	value	of	the	given	operand,	so	if	the	variable	a	had	a	value	of	true	then	!a	would	have	a
value	of	false.	The	!	logical-NOT	operator	is	useful	in	C#	programs	to	toggle	the	value	of	a
variable	in	successive	loop	iterations	with	a	statement	like	a	=	!a.	This	ensures	that	on	each	pass
the	value	is	changed,	like	flicking	a	light	switch	on	and	off.

Logic

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Logic”

Type	this	statement	to	declare	two	Boolean	variables
bool	yes	=	true	,	no	=	false	;

Add	these	statements	to	output	the	result	of	AND	logic
Console.Write(“AND	Logic:”)	;
Console.Write(“\t	(yes	&&	yes)	:	”	+	(yes	&&	yes))	;
Console.Write(“\n\t\t	(yes	&&	no)	:	”	+	(yes	&&	no))	;
Console.Write(“\n\t\t	(no	&&	no)	:	”	+	(no	&&	no))	;

Now,	add	statements	to	output	the	result	of	OR	logic
Console.Write(“\n\nOR	Logic:”)	;
Console.Write(“\t	(yes	||	yes)	:	”	+	(yes	||	yes))	;
Console.Write(“\n\t\t	(yes	||	no)	:	”	+	(yes	||	no))	;
Console.Write(“\n\t\t	(no	||	no)	:	”	+	(no	||	no))	;

Then,	add	statements	to	output	the	result	of	NOT	logic
Console.Write(“\n\nNOT	Logic:”)	;
Console.Write(“\t	yes	=	”	+	yes)	;
Console.Write(“\t	!yes	=	”	+	!yes)	;
Console.Write(“\n\t\t	no	=	”	+	no)	;
Console.Write(“\t	!no	=	”	+	!no)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	results	produced	by	each	logical
operation

The	value	returned	by	the	!	logical-NOT	operator	is	the	inverse	of	the	stored	value	–	the
stored	value	itself	remains	unchanged.

Notice	that	false	&&	false	returns	false,	not	true	–	demonstrating	the	maxim	“two	wrongs
don’t	make	a	right”.

Examining	conditions
Possibly	the	C#	programmer’s	most	favorite	test	operator	is	the	?:	“ternary”	operator.	This
operator	first	evaluates	an	expression	for	a	true	or	false	condition,	then	returns	one	of	two
specified	values	depending	on	the	result	of	the	evaluation.	For	this	reason	it	is	also	known	as	the
“conditional”	operator.

The	?:	ternary	operator	has	this	syntax:

(test-expression)	?	if-true-return-this	:	if-false-return-this	;

Although	the	ternary	operator	can	initially	appear	a	little	confusing,	it	is	well	worth	becoming
familiar	with	this	operator	as	it	can	execute	powerful	program	branching	with	minimal	code.	For
example,	to	branch	when	a	variable	is	not	a	value	of	one:

(variable	!=	1)	?	if-true-do-this	:	if-false-do-this	;

The	ternary	operator	has	three	operands	–	the	one	before	the	?	and	those	before	and
after	the	:.

The	ternary	operator	is	commonly	used	in	C#	programming	to	assign	the	maximum	or	minimum
value	of	two	variables	to	a	third	variable.	For	example,	to	assign	a	minimum	like	this:

c	=	(a	<	b)	?	a	:	b	;

The	expression	in	parentheses	returns	true	when	the	value	of	variable	a	is	less	than	that	of
variable	b	–	so	in	this	case,	the	lesser	value	of	variable	a	gets	assigned	to	variable	c.

Similarly,	replacing	the	<	less	than	operator	in	the	test	expression	with	the	>	greater	than	operator
would	assign	the	greater	value	of	variable	b	to	variable	c.

Another	common	use	of	the	ternary	operator	incorporates	the	%	modulus	operator	in	the	test
expression	to	determine	whether	the	parity	value	of	a	variable	is	an	odd	number	or	an	even
number:

(variable	%	2	!=	0)	?	if-true(odd)-do-this	:	if-false(even)-do-this	;

Where	the	result	of	dividing	the	variable	value	by	two	does	leave	a	remainder,	the	number	is	odd
–	where	there	is	no	remainder,	the	number	is	even.	The	test	expression	(variable	%	2	==	1)	would
have	the	same	effect,	but	it	is	preferable	to	test	for	inequality	–	it’s	easier	to	spot	when	something
is	different	than	when	it’s	identical.

Value	equality,	where	two	variables	contain	an	equal	value,	is	also	known	as
“equivalence”.

Condition

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Condition”

Type	this	statement	to	declare	and	initialize	two	integer	variables
int	a	=	8	;
int	b	=	3	;

Next,	add	these	statements	to	output	an	appropriate	string	with	correct	grammar	for
quantity
string	verb	=	(a	!=	1)	?	“	are	“	:	“	is	“	;
Console.Write(“There”	+	verb	+	a	+”\n”)	;

Now,	add	statements	to	output	an	appropriate	string	correctly	describing	the	parity	of	each
variable	value
string	parity	=	(a	%	2	!=	0)	?	“Odd“	:	“Even“	;
Console.Write(a	+	“	is	“	+	parity)	;

parity	=	(b	%	2	!=	0)	?	“Odd“	:	“Even“	;
Console.Write(b	+	“	is	“	+	parity)	;

Then,	add	statements	to	output	a	string	reporting	the	greater	of	these	two	variable	values
int	max	=	(a	>	b)	?	a	:	b	;
Console.Write(“\nMaximum	is	“	+	max)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	results	produced	by	examining	each
variable	value

The	?:	ternary	operator	can	return	values	of	any	data	type	–	numbers,	strings,	Booleans,
etc.

Setting	precedence
Operator	precedence	determines	the	order	in	which	C#	evaluates	expressions.	For	example,	the
expression	1	+	5	*	3	evaluates	to	16,	not	18,	because	the	*	multiplication	operator	has	a	higher
precedence	than	the	+	addition	operator.	Parentheses	can	be	used	to	specify	precedence,	so	that	(
1	+	5)	*	3	evaluates	to	18.

The	*	multiply	operator	is	on	a	higher	row	than	the	+	addition	operator	–	so	in	the
expression	a=1+5*3,	multiplication	is	completed	first,	before	the	addition.

When	operators	have	equal	precedence,	their	“associativity”	determines	how	expressions	are
grouped.	For	example,	the	-	subtraction	operator	is	left-associative,	grouping	left-to-right	(LTR),
so	8	-	4	-	2	is	grouped	as	(8	-	4)	-	2	and	thus	evaluates	to	2.	Other	operators	are	right-
associative,	grouping	right-to-left	(RTL).

The	table	below	lists	common	operators	in	order	of	precedence,	with	the	highest-precedence
ones	at	the	top.	Operators	on	the	same	line	have	equal	precedence,	so	operator	associativity
determines	how	expressions	are	grouped	and	evaluated.

Category: Operator: Associativity:

Postfix ()	[]	.	++	-- LTR	

Unary
Sign
Prefix

!
+	-
++	--

	RTL

Multiplicative *	/	% LTR	

Additive +	- LTR	

Comparative <	<=	>	>= LTR	

Equivalence ==	!= LTR	

Conditional && LTR	

Conditional || LTR	

Conditional ?: 	RTL

Assignment =	+=	-=	*=	/=	%= 	RTL

Comma , LTR	

There	are	also	a	number	of	“bitwise”	operators,	which	are	used	to	perform	binary
arithmetic.	This	is	outside	the	scope	of	this	book	but	there	is	a	section	devoted	to	binary
arithmetic	in	our	book	C	Programming	in	easy	steps.	Those	operators	perform	in	just
the	same	way	in	C#.

Precedence

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Precedence”

Type	this	statement	to	declare	an	integer	variable
int	sum	;

Add	these	statements	to	initialize	the	variable	with	the	result	of	an	ungrouped	expression
and	display	that	result	sum	=	1	+	4	*	3	;
Console.Write(“Default	Order:\t\t”	+	sum)	;

Next,	add	statements	to	assign	the	result	of	a	grouped	expression	and	display	that	result
sum	=	(1	+	4)	*	3	;
Console.Write(“Forced	Order:\t\t”	+	sum)	;

Add	statements	to	assign	the	result	of	a	new	ungrouped	expression	and	display	that	result
sum	=	7	-	4	+	2	;
Console.Write(“\nDefault	Direction:\t”	+	sum)	;

Now,	add	statements	to	assign	the	result	of	the	new	grouped	expression	and	display	that
result
sum	=	7	-	(4	+	2)	;
Console.Write(“\nForced	Direction:\t”	+	sum)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	results	produced	by	examining	each
variable	value

http://ineasysteps.com/products-page/all_books/c-programming-in-easy-steps-4th-edition-2/

The	*	multiplication	operator	takes	precedence	over	the	+	addition	operator	–	so
multiplication	is	performed	first.

The	-	subtraction	operator	and	the	+	addition	operator	have	equal	precedence	but	also
have	left-to-	right	associativity	–	so	subtraction	is	performed	first	before	addition.

It	is	best	to	clarify	all	expressions	by	adding	parentheses	to	group	operations.

Summary
• Arithmetic	operators	can	form	expressions	with	two	operands	for	+	addition,	-	subtraction,	*

multiplication,	and	/	division.

• The	%	modulus	arithmetic	operator	divides	the	first	operand	by	its	second	operand,	then
returns	the	remainder.

• Care	must	be	taken	to	group	expressions	within	()	parentheses	where	more	than	one	operator
is	used.

• The	++	increment	and	--	decrement	operators	may	be	postfixed	or	prefixed	to	modify	a	single
operand	by	one.

• The	=	assignment	operator	can	be	combined	with	an	arithmetic	operator	to	assign	the	result	of
an	operation.

• Comparison	operators	can	form	expressions	with	two	operands	for	==	equality	or	for	!=
inequality.

• Comparison	operators	can	form	expressions	with	two	operands	for	>	greater	or	for	<	lesser
value	comparison.

• Equality	can	also	be	recognized	in	comparisons	with	the	>=	greater-or-equal	and	<=	less-or-
equal	operators.

• The	&&	logical-AND	operator	evaluates	two	operands	and	will	return	true	only	if	both
operands	are	themselves	true.

• The	||	logical-OR	operator	evaluates	two	operands	and	will	return	true	if	either	of	the	two
operands	are	themselves	true.

• The	!	logical-NOT	operator	returns	the	inverse	Boolean	value	of	a	single	given	operand.

• The	?:	ternary	operator	evaluates	a	given	Boolean	expression,	then	returns	one	of	two
operands	depending	on	the	result.

• Operator	precedence	determines	the	order	in	which	expressions	are	evaluated.

• When	operators	have	equal	precedence,	their	associativity	determines	how	expressions	are
grouped	for	evaluation.

4

Making	statements

This	chapter	demonstrates	how	statements	can	evaluate	expressions	to	determine	the	direction	in	which	a	C#	program	will

proceed.

Branching	with	if
Switching	branches
Looping	for
Looping	while
Iterating	for	each
Summary

Branching	with	if
The	C#	if	keyword	performs	the	basic	conditional	test	that	evaluates	a	given	expression	for	a
Boolean	value	of	true	or	false	–	and	its	syntax	looks	like	this:

if	(test-expression)	{	statements-to-execute-when-true	}

The	braces	following	the	test	may	contain	one	or	more	statements,	each	terminated	by	a	;
semicolon,	but	these	will	only	be	executed	when	the	expression	is	found	to	be	true.	When	the	test
is	found	to	be	false,	the	program	proceeds	to	its	next	task.

To	allow	“conditional	branching”,	an	if	statement	can	offer	alternative	statements	to	execute	when
the	test	fails	by	appending	an	else	statement	block	after	the	if	statement	block,	like	this:

if	(test-expression)	{	statements-to-execute-when-true	}
else	{	statements-to-execute-when-false	}

To	test	two	conditions,	the	test	expression	may	use	the	&&	operator.	For	example,	if	((num	>	5)	&&
(letter	==	‘A’)).

Shorthand	can	be	used	when	testing	a	Boolean	value	–	so	the	expression	if(flag	==	true)
can	be	written	as	if(flag).

Alternatively,	an	if	statement	can	be	“nested”	within	another	if	statement,	so	those	statements	in	the
inner	statement	block	will	only	be	executed	when	both	tests	succeed	–	but	statements	in	the	outer
statement	block	will	be	executed	if	the	outer	test	succeeds:

IfElse

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“IfElse”

Type	these	statements	to	create	and	initialize	two	variables	from	user	input
Console.Write(“Please	Enter	A	Number:	”)	;
double	num	=	Convert.ToDouble(Console.ReadLine())	;
Console.Write(“Thanks.	Now	Enter	A	Letter:	”)	;
char	letter	=	Convert.ToChar(Console.ReadLine())	;

Next,	add	a	statement	to	output	a	message	if	the	user’s	number	input	exceeds	a	specified
value
if	(num	>=	6)
{
Console.WriteLine(“\nNumber	Exceeds	5”)	;
//	Nested	statement	to	be	inserted	here	(Step	5).

}

Avoid	nesting	more	than	three	levels	of	if	statements	–	to	prevent	confusion	and	errors.

Now,	add	a	statement	to	output	an	alternative	message	if	the	user’s	number	input	is	less
than	the	specified	value
else
{
Console.WriteLine(“\nNumber	Is	5	Or	Less”)	;

}
Console.ReadKey()	;

Insert	a	statement	within	the	if	block	to	output	a	message	when	the	user’s	letter	input
matches	a	specified	value
if	(letter	==	‘C’)
{
Console.WriteLine(“Letter	Is	‘C’”)	;

}

Press	Start	or	F5	to	run	the	application	and	enter	values	to	see	the	program	branch
according	to	your	input

Where	there	is	only	one	statement	to	execute,	when	the	test	succeeds	the	{	}	braces
may	be	omitted	–	but	retaining	them	aids	code	clarity.

Switching	branches
The	if	and	else	keywords,	introduced	above,	allow	programs	to	branch	in	a	particular	direction
according	to	the	result	of	a	test	condition,	and	can	be	used	to	repeatedly	test	a	variable	to	match	a
value.	For	example,	testing	for	an	integer:

if	(num	==	1)	{	Console.Write(“Monday”)	;	}
else
if	(num	==	2)	{	Console.Write(“Tuesday”)	;	}
else
if	(num	==	3)	{	Console.Write(“Wednesday”)	;	}
else
if	(num	==	4)	{	Console.Write(“Thursday”)	;	}
else
if	(num	==	5)	{	Console.Write(“Friday”)	;	}

The	program	will	branch	in	the	direction	of	the	match.

Avoid	writing	lengthy	if-else	statements	like	the	one	shown	here	–	where	possible,	use	a
switch	statement	instead.

Conditional	branching	with	long	if-else	statements	can	often	be	more	efficiently	performed	using	a
switch	statement	instead,	especially	when	the	test	expression	evaluates	just	one	variable.

The	switch	statement	works	in	an	unusual	way.	It	takes	a	given	variable	value,	or	expression,	then
seeks	a	matching	value	among	a	number	of	case	statements.	Statements	associated	with	the
matching	case	statement	by	a	:	colon	will	then	be	executed.

When	no	match	is	found,	no	case	statements	will	be	executed,	but	you	may	add	a	default	statement
after	the	final	case	statement	to	specify	statements	to	be	executed	when	no	match	is	found.	The
syntax	of	a	typical	switch	statement	looks	like	this:

switch(variable-name)
{
case	value1	:	statement	;	break	;
case	value2	:	statement	;	break	;
case	value3	:	statement	;	break	;
default	:	statement	;

}

It	is	important	to	follow	each	case	statement	with	the	break	keyword.	Unlike	other	programming
languages,	C#	does	not	allow	fall-through	from	one	case	statement	to	another	–	each	case
statement	must	allow	control	to	be	handed	back	in	order	to	exit	the	switch	block.

Missing	break	keywords	in	C#	case	statements	are	syntax	errors.

Switch

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Switch”

Type	this	statement	to	create	and	initialize	an	integer	variable
int	num	=	3	;

Next,	add	a	statement	to	declare	a	string	variable
string	day	;

Now,	add	a	statement	to	initialize	the	string	variable	according	to	the	value	of	the	integer
variable
switch(num)
{
case	1	:	day	=	“Monday”	;	break	;
case	2	:	day	=	“Tuesday”	;	break	;
case	3	:	day	=	“Wednesday”	;	break	;
case	4	:	day	=	“Thursday”	;	break	;
case	5	:	day	=	“Friday”	;	break	;
//	Default	statement	to	be	inserted	here	(Step	5).

}

Then,	insert	a	final	statement	into	the	switch	block	to	initialize	the	string	variable	when	no
match	is	found
default	:	day	=	“Weekend	Day”	;

Finally,	add	statements	to	output	the	assigned	value
Console.WriteLine(“Day	”	+	num	+	“	:	“	+	day)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	string	result	of	the	switch	block
assignment

A	case	statement	can	also	try	to	match	against	a	string	value.	For	example:	case	:	“ABC”.

The	default	statement	does	not	need	to	be	followed	by	a	break	keyword	–	because	a
default	statement	always	appears	at	the	end	of	a	switch	block.

Looping	for
A	loop	is	a	piece	of	code	in	a	program	that	automatically	repeats.	One	complete	execution	of	all
statements	contained	within	the	loop	block	is	known	as	an	“iteration”	or	“pass”.

The	number	of	iterations	made	by	a	loop	is	controlled	by	a	conditional	test	made	within	the	loop.
While	the	tested	expression	remains	true,	the	loop	will	continue	–	until	the	tested	expression
becomes	false,	at	which	time	the	loop	ends.

The	three	types	of	loop	structures	in	C#	programming	are	for	loops,	while	loops,	and	do-while
loops.	Perhaps	the	most	commonly	used	loop	is	the	for	loop,	which	has	this	syntax:

for	(initializer	;	test-expression	;	updater)	{	statements	}

The	initializer	sets	the	starting	value	for	a	counter	of	the	number	of	iterations	to	be	made	by	the
loop.	An	integer	variable	is	used	for	this	purpose	and	is	traditionally	named	“i”.

Upon	each	iteration	of	the	loop,	the	test	expression	is	evaluated	and	that	iteration	will	only
continue	while	this	expression	is	true.	When	the	tested	expression	becomes	false,	the	loop	ends
immediately	without	executing	the	statements	again.	On	each	iteration	the	counter	is	updated	then
the	statements	executed.

Loops	may	be	nested	within	other	loops	–	so	that	the	inner	loop	will	fully	execute	its	iterations	on
each	iteration	of	the	outer	loop.

The	updater	may	increment	the	counter	using	the	++	operator	to	count	up,	or	decrement
the	counter	using	the	--	decrement	operator	to	count	down.

ForLoop

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“ForLoop”

Type	these	statements	to	create	a	loop	that	will	make	three	iterations
for(int	i	=	1	;	i	<	4	;	i++)
{
Console.WriteLine(“Loop	Iteration:	“	+	i)	;
//	Nested	loop	to	be	inserted	here	(Step	4).

}
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	loop	counter	displayed	on	each
iteration

Inside	the	for	loop	block,	insert	another	for	loop	that	will	also	make	three	iterations
for(int	j	=	1	;	j	<	4	;	j++)
{
Console.WriteLine(“\tInner	Loop	Iteration:	“	+	j)	;

}

Press	Start	or	F5	to	run	the	application	once	more	and	now	see	both	loop	counters
displayed	on	each	iteration

On	the	third	iteration	of	these	loops,	the	updater	increments	the	counter	value	to	4	–	so
when	it	is	next	evaluated	the	test	expression	returns	false	and	the	loop	ends.

Looping	while
An	alternative	to	the	for	loop,	introduced	here,	uses	the	while	keyword,	followed	by	an	expression
to	be	evaluated.	When	the	expression	is	true,	statements	contained	within	braces	following	the	test
expression	will	be	executed.	The	expression	will	then	be	evaluated	again	and	the	while	loop	will
continue	until	the	expression	is	found	to	be	false.

while	(test-expression)	{	statements	}

The	loop’s	statement	block	must	contain	code	that	will	affect	the	tested	expression	in	order	to
change	the	evaluation	result	to	false,	otherwise	an	infinite	loop	is	created	that	will	lock	the
system!	When	the	tested	expression	is	found	to	be	false	upon	its	first	evaluation,	the	while	loop’s
statement	block	will	never	be	executed.

A	subtle	variation	of	the	while	loop	places	the	do	keyword	before	the	loop’s	statement	block	and	a
while	test	after	it,	with	this	syntax:

do	{	statements	}	while	(test-expression)	;

In	a	do-while	loop	the	statement	block	will	always	be	executed	at	least	once	–	because	the
expression	is	not	evaluated	until	after	the	first	iteration	of	the	loop.

If	you	accidentally	start	running	an	infinite	loop,	for	example:
while(true)
{
Console.Write(i)	;
i++	;

}
press	Ctrl	+	C	keys	to	terminate	the	process.

Breaking	out	of	loops
A	break	statement	can	be	included	in	any	kind	of	loop	to	immediately	terminate	the	loop	when	a
test	condition	is	met.	The	break	ensures	no	further	iterations	of	that	loop	will	be	executed.

Similarly,	a	continue	statement	can	be	included	in	any	kind	of	loop	to	immediately	terminate	that
particular	iteration	of	the	loop	when	a	test	condition	is	met.	The	continue	statement	allows	the
loop	to	proceed	to	the	next	iteration:

WhileLoop

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“WhileLoop”

Type	these	statements	to	create	and	initialize	an	integer	array	variable	and	a	regular
integer	counter	variable
int	[]	nums	=	new	int[10]	;
int	i	=	0	;

Next,	add	a	while	loop	to	assign	its	incrementing	counter	value	to	an	array	element	and
display	it	on	each	iteration
while(i	<	nums.Length)
{
nums[i]	=	i	;
Console.Write(“	|	“	+	nums[i])	;
i++	;

}
Console.Write(“\n\n“)	;

Notice	how	the	array’s	Length	property	is	used	to	determine	the	number	of	elements	it
contains.

Now,	add	a	do-while	loop	to	display	its	decrementing	counter	value	on	each	iteration
do
{
i--	;
//	Statements	to	be	inserted	here	(Step	6).
Console.Write(“	|	“	+	nums[i])	;

}
while(i	>	0)	;
Console.ReadKey()	;

Remember	that	the	while	statement	at	the	end	of	a	do-while	loop	must	be	terminated	with
a	;	semicolon.

Press	Start	or	F5	to	run	the	application	and	see	both	loop	counters	displayed	on	each
iteration

In	the	do-while	loop,	insert	a	statement	to	skip	a	single	iteration,	and	a	statement	to
prematurely	exit	the	loop
if(i	==	8)	{	Console.Write(“	|	Skipped”)	;	continue	;	}
if(i	==	3)	{	Console.Write(“	|	Done”)	;	break	;	}

Press	Start	or	F5	to	run	the	application	once	more,	and	now	see	the	do-while	loop
iterations	skipped

The	position	of	break	and	continue	statements	is	important	–	they	must	appear	after	the
updater,	to	avoid	creating	an	infinite	loop,	but	before	any	other	statements,	to	prevent
their	execution.

Iterating	for	each
C#	provides	a	special	foreach-in	statement	that	allows	you	to	easily	traverse	all	elements	in	an
array	to	access	all	stored	values.	This	is	an	“iterator”,	rather	than	a	loop	structure,	so	it	cannot	be
used	to	assign	or	modify	element	values	–	it	can	only	be	used	to	read	their	values.	Syntax	of	a
foreach-in	statement	looks	like	this:

foreach	(data-type	variable-name	in	array-name)	{	statements	}

Use	a	for	loop	if	you	need	to	assign	or	modify	element	values.

The	foreach	keyword	must	specify	a	variable	of	an	appropriate	data	type	to	which	each	element
value	can	be	assigned,	one	by	one,	and	the	in	keyword	must	specify	the	name	of	the	array:

ForEach

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“ForEach”

Type	this	statement	to	create	and	initialize	a	string	array
string	[]	websites	=	new	string	[5]
{	“Google”,	“YouTube”,	“Facebook”,	“Baidu”,	“Yahoo!”	}	;

Next,	add	a	statement	to	display	a	list	heading
Console.WriteLine(“Popular	Websites...“)	;

Now,	add	a	foreach	statement	to	display	a	counter	value	and	element	value	on	each
iteration
int	rank	=	1	;
foreach(string	site	in	websites)
{
Console.WriteLine(“Position:	“	+	rank	+	”\t”	+	site)	;
rank++	;

}
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	iterator	display	the	counter	and
element	values

The	break	and	continue	keywords	can	be	used	in	a	foreach	statement	to	exit	the	iteration
cycle.

A	foreach-in	statement	can	also	be	used	to	traverse	all	elements	of	a	C#	“dictionary”	that	contains
associated	key-value	pairs.	The	data	types	of	the	key	and	value	must	be	specified	as	a	comma-
separated	pair	within	<	>	angled	brackets	in	the	declaration:

Dictionary	<	data-type,	data-type	>	dictionary-name	=
new	Dictionary	<	data-type,	data-type	>	()	;

The	foreach	keyword	must	specify	a	KeyValuePair	to	which	each	key-value	pair	value	can	be
assigned,	one	by	one,	and	the	in	keyword	must	specify	the	name	of	the	dictionary:

KeyValue

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“KeyValue”

Type	these	statements	to	create	and	initialize	a	dictionary	named	“BookList”
Dictionary	<	string,	string	>	BookList	=

new	Dictionary	<	string,	string	>	()	;
BookList.Add(“Stuart	Yarnold”,	“Arduino”)	;
BookList.Add(“Nick	Vandome”,“Windows	10”)	;
BookList.Add(“Mike	McGrath”,	“Java”)	;

Now,	add	a	statement	to	display	a	list	heading
Console.WriteLine(“Popular	Titles...“)	;

Add	a	foreach	statement	to	display	each	key-value	pair
foreach(KeyValuePair	<	string,	string	>	book	in	BookList)
{
Console.WriteLine(“Key:	“	+	book.Key	+

“\tValue:	”+	book.Value	+	“	in	easy	steps”)	;
}
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	iterator	display	the	dictionary’s	key-

value	pairs

Note	that	a	Dictionary	object	has	Add()	and	Remove()	methods,	and	has	Key	and	Value
properties.

The	Dictionary	class	is	part	of	the	System.	Collections.Generic	library	–	so	this	must	be
included	in	the	program	using	statements.

Summary
• An	if	statement	evaluates	a	given	test	expression	for	a	Boolean	value	of	true	or	false.

• Statements	contained	in	braces	after	an	if	statement	will	only	be	executed	when	the	evaluation
is	found	to	be	true.

• Multiple	if	statements	can	be	nested,	so	statements	in	the	inner	loop	are	only	executed	when
both	loop	tests	return	true.

• The	if	and	else	keywords	are	used	to	perform	conditional	branching	according	to	the	result	of	a
tested	expression.

• A	switch	statement	is	an	alternative	form	of	conditional	branching	that	matches	a	case	statement
to	a	given	value.

• Each	case	statement	must	be	terminated	by	the	break	keyword,	as	C#	does	not	allow	fall-
through.

• The	for	loop	structure	has	parameters	declaring	an	initializer,	a	test	expression,	and	an	updater.

• A	loop	updater	may	++	increment	a	counter	to	count	up,	or	may	--	decrement	a	counter	to	count
down.

• A	while	loop	may	never	execute	its	statements,	but	a	do-while	loop	will	always	execute	its
statements	at	least	once.

• A	while	loop	and	do-while	loop	must	always	have	an	updater	within	their	loop	body	to	avoid
creating	an	infinite	loop.

• Any	type	of	loop	can	be	immediately	terminated	by	including	a	break	statement	within	the	loop
body.

• A	single	iteration	of	any	type	of	loop	can	be	skipped	by	including	a	continue	statement	within
the	loop	body.

• A	foreach-in	statement	is	an	iterator	that	can	traverse	all	elements	of	an	array	to	read	their
values.

• A	foreach-in	statement	can	traverse	all	key-value	pairs	of	a	dictionary	to	read	their	values.

5

Devising	methods

This	chapter	demonstrates	how	to	create	methods	that	can	be	called	to	execute	statements	whenever	the	C#	program

requires	them.

Creating	function
Passing	arguments
Overloading	methods
Refactoring	code
Summary

Creating	function
C#	programmer-specified	methods	enclose	a	section	of	code	that	provides	particular	functionality
to	the	program.	When	a	method	is	called	from	within	the	default	Main()	program	method,	its
statements	are	executed	and,	optionally,	a	value	can	be	returned	to	the	main	program	upon
completion.	Wrapping	functionality	in	modular	methods	provides	these	three	main	benefits:

• Modular	program	code	is	easier	to	understand	and	maintain

• Tried	and	tested	methods	can	be	re-used	by	other	programs

• The	workload	on	large	programs	can	be	more	easily	shared

A	method	is	declared	in	a	C#	program	by	specifying	the	various	elements	of	its	structure	with	this
syntax:

access-specifier	return-data-type	method-name	(parameters)
{
statements

}

The	first	part	of	a	method	declaration,	defining	its	access,	return	type,	name,	and
parameters,	is	known	as	the	method	“signature”.

The	access	specifier	determines	the	visibility	of	the	method	to	other	classes,	using	keywords	such
as	public	and	private.	Alternatively,	if	the	method	is	not	intended	for	use	by	other	classes,	it	can	be
initialized	in	memory	using	the	static	keyword.

If	the	method	will	return	a	value	to	the	caller,	the	data	type	of	that	value	must	be	specified.	If,	on
the	other	hand,	the	method	will	never	return	a	value,	the	void	keyword	must	be	specified.

The	use	of	methods	by	other	classes	is	described	and	demonstrated	in	the	chapter	on
Object	Oriented	Programming	–	see	here.

A	name	must	be	specified	for	each	programmer-defined	method,	adhering	to	the	same	naming
conventions	as	variable	names.

Optionally,	parameters	may	be	specified	within	parentheses	after	the	method	name	to	represent
argument	values	passed	into	the	method	by	the	caller.	Once	defined,	a	method	without	parameters
may	be	called	simply	by	stating	its	name	followed	by	parentheses.

Variables	declared	within	a	method	are	not,	by	default,	visible	to	other	parts	of	the	program	–
they	are	only	available	to	code	within	that	method	body.	The	visibility	of	variables	is	known	as
“variable	scope”	and	variables	within	methods	have	only	“local”	scope.	This	means	that
variables	declared	in	different	methods	may	be	given	the	same	name	without	conflict.

Parameters	and	arguments	are	demonstrated	in	the	example	here.

Method

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Method”

After	the	Main()	method,	add	this	method	definition	within	the	{	}	braces	of	the	class	Program
static	void	bodyTempC()
{
Console.WriteLine(“Body	Temperature...”)	;
Console.WriteLine(“Centigrade:\t37ºC”)	;

}

You	can	use	the	Windows	Accessories,	Character	Map	facility	to	produce	the	degree

symbol.

Next,	add	a	method	definition	that	returns	a	floating-	point	value	to	the	caller
static	double	bodyTempF()
{
double	temperature	=	98.6	;
return	temperature	;

}

Each	variable	can	share	the	same	name	as	they	have	only	local	scope.

Now,	add	a	method	definition	that	returns	an	integer	value	to	the	caller
static	int	bodyTempK()
{
int	temperature	=	310	;
return	temperature	;

}

Finally,	add	statements	within	the	Main()	method	to	call	each	of	the	programmer-specified
methods	above
bodyTempC()	;
Console.WriteLine(“Fahrenheit:\t”	+	bodyTempF()	+	“ºF”)	;
Console.WriteLine(“Kelvin:\t”	+	bodyTempK()	+	“K”)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	output	featuring	the	method	calls

Passing	arguments
Methods	may	optionally	specify	one	or	more	parameters	as	a	comma-separated	list	within	the
parentheses	of	their	definition.	Each	specified	parameter	must	state	the	data	type	it	may	contain,
and	a	name	by	which	it	may	be	referenced	within	the	method.	For	example,	parameters	for	text
and	a	number,	like	this:

static	void	setUser(string	name	,	int	age)	{	statements	}

When	a	method	with	parameters	is	called,	the	caller	must	normally	pass	the	correct	number	of
argument	values	of	the	required	data	type.	These	are	listed	within	the	parentheses	of	the	calling
statement.	For	example,	calling	the	method	defined	above:

setUser(“Alison”	,	18)	;

Calling	a	method	without	passing	required	arguments,	or	arguments	of	the	wrong	data
type,	will	cause	an	error.

Optionally,	the	parameter	declaration	may	be	assigned	a	default	value	to	use	if	no	argument	value
is	passed	by	the	caller.	In	this	case,	the	caller	may	pass	or	omit	an	argument	value:

static	void	setUser(string	name	,	int	age	=	21)	{	statements	}

setUser(“Brenda”	,	19)	;
setUser(“Christine”)	; //	Age	will	be	21.

There	are	three	ways	to	pass	arguments	into	methods:

• By	Value	–	arguments	passed	to	methods	“by	value”	assign	a	copy	of	the	original	value	to	the
parameter.	Changes	made	to	the	parameter	inside	the	method	do	not	affect	the	original	value.

• By	Reference	–	arguments	passed	to	methods	“by	reference”	assign	the	address	of	the
memory	location	of	the	original	value	to	the	parameter.	Changes	made	to	the	parameter	inside
the	method	do	affect	the	original	value.	Reference	arguments	must	include	the	C#	ref	keyword
in	both	the	method	call	parentheses	and	the	method	definition	parameter	list.

• For	Output	–	arguments	passed	to	methods	“for	output”	assign	the	address	of	the	memory
location	of	the	argument	to	the	parameter,	to	which	the	method	can	assign	a	value.	This	is
similar	to	passing	an	argument	by	reference	except	that	data	is	passed	from	the	method,	rather
than	to	the	method.	Output	arguments	must	include	the	C#	out	keyword	in	both	the	method	call
parentheses	and	the	method	definition	parameter	list.	This	is	useful	to	return	more	than	one
value	from	a	method.

Most	method	calls	pass	arguments	by	value	rather	than	by	reference	or	for	output.

Parameter

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Parameter”

Type	these	statements	to	declare	two	variables
double	weight	;
string	num	;

After	the	Main()	method,	add	this	method	definition	to	output	a	double	value	and	to	return	a
string	value
static	string	getWeight(out	double	theWeight)
{
theWeight	=	10	;
return	“Ten”	;

}

Next,	add	a	method	definition	that	returns	a	multiplied	value	of	its	parameter	argument
static	double	lbToKg(double	pounds	=	5)
{	return	(pounds	*	0.45359237)	;	}

The	default	parameter	value	is	not	used	here	as	the	caller	passes	in	an	argument	value.

Now,	add	a	method	definition	that	assigns	a	divided	value	to	its	parameter	reference
argument
static	void	kgToLb(ref	double	weight)
{	weight	=	(weight	/	0.45359237)	;	}

Finally,	add	statements	within	the	Main()	method	to	pass	arguments	to	each	of	the	methods
declared	above
num	=	getWeight(out	weight)	;
Console.WriteLine(num	+“	lb	=	”	+	lbToKg(weight)	+“	kg”)	;
kgToLb(ref	weight)	;
Console.WriteLine(num	+	“	kg	=	”	+	weight	+	“	lb”)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	output	featuring	arguments	passed	to
method	parameters

Both	the	num	and	weight	variables	are	initialized	by	the	getWeight()	method.	A	reference	to
the	weight	variable	is	passed	later	to	assign	it	a	new	value.

Overloading	methods
Method	“overloading”	allows	methods	of	the	same	name	to	happily	co-exist	in	the	same	program,
providing	their	parameters	differ	in	number,	data	type,	or	both	number	and	data	type.	The
compiler	matches	a	method	call	to	the	correct	version	of	the	method	by	recognizing	its	parameter
number	and	data	types	–	a	process	known	as	“method	resolution”.	There	are	some	points	to
consider	when	creating	overloaded	methods:

• Where	a	parameter	represents	the	same	value	as	that	in	another	method,	the	parameters	should
have	the	same	name.

• Parameters	with	the	same	name	should	appear	in	the	same	position	in	each	method’s
parameter	list.

• You	should	not	use	ref	or	out	modifiers	to	overload	methods.

It	is	useful	to	create	overloaded	methods	when	the	tasks	they	are	to	perform	are	similar,	yet	subtly
different.

Overload

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Overload”

After	the	Main()	method,	add	this	method	definition	to	return	the	calculated	area	of	a	circle
static	double	computeArea(double	width)
{
double	radius	=	width	/	2	;
return	((radius	*	radius)	*	3.141593)	;

}

Next,	add	a	method	definition	to	return	the	calculated	area	of	a	square
static	double	computeArea(double	width,	double	height)
{
return	(width	*	height)	;

}

Then,	add	a	method	definition	to	return	the	calculated	area	of	a	triangle
static	double
computeArea(double	width,	double	height	,	char	letter)
{
return	((width	/	2)	*	height)	;

}

Method	definitions	that	only	differ	by	their	return	data	type	cannot	be	overloaded	–	it’s
the	parameters	that	must	differ.	Method	resolution	does	not	take	return	data	types	into
consideration.

Now,	turn	your	attention	to	the	Main()	method	and	begin	by	declaring	two	floating-point
variables
double	num	;
double	area	;

Next,	add	statements	to	initialize	the	first	variable	from	user	input
Console.Write(“Please	Enter	Dimension	In	Feet:	“)	;
num	=	Convert.ToDouble(Console.ReadLine())	;

Remember	that	the	ReadLine()	method	returns	a	string	value	–	so	this	must	be	converted
in	order	to	perform	arithmetic.

Now,	initialize	the	second	variable	by	calling	the	method	that	accepts	only	one	argument
and	display	its	value
area	=	computeArea(num)	;
Console.WriteLine(“\nCircle:\t\tArea	=	“+area+“	sq.ft.”)	;

Assign	a	new	value	to	the	second	variable	by	calling	the	method	that	accepts	two
arguments	and	display	its	value
area	=	computeArea(num	,	num)	;
Console.WriteLine(“Square:\t\tArea	=	“+area+“	sq.ft.”)	;

Assign	another	value	to	the	second	variable	by	calling	the	method	that	accepts	three
arguments	and	display	its	value
area	=	computeArea(num	,	num	,	‘T’)	;
Console.WriteLine(“Triangle:\tArea	=	“+area+“	sq.ft.”)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application,	then	enter	a	number	and	see	the	output	from	the
overloaded	methods

The	value	passed	to	the	char	letter	parameter	is	never	used	here	–	it	is	included	merely	to
determine	which	method	should	be	called.

Refactoring	code
Methods	can	call	themselves	recursively,	to	repeatedly	execute	the	statements	contained	in	their
method	body	–	much	like	a	loop.	As	with	loops,	a	recursive	method	must	contain	an	updater,	and
a	conditional	test	to	call	itself	again	or	stop	repeating	when	a	condition	is	met.	The	syntax	of	a
recursive	method	looks	like	this:

return-data-type	method-name	(parameter-list)
{

statements-to-be-executed	;
updater	;
conditional-test-to-recall-or-exit	;

}

The	updater	will	change	the	value	of	a	passed	argument	–	so	subsequent	calls	will	pass	the
adjusted	value	back	to	the	method:

Refactor

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Refactor”

After	the	Main()	method,	add	this	recursive	method	to	return	the	factorial	value	of	an
integer	argument
static	int	factorial(int	num)
{
int	result	;
if(num	==	1)
{
result	=	1	;

}
else
{
result	=	(factorial(num	-	1)	*	num)	;

}
return	result	;

}

Next,	add	a	method	to	display	a	range	of	integers	and	their	computed	factorial	values
static	void	computeFactorials(int	num,	int	max)
{
while(num	<=	max)
{
Console.Write(“Factorial	Of	“	+	num	+	“	:	“)	;
Console.WriteLine(factorial(num))	;
num++	;

}
}

The	two	calls	to	write	output	in	Step	3	could	be	refactored	into	a	single	WriteLine()	call	for
greater	efficiency.

Now,	add	statements	within	the	Main()	method	to	pass	a	range	of	argument	values	to	be
computed	for	display
computeFactorials(1	,	8)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	to	see	the	output

If	you	accidentally	run	an	infinite	recursive	function	press	the	Ctrl	+	C	keys	to	terminate
the	process.

The	output	lists	factorial	values	(factorial	3	is	3x2x1=6,	etc.)	but	the	program	can	be	optimized	by
refactoring	the	recursive	factorial()	method.	This	method	does	not	need	a	variable	if	written	with
the	ternary	operator:

Edit	the	factorial()	method,	listed	in	Step	2,	to	make	it	more	efficient
static	int	factorial(int	num)
{
return	(num	==	1)	?	1	:	(factorial(num	-	1)	*	num)	;

}

Press	Start	or	F5	to	run	the	application	once	more	and	see	the	same	output,	produced
more	efficiently

A	recursive	method	generally	uses	more	system	resources	than	a	loop	–	but	it	can
make	the	code	more	readable.

Summary
• A	programmer-specified	method	is	a	modular	section	of	code	that	can	be	called	to	execute	its

statements	whenever	required.

• It	is	easier	to	understand,	maintain,	re-use,	and	share	modular	program	code	that	contains
methods.

• A	method	declaration	must	at	least	specify	a	return	data	type	and	the	method	name.

• Methods	not	intended	for	use	by	other	classes	must	be	initialized	in	memory	by	the	static
keyword.

• Optionally,	a	method	declaration	may	include	a	parameter	list.

• Variables	declared	within	a	method	have	local	scope	by	default,	so	are	not	accessible	from
outside	that	method.

• Arguments	passed	by	value	assign	a	copy	of	the	original	value	to	the	method	parameter,	so	the
original	will	not	be	affected.

• Arguments	passed	by	reference	assign	a	memory	location	to	the	method	parameter,	so	the
original	value	will	be	affected.

• Arguments	passed	for	output	retrieve	a	value	from	the	method	and	are	useful	to	return	more
than	one	value.

• Method	overloading	allows	methods	of	the	same	name	to	co-exist	in	the	same	program	if	their
parameters	differ.

• The	compiler	matches	calls	to	overloaded	methods	by	recognizing	their	parameter	number	and
data	types.

• Parameters	representing	the	same	values	in	overloaded	methods	should	have	the	same	name
and	the	same	position.

• The	reference	ref	and	output	out	modifiers	should	not	be	used	with	overloaded	methods.

• Code	can	be	refactored	for	optimum	efficiency	by	reducing	the	number	of	variables	and
method	calls.

• Recursive	methods	repeatedly	execute	their	statements,	so	must	contain	an	updater	to	stop
repeating	at	some	point.

6

Handling	strings

This	chapter	demonstrates	how	to	manipulate	and	format	text	strings	within	C#	programs.

Discovering	string	features
Manipulating	strings
Joining	and	comparing	strings
Copying	and	swapping	strings
Finding	substrings
Formatting	strings
Formatting	date	strings
Summary

Discovering	string	features
The	C#	String	class	library	provides	properties	and	methods	that	enable	a	program	to	easily
discover	features	of	a	text	string.	Usefully,	the	String.IsNullOrWhiteSpace()	and	String.IsNullOrEmpty()
methods	can	be	used	to	validate	user	input.	These	are	static	methods,	so	are	written	dot-suffixed	to
the	String	class	name.

String	class	methods	can	be	written	using	the	String.	class	prefix	or	its	string.	alias	prefix
–	our	examples	use	String	to	differentiate	from	the	string	data	type.

Other	properties	and	methods	operate	on	an	“instance”	of	the	class,	so	are	written	dot-suffixed	to
a	string	variable	name.	Instance	methods	can	report	string	size	and	query	its	contents.	The	Length
property	returns	an	integer	that	is	the	number	of	characters	within	the	string,	including	spaces.
Additionally,	the	StartsWith(),	EndsWith(),	and	Contains()	methods	can	each	accept	a	string
argument	to	match	within	the	string	variable	value.	When	a	match	is	found,	they	return	true,
otherwise	they	return	false:

Features

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Features”

Type	these	statements	requesting	user	input	to	initialize	a	string	variable
Console.Write(“Please	Enter	Text:	”)	;
string	text	=	Console.ReadLine()	;

Next,	add	a	conditional	test	to	ensure	the	user	entered	input	before	hitting	the	Enter	key
if	(String.IsNullOrWhiteSpace(text))
{
Console.WriteLine(“\nERROR:	No	Text	Found!”)	;

}
else
{
//	Statements	to	be	inserted	here	(Steps	4-7).

}
Console.ReadKey()	;

Now,	insert	statements	to	report	the	length	of	the	string
Console.WriteLine(“\nThanks.	You	Entered:\n’”+text+”’”)	;
Console.WriteLine(“\nText	Length:	”	+	text.Length)	;

Insert	another	statement	to	test	how	the	string	begins
string	query	=	text.StartsWith(“C#”)	?	“Does”	:	“Does	Not”	;	Console.WriteLine(“Text	”	+	query	+	“
Start	With	‘C#’”)	;

Methods	with	a	String.	(or	string.)	prefix	are	using	the	String	class	itself,	whereas	dot-
suffixed	methods	use	an	“instance”	object	of	the	class	–	see	Chapter	Nine.

Note	that	some	of	these	strings	include	‘	single	quotes	within	the	outer	“	double	quote
marks.

Next,	insert	a	statement	to	test	how	the	string	ends
query	=	text.EndsWith(“steps”)	?	“Does”	:	“Does	Not”	;
Console.WriteLine(“Text	”	+	query	+	“	End	With	‘steps’”)	;

Now,	insert	a	statement	to	test	what	the	string	contains
query	=	text.Contains(“easy”)	?	“Does”	:	“Does	Not”	;
Console.WriteLine(“Text	”	+	query	+	“	Contain	‘easy’”)	;

Press	Start	or	F5	to	run	the	application,	and	hit	Enter	without	input	to	see	the	error
message

Press	Start	or	F5	to	run	the	application	again,	type	input	then	hit	Enter	to	discover	input
string	features

Notice	that	the	?:	ternary	operator	is	used	here	to	assign	an	appropriate	string	value.

String	values	are	often	referred	to	as	“literals”,	as	they	comprise	characters	to	be	read
literally,	as	text.

Manipulating	strings
The	C#	String	class	library	provides	methods	that	enable	a	program	to	manipulate	text	strings.	The
ToLower()	and	ToUpper()	methods	can	be	dot-suffixed	to	a	string	variable	to	change	all	characters
within	the	string	to	lowercase,	or	to	uppercase.

Similarly,	the	TrimStart(),	TrimEnd(),	and	Trim()	methods	can	be	used	to	remove	whitespace,	or
other	characters,	from	a	string	at	its	start,	end,	or	both	start	and	end.	By	default,	these	methods
will	remove	whitespace	from	the	string,	but	you	can	alternatively	specify	a	character	to	be
removed	as	an	argument	to	the	method.

You	can	also	specify	multiple	characters	to	be	trimmed	as	a	comma-separated	list	of
arguments	to	the	TrimStart(),	TrimEnd(),	or	Trim()	methods.

Conversely,	the	PadLeft()	and	PadRight()	methods	can	be	used	to	add	whitespace,	or	other
characters,	onto	a	string	at	its	start	or	end.	Their	arguments	must	specify	the	total	character	length
of	the	padded	string,	and	a	padding	character	unless	default	whitespace	padding	is	required.	If
you	want	to	add	padding	onto	both	start	and	end,	the	methods	can	be	“chained”	as	PadLeft(
).PadRight()	stating	each	padding	length	argument,	and	character	if	required:

Manipulate

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Manipulate”

Type	these	statements	requesting	user	input	to	initialize	a	string	variable
Console.Write(“Please	Enter	Text:	”)	;
string	text	=	Console.ReadLine()	;

Add	statements	to	display	the	user	input	string	and	report	its	length
Console.Write(“\nThanks.	You	Entered:\n’”	+	text	+	”’”)	;
Console.WriteLine(“\t\tText	Length:	”	+	text.Length)	;

Remove	leading	and	trailing	whitespace,	then	display	the	manipulated	version	and	report
its	length
text	=	text.Trim()	;
Console.Write(“\nTrimmed:\t’”	+	text	+	”’”)	;
Console.WriteLine(“\tText	Length:	”	+	text.Length)	;

Next,	add	statements	to	create	and	display	an	uppercase	version	of	the	trimmed	string
string	upper	=	text.ToUpper()	;
Console.WriteLine(“\nUpperCase:\t’”	+	upper	+	”’”)	;

It	is	a	good	idea	to	always	use	Trim()	to	remove	spaces	accidentally	added	by	the	user
when	typing	input.

Now,	create	and	display	a	lowercase	version	of	the	trimmed	string
string	lower	=	text.ToLower()	;
Console.WriteLine(“LowerCase:\t’”	+	lower	+	”’”)	;

Then,	further	manipulate	all	three	strings	to	add	whitespace	and	character	padding
upper	=	upper.PadLeft(40)	;
lower	=	lower.PadRight(40	,	‘#’)	;
text	=	text.PadLeft(30	,	‘*’).PadRight(40	,	‘*’)	;

Add	statements	to	display	all	three	strings	to	see	the	padded	whitespace	and	padded
characters
Console.WriteLine(“\nPadded	Left:\t’”	+	upper	+	“’”)	;
Console.WriteLine(“Padded	Right:\t’”	+	lower	+	“’”)	;
Console.WriteLine(“Padded	Both:\t’”	+	text	+	“’”)	;

Finally,	add	statements	to	display	trimmed	versions	of	two	padded	strings
Console.WriteLine(“\nTrimmed	Start:\t’”	+	upper.TrimStart()	+	“’”)	;
Console.WriteLine(“Trimmed	End:\t’”	+	text.TrimEnd(‘*’)	+	“’”)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	enter	a	string	with	leading	and	trailing	space
to	see	it	manipulated

Here,	all	three	strings	are	expanded	to	a	total	width	of	40	characters.

When	padding	both	left	and	right	you	must	individually	specify	by	how	much	to	expand
the	string	in	each	direction	–	in	this	case	expanding	from	20	to	30	characters	left,	then
from	30	to	40	characters	right.

Joining	and	comparing	strings
When	the	+	operator	is	used	to	concatenate	(join)	strings	in	an	assignment,	the	combined	strings
get	stored	in	the	string	variable.	But	when	used	in	the	Write()	or	WriteLine()	methods,	the	strings	are
only	combined	in	output	–	the	variable	values	are	unchanged.

The	C#	String	class	library	provides	a	String.Concat()	method	that	can	be	used	to	join	strings	as	an
alternative	to	using	the	+	operator.	This	method	accepts	a	comma-separated	list	of	string
arguments	to	be	joined	into	a	single	string.

The	examples	in	this	book	use	the	+	operator	for	concatenation	rather	than	String.Concat()
as	it	provides	better	readability	without	any	loss	of	performance.

Similarly,	the	String.Join()	method	can	also	be	used	to	join	strings	as	an	alternative	to	using	the	+
operator.	This	too	accepts	a	comma-separated	list	of	string	arguments	to	be	joined,	but	its	first
argument	usefully	specifies	a	separator	string.	It	places	this	separator	between	each	other	string
argument	in	the	joined	string.	The	separator	might	be	a	single	space	to	separate	words,	or	perhaps
an	HTML	tag	to	separate	text,	or	any	other	string	value.

String	comparisons	can	be	made	for	alphabetic	order	by	specifying	two	string	arguments	to	the
String.Compare()	method.	This	returns	an	integer	denoting	whether	the	alphabetic	relationship	of
the	first	string	to	the	second	is	before	(-1),	after	(1),	or	equal	(0).	There	is	also	a	CompareTo()
method	that	provides	the	same	results,	but	this	can	be	dot-suffixed	onto	the	first	string,	and	the
second	string	specified	as	its	argument.

As	with	numeric	comparisons,	the	==	operator	can	be	used	to	test	for	string	equality.
Alternatively,	the	Equals()	method	can	be	dot-suffixed	onto	the	first	string,	and	the	second	string
specified	as	its	argument.	Either	will	return	a	true	or	false	Boolean	result.

Joined

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Joined”

Type	this	statement	to	create	and	initialize	a	string	array	variable	simply	named	“a”
string	[]	a	=	new	string[3]	{	“Alpha”,	”Bravo”,	”Charlie”	}	;

Next,	assign	a	concatenated	version	of	the	first	two	array	element	values	to	a	string

variable	and	display	its	value
string	s	=	String.Concat(a[0]	,	a[1])	;
Console.WriteLine(“Concatenated:\t”	+	s)	;

Assign	a	joined	version	of	the	first	two	array	elements	and	space	separator	to	the	string
variable,	then	display	its	value
s	=	String.Join(“	“	,	a[0]	,	a[1])	;
Console.WriteLine(“Joined:\t\t”	+	s)	;

Assign	a	joined	version	of	all	three	array	elements	and	tag	separator	to	the	string	variable,
then	display	its	value
s	=	String.Join(“
“	,	a)	;
Console.WriteLine(“\nHTML:\t”	+	s	+”\n”)	;

Next,	add	statements	to	compare,	in	turn,	all	three	array	elements	for	alphabetic	order
int	num	=	String.Compare(a[0]	,	a[1])	;
Console.WriteLine(a[0]	+	”	v	“	+	a[1]	+	”:\t”	+	num)	;

num	=	String.Compare(a[2]	,	a[1])	;
Console.WriteLine(a[2]	+	”	v	“	+	a[1]	+	”:\t”	+	num)	;

num	=	a[1].CompareTo(a[1])	;
Console.WriteLine(a[1]+	”	v	“+a[1]+”:\t”	+	num+“\n”)	;

Finally,	test	the	array	element	values	for	equality
bool	flag	=	(a[0]	==	a[1])	;
Console.WriteLine(a[0]+”	==	“+a[1]+”:\t\t”	+	flag)	;
flag	=	a[2].Equals(a[2])	;
Console.WriteLine(a[2]+”	==	“+a[2]+”:\t\t”	+	flag)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	to	see	the	joined	strings	and	comparison	results

Notice	how	only	the	array	name	needs	to	be	specified	as	the	argument	to	join	all	three
array	elements.

You	can	add	or	remove	the	\t	escape	sequences	to	format	the	output	to	your	liking.

Two	alternative	methods	are	used	here	to	compare	strings	and	to	test	for	equality.

Copying	and	swapping	strings
The	C#	String	class	library	provides	a	String.Copy()	method	that	can	be	used	to	copy	one	string	to
another	string	as	an	alternative	to	using	the	=	assignment	operator.	This	method	accepts	the	string
to	be	copied	as	its	argument.	Perhaps	more	usefully,	the	CopyTo()	method	can	be	dot-suffixed	onto
a	string	variable	to	copy	its	contents	into	a	char	character	array.	This	requires	four	arguments	to
specify	the	index	number	from	which	to	start	copying	in	the	source	string,	the	name	of	the	char
array,	the	index	number	at	which	to	start	copying	in	the	destination	char	array,	and	the	number	of
characters	to	copy.

Copying	with	an	=	assignment	produces	two	string	variables	that	contain	the	same	value
and	reference	the	same	memory	location,	whereas	copying	with	the	String.Copy()	method
produces	two	string	variables	that	contain	the	same	value	but	reference	different
memory	locations.

Other	methods	can	be	dot-suffixed	to	a	string	variable	to	swap	its	contents.	The	Remove()	method
requires	an	integer	argument	to	specify	the	index	number	at	which	to	begin	removing	characters
from	the	string.	This	will	remove	all	characters	from	the	specified	index	position	up	to	the	end	of
the	string,	unless	you	add	a	second	argument	to	specify	the	number	of	characters	to	be	removed.

Conversely,	the	Insert()	method	requires	an	integer	argument	to	specify	the	index	number	at	which
to	begin	inserting	characters	into	the	string,	and	an	argument	specifying	the	string	to	insert.	The
Replace()	method	simply	requires	two	string	arguments	to	specify	a	substring	to	seek	within	the
string,	and	a	string	to	replace	that	substring	when	a	match	is	found:

Copied

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Copied”

Type	these	statements	to	create	and	initialize	two	string	variables	with	the	names	of	two
Maserati	car	models
string	car1	=	“Ghibli”	;
string	car2	=	“GranTurismo”	;

Next,	display	the	original	values	contained	in	each	variable
Console.WriteLine(“Original:”)	;
Console.WriteLine(“\tCar	1:	”+	car1	+“	\t\tCar	2:	“	+	car2)	;

Now,	copy	the	value	of	the	second	string	variable	into	the	first	string	variable	and	display
their	modified	values
car1	=	String.Copy(car2)	;
Console.WriteLine(“\nCopied:”)	;
Console.WriteLine(“\tCar	1:	”+	car1	+	“\tCar	2:	“	+	car2)	;

Initialize	an	integer	variable	with	the	length	of	the	first	string	variable,	then	create	a
character	array	of	that	length
int	num	=	car1.Length	;
char	[]	model	=	new	char	[num]	;

Next,	copy	the	first	string	variable	into	the	character	array,	then	display	a	space-separated
list	of	the	element	contents
car1.CopyTo(0	,	model	,	0	,	num)	;
Console.WriteLine(“\nCharacter	Array:”)	;
foreach(char	c	in	model)	{	Console.Write(c	+	“	“)	;	}

Now,	remove	the	end	of	the	first	string	variable,	starting	from	its	fifth	element,	and	display
the	modified	value
car1	=	car1.Remove(4)	;
Console.WriteLine(“\n\nRemoved...	\tCar	1:	”	+	car1)	;

Insert	two	strings	into	the	first	string	variable,	at	its	beginning	and	end,	then	display	the
modified	value
car1	=	car1.Insert(0	,	“Maserati	”)	;
car1	=	car1.Insert(13	,	“Cabrio”)	;
Console.WriteLine(“\nInserted...	\tCar	1:	”	+	car1)	;

Finally,	replace	a	substring	within	the	first	string	variable,	and	once	more	display	the
modified	value
car1	=	car1.Replace(“GranCabrio”	,	“Quattroporte”)	;
Console.WriteLine(“\nReplaced...	\tCar	1:	”	+	car1)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	to	see	the	copied	and	swapped	strings

The	char	array	must	be	of	the	same	size	as	the	string	to	be	copied	–	use	the	string’s
Length	property	to	specify	the	size	of	the	char	array.

The	fifth	element	of	an	array	is	at	index	position	4	in	a	zero-based	index.

Finding	substrings
The	C#	String	class	library	provides	a	number	of	methods	that	can	be	dot-suffixed	to	a	string
variable	to	seek	a	string	within	a	string	(i.e.	a	“substring”).	The	IndexOf()	method	requires	the
substring	as	its	argument	and,	if	found,	returns	the	index	position	of	the	substring	within	the
searched	string.	Otherwise	it	will	return	-1.	The	IndexOf()	method	searches	forwards,	from	left-to-
right,	and	returns	the	index	position	of	the	first	occurence	of	the	substring.	It	has	a	companion
LastIndexOf()	method	that	works	in	just	the	same	way,	but	searches	backwards,	from	right-to-left.

The	position	reported	when	a	substring	is	found	is	the	index	position	of	the	first
character	of	that	substring	within	the	searched	string	–	whether	searching	forwards	or
backwards.

Similarly,	there	is	an	IndexOfAny()	method	and	its	companion	LastIndexOfAny()	method	that	require
a	character	array	argument.	These	seek	any	character	of	the	specified	array	within	a	string,	and
return	the	index	position	of	the	first	occurrence,	or	-1	otherwise.

You	can	also	dot-suffix	a	Substring()	method	to	a	string	variable	if	you	want	to	extract	a	copy	of	a
substring	from	within	that	string.	This	method	requires	two	arguments	to	specify	the	index	position
at	which	to	begin	copying,	and	the	number	of	characters	to	copy:

Substring

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Substring”

After	the	Main()	method,	add	this	method	declaration	to	report	the	result	of	a	substring
search
static	void	report(int	pos	,	string	sub)
{
if(pos	!=	-1)
{	Console.WriteLine(“‘“	+	sub	+	”’	Found	At	“	+	pos)	;	}
else
{	Console.WriteLine(“‘“	+	sub	+	”’	Not	Found!“)	;	}

}

Now,	turn	your	attention	to	the	Main()	method	and	initialize	a	string	variable,	then	display
its	value	and	length
string	text	=	“My	dog	is	a	cute	dog”	;

Console.WriteLine(text	+	”\tLength:	“	+	text.Length)	;

Next,	request	user	input	to	initialize	another	string	variable	with	a	substring	to	seek
Console.WriteLine(“\nPlease	Enter	A	Substring	To	Seek:	”)	;
string	sub	=	Console.ReadLine()	;

Create	a	character	array	and	copy	the	entire	substring	value	into	the	character	array
char	[]	arr	=	new	char[sub.Length]	;
sub.CopyTo(0	,	arr	,	0	,	sub.Length)	;

Then,	seek	the	first	occurrence	of	the	substring	and	call	the	method	you	defined	to	report
the	search	result
int	pos	=	text.IndexOf(sub)	;
report(pos	,	sub)	;

Now,	seek	the	last	occurrence	of	the	substring	and	report	the	result
pos	=	text.LastIndexOf(sub)	;
report(pos	,	sub)	;

Next,	seek	the	first	occurrence	of	any	character	of	the	substring	and	report	the	result
pos	=	text.IndexOfAny(arr)	;
report(pos	,	text.Substring(pos	,	1))	;

Finally,	seek	the	last	occurrence	of	any	character	of	the	substring	and	report	the	result
pos	=	text.LastIndexOfAny(arr)	;
report(pos	,	text.Substring(pos	,	1))	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application,	then	enter	a	substring	to	seek	and	see	the	reported
results

The	CopyTo()	method	is	described	and	demonstrated	in	the	previous	example	here.

Notice	that	a	copy	of	the	located	character	is	extracted	from	the	original	string	using	the
Substring()	method	for	output	in	the	report.

Formatting	strings
In	C#	every	object	has	a	ToString()	method	that	returns	a	string	representation	of	that	object.	This
means	that	the	ToString()	method	can	be	dot-suffixed	to	any	numeric	variable	to	get	its	value
represented	in	string	format.	The	ToString()	method	can,	optionally,	accept	a	string	argument	to
specify	how	the	string	version	should	be	formatted.	Common	specifiers	are	listed	below:

Specifier: Returns:

G General

F Fixed	Point

N Number	(with	comma-separated	thousands)

C Currency	(prevailing	on	your	system)

P Percentage	(multiplied	by	100)

00.0000 Zero	Padding

The	C#	specifications	provide	further	string	formatting	specifier	options	in	addition	to	the
commonly	used	ones	shown	here.

The	C#	String	class	library	provides	a	String.Format()	method	that	uses	the	same	specifiers	to	also
produce	values	represented	in	string	format.	This	requires	an	argument	to	specify	the	string	to	be
formatted,	which	may	include	“placeholders”,	and	an	argument	list	to	be	substituted	for	each
placeholder	in	the	output	string.

Multiple	placeholders	in	one	string	can	be	numbered	alike	–	if	you	want	each	one	to	be
substituted	by	the	same	list	argument	value.

Each	placeholder	can	be	numbered	sequentially	(starting	at	zero)	within	{	}	braces,	to	match	the
list	position	of	the	substitution	argument.	For	example,	{0}	matches	the	first	argument	in	the
substitution	argument	list,	{1}	matches	the	second,	and	so	on.	Additionally,	the	number	may	be
followed	by	a	:	colon	and	one	of	the	format	specifiers	in	the	table	above	–	to	specify	how	the

substituted	value	should	appear	in	its	string.	For	example,	{0:G}.

Data	strings	that	contain	separators,	such	as	a	comma-separated	list	of	data	retrieved	from	a
database	query,	can	be	easily	broken	into	individual	items	of	data	by	dot-suffixing	the	Split()
method	to	a	string	variable.	The	individual	strings	can	be	assigned	to	a	string	array	variable,	and
could	then	be	formatted	in	output	by	the	String.Format()	method	if	required.

Format

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Format”

Initialize	a	numeric	variable,	then	use	the	ToString()	method	to	output	its	value	as	a
currency	string	format
int	sum	=	2500	;
Console.WriteLine(“Currency	String:	“	+	sum.ToString(“C”))	;

Next,	use	the	String.Format()	method	to	output	the	same	numeric	value	in	various	common
string	formats
Console.Write(String.Format(“\nGeneral:\t	{0:G}”	,	sum))	;
Console.Write(String.Format(“\nFixed	Point:\t	{0:F}”,	sum))	;
Console.Write(String.Format(“\nNumber:\t\t	{0:N}”	,	sum))	;
Console.Write(String.Format(“\nCurrency:\t	{0:C}”	,	sum))
;

Now,	reduce	the	numeric	value,	then	output	it	in	a	percentage	string	format	and	with
padded	zeroes
sum	/=	1000	;
Console.Write(String.Format(“\nPercentage:\t	{0:P}”,	sum))	;
Console.Write
(String.Format(“\nZero	Padded:\t	{0:00.0000}	\n”,	sum))	;

Then,	create	a	comma-separated	string	list	and	split	it	into	individual	elements	of	a	string
array	variable	for	output
string	data	=	“Mike,McGrath,Author”	;
string	[]	items	=	data.Split(‘,’)	;
foreach	(string	item	in	items)
{	Console.Write(String.Format(“\n*	{0}”	,	item))	;	}
Console.ReadKey()	;

Press	Start	or	F5	to	see	the	formatted	string	output

The	specifier	letters	may	be	written	as	either	uppercase	or	lowercase.

The	argument	to	the	Split()	method	must	be	a	single	char	character	–	enclosed	in	single
quotes.

You	can	use	the	+	concatenation	operator	for	formatting,	but	many	prefer	String.Format()
for	easily	readable	code.

Formatting	date	strings
The	C#	DateTime	class	library	provides	methods	and	properties	to	easily	work	with	dates	and
times.	Its	Now	property	returns	a	DateTime	object	of	the	current	local	date	and	time	of	your	system.
Alternatively,	you	can	create	a	DateTime	object	using	the	new	keyword,	and	specifying	a	date	and
time	as	a	comma-separated	list	of	arguments.	Many	methods	and	properties	can	be	dot-suffixed	to
any	DateTime	object	to	specify	its	format,	or	to	extract	specific	components	of	the	date	or	time,	or
to	modify	its	value.	For	example,	the	DayOfWeek	property	supplies	the	day	name,	the	ToShortString(
)	method	supplies	the	date	in	number	form,	and	the	AddYears()	method	can	modify	the	year
component.

You	can	use	IntelliSense	to	choose	methods	and	properties	–	for	example,	type
DateTime.Now.	and	select	from	the	pop-up	list	that	appears.

The	String.Format()	method,	introduced	in	the	previous	example,	also	has	these	specifiers	that	can
be	used	to	determine	the	format	of	dates	and	times	in	output:

Specifier: Returns: Example:

d Short	date 7/4/2017

D Long	date Tuesday,	July	4,	2017

t Short	time 8:15	AM

T Long	time 8:15:30	AM

f Full	datetime Tuesday,	July	4,	2017	8:15	AM

F Full+seconds Tuesday,	July	4,	2017	8:15:30	AM

M Month+day July	4

Y Month+year July	2017

dd Day	number 04

dddd Day	name Tuesday

HH Hour	0-23 08

mm Minute 15

ss Second 30

YYYY Year 2017

The	C#	specifications	provide	further	date	and	time	formatting	specifier	options	in
addition	to	the	commonly	used	ones	shown	here.

DateFormat

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“DateFormat”

Initialize	a	DateTime	object	and	display	its	value
DateTime	now	=	DateTime.Now	;
Console.Write(“Current	Date	And	Time:	“+	now)	;

Next,	display	specific	components	of	the	DateTime	object
Console.Write(“\nDay	Name:	“+	now.DayOfWeek)	;
Console.Write(“\nDate	Only:	“+	now.ToShortDateString())	;	Console.Write(“\nTime	Only:	“+
now.ToShortTimeString())	;

Modify	the	DateTime	object	and	display	its	new	value
now	=	now.AddYears(4)	;
Console.Write(“\n\nFuture	Date:	“+	now)	;

Now,	create	a	new	DateTime	object	and	display	its	value
DateTime	dt	=	new	DateTime(2017,	7,	4,	8,	15,	30)	;
Console.Write(“\n\nSet	Date	And	Time:	{0:f}“,	dt)	;

Display	specific	components	of	the	new	DateTime	object
Console.Write(“\nDay	Name:	{0:dddd}“,	dt)	;
Console.Write(“\nLong	Date:	{0:D}“,	dt)	;
Console.Write(“\nLong	Time:	{0:T}“,	dt)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	formatted	date	and	time	output

You	need	only	specify	the	date	components	when	creating	a	new	DateTime	object	–	the
time	will	automatically	be	set	to	12:00	AM	(midnight).

Summary
• Class	library	static	methods,	such	as	String.IsNullOrEmpty(),	are	dot-suffixed	onto	the	String	class

library	name.

• String	values	can	be	joined	using	the	String.Concat()	and	String.Join()	methods,	or	using	the	+
concatenation	operator.

• String	comparisons	can	be	made	for	alphabetic	order	using	the	String.Compare()	method.

• A	value	can	be	copied	from	one	string	variable	to	another	using	the	String.Copy()	method,	or	=
assignment	operator.

• The	String.Format()	method	can	be	used	to	format	both	numeric	and	date	strings	in	output.

• The	DateTime	class	library	provides	methods	and	properties,	such	as	Now,	to	work	with	date
and	time	strings.

• Instance	methods	and	properties,	such	as	Contains()	and	Length,	are	dot-suffixed	onto	string
variable	names.

• The	character	case	of	a	string	value	can	be	changed	using	the	ToLower()	and	ToUpper()
methods.

• Whitespace,	or	other	characters,	can	be	removed	from	a	string	value	using	the	TrimStart(),
TrimEnd(),	and	Trim()	methods.

• Whitespace,	or	other	characters,	can	be	added	to	a	string	value	using	the	PadLeft()	and
PadRight()	methods.

• String	comparisons	can	be	made	using	the	CompareTo()	and	Equals()	methods,	or	the	==
equality	operator.

• A	string	value	can	be	copied	from	a	string	variable	into	a	char	array	using	the	CopyTo()	method.

• The	contents	of	a	string	variable	can	be	swapped	using	the	Remove(),	Insert(),	and	Replace()
methods.

• A	substring	can	be	sought	using	IndexOf(),	LastIndexOf(),	IndexOfAny(),	LastIndexOfAny(),	and
Substring()	methods.

• Every	object	has	a	ToString()	method	that	returns	a	string	representation,	which	can	be
formatted	in	output.

7

Accessing	files

This	chapter	demonstrates	how	C#	programs	can	store	data	in	text	files,	and	retrieve	data	from	text	files.

Writing	a	file
Appending	to	a	file
Reading	text	and	lines
Streaming	lines
Manipulating	input	and	output
Summary

Writing	a	file
The	C#	System.IO.File	class	library	provides	methods	that	enable	a	program	to	easily	write	text
into	a	file	on	your	computer.	The	System.IO	class	is	not	automatically	listed	in	the	default	using
directive	generated	by	Visual	Studio.	This	means	you	must	include	the	System.IO	prefix	when	using
File	methods	or,	more	conveniently,	add	a	further	using	directive	so	the	prefix	may	then	be	omitted
in	your	program	code:

using	System.IO	;

The	File.WriteAllText()	method	simply	requires	two	arguments	to	specify	the	text	file	path	and	the
string	to	write.	Backslash	characters	in	the	path	string	must	be	escaped	to	avoid	an	error.

If	you	would	like	to	ensure	the	specified	text	file	does	not	already	exist,	you	can	first	test	for	its
existence	by	specifying	its	path	as	the	argument	to	the	File.Exists()	method.	This	will	return	true
when	the	file	is	found,	otherwise	it	will	return	false.

If	you	don’t	add	the	using	System.IO	;	statement	you	must	write	System.IO.File.WriteAllText()	and
System.IO.File.Exists()	to	call	these	methods.

In	order	to	ensure	the	text	file	was	written	successfully,	it	is	worthwhile	wrapping	the
File.WriteAllText()	call	in	a	try-catch	block.	A	statement	confirming	success	can	be	included	in	the	try
part	of	the	block,	and	a	statement	to	advise	of	failure	can	be	included	in	the	catch	part	of	the
block:

WriteText

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“WriteText”

Type	this	directive	above	the	namespace	declaration	to	make	a	further	class	library
available	to	the	program	using	System.IO	;

Back	in	the	Main()	method,	add	these	statements	to	initialize	two	variables	–	insert	your
own	user	name	where	indicated	in	the	path
//	Edit	the	line	below	to	include	your	user	name.
string	path	=	“C:\\Users\\username\\Desktop\\poem.txt”	;
string	poem	=	“\r\n\tI	never	saw	a	man	who	looked”	;
poem	+=	“\r\n\tWith	such	a	wistful	eye”	;

poem	+=	“\r\n\tUpon	that	little	tent	of	blue”	;
poem	+=	“\r\n\tWhich	prisoners	call	the	sky”	;

The	\r\n\t	escape	sequence	is	a	carriage	return,	newline,	and	tab.

Next,	add	a	statement	to	test	if	a	file	already	exists	of	the	specified	path	and	filename
if(File.Exists(path))
{
Console.WriteLine(“File	Already	Exists:	“	+	path)	;

}
else
{
//	Statements	to	be	inserted	here	(Step	5).

}
Console.ReadKey()	;

Now,	insert	statements	that	attempt	to	write	a	text	file	and	confirm	success,	or	advise	of
failure
try
{
File.WriteAllText(path	,	poem)	;
Console.WriteLine(“File	Written:	“	+	path)	;

}
catch(Exception	error)
{
Console.WriteLine(error.Message)	;

}

Press	Start	or	F5	to	run	the	application	and	see	a	text	file	written	on	your	Desktop,	or	see
an	error	message

Catching	exceptions	with	the	try-catch	block	is	fully	described	in	the	next	chapter	dealing
with	problem	solving	–	see	here.

Run	this	application	again	to	see	the	message	advising	that	the	file	already	exists.

Appending	to	a	file
The	C#	System.IO.File	class	library	provides	a	WriteAllLines()	method	that	can	be	used	to	write	the
contents	of	a	string	array	to	a	text	file,	with	each	element	appearing	on	a	separate	line,	and	a	try-
catch	block	can	ensure	the	text	file	was	written	successfully.

Additionally,	the	System.IO.File	class	has	an	AppendAllText()	method,	which	can	be	used	to	add	text
to	an	existing	file,	and	the	File.Exists()	method	can	ensure	that	the	file	first	exists:

AppendText

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“AppendText”

Type	this	directive	above	the	namespace	declaration	to	make	a	further	class	library
available	to	the	program	using	System.IO	;

Back	in	the	Main()	method,	add	these	statements	to	initialize	three	variables	–	insert	your
own	user	name	where	indicated	in	the	path
string	path	=	“C:\\Users\\username\\Desktop\\oscar.txt”	;
string	[]	poem	=	new	string	[]
{
“\tIn	Debtors’	Yard	the	stones	are	hard”	,
“\tAnd	the	dripping	wall	is	high”

}	;
string	attrib	=	“\r\n\tThe	Ballad	Of	Reading	Gaol	”	;
attrib	+=	“(Oscar	Wilde	1898)”	;

Next,	add	a	statement	to	test	if	a	file	already	exists	of	the	specified	path	and	filename
if(File.Exists(path))
{
//	Statements	to	be	inserted	here	(Step	5).

}
else
{
//	Statements	to	be	inserted	here	(Step	6).

}
Console.ReadKey()	;

Now,	insert	statements	that	attempt	to	append	text	if	the	file	already	exists,	and	advise	of
success
File.AppendAllText(path	,	attrib)	;
Console.WriteLine(“Appended	To	File:	“	+	path)	;

The	\r\n	character	return,	newline	escape	sequences	can	be	omitted	from	the	string
array,	as	the	WriteAllLines()	method	automatically	writes	each	element	on	new	lines.

Then,	insert	statements	that	attempt	to	write	a	text	file	and	confirm	success,	or	advise	of
failure
try
{
File.WriteAllLines(path	,	poem)	;
Console.WriteLine(“File	Written:	“	+	path)	;

}
catch(Exception	error)
{
Console.WriteLine(error.Message)	;

}

As	with	WriteAllText(),	the	WriteAllLines()	method	requires	the	text	file	path	and	string	to	write
as	its	arguments.

Press	Start	or	F5	to	run	the	application	and	see	a	text	file	written	on	your	Desktop,	or	see
an	error	message

There	is	also	an	AppendAllLines()	method	that	can	be	used	to	add	the	contents	of	a

string	array	to	a	file.

Run	the	application	once	more	and	see	a	confirmation	appear	and	see	text	appended	to	the
file

After	its	first	run,	this	application	will	append	text	each	time	it	is	run.

Reading	text	and	lines
The	C#	System.IO.File	class	library	provides	a	ReadAllText()	method	that	can	be	used	to	read	text
from	an	existing	file	and	assign	its	entire	contents	to	a	string	variable.	The	File.Exists()	method	can
ensure	that	the	text	file	first	exists	and	a	try-catch	block	can	ensure	the	file	was	read	successfully.

Additionally,	the	System.IO.File	class	has	a	ReadAllLines()	method,	which	can	be	used	to	assign	each
line	of	a	text	file	to	an	individual	element	of	a	string	array:

ReadText

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“ReadText”

Type	this	directive	above	the	namespace	declaration	to	make	a	further	class	library
available	to	the	program	using	System.IO	;

Back	in	the	Main()	method,	add	this	statement	to	initialize	a	variable	–	insert	your	own
user	name	where	indicated	in	the	path
string	path	=	“C:\\Users\\username\\Desktop\\word.txt”	;

Next,	add	a	statement	to	test	if	a	file	already	exists	of	the	specified	path	and	filename
if(File.Exists(path))
{
//	Statements	to	be	inserted	here	(Step	5).

}
else
{
Console.WriteLine(“File	Not	Found:	“	+	path)	;

}
Console.ReadKey()	;

Now,	insert	a	statement	to	display	a	message	if	the	file	cannot	be	read	successfully
try
{
//	Statements	to	be	inserted	here	(Steps	6	and	7).

}
catch(Exception	error)
{
Console.WriteLine(error.Message)	;

}

When	a	text	file	is	read	into	a	string	array,	the	array’s	Length	property,	which	returns	the
number	of	its	elements,	will	represent	the	number	of	lines	read	–	including	empty	lines!

Then,	insert	statements	to	assign	the	text	file	contents	to	a	variable	and	display	its	value
string	text	=	File.ReadAllText(path)	;
Console.WriteLine(“File	Read:	“	+	path	+	“\n”)	;
Console.WriteLine(text	+	“\n”)	;

Finally,	insert	statements	to	assign	the	text	file	contents	to	an	array	variable	and	display
each	element	with	a	counter
string	[]	lines	=	File.ReadAllLines(path)	;
int	num	=	1	;
foreach(string	line	in	lines)
{
Console.WriteLine(num	+	“	:	”	+	line)	;
num++	;

}

Open	a	text	editor,	such	as	Notepad,	and	create	a	multi-	line	text	file	named	“word.txt”	on
your	Desktop

Press	Start	or	F5	to	run	the	application	and	see	a	text	file	read	from	your	Desktop,	or	see
an	error	message

The	text	file’s	invisible	newline	and	tab	characters	are	preserved	when	read	by	the
ReadAllText()	method,	but	only	the	invisible	tab	characters	are	preserved	when	it	is	read
by	the	ReadAllLines()	method.

Remove	the	text	files’	Read	and	ReadWrite	permissions	on	your	system	and	run	the
application	again	to	see	an	“Access	to	path	denied”	message.

Streaming	lines
The	File.WriteAllText()	and	File.AppendAllText()	methods	are	simple	to	use	but	provide	few	options.
The	System.IO.StreamWriter	class	also	provides	object	methods	that	can	be	used	to	write	text	to	a
file,	and	these	provide	more	options.	An	instance	of	a	StreamWriter	object	must	first	be	created
using	the	new	keyword	and	the	text	file	path	specified	as	an	argument	to	its	“constructor”	method
like	this:

StreamWriter	name	=	new	StreamWriter(path)	;

Methods,	such	as	Write()	and	WriteLine()	can	then	be	dot-suffixed	to	the	object	name.	A
StreamWriter	object	is	disposable,	so	its	statements	are	best	enclosed	within	a	using	construct	to
ensure	it	is	removed	from	memory	upon	completion,	like	this:

using	(StreamWriter	name	=	new	StreamWriter(path))
{
//	Statements.

}

The	using	keyword	has	different	meanings	according	to	its	context.

The	using	construct	can	also	be	wrapped	in	a	try-catch	block,	to	ensure	the	text	file	was	written
successfully.	Optionally,	the	StreamWriter	constructor	can	accept	a	second	argument	of	true	to
append	to	existing	text:

WriteStream

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as
“WriteStream”

Type	this	directive	above	the	namespace	declaration	to	make	a	further	class	library
available	to	the	program	using	System.IO	;

Back	in	the	Main()	method,	add	these	statements	to	initialize	three	variables	–	insert	your
own	user	name	where	indicated	in	the	path
string	path	=	“C:\\Users\\username\\Desktop\\robert.txt”	;
string	poem	=	new	string	[]
{
“\tThis	truth	finds	honest	Tam	o’	Shanter”	,

“\tAs	he	from	Ayr	one	night	did	canter”	,
“\tOld	Ayr,	which	never	a	town	surpasses”	,
“\tFor	honest	men	and	bonnie	lasses.”

}	;
string	attrib	=	“\r\n\tTam	O’Shanter	(Robert	Burns	1790)”	;

Next,	add	a	statement	to	display	a	message	if	the	file	cannot	be	written	successfully
try
{
//	Statements	to	be	inserted	here	(Steps	5	and	6).

}
catch(Exception	error)
{	Console.WriteLine(error.Message)	;	}
Console.ReadKey()	;

Now,	insert	statements	that	attempt	to	write	the	contents	of	the	variable	array	into	a	text
file
using	(StreamWriter	writer	=	new	StreamWriter(path))
{
foreach(string	line	in	poem)
{	writer.WriteLine(line)	;	}

}

Finally,	insert	statements	that	attempt	to	append	the	contents	of	the	regular	variable	into	a
text	file
using	(StreamWriter	writer	=

new	StreamWriter(path,	true))
{
writer.WriteLine(attrib)	;
Console.WriteLine(“File	Written:	“	+	path)	;	}

}

Press	Start	or	F5	to	run	the	application	and	see	a	text	file	written	on	your	Desktop,	or	see
an	error	message

The	using	construct	ensures	the	StreamWriter	is	disposed	of	when	its	operations	complete,
so	the	same	name	can	be	used	for	the	new	object.

Try	writing	this	file	into	a	read-only	directory	to	see	an	“Access	to	path	denied”
message.

Manipulating	input	and	output
The	System.IO.StreamReader	class	provides	object	methods	that	can	be	used	to	read	text	from	a	file.
An	instance	of	a	StreamReader	object	must	first	be	created	using	the	new	keyword	and	the	text	file
path	specified	as	an	argument	to	its	“constructor”:

StreamReader	name	=	new	StreamReader(path)	;

Methods	such	as	Read()	and	ReadLine()	can	then	be	dot-suffixed	to	the	object	name.	A
StreamReader	object	is	disposable,	so	its	operation	statements	are	best	enclosed	within	a	using
construct	to	ensure	it	is	removed	from	memory	when	the	operation	has	completed.	The	using
construct	can	also	be	wrapped	in	a	try-catch	block,	to	ensure	the	text	file	was	read	successfully.

Text	read	by	a	StreamReader	object	can	be	manipulated	to	change	its	format	before	output.	For
example,	to	manipulate	cells	exported	from	an	Excel	spreadsheet	as	comma-separated	values:

ReadStream

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“ReadStream”

Type	this	directive	above	the	namespace	declaration	to	make	a	further	class	library
available	to	the	program	using	System.IO	;

Back	in	the	Main()	method,	add	a	statement	to	initialize	a	variable	–	insert	your	own	user
name	in	the	path
string	path	=	“C:\\Users\\username\\Desktop\\TopFive.csv”	;

Next,	add	a	statement	to	display	a	message	if	the	file	cannot	be	read	successfully

try
{
//	Statements	to	be	inserted	here	(Step	5).

}
catch(Exception	error)
{	Console.WriteLine(error.Message)	;	}
Console.ReadKey()	;

Now,	insert	statements	that	attempt	to	read	the	contents	of	the	text	file	into	a	variable,	line
by	line
using	(StreamReader	reader	=	new	StreamReader(path))
{
string	line	;
while((line	=	reader.ReadLine())	!=	null)
{
//	Statements	to	be	inserted	here	(Steps	6-7).

}
}

Insert	statements	to	modify	the	case	of	the	column	headers	and	amend	an	artist	name
if(line.IndexOf(“Rank”)	!=	-1)	line	=	line.ToUpper()	;
if(line.IndexOf(“Sia”)	!=	-1)	line	+=	“	ft.Sean	Paul”	;

Finally	insert	statements	that	display	the	content	of	just	two	columns,	formatted	for
alignment

string	[]	sub	=	line.Split(‘,’)	;
line	=	String.Format(“{0,-30}{1,-20}”,	sub[1],	sub[2])	;	Console.WriteLine(line)	;

Press	Start	or	F5	to	run	the	application	and	see	the	manipulated	output	from	the	file
content

When	the	ReadLine()	method	reaches	the	end	of	the	file	being	read,	it	returns	a	null
value.

The	String.Format()	placeholders	specify	character	widths	as	negative	numbers	to	align
strings	to	the	left.

Summary
• The	System.IO	class	is	not	automatically	listed	in	the	using	directives	generated	by	Visual

Studio,	so	it	must	be	added	manually	with	a	using	System.IO	;	statement.

• The	System.IO.File	class	provides	methods	to	easily	read	or	write	text	files	on	your	computer.

• The	System.IO.File.WriteAllText()	method	requires	two	arguments,	to	specify	a	file	path	and
content	to	write	there.

• The	System.IO.File.Exists()	method	will	determine	if	the	file	specified	as	its	argument	already
exists.

• It	is	recommended	all	read	or	write	operations	be	wrapped	in	a	try-catch	block	to	report	when
an	attempted	operation	fails.

• The	System.IO.File.WriteAllLines()	method	can	write	the	element	content	of	a	string	array	as
separate	lines	of	a	file.

• The	System.IO.File.AppendAllText()	method	requires	two	arguments	to	specify	a	file	path	and
content	to	append	there.

• The	System.IO.File.ReadAllText()	method	can	be	used	to	assign	the	entire	content	of	a	text	file	to	a
string	variable.

• The	System.IO.File.ReadAllLines()	method	can	assign	individual	lines	of	a	text	file	to	elements	of
a	string	array.

• The	System.IO.StreamWriter	class	provides	object	methods	to	write	text	files	on	your	computer.

• The	System.IO.StreamReader	class	provides	object	methods	to	read	from	text	files	on	your
computer.

• An	instance	of	a	StreamReader	object	or	StreamWriter	object	is	created	using	the	new	keyword
and	by	specifying	a	file	path	within	the	parentheses	of	its	constructor.

• A	StreamReader	object	has	Read()	and	ReadLine()	methods	that	can	be	dot-suffixed	to	an
instance	name.

• A	StreamWriter	object	has	Write()	and	WriteLine()	methods	that	can	be	dot-suffixed	to	an	instance
name.

• All	StreamReader	and	StreamWriter	objects	are	disposable,	so	should	each	be	enclosed	in	a
using	construct.

8

Solving	problems

This	chapter	demonstrates	how	to	detect	and	manage	errors	in	C#	programs.

Detecting	real-time	errors
Fixing	compile-time	errors
Debugging	code
Setting	breakpoints
Catching	run-time	errors
Getting	help
Summary

Detecting	real-time	errors
As	you	type	code	in	the	Code	Editor	window,	the	Visual	Studio	IDE	is	constantly	monitoring
your	code	for	possible	errors.	It	examines	the	code	you	type	and	provides	real-time	feedback	of
possible	errors	by	adding	a	wavy	underline	to	questionable	code.

Warnings	of	potential	problems	are	indicated	by	a	green	wavy	underline.	These	are	not	critical
and	will	not	prevent	execution	of	the	application.	A	rollover	Tooltip	explains	the	warning:

First,	type	this	variable	declaration	in	the	Code	Editor
int	num

A	wavy	green	line	appears	below	the	num	variable	name.	Place	the	cursor	over	the	green
wavy	underline	to	discover	that	the	warning	is	merely	indicating	a	potential	problem	as
the	variable	has	not	yet	been	assigned	a	value

Errors	are	indicated	by	a	red	wavy	underline.	Unlike	warnings,	these	are	critical	and	will	prevent
execution	of	the	application:

Next,	type	this	variable	declaration	in	the	Code	Editor
int	num	=

Place	the	cursor	over	the	red	wavy	underline	to	discover	that	the	error	is	due	to	a	missing
value	in	the	expression

Warnings	can	be	ignored	but	errors	must	be	corrected.

Real-time	error	detection	in	the	Visual	Studio	IDE	is	a	fantastic	tool	to	help	prevent	errors	when

you	are	writing	code.	It	not	only	indicates	errors,	but	can	even	provide	a	list	of	correction
options:

Now,	type	this	variable	declaration	in	the	Code	Editor
intr	num	=	1	;

A	wavy	red	line	appears	below	the	intr	variable	type.	Place	the	cursor	over	the	red	wavy
underline	to	discover	that	the	error	is	due	to	an	unknown	type	specification

Click	the	light	bulb	icon,	or	click	the	Show	potential	fixes	link,	to	see	a	list	of	error
correction	options

If	this	error	is	simply	a	spelling	error	for	the	int	data	type,	select	the	option	to	Change
‘intr’	to	‘int’	–	see	your	code	get	instantly	corrected	accordingly

Visual	Studio	2015	provides	live	code	analysis,	which	displays	a	light	bulb	when	the
compiler	detects	an	issue	with	your	code,	and	has	a	suggestion	of	how	to	fix	that	issue.

Other	correction	options	allow	you	to	create	a	new	data	type	if	that	is	what	you	require.

Fixing	compile-time	errors
While	syntax	errors	like	those	here	can	be	detected	by	the	Code	Editor	in	real-time,	other	errors
that	employ	correct	syntax	cannot	be	detected	until	the	code	is	compiled.	Compile	errors	are
typically	errors	of	logic,	and	they	cause	the	execution	to	halt	when	an	“exception”	occurs.	For
example,	when	incompatible	data	types	appear	in	an	expression,	an	InvalidCastException	occurs
and	execution	stops	immediately:

Type	the	following	lines	into	the	Code	Editor
bool	flag	=	true	;
IConvertible	convertible	=	flag	;
char	letter	=	convertible.ToChar(null)	;

Press	Start	or	F5	to	run	the	application	and	see	execution	is	soon	halted.	The	line	causing
the	exception	becomes	highlighted	in	the	Code	Editor	and	an	Exception	Assistant	pop-
up	window	appears	with	a	list	of	possible	solutions

The	IConvertible	interface	provides	methods	that	convert	a	value	to	a	CLR	type,	but	it
cannot	meaningfully	convert	a	bool	to	char.

You	can	click	on	the	View	Detail...	link	in	the	Exception	Assistant’s	Actions:	list	for
more	error	information.

To	fix	this	InvalidCastException,	the	code	would	need	amendment	so	both	values	are	of
compatible	data	types.

The	cause	of	other	compile	errors	may	be	less	obvious	without	some	further	investigation.	For
example,	when	a	loop	that	is	reading	array	elements	attempts	to	address	an	element	index	that
does	not	exist,	causing	an	IndexOutOfRangeException.

Execution	halts	immediately,	so	it	is	useful	to	examine	the	counter	value	to	identify	the	precise
iteration	causing	the	compile	error.

In	the	Code	Editor,	type	the	following	variable	array	declaration	of	ten	elements	(0-9),
and	a	loop
int	[]	nums	=	new	int	[10]	;
for	(i	=	1	;	i	<	20	;	i++)	{	nums	[i]	=	i	;	}

Press	Start	or	F5	to	run	the	application	and	see	execution	is	soon	halted.	The	code
causing	the	exception	becomes	highlighted	in	the	Code	Editor	and	an	Exception
Assistant	pop-up	window	appears	with	a	list	of	possible	solutions

Place	the	cursor	over	the	assignment	to	the	array	variable	to	see	a	pop-up	appear
displaying	its	current	value

It’s	now	clear	that	execution	halted	when	the	loop	attempted	to	address	nums[10]	–	beyond	the
bounds	of	last	element	nums[9].	To	fix	this	IndexOutOfRangeException,	the	code	would	need
amendment	to	end	the	loop	after	10	iterations.

Another	common	compile	error	is	the	FileNotFoundException	that	occurs	when	a	file	is
missing	or	its	path	name	is	incorrect.

Debugging	code
It	is	sometimes	useful	to	closely	examine	the	progression	of	a	program	by	watching	its	execution
line	by	line	to	locate	any	bugs.	Progress	is	controlled	by	clicking	the	 	Step	Into	button	on	the
Debug	Menu	Bar	to	move	through	the	program	one	line	at	a	time.	When	you	begin	debugging	you
can	open	a	Watch	window	to	monitor	the	value	of	particular	variables	as	execution	proceeds:

Debug

Add	the	following	code	within	the	Main()	method
int	pass	=	0	;
int	unit	=	2	;

for	(int	i	=	1	;	i	<	3	;	i++)
{
pass	=	(pass	+	1)	;
unit	=	square(unit)	;

}

Now,	add	this	arithmetic	method	after	the	Main()	method
static	int	square(int	num)
{
return	(num	*	num)	;

}

In	the	Code	Editor,	click	in	the	gray	margin	against	the
Main()	method	–	to	set	a	debug	starting	“breakpoint”

Click	the	Step	Into	button	once	to	begin	debugging

Click	Debug,	Windows,	Watch,	Watch1	on	the	Menu	Bar	to	launch	a	Watch	window

Type	the	variable	name	“pass”	into	the	Name	column	and	hit	Enter,	then	repeat	to	add	the
“unit”	variable	name

If	you	can’t	see	the	Step	Into	button,	right-click	on	the	Menu	Bar	and	select	Debug	to
add	the	debugging	buttons.

You	can	click	the	Stop	Debugging	button	at	any	time	to	return	to	Code	Editor	mode.

Click	Step	Into	seven	times	to	reach	the	square()	method	call	in	the	first	loop	iteration,
and	note	the	values

Click	Step	Into	10	more	times	to	progress	through	each	line	of	the	square()	method	and
the	loop,	returning	to	the	square()	method	call	on	the	second	iteration

Click	the	 	Step	Over	button	once	to	execute	the	function	without	stepping	through	each
line

Click	the	Step	Over	button	four	more	times	to	move	through	to	the	end	of	the	program

The	debugger	will	automatically	close	and	return	to	the	regular	Code	Editor	mode

Click	the	red	dot	you	added	in	the	margin	to	remove	the	breakpoint

The	Step	Out	button	is	used	to	return	to	the	function	caller	when	you	are	stepping
through	lines	of	a	called	function.

Setting	breakpoints
In	all	but	the	smallest	of	programs,	stepping	through	each	line	is	very	tedious	when	debugging.
Instead,	you	can	quickly	reach	the	part	you	wish	to	examine	by	setting	multiple	breakpoints	to	halt
execution	on	particular	lines.	Setting	one	or	more	breakpoints	is	useful	to	help	you	understand
how	certain	C#	code	constructs	work	–	such	as	the	nested	loop	construct	shown	here:

Breakpoints

Type	this	code	to	create	three	nested	loops	that	each	increment	a	counter	variable	within
each	loop,	and	a	total	pass	iteration	counter	in	the	innermost	loop
int	i	,	j	,	k	;
int	pass	=	0	;

for	(i	=	1	;	i	<	4	;	i++)
{
for	(j	=	1	;	j	<	4	;	j++)
{
for	(k	=	1	;	k	<	4	;	k++)
{
pass++	;

}
}

}

Click	in	the	gray	margin	against	each	line	containing	the	closing	brace	of	each	loop	to	set
three	breakpoints	–	a	red	dot	will	appear	in	the	margin	and	each	closing	brace	is
highlighted	to	indicate	the	breakpoints	are	set

Click	the	Start	button	and	see	the	application	run	to	the	first	breakpoint	it	meets

Click	Debug,	Windows,	Locals	to	launch	the	Locals	window	and	notice	the	current	value
of	each	variable

Yellow	arrows	indicate	the	current	position.	Click	on	the	red	dot	to	cancel	a	breakpoint.

Watch	the	variable	values	change	as	you	repeatedly	click	the	Start	(Continue)	button	to
move	to	each	successive	breakpoint	until	you	reach	the	third	outer	loop	breakpoint

Repeatedly	click	Step	Into	until	you	reach	the	closing	brace	of	the	Main()	method	to	see
the	final	values

At	the	end	of	the	program,	each	counter	variable	has	been	incremented	beyond	the	upper	limit	set
in	the	for	statements,	to	exit	each	loop,	and	there	has	been	a	total	of	27	iterations	(3x3x3).

Click	the	Start	button	once	more	to	run	to	the	first	breakpoint,	then	click	Debug,
Windows,	Immediate	to	launch	the	Immediate	window

In	the	Immediate	window,	type	i	=	3	and	hit	Enter,	then	use	the	Step	Into	button	to	step
through	each	line	of	just	the	final	complete	outer	loop’s	nine	iterations

The	Locals	window	shows	all	variables	in	current	scope	as	the	program	proceeds.

Any	code	you	type	into	the	Immediate	window	is	dynamically	applied	to	the	application
being	debugged,	but	does	not	change	its	code.

Catching	run-time	errors
When	you	are	able	to	predict	potential	runtime	errors,	by	considering	all	eventualities,	you	can
provide	code	to	handle	each	Exception	class	error	that	may	arise	–	by	adding	a	try-catch	construct.
Your	program	can	supply	information	to	the	user	about	the	error,	should	you	wish	to	do	so,	then
proceed	normally:

ErrorHandling

Add	this	program	code	to	request	user	input	of	two	numeric	values	for	addition,	then
display	their	sum	total
Console.Write(“Please	Enter	A	Number:	“)	;
double	num1	=	Convert.ToInt16(Console.ReadLine())	;

Console.Write(“Now	Enter	Another	Number:	“)	;
double	num2	=	Convert.ToInt16(Console.ReadLine())	;

Console.WriteLine(“Total:	“	+	(num1	+	num2))	;

Press	Start	or	F5	to	run	the	application,	then	enter	any	six-figure	integer	and	hit	Enter

The	compiler	reports	an	OverflowException	error

Click	the	Stop	Debugging	button	so	you	can	edit	the	code

An	Int16	is	a	16-bit	integer	within	the	range	-32,768	to	+32,767	–	whereas	an	Int32	is	a
32-bit	integer	within	-2,147,483,648	to	+2,147,483,647.

Drag	the	mouse	to	highlight	all	statements	in	Step	1,	then	right-click	on	the	highlighted
area	and	choose	Insert	Snippet:,	Visual	C#,	try	from	the	context	menu

The	Insert	Snippet	feature	provides	lots	of	useful	pieces	of	code	to	paste	into	the
Code	Editor	–	take	some	time	to	explore	its	contents.

A	try-catch	construct	is	added	to	the	code,	enclosing	the	highlighted	statements	within	the
try	block

Edit	the	default	catch	block	to	display	an	error	message
catch	(Exception	error)
{	Console.WriteLine(error.Message)	;	}

Each	Exception	has	several	methods	and	properties.	For	example,	use	error.GetType()	to
see	the	type	of	Exception.

Run	the	application,	then	enter	any	six-figure	integer	and	hit	Enter	to	now	see	a	default
explanatory	error	message

You	can	provide	your	own	error	messages	to	handle	a	specific
Exception	by	stating	its	type	in	the	catch()	parentheses:

Edit	the	default	catch	block	to	display	a	custom	message
catch	(OverflowException)
{	Console.WriteLine(”\nMaximum:	“	+	Int16.MaxValue)	;	}

Run	the	application,	then	enter	any	six-figure	integer	and	hit	Enter	to	now	see	a	custom
explanatory	error	message

You	can	add	multiple	catch	blocks	after	the	try	block,	to	handle	different	types	of
Exception.

Getting	help
The	Visual	Studio	Help	system	provides	an	extensive	source	of	reference	for	many	programming
languages.	You	can	choose	to	install	a	Help	Library	on	your	computer	for	the	C#	programming
language	so	you	can	easily	refer	to	it	at	any	time:

On	the	Visual	Studio	Menu	Bar,	click	Help,	Add	and	Remove	Help	Content	to	open	the
Help	Viewer

On	the	Manage	Content	tab,	expand	Recommended	Documentation	then	choose	the
Add	link	in	the	Action	column	for	the	Visual	Basic	and	Visual	C#	library

When	your	selection	is	added	to	the	Pending	changes	list,	click	the	Update	button	to
download	that	library

The	Help	Viewer	allows	you	to	download	Help	libraries	for	offline	use,	check	for
available	updates,	and	seek	help	from	installed	Help	libraries.

Help	library	documentation	can	be	searched	for	answers	to	your	C#	coding	questions.	For
example,	you	might	want	to	discover	built-in	data	types	available	in	C#	programming:

On	the	Menu	Bar,	click	Help,	Set	Help	Preference,	Launch	in	Help	Viewer	to	use
installed	libraries

Next,	click	Help,	View	Help	to	launch	Help	Viewer

Now,	select	the	Index	tab	in	the	left-hand	pane

Finally,	enter	“C#	language,	data	types”	in	the	Help	Viewer	search	box,	then	hit	Enter	to
see	the	results

You	can	Set	Help	Preference	to	Launch	in	Browser	if	you	want	to	search	online	help
without	installing	libraries,	but	local	help	is	often	more	convenient.

Summary
• The	Code	Editor	constantly	monitors	your	code	to	provide	real-time	error	detection.

• Warnings	are	not	critical	and	are	indicated	by	a	green	wavy	underline	–	whereas	errors	are
critical	and	are	indicated	by	a	red	wavy	underline.

• A	light	bulb	icon	beside	a	red	wavy	underline	indicates	that	a	list	of	potential	fixes	is
available.

• Typically,	real-time	errors	are	errors	of	syntax,	and	compile	errors	are	errors	of	logic.

• When	a	compile	error	occurs	in	Debug	Mode,	execution	stops	and	the	Exception	Assistant
offers	a	list	of	possible	fixes.

• In	Debug	Mode	you	can	discover	the	current	value	of	any	variable	simply	by	placing	the
cursor	over	the	variable	name.

• When	debugging	code,	the	Step	Into	button	lets	you	walk	through	a	program	one	line	at	a	time.

• The	Step	Over	button	lets	you	bypass	the	lines	of	a	called	method,	and	the	Step	Out	button
lets	you	return	to	the	line	where	that	method	is	called.

• Variable	values	can	be	monitored	as	a	program	proceeds,	using	the	Watch	window	or	the
Locals	window.

• Breakpoints	halt	the	execution	of	a	program	to	allow	examination	of	the	part	of	the	program
where	they	are	set.

• In	Debug	Mode,	code	can	be	dynamically	applied	using	the	Immediate	window.

• Runtime	errors	occur	when	the	user	action	has	not	been	anticipated	by	the	programmer.

• A	try-catch	block	can	be	used	to	handle	anticipated	exceptions.

• The	Help	library	system	provides	extensive	reference	sources	for	both	off-line	and	online
assistance.

9

Creating	objects

This	chapter	demonstrates	encapsulation,	inheritance,	and	polymorphism	–	the	three	principles	of	C#	Object	Oriented

Programming.

Encapsulating	data
Creating	multiple	objects
Initializing	class	members
Inheriting	class	properties
Calling	base	constructors
Hiding	base	methods
Directing	method	calls
Providing	capability	classes
Employing	partial	classes
Summary

Encapsulating	data
A	class	is	a	data	structure	that	can	contain	both	variables	and	methods	in	a	single	entity.	These	are
collectively	known	as	its	“members”,	and	the	variables	are	also	known	as	its	“properties”.

If	a	class	is	not	declared	as	static	it	can	be	used	to	create	“instances”	that	are	assigned	to	a
variable	for	use	by	other	classes.

Access	to	class	members	from	outside	the	class	is	controlled	by	“access	specifiers”	in	the	class
declaration.	Typically,	these	will	deny	access	to	the	variable	members,	but	allow	access	to
methods	that	can	store	and	retrieve	data	from	those	variable	members.	This	technique	of	“data
hiding”	ensures	that	stored	data	is	safely	encapsulated	within	the	class	variable	members,	and	is
the	first	principle	of	Object	Oriented	Programming	(OOP).

A	class	declaration	comprises	a	class	access	specifier,	the	class	keyword,	and	a	programmer-
specified	name	–	adhering	to	the	usual	C#	naming	conventions,	but	beginning	in	uppercase.

If	not	specified,	the	default	access	specifier	for	a	class	declaration	is	internal,	and	the
default	access	specifier	for	class	members	is	private.

The	class	declaration	is	followed	by	a	pair	of	braces	containing	the	variable	and	method
declarations,	which	typically	begin	with	their	own	access	specifier.	So,	class	syntax	looks	like
this:

access-specifier	class	ClassName
{
//	Member	variable	property.
access-specifier	data-type	variable-name	;

//	Member	method.
access-specifier	return-type	method-name	(parameter-list)
{
statements

}
}

An	access	specifier	may	be	any	one	of	these	keywords:

• public	–	accessible	from	any	place	where	the	class	is	visible

• private	–	accessible	only	to	other	members	of	the	same	class

• protected	–	accessible	only	to	other	members	of	the	same	class	and	members	of	classes
derived	from	that	class

• internal	–	accessible	only	to	members	of	the	same	assembly

Derived	classes,	which	use	the	protected	member	access	specifier,	are	introduced	later	–
see	here.

Any	real-world	object	can	be	defined	by	its	attributes	and	by	its	actions.	For	example,	a	dog	has
attributes	such	as	name,	age,	and	color,	plus	actions	it	can	perform	such	as	bark.	The	class
mechanism	in	C#	provides	a	way	to	create	a	virtual	dog	object	within	a	program,	where	the
variable	members	of	a	class	can	represent	its	attributes	and	the	methods	represent	its	actions:

public	class	Dog
{
//	MEMBER	VARIABLES...
private	string	name	;
private	int	age	;
private	string	color	;

//	MEMBER	METHODS...

//	Setter	&	Getter	Methods:
public	void	setName(string	tag)
{

name	=	tag	; //	Store	the	argument	value.
}

public	string	getName()
{

return	name	; //	Retrieve	the	stored	value.
}

public	void	setAge(int	yrs)	{	age	=	yrs	;	}
public	int	getAge()	{	return	age	;	}

public	void	setColor(string	coat)	{	color	=	coat	;	}
public	string	getColor()	{	return	color	;	}

//	Other	Methods:
public	string	bark()	{	return	“\nWoof,	woof!\n”	;	}

}

It	is	important	to	recognize	that	a	class	declaration	only	defines	a	data	structure	–	in	order	to
create	an	object	you	must	declare	an	“instance”	of	that	data	structure,	assigned	to	a	variable.	This
requires	the	new	keyword	and	class	name	followed	by	parentheses:

//	Create	an	instance	named	“fido”	of	the
//	programmer-defined	Dog	data	structure.
Dog	fido	=	new	Dog()	;

The	principle	of	encapsulation	in	C#	programming	describes	the	grouping	together	of	data	and
functionality	in	class	members	–	name,	age,	color	attributes	and	bark	action	in	the	Dog	class.

A	program	class	cannot	perfectly	emulate	a	real-world	object,	but	aims	to	encapsulate
all	relevant	attributes	and	actions.

The	public	“setter”	and	“getter”	methods	assign	values	to,	and	retrieve	values	from,	the
private	variable	members.

It	is	conventional	to	begin	class	names	with	an	uppercase	character,	and	object	names
with	lowercase.

Creating	multiple	objects
A	program	can	easily	create	multiple	objects	simply	by	declaring	multiple	new	instances	of	a
class,	and	each	object	can	have	unique	attributes	by	assigning	individual	values	with	its	setter
methods.

It	is	often	convenient	to	combine	the	setter	methods	into	a	single	method	that	accepts	arguments
for	each	private	variable.	This	means	that	all	values	can	be	assigned	with	a	single	statement	in	the
program,	but	the	method	will	contain	multiple	statements.

In	C#	class	declarations,	the	public	“setter”	methods,	which	assign	data	to	private	variable
members,	and	public	“getter”	methods,	which	retrieve	data	from	private	variable	members,	are
often	named	as	the	variable	they	address	–	but	with	the	first	letter	made	uppercase	and	prefixed
by	“set”	or	“get”	respectively.	For	example,	methods	to	access	an	age	variable	may	be	setAge()
and	getAge().

Parameters	may	also	be	named	as	the	variable	they	address.	The	code	can	differentiate	between
the	parameter	and	like-named	variable	member	by	dot-prefixing	this	to	the	variable	name:

Objects

After	the	default	Program	class,	declare	a	class	named	“Dog”	with	three	variable	members
public	class	Dog
{
private	string	name	,	color	;
private	int	age	;

//	Methods	to	be	inserted	here	(Steps	2-4).
}

Next,	insert	a	setter	method	for	all	variable	members
public	void	setValues(string	name,	int	age,	string	color)
{
this.name	=	name	;
this.age	=	age	;
this.color	=	color	;

}

Now,	insert	getter	methods	for	each	variable	member
public	string	getName()	{	return	name	;	}
public	int	getAge()	{	return	age	;	}
public	string	getColor()	{	return	color	;	}

Then,	insert	another	miscellaneous	method
public	string	bark()	{	return	“\nWoof,	woof!\n”	;	}

In	the	setter	method,	the	this	prefixed	names	reference	the	class	variable	members,	and
those	without	prefix	reference	the	parameters.	No	prefix	is	needed	to	reference	the	class
variable	members.

Turn	your	attention	to	the	Main()	method	in	the	default
Program	class	and	create	an	instance	of	the	Dog	class
Dog	fido	=	new	Dog()	;

Next,	call	the	new	instance	object’s	setter	method	to	initialize	all	its	variable	members
fido.setValues(“Fido”	,	3	,	“Brown”)	;

Now,	retrieve	all	properties	of	the	new	object
string	tagF	=	String.Format(“{0}	is	a	{1}	year	old	{2}	dog”,

fido.getName()	,
fido.getAge()	,
fido.getColor()

}	;

Display	all	properties	and	call	the	miscellaneous	method
Console.WriteLine(tagF	+	fido.bark())	;

Now,	create	another	instance	of	the	Dog	class
Dog	lucy	=	new	Dog()	;
lucy.setValues(“Lucy”	,	2	,	“Gray”)	;

Next,	retrieve	all	properties	of	this	new	object
string	tagL	=	String.Format(“{0}	is	a	{1}	year	old	{2}	dog”,

lucy.getName()	,
lucy.getAge()	,
lucy.getColor()

}	;

Display	all	properties	and	call	the	miscellaneous	method
Console.WriteLine(tagL	+	lucy.bark())	;
Console.ReadKey()	;

Press	Start	or	F5	to	see	each	object’s	properties

Notice	here	how	the	String.Format()	method	is	coded	using	newlines	to	clearly	build	a	string
value	for	output.

Initializing	class	members
Class	variable	members	can	be	initialized	by	a	special	“constructor”	method	that	is	called
whenever	an	instance	of	the	class	is	created	–	allowing	you	to	specify	default	values	for	class
variable	members.

The	constructor	method	is	always	named	exactly	as	the	class	name	and	can	contain	statements	to
initialize	class	variable	members.	For	example,	public	class	Cat	has	a	public	Cat()	constructor.

When	all	class	variables	have	been	initialized	by	the	class	constructor	method,	any	instance
object	of	that	class	will	immediately	have	those	initial	property	values.	Individual	setter	methods
can	usefully	adjust	the	class	variable	values	as	needed:

Constructor

After	the	default	Program	class,	declare	a	class	named	“Cat”	with	three	variable	members
public	class	Cat
{
private	string	name	,	color	;
private	int	age	;

//	Methods	to	be	inserted	here	(Steps	2-5).
}

Next,	insert	a	class	constructor	method	to	set	default	values	for	all	its	variable	members
public	Cat()
{
name	=	“Tigger”	;
age	=	3	;
color	=	“Brown”	;

}

Now,	insert	setter	methods	for	each	variable	member
public	void	setName(string	name)	{	this.name	=	name	;	}
public	void	setAge(int	age)	{	this.age	=	age	;	}
public	void	setColor(string	color)	{	this.color	=	color	;	}

Then,	insert	getter	methods	for	each	variable	member
public	string	getName()	{	return	name	;	}
public	int	getAge()	{	return	age	;	}
public	string	getColor()	{	return	color	;	}

Lastly,	insert	another	miscellaneous	class	method
public	string	cry()	{	return	“\nMeow,	meow!\n”	;	}

You	cannot	specify	a	constructor	to	be	private	as	it	must	be	accessible	in	order	to	create
instance	objects	in	other	classes.

Turn	your	attention	to	the	Main()	method	in	the	default
Program	class	and	create	an	instance	of	the	Cat	class
Cat	tigger	=	new	Cat()	;

Now,	retrieve	all	(default)	properties	of	the	new	object
string	tagT	=	String.Format(“{0}	is	a	{1}	year	old	{2}	cat”,

tigger.getName()	,
tigger.getAge()	,
tigger.getColor()

}	;

Display	all	properties	and	call	the	miscellaneous	method
Console.WriteLine(tagT	+	tigger.cry())	;

Now,	create	another	instance	of	the	Cat	class	and	set	each	property	with	new	values
Cat	smokey	=	new	Cat()	;

smokey.setName(“Smokey”)	;
smokey.setAge(2)	;
smokey.setColor(“Gray”)	;

Next,	retrieve	all	(adjusted)	properties	of	this	new	object
string	tagS	=	String.Format(“{0}	is	a	{1}	year	old	{2}	cat”,

smokey.getName()	,
smokey.getAge()	,
smokey.getColor()

}	;

Display	all	properties	and	call	the	miscellaneous	method
Console.WriteLine(tagS	+	smokey.cry())	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	properties	of	each	object	instance	and
method	called

Object	instances	cannot	be	created	from	static	classes,	but	you	can	supply	a	constructor
method	in	static	classes.

You	can	also	specify	parameters	to	a	constructor	method	in	order	to	allow	argument
values	to	be	passed	in	when	a	new	instance	object	is	created.

Inheriting	class	properties
A	C#	class	can	be	created	as	a	brand	new	class,	like	those	in	previous	examples,	or	can	be
“derived”	from	an	existing	class.	Importantly,	a	derived	class	inherits	members	of	the	parent
(base)	class	from	which	it	is	derived	–	in	addition	to	its	own	members.

The	ability	to	inherit	members	from	a	base	class	allows	derived	classes	to	be	created	that	share
certain	common	properties,	which	have	been	defined	in	the	base	class.	For	example,	a	“Polygon”
base	class	may	define	width	and	height	properties	that	are	common	to	all	polygons.	Classes	of
“Rectangle”	and	Triangle”	could	be	derived	from	the	Polygon	class	–	inheriting	width	and	height
properties,	in	addition	to	their	own	members	defining	their	unique	features.

The	virtue	of	inheritance	is	extremely	powerful	and	is	the	second	principle	of	Object	Oriented
Programming	(OOP).

A	derived	class	declaration	adds	a	colon	:	after	its	class	name,	followed	by	the	name	of	the	class
from	which	it	derives:

Inheritance

After	the	default	Program	class,	declare	a	base	class	named	“Polygon”,	containing	two
variable	members	and	one	setter	method	member
public	class	Polygon
{
protected	int	width	,	height	;

public	void	setValues(int	width	,	int	height)
{
this.width	=	width	;
this.height	=	height	;

}

}

Next,	define	a	class	that	derives	from	the	base	class,	inheriting	members	and	adding	a
method
public	class	Rectangle	:	Polygon
{
public	int	area()	{	return	(width	*	height)	;	}

}

Now,	define	another	class	that	derives	from	the	base	class,	inheriting	members	and	adding
a	similar	method	to	that	in	the	previous	step
public	class	Triangle	:	Polygon
{
public	int	area()	{	return	((width	*	height)	/	2)	;	}

}

Turn	your	attention	to	the	Main()	method	in	the	default	Program	class	and	create	an	instance
object	from	each	derived	class
Rectangle	rect	=	new	Rectangle()	;
Triangle	cone	=	new	Triangle()	;

Call	the	inherited	setter	method	of	each	derived	class	to	initialize	all	the	inherited
variable	members
rect.setValues(4	,	5)	;
cone.setValues(4	,	5)	;

Finally,	call	the	added	method	in	each	derived	class	to	display	their	computed	values
Console.WriteLine(“Rectangle	Area:	“	+	rect.area())	;
Console.WriteLine(“\nTriangle	Area:	“	+	cone.area())	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	output	from	inherited	variables

The	methods	added	to	each	derived	class	can	be	named	alike,	as	they	only	exist	within
the	scope	of	their	respective	class.

The	:	operator	is	used	here	to	create	derived	classes,	and	is	equivalent	to	the	extends
keyword	in	other	programming	languages	–	such	as	Java.

Notice	that	the	setter	method	and	variables	are	not	defined	in	the	derived	classes,	as
they	are	inherited	from	the	base	class.

Calling	base	constructors
Although	derived	classes	inherit	the	members	of	their	parent	base	class,	they	do	not	inherit	its
constructor	method.	Nonetheless,	a	constructor	method	of	the	base	class	is	always	called	when	a
new	object	of	a	derived	class	is	created.	The	call	to	the	base	class	constructor	method	is	made	in
addition	to	the	call	to	the	constructor	method	of	the	derived	class.

The	default	constructor	method	of	a	base	class	has	no	parameters	–	but	the	base	class	may	also
have	one	or	more	“overloaded”	constructor	methods	which	do	have	parameters.

If	you	prefer	to	call	an	overloaded	constructor	of	the	base	class	when	a	new	object	of	a	derived
class	is	created,	you	can	create	a	matching	overloaded	constructor	in	the	derived	class	–	having
the	same	number	and	type	of	arguments.	The	matching	derived	class	constructor	must	then
explicitly	call	the	overloaded	base	class	constructor	using	the	base	keyword.	This	is	appended	to
the	derived	class	constructor	declaration	after	a	:	colon	character.

An	overloaded	method	is	one	that	has	the	same	name	as	another	method	but	different
parameters.

When	a	new	object	of	a	derived	class	is	created,	argument	values	can	be	passed	to	an	overloaded
derived	class	constructor,	and	also	onwards	to	its	matching	overloaded	base	class	constructor	in
parentheses	following	the	base	keyword:

Base

After	the	default	Program	class,	declare	a	base	class	named	“Parent”,	containing	a	default
constructor	method
public	class	Parent
{
public	Parent()
{
Console.WriteLine(“Parent	Called”)	;

}

//	Overloaded	constructor	to	be	inserted	here	(Step	2).
}

Next,	insert	an	overloaded	constructor	method	into	the	base	class	that	requires	a	single

integer	argument
public	Parent(int	num)
{

Console.WriteLine(“Parent+	Called:	”	+	num)	;
}

After	the	base	class,	add	a	derived	class	containing	a	default	constructor	method
public	class	Daughter	:	Parent
{
public	Daughter()
{	Console.WriteLine(“\tDaughter	Called\n”)	;	}

}

Son	–	Parent	–	Daughter

Next,	add	another	derived	class,	containing	a	default	constructor	method
public	class	Son	:	Parent
{
public	Son()
{	Console.WriteLine(“\tSon	Called\n”)	;	}

//	Overloaded	constructor	to	be	inserted	here	(Step	5).
}

Now,	insert	an	overloaded	constructor	method	into	the	derived	class,	which	requires	a
single	integer	argument
public	Son(int	num)	:	base(num)
{
Console.WriteLine(“\tSon+	Called:	”	+	num)	;

}

Turn	your	attention	to	the	Main()	method	in	the	default
Program	class	and	create	instances	of	the	derived	classes
Daughter	anna	=	new	Daughter()	;
Son	brad	=	new	Son()	;
Son	carl	=	new	Son(100)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	output	from	base	and	derived	class
constructors

The	default	base	constructor	method	will	be	called	implicitly	unless	the	base	keyword	is
used	to	call	explicitly.

Here,	the	argument	value	is	passed	to	the	derived	class	and	base	class.

Hiding	base	methods
A	method	can	be	declared	in	a	derived	class	to	“hide”	a	similar	method	in	the	base	class	–	if	both
method	declarations	have	matching	name,	arguments,	and	return	type.

Creation	of	a	matching	method	in	a	derived	class	effectively	hides	the	base	class	method,	as	it
generally	becomes	inaccessible.	To	indicate	that	hiding	is	intentional,	rather	than	accidental,	the
hiding	method	declaration	should	include	the	new	keyword.

Base	class	methods	can	be	called	explicitly	from	within	non-static	classes	by	prefixing	their
method	name	with	the	base	keyword.	Alternatively,	as	a	derived	class	is	a	specialization	of	its
base	class,	base	class	methods	can	be	called	explicitly	using	an	explicit	cast:

Hide

After	the	default	Program	class,	declare	a	base	class	named	“Man”,	containing	a	simple
method	without	parameters	plus	an	overloaded	method	with	a	single	parameter
public	class	Man
{
public	void	speak()
{
Console.Write(“Hello:	”)	;

}

public	void	speak(string	message)
{
Console.WriteLine(message	+	“!\n”)	;

}
}

After	the	base	class,	add	a	derived	class	containing	a	method	to	intentionally	hide	the
overloaded	method	of	the	same	name	and	parameters	in	the	base	class
public	class	Hombre	:	Man
{
public	new	void	speak(string	message)
{
//	Statement	to	be	inserted	here	(Step	3).
Console.WriteLine(message)	;	}

}

Next,	insert	a	statement	in	the	derived	class	to	explicitly	call	the	simple	method	in	the
base	class
base.speak()	;

A	derived	class	method	name	and	parameter	list	must	match	that	in	its	base	class	to
override	it.

Turn	your	attention	to	the	Main()	method	in	the	default
Program	class,	and	create	an	instance	of	the	base	class
Man	henry	=	new	Man()	;

Next,	create	an	instance	of	the	derived	class
Hombre	enrique	=	new	Hombre()	;

Henry	and	Enrique

Add	a	call	to	the	simple	method	inherited	by	the	instance	from	the	base	class
henry.speak()	;

Now,	add	a	call	to	the	overloaded	method	inherited	from	the	base	class
henry.speak(“It’s	a	beautiful	evening”)	;

Then,	add	a	call	to	the	hiding	method	in	the	derived	class	–	that	will	also	explicitly	call
the	simple	method	in	the	base	class
enrique.speak(“Hola...”)	;

Finally,	add	a	statement	using	an	explicit	cast	–	to	explicitly	call	the	overloaded	method	in
the	base	class
((Man)	enrique).speak(“Es	una	tarde	hermosa”)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	output	from	base	class	methods	and
hiding	method

The	base	keyword	cannot	be	used	in	the	Main()	method,	as	that	is	a	static	method.

Directing	method	calls
The	three	cornerstones	of	Object	Oriented	Programming	(OOP)	are	encapsulation,	inheritance,
and	polymorphism.	Previous	examples	have	demonstrated	encapsulation	of	data	within	a	class,
and	inheritance	of	base	class	members	by	derived	classes.	The	term	polymorphism	(from	Greek,
meaning	“many	forms”)	describes	the	ability	to	assign	a	different	meaning,	or	purpose,	to	an	entity
according	to	its	context.	C#	overloaded	operators	can	be	described	as	polymorphic.	For	example,
the	+	symbol	represents	the	addition	or	concatenation	operator	–	according	to	its	context.	C#
class	methods	can	also	be	polymorphic.	Method	declarations	in	a	base	class	can	include	the
virtual	keyword	to	allow	that	method	to	be	overridden	in	derived	classes.	Similarly,	method
definitions	in	a	derived	class	can	include	the	override	keyword	to	denote	it	will	be	overriding	a
virtual	base	class	method.	In	this	way,	derived	class	methods	can	provide	their	own	version	of	a
base	class	method.	The	great	advantage	of	polymorphism	with	multiple	derived	class	objects	is
that	calls	to	methods	of	the	same	name	are	directed	to	the	appropriate	overriding	method.	This
can	allow	inconsistencies,	however	–	this	example	seems	to	imply	that	chickens	can	fly!

Override

After	the	default	Program	class,	declare	a	base	class	named	“Bird”,	containing	two	methods
that	allow	overriding
public	class	Bird
{
public	virtual	void	talk()
{	Console.WriteLine(“A	Bird	Talks...”)	;	}

public	virtual	void	fly()
{	Console.WriteLine(“A	Bird	Flies...\n”)	;	}

}

After	the	base	class,	add	a	derived	class	containing	two	methods	that	will	override	the
base	class	methods
public	class	Pigeon	:	Bird
{
public	override	void	talk()

{	Console.WriteLine(“Pigeon	Says:	Coo!	Coo!”)	;	}

public	override	void	fly()
{
Console.WriteLine(“A	Pigeon	Flies	Away...”)	;
base.fly()	;

}
}

Here,	the	fly()	method	in	each	derived	class	also	calls	the	base	class	fly()	method
directly.

Next,	add	another	derived	class	containing	two	methods	that	will	also	override	the	base
class	methods
public	class	Chicken	:	Bird
{
public	override	void	talk()
{	Console.WriteLine(“Chicken	Says:	Cluck!	Cluck!”)	;	}

public	override	void	fly()
{
Console.WriteLine(“I’m	A	Chicken	-	I	Can’t	Fly”)	;
base.fly()	;

}
}

Turn	your	attention	to	the	default	Program	class	and	add	a	method	to	call	both	overriding
methods
static	void	describe(Bird	obj)
{

obj.talk()	;
obj.fly()	;

}

Turn	your	attention	to	the	Main()	method	in	the	default
Program	class	and	create	instances	of	each	non-base	class
Pigeon	joey	=	new	Pigeon()	;
Chicken	lola	=	new	Chicken()	;

Finally,	add	statements	to	call	appropriate	methods
describe(joey)	;
describe(lola)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	output	from	the	overriding	methods	of
derived	classes

You	must	use	the	base	keyword	prefix	to	directly	call	a	base	class	method	from	a
derived	class.

Each	instance	object	is	passed	as	an	argument	for	C#	to	determine	the	appropriate
overriding	method	to	execute.

Polymorphism	in	programming	is	often	called	“one	interface,	multiple	functions”.

Providing	capability	classes
Classes	whose	sole	purpose	is	to	allow	other	classes	to	be	derived	from	them	are	known	as
“capability	classes”	–	they	provide	capabilities	to	the	derived	classes.	Capability	classes
generally	contain	no	data,	but	merely	declare	a	number	of	methods	that	can	be	overridden	in	their
derived	classes.

A	capability	class	and	its	methods	can	all	be	declared	using	the	abstract	keyword	to	denote	that
they	can	only	be	implemented	in	derived	classes.	In	this	case,	the	method	signature	is	followed	by
a	semicolon,	rather	than	a	method	block	containing	statements.	Method	definitions	in	derived
classes	can	then	include	the	override	keyword	to	implement	the	capability	class	methods.

You	cannot	create	an	instance	of	an	abstract	base	class.

Adding	the	sealed	keyword	to	a	class	declaration	is	a	safeguard	which	prevents	that	class	being
used	as	a	base	class.	Understandably,	an	abstract	capability	class	cannot	be	sealed.

The	following	example	builds	upon	the	previous	example	to	demonstrate	how	the	“Bird”	class
can	be	better	written	as	a	capability	class.	This	now	prevents	the	base	class	methods	being	called
directly,	to	avoid	inconsistencies:

Capability

After	the	default	Program	class,	define	a	base	capability
class	named	“Bird”,	containing	two	methods
public	abstract	class	Bird
{
public	abstract	void	talk()	;

public	abstract	void	fly()	;
}

Add	a	derived	class	containing	two	methods	that	will	override	the	base	class	methods
public	sealed	class	Pigeon	:	Bird
{
public	override	void	talk()
{	Console.WriteLine(“Pigeon	Says:	Coo!	Coo!”)	;	}

public	override	void	fly()
{	Console.WriteLine(“A	Pigeon	Flies	Away...”)	;	}

}

Next,	add	another	class	which	also	contains	two	methods	that	will	override	the	base	class
methods
public	sealed	class	Chicken	:	Bird
{
public	override	void	talk()
{	Console.WriteLine(“Chicken	Says:	Cluck!	Cluck!”)	;	}

public	override	void	fly()
{	Console.WriteLine(“I’m	A	Chicken	-	I	Can’t	Fly”)	;	}

}

Chicken	(Bird)

Pigeon	(Bird)

Next,	add	another	class	containing	a	single	method	that	accepts	an	object	argument
public	sealed	class	Caller
{
public	void	describe(Bird	obj)
{
obj.talk()	;
obj.fly()	;

}
}

Turn	your	attention	to	the	Main()	method	in	the	default
Program	class	and	create	instances	of	each	non-base	class
Pigeon	joey	=	new	Pigeon()	;
Chicken	lola	=	new	Chicken()	;
Caller	call	=	new	Caller()	;

Finally,	add	statements	to	call	appropriate	methods	by	passing	an	object	as	an	argument
call.describe(joey)	;
call.describe(lola)	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	put	from	the	overriding	methods	of
derived	classes

Each	instance	object	is	passed	as	an	argument	for	C#	to	determine	the	appropriate
overriding	method	to	execute.

Employing	partial	classes
The	source	code	for	each	example	listed	in	this	book	is	generally	contained	in	a	single	.cs	file,	as
each	one	is	just	a	simple	program.	When	working	on	larger	projects	it	is	often	desirable	to	spread
the	source	code	over	separate	files	to	allow	multiple	programmers	to	work	on	the	project	at	the
same	time.	Visual	Studio	allows	you	to	easily	add	one	or	more	code	files	in	which	to	write
classes.

If	any	part	is	declared	abstract,	the	whole	class	will	be	abstract,	and	if	any	part	is	declared
sealed,	the	whole	class	will	be	sealed.

Class	definitions	can	also	be	spread	across	several	files	by	including	the	partial	keyword	in	each
separate	part	of	the	definition.	Providing	all	parts	have	the	same	level	of	accessibility,	the	C#
compiler	will	combine	all	parts	into	a	single	definition:

Parts

Start	a	new	Console	Application,	then	name	the	project	and	Console.Title	as	“Parts”

From	the	Visual	Studio	menu,	select	Project,	Add	Class	to	launch	the	“Add	New	Item”
dialog	box

Edit	the	name	field	to	the	name	of	the	class	to	be	added	there	–	in	this	case	it’s	to	be	a
class	named	“Sailboat”

Click	the	Add	button	to	add	the	new	file	to	your	project

Next,	select	View,	Solution	Explorer	and	click	on	Sailboat.cs	to	open	that	file	in	Code
Editor

Alternatively,	you	can	right-click	on	the	project	name	in	Solution	Explorer	and	choose
Add,	New	Item	to	launch	this	dialog	box.

Edit	the	added	file	to	provide	a	class	constructor	part
public	partial	class	Sailboat
{
private	string	make	;
private	string	model	;

public	Sailboat(string	make	,	string	model)
{
this.make	=	make	;
this.model	=	model	;

}
}

Laser	Sailboat	(Boat)

Now,	in	Solution	Explorer,	click	on	Program.cs	to	open	that	file	in	Code	Editor

After	the	default	Program	class	add	a	class	method	part
public	partial	class	Sailboat
{
public	void	describe()
{
Console.WriteLine(“Sailboat:	{0}	{1}”	,	make	,	model)	;

}
}

Turn	your	attention	to	the	Main()	method	in	the	default
Program	class	and	create	an	instance	object
Sailboat	boat	=	new	Sailboat(“Laser”	,	“Classic”)	;

Finally,	add	a	statement	to	call	the	added	class	method
boat.describe()	;
Console.ReadKey()	;

Press	Start	or	F5	to	run	the	application	and	see	the	output	from	the	class	parts	spread
over	two	files

Notice	how	the	strings	are	substituted	for	output	in	this	example.

Partial	classes	are	part	of	the	same	namespace	–	here	it	is	“Parts”.

Summary
• Encapsulation,	inheritance,	and	polymorphism	are	the	three	cornerstones	of	Object	Oriented

Programming.

• A	C#	class	is	a	data	structure	that	can	contain	both	variable	members	and	method	members.

• Access	to	class	members	is	controlled	by	access	specifiers.

• An	instance	object	of	a	class	is	created	using	the	new	keyword	followed	by	the	class	name	and
parentheses.

• Typically,	public	setter	and	getter	methods	provide	access	to	private	variables	to	ensure	stored
data	is	safely	encapsulated.

• Parameters	can	be	named	as	the	variable	they	address,	and	the	this	keyword	prefix	can	be	used
to	differentiate	between	them.

• The	constructor	method	of	a	class	is	named	as	the	class	name	and	is	called	each	time	an
instance	of	that	class	is	created.

• Derived	classes	inherit	members	of	the	base	parent	class	from	which	they	are	derived.

• A	derived	class	declaration	adds	a	colon	after	the	class	name,	followed	by	the	name	of	the
class	from	which	it	derives.

• An	overloaded	constructor	of	a	base	class	can	be	called	using	the	base	keyword	in	a	derived
class	declaration.

• A	derived	class	can	include	a	new	method	to	hide	a	method	in	its	parent	class	if	name,
arguments,	and	return	type	match.

• Base	class	methods	can	be	called	explicitly	from	a	derived	class	by	prefixing	the	method
name	with	the	base	keyword.

• The	virtual	and	override	keywords	can	be	used	to	allow	base	class	methods	to	be	overridden	by
derived	class	methods.

• Capability	classes	can	include	the	abstract	keyword	to	denote	their	methods	can	only	be
implemented	in	derived	classes.

• Adding	the	sealed	keyword	to	a	class	declaration	is	a	safeguard	which	prevents	that	class
being	used	as	a	base	class.

• Class	definitions	can	be	spread	across	several	files	by	including	the	partial	keyword	in	each
part	of	the	definition.

10

Controlling	events

This	chapter	demonstrates	how	a	C#	program	can	recognize	and	respond	to	events	that	occur	in	a	graphical	application.

Starting	a	Forms	project
Adding	visual	controls
Writing	functional	code
Gathering	text	entries
Ticking	option	boxes
Showing	user	messages
Calling	system	dialogs
Creating	application	menus
Making	menus	work
Importing	audio	resources
Summary

Starting	a	Forms	project
Visual	Studio	provides	a	Windows	Forms	Application	template	that	allows	you	to	easily	create	a
C#	program	which	provides	a	Graphical	User	Interface	(GUI)	to	interact	with	the	user:

FirstGUI

On	the	Menu	Bar,	click	File,	New,	Project,	or	press	the	Ctrl	+	Shift	+	N	keys,	to	open	the
New	Project	dialog	box

In	the	New	Project	dialog,	expand	Installed,	Templates,	Visual	C#,	then	select	the
Windows	Forms	Application

Enter	a	project	name	of	your	choice	in	the	Name	field,	then	click	on	the	OK	button	to
create	the	new	project	–	in	this	case	the	project	name	will	be	“FirstGUI”

Wait	while	Visual	Studio	creates	your	new	project	and	loads	it	into	the	IDE,	then	see	a
Form	Designer	window	appear	displaying	a	default	empty	Form

Select	the	View,	Solution	Explorer	menu	to	open	a	Solution	Explorer	window	and	see	all
files	in	your	project

Windows	GUI	applications	provide	interactive	controls	that	produce	“events”	in	response
to	user	actions,	and	your	program	can	respond	to	those	actions.	This	is	known	as
event-driven	programming.

Now,	select	the	View,	Properties	menu	to	open	a	Properties	window	to	reveal	all
properties	of	your	Form

The	Form	Designer	is	where	you	create	visual	interfaces	for	your	applications,	and	the
Properties	window	contains	details	of	the	item	that	is	currently	selected	in	the	Form	Designer
window.

The	Visual	Studio	IDE	has	now	gathered	all	the	resources	needed	to	build	a	default
Windows	application	–	click	the	Start	button	on	the	toolbar	to	launch	this	application

The	application	simply	creates	a	basic	window	–	you	can	move	it,	minimize	it,	maximize	it,
resize	it,	and	quit	the	application	by	closing	it.	It	may	not	do	much,	but	you	have	already	created	a
real	Windows	GUI	app!

Alternatively,	you	can	run	applications	using	the	Debug,	Start	Debugging	menu	options
or	press	F5.

Adding	visual	controls
The	Toolbox	in	the	Visual	Studio	IDE	contains	a	wide	range	of	visual	controls,	which	are	the
building	blocks	of	your	applications.	Using	the	project	created	here,	follow	these	steps	to	start
using	the	Toolbox	now:

FirstGUI

Place	the	cursor	over	the	vertical	Toolbox	tab	at	the	left	edge	of	the	IDE	window,	or	click
View,	Toolbox	on	the	Menu	Bar,	to	display	the	Toolbox	contents.	The	visual	controls	are
contained	under	various	category	headings	beside	an	 	expansion	arrow

Click	on	the	expansion	arrow	beside	the	Common	Controls	category	heading	to	expand
the	list	of	most	commonly	used	visual	controls.	Usefully,	each	control	name	appears
beside	an	icon	depicting	that	control	as	a	reminder.	You	can	click	on	the	category	heading
again	to	collapse	the	list,	then	expand	the	other	categories	to	explore	the	range	of	controls
available	to	build	your	application	interfaces

Any	pinned	Window	in	the	IDE	can	be	dragged	from	its	usual	location	to	any	position
you	prefer.	Drag	back	to	the	initial	location	to	re-dock	it.

The	Toolbox	will	automatically	hide	when	you	click	on	another	part	of	the	IDE,	but	it	can
be	fixed	in	place	so	it	will	never	hide,	using	the	 	Pin	button	on	the	Toolbox	bar.

Click	and	drag	the	Button	item	from	the	Common	Controls	category	in	the	Toolbox	onto
the	Form	in	the	Designer	window,	or	double-click	the	Button	item,	to	add	a	Button	control
to	the	Form

A	Button	is	one	of	the	most	useful	interface	controls	–	your	program	determines	what
happens	when	the	user	clicks	it.

The	Button	control	appears	on	the	Form	surrounded	by	“handles”	which	can	be	dragged	to	resize
the	button’s	width	and	height.

Click	the	 	Start	button	to	run	the	application	and	see	the	Button	control	appear	in	its
initial	default	state

Next,	move	the	pointer	over	the	Button	control	to	see	its	appearance	change	to	its
“MouseHover”	state

Now,	click	and	hold	down	the	Button	control	to	see	its	appearance	change	to	its
“MouseDown”	state

Finally,	release	the	Button	control	to	see	its	appearance	change	to	its	“MouseUp”	state

This	Button	control	performs	no	function	when	it’s	clicked	–	until	you	add	some	code.

Each	change	of	appearance	is	Windows’	default	response	to	an	event	that	occurs	on	the	Button

control,	but	your	C#	program	can	provide	its	own	response	to	these,	and	many	more,	control
events:

Select	the	Button	control	then	open	its	Properties	window

Click	the	Events	button	and	scroll	down	to	see	all	possible	Button	events

Each	control	can	be	given	a	more	meaningful	name	in	the	Properties	window,	but	for
simplicity,	the	default	names	are	used	by	the	examples	in	this	book.

Writing	functional	code
The	Visual	Studio	IDE	automatically	generates	code	in	the	background,	to	incorporate	the	visual
controls	you	add	to	your	program	interface.	Additional	code	can	be	added	manually	to	the	“code-
behind”	page	using	the	IDE’s	integral	Code	Editor,	to	determine	how	your	program	should
respond	to	interface	events:

Use	the	tabs	to	switch	between	the	Code	Editor	and	Form	Designer.

Using	the	project	created	here,	follow	these	steps	to	add	your	own	responses	to	user	actions
which	produce	events:

FirstGUI

Select	the	Button	control	named	button1,	then	open	its	Properties	window	and	click	the
Events	button

Double-click	on	the	MouseHover	item	to	open	a	Form1.cs	code-behind	page	in	Code
Editor	at	a	generated	event-handler	method

Next,	insert	this	statement	within	the	generated	method	–	to	change	the	Button’s
background	color	in	response	to	a	MouseHover	event
button1.BackColor	=	Color.Fuchsia	;

Similarly,	double-click	on	the	MouseDown	item	and	insert	this	statement	within	another

generated	method	–	to	change	the	Button’s	background	color	in	response	to	a	MouseDown
event
button1.BackColor	=	Color.Lime	;

Likewise,	double-click	on	the	MouseUp	item	and	insert	this	statement	within	a	further
generated	method	–	to	change	the	Button’s	background	color	in	response	to	a	MouseUp
event
button1.BackColor	=	Color.Aqua	;

The	Color	class	provides	lots	of	standard	color	properties	–	type	Color	then	a	period
and	use	IntelliSense	to	see	them.

The	lines	of	code	in	this	example	are	to	be	inserted	into	each	individual	eventhandler
method	that	is	automatically	generated	by	Visual	Studio.

Now,	click	the	Form1.cs	[Design]	tab	to	return	to	the	Form	Designer	window

Double-click	on	the	Button	control	on	the	Form	to	open	the	Form1.cs	code-behind	page	in
Code	Editor	at	yet	another	generated	event-handler	method

Finally,	insert	this	statement	within	the	generated	method	–	to	open	a	message	box	in
response	to	a	Click	event
MessageBox.Show(“C#	Programming	in	easy	steps”)	;

Run	the	application,	then	click	the	button	to	see	the	MouseHover,	MouseDown,	and	Click
event	responses

Push	the	OK	button	to	close	the	message	box	and	see	the	MouseUp	event	response

You	can	use	the	View	menu	on	the	Menu	Bar	to	open	the	Code	Editor,	Form
Designer,	or	any	other	window	you	require	at	any	time.

You	can	see	many	more	uses	for	the	MessageBox	class	here.

Most	Windows	software	works	by	responding	to	events.	For	example,	when	you	press
a	key,	a	KeyPress	event	can	call	its	event-handler	to	respond	to	that	event.

Gathering	text	entries
A	TextBox	control	can	be	added	to	a	Form	in	a	Windows	Forms	Application	to	allow	the	user	to
enter	input.	The	current	value	within	a	TextBox	can	be	assigned	to	a	variable,	typically	in
response	to	a	Button	Click	event,	for	use	inside	the	program	code.

A	Label	control	is	generally	used	to	display	non-dynamic	text.

A	new	value	can	be	assigned	to	a	TextBox	as	output	to	the	user,	but	the	user	can	modify	this
value.	Alternatively,	output	can	be	assigned	to	a	Label	control,	which	the	user	cannot	modify:

Entry

Start	a	new	Windows	Forms	Application,	then	add	a	TextBox,	a	Button,	and	two	Label
controls

Select	the	Form	itself,	then	in	the	Properties	window	modify	its	Text	value	and	height

Next,	modify	the	Text	property	values	of	the	Button	control	and	Label	controls	so	they
look	like	this:

Now,	double-click	the	Button	control	to	open	the	Code	Editor	at	a	generated	Click	event-
handler

At	the	very	beginning	of	the	Form1	class	block,	add	a	variable	with	setter	and	getter
methods
private	int	num	;
public	void	setNum(int	num)	{	this.num	=	num	;	}
public	int	getNum()	{	return	num	;	}

In	the	Layout	property	category,	you	must	set	AutoSize	to	False	before	you	can	adjust
the	Width	and	Height	values	in	the	Size	property	category.

In	the	Form1()	constructor	method	block,	insert	statements	to	initialize	the	variable	with	a
random	value
Random	rnd	=	new	Random()	;
setNum(rnd.Next(1,	21))	;

Then,	add	a	method	to	compare	two	arguments	and	set	a	Label	control’s	Text	property
with	an	appropriate	message
public	void	rate(int	guess,	int	num)
{
if	(guess	<	num)	label2.text	=	“Too	Low!”	;
else
if	(guess	>	num)	label2.text	=	“Too	High!”	;
else
label2.text	=	“***	Correct	***”	;

}

Finally,	insert	statements	within	the	Button	Click	event-	handler	to	compare	user	input
against	the	random	value
int	guess	=	Convert.ToInt16(textBox1.text)	;
rate(guess,	getNum())	;

Press	Start	or	F5	to	run	the	application	and	enter	input	to	see	the	appropriate	output
messages

If	you	specify	minimum	and	maximum	arguments	to	the	Next()	method,	it	will	return	a
random	integer	between	the	specified	minimum	and	maximum-1	–	so	specifying	21	will
allow	a	maximum	of	20.

The	content	of	a	TextBox	control	is	a	string	value	–	so	it	must	be	converted	to	a	numeric
data	type	for	numeric	comparison.

Ticking	option	boxes
A	CheckBox	control	is	a	small	box	with	a	caption.	It	lets	the	user	select	the	caption	choice	by
clicking	on	the	box,	and	a	check	mark	appears	in	the	box	to	indicate	it	has	been	chosen.	Clicking
the	box	once	more	deselects	the	choice	and	unchecks	the	box.	CheckBox	controls	are	ideal	to
present	a	set	of	choices	from	which	the	user	can	select	none,	one,	or	more	than	one	choice.

A	RadioButton	control	is	like	a	CheckBox,	but	with	one	crucial	difference	–	the	user	can	check
only	one	choice	in	the	group.	Checking	a	RadioButton	automatically	unchecks	any	others.
RadioButton	controls	are	ideal	to	present	a	set	of	choices	from	which	the	user	can	select	only
one	choice.

Set	one	RadioButton	control	to	Checked	to	specify	a	default	option.

Selected	CheckBox	and	RadioButton	items	can	usefully	be	added	to	the	collection	displayed	in
a	ListBox	control:

Option

Start	a	new	Windows	Forms	Application,	then	add	RadioButton,	CheckBox,	ListBox,
Button,	and	Label	controls	to	the	Form

Modify	the	Text	property	values	of	the	controls	to	look	like	this:

Now,	double-click	the	“Show	Selection”	Button	control	to	open	the	Code	Editor	at	its
generated	Click	event-handler

The	name	of	the	ListBox	control	that	appears	in	the	Form	Designer	will	not	be
displayed	when	the	application	runs.

In	the	Form1()	constructor	method	block,	insert	a	statement	to	specify	a	default	option
radioButton1.Checked	=	true	;

Next,	insert	a	statement	within	the	“Show	Selection”	Button	Click	event-handler	to	empty
any	listed	items
listBox1.Items.Clear()	;

Insert	statements	within	the	“Show	Selection”	Button	Click	event-handler	to	add	selected
options	to	the	list
if	(radioButton1.Checked)
listBox1.Items.Add(radioButton1.Text)	;

if	(radioButton2.Checked)
listBox1.Items.Add(radioButton2.Text)	;

if	(checkBox1.Checked)
listBox1.Items.Add(checkBox1.Text)	;

if	(checkBox2.Checked)
listBox1.Items.Add(checkBox2.Text)	;

Now,	double-click	the	“Clear”	Button	control	to	open	the	Code	Editor	at	its	generated
Click	event-handler

Insert	statements	within	the	“Clear”	Button	Click	event-	handler	to	reset	all	the	options
listBox1.Items.Clear()	;
radioButton1.Checked	=	true	;
checkBox1.Checked	=	false	;
checkBox2.Checked	=	false	;

Press	Start	or	F5	to	run	the	application	and	select	options	to	see	them	appear	in	the	list	–
then	hit	Clear

The	ListBox	control	has	an	Items	property	that	provides	methods	to	add	or	remove	list
items	from	a	collection.

Showing	user	messages
The	features	of	a	MessageBox	dialog	can	be	determined	by	adding	three	further	arguments	after	the
message	string	within	its	Show()	method.	These	can	specify	a	caption,	which	buttons	the	dialog
will	display,	and	which	graphic	icon	will	appear	on	the	dialog.

MessageBoxButtons	constants

AbortRetryIgnore

OK

OKCancel

RetryCancel

YesNo

YesNoCancel

The	dialog	button	combinations	can	be	specified	using	the	MessageBoxButtons	constant	values
listed	in	this	table.	For	example,	to	have	the	dialog	display	Yes,	No,	and	Cancel	buttons,	specify
the	MessageBoxButtons.	YesNoCancel	constant.

A	MessageBox	is	“modal”	–	the	user	must	deal	with	its	dialog	message	before	the
program	can	proceed.

MessageBoxIcon constants

Error	Hand	Stop

Question

Exclamation	Warning

Asterisk	Information

None 	

The	dialog	icon	can	be	specified	using	the	MessageBoxIcon	constant	values	listed	in	this	table.	For
example,	to	have	the	dialog	display	the	question	mark	icon,	specify	the	MessageBoxIcon.	Question
constant.

When	the	user	presses	a	MessageBox	dialog	button	it	returns	an	appropriate	DialogResult	constant
value	to	the	program.	These	are	named	exactly	as	the	individual	button	label	they	represent.	For
example,	any	MessageBox	dialog	OK	button	returns	the	DialogResult.OK	constant.	The	program	can
therefore	examine	the	returned	value	to	determine	how	to	proceed.

Always	specify	a	graphic	icon	when	calling	a	MessageBox	dialog	to	help	the	user	easily
understand	the	nature	of	the	message.

Message

Start	a	new	Windows	Forms	Application,	then	add	a	Button,	a	TextBox,	and	a	Label
control	to	the	Form

Double-click	the	“Show	Message”	Button	control	to	open	the	Code	Editor	at	its
generated	Click	event-handler

Insert	a	block	within	the	“Show	Message”	Button	Click	event-handler	to	deliberately
throw	an	exception
try
{
throw	new	NotImplementedException()	;

}
catch	(NotImplementedException	notImp)
{
//	Statements	to	be	inserted	here	(Steps	4-5).

}

Add	a	statement	to	assign	the	user’s	decision	to	a	variable
DialogResult	result	=
MessageBox.Show(“Proceed?”,	notImp.Message	,
MessageBoxButtons.YesNo	,	MessageBoxIcon.Error)	;

Now,	add	statements	to	respond	to	the	user’s	decision
textBox1.Text	=	result.ToString()	;
if(result	==	DialogResult.Yes)	label1.Text	=	“Proceeding...”	;
if(result	==	DialogResult.No)	label1.Text	=	“Stopping...”	;

Press	Start	or	F5	to	run	the	application	and	use	the
MessageBox	buttons	to	determine	how	to	proceed

This	technique	of	throwing	a	NotImplementedException	is	favored	by	some	programmers	as
a	reminder	to	complete	an	unfinished	part	of	the	program	code.

Alternatively,	this	program	could	stop	by	calling	the	form’s	Close()	method	in	response	to
DialogResult.No.

Calling	system	dialogs
Visual	Studio	makes	it	simple	to	add	the	ability	to	call	upon	the	standard	Windows	selection
dialogs	so	the	user	can	choose	options	within	your	applications.	For	example,	selection	of	colors,
fonts,	and	images:

Dialog

Start	a	new	Windows	Forms	Application	project	and	add	a	PictureBox,	TextBox,	and
three	Button	controls	to	the	Form

From	the	Dialogs	section	of	the	Toolbox,	add	a	ColorDialog,	FontDialog,	and
OpenFileDialog	component	to	the	Form	–	see	them	appear	in	the	Component	Tray	at	the
bottom	of	the	Form	Designer

Double-click	the	first	Button	to	open	the	Code	Editor	at	its	generated	Click	event-handler,
then	insert	this	code	to	change	the	background	color	of	the	Form
if	(colorDialog1.ShowDialog()	==	DialogResult.OK)
this.BackColor	=	colorDialog1.Color	;

Double-click	the	second	Button	to	open	the	Code	Editor	at	its	generated	Click	event-
handler,	then	insert	this	code	to	change	the	font	of	the	TextBox	control
if	(fontDialog1.ShowDialog()	==	DialogResult.OK)
textBox1.Font	=	fontDialog1.Font	;

Double-click	the	third	Button	to	open	the	Code	Editor	at	its	generated	Click	event-
handler,	then	insert	this	code	to	choose	an	image	for	the	PictureBox	control
if	(openFileDialog1.ShowDialog()	==	DialogResult.OK)
{
//	Statements	to	be	inserted	here	(Step	6).

}

The	DialogResult.OK	value	indicates	the	user	pressed	the	OK	button	–	just	as	it	does	in	the
MessageBox	example	here.

The	SaveFileDialog	is	demonstrated	in	the	example	here.

Insert	a	block	to	assign	a	selected	image	or	display	an	error	message
try
{
pictureBox1.SizeMode	=

PictureBoxSizeMode.StretchImage	;
pictureBox1.Image	=

new	Bitmap(openFileDialog1.FileName)	;
}
catch	(Exception	error)
{
MessageBox.Show(“Error:	Select	An	Image	File!”)	;

}

Press	Start	or	F5	to	run	the	application	and	call	the	system	dialogs	to	choose	program
options

The	PictureBoxSizeMode.StretchImage	property	will	stretch,	or	shrink,	a	selected	image	to	fit
the	PictureBox	dimensions	as	a	new	Bitmap	image.

Creating	application	menus
Dropdown	menus,	toolbars,	and	status	bars,	like	those	found	in	most	Windows	applications,	can
easily	be	added	to	your	own	C#	GUI	applications	from	the	Toolbox:

Jotter

Start	a	new	Windows	Forms	Application	project	and	find	the	Menus	&	Toolbars	section
of	the	Toolbox,	then	double-click	the	MenuStrip	item	to	add	it	to	the	Form

Click	the	MenuStrip	control’s	arrow	button	to	open	its	Smart	Tag,	then	select	Insert
Standard	Items

When	the	familiar	headings	and	items	have	been	added	to	the	MenuStrip,	right-click	on
any	item	and	use	the	context	menu	to	edit	that	item.	Also,	type	new	custom	items	into	the
Type	Here	box	as	required

In	the	Toolbox,	double-click	on	the	ToolStrip	item	to	add	it	to	the	Form,	then	open	its
Smart	Tag	and	once	more	select	Insert	Standard	Items

Alternatively,	you	can	create	your	own	custom	menus	using	the	Type	Here	box	instead
of	Insert	Standard	Items.

When	the	familiar	icon	buttons	have	been	added	to	the	ToolStrip,	right-click	on	any	item
and	use	the	context	menu	to	edit	that	item.	Also	add	further	custom	items	from	the	drop-
down	list	as	required

In	the	Toolbox,	double-click	on	the	StatusStrip	item	to	add	it	to	the	Form

Select	the	StatusLabel	item	on	the	StatusStrip	drop-down	list,	and	set	its	text	property	to
“Ready”

Add	a	RichTextBox	control	to	the	center	of	the	Form,	open	its	Smart	Tag	and	select	the
option	to	Dock	in	parent	container,	then	ensure	that	its	ScrollBars	property	is	set	to
Both

Use	StatusBar	messages	to	provide	feedback	to	the	user.

The	menus	are	not	truly	functional	until	you	add	some	program	code	–	as	described
here.

Making	menus	work
The	menu	items	and	toolbar	buttons	created	here	will	not	truly	function	until	you	add	code	to
make	them	work.	For	actions	that	appear	both	in	a	menu	and	on	a	button,	you	can	create	a	method
that	can	be	called	from	the	Click	event-handler	of	the	menu	item	and	that	of	the	button	–	to	avoid
duplication:

Jotter

In	Form	Designer,	click	File,	New	to	select	the	New	menu	item

Double-click	on	the	New	menu	item	to	open	the	Code	Editor	in	its	Click	event-handler,
and	add	this	method	call	newFile()	;

After	the	Click	event-handler	block,	add	this	method	to	clear	any	existing	text	and	display	a
status	message
private	void	newFile()
{
richTextBox1.Text	=	null	;
toolStripStatusLabel1.Text	=	“Ready”	;

}

Return	to	the	Form	Designer,	then	double-click	on	the	New	toolbar	button	to	open	the
Code	Editor	in	that	event-handler,	and	add	a	call	to	the	method	above	newFile()	;

Add	an	OpenFileDialog	and	SaveFileDialog	component	from	the	Dialogs	section	of	the
Toolbox

In	the	Click	event-handlers	of	both	the	Open	menu	item	and	the	Open	toolbar	button,	add
this	method	call	openFile()	;

When	you	enable	New,	Open,	and	Save	dialogs,	keyboard	shortcuts	are	already
configured	–	try	Ctrl	+	N,	Ctrl	+	S,	and	Ctrl	+	O	to	test	them.

After	the	Click	event-handler	blocks,	add	this	method	to	load	a	plain	text	file
private	void	openFile()
{
openFileDialog1.Filter	=	“Text	Files	|	*.txt”	;
if	(openFileDialog1.ShowDialog()	==	DialogResult.OK)
{
richTextBox1.LoadFile(openFileDialog1.FileName	,

RichTextBoxStreamType.PlainText)	;
}

}

In	the	Click	event-handlers	of	both	the	Save	menu	item	and	the	Save	toolbar	button,	add
this	method	call	saveFile()	;

After	the	Click	event-handler	blocks,	add	this	method	to	save	a	plain	text	file
private	void	saveFile()
{
saveFileDialog1.Filter	=	“Text	Files	|	*.txt”	;
if	(saveFileDialog1.ShowDialog()	==	DialogResult.OK)
{
richTextBox1.SaveFile(saveFileDialog1.FileName	,

RichTextBoxStreamType.PlainText)	;
}

}

Press	Start	or	F5	to	run	the	application	and	test	the	functionality	of	the	New,	Open,	and
Save	file	menu	items	and	toolbar	buttons

You	can	change	the	Filter	to	“RichText	|	*.rtf”	and	RichTextBoxStreamType	property	to	.RichText
for	files	with	embedded	objects,	such	as	images.

To	make	the	File,	Exit	menu	item	functional,	simply	add	the	call	Application.Exit()	;	to	its
Click	event-handler.

Importing	audio	resources
Sound	files	can	be	included	within	an	application	as	a	resource,	in	much	the	same	way	that	image
files	can	be	imported	as	a	resource,	to	enhance	the	application.	These	can	then	be	played,	as
required:

Sound

Start	a	new	Windows	Forms	Application	project	and	add	a	single	Button	control	to	the
Form

Select	Project,	ProjectName	Properties	on	the	Menu	Bar,	to	open	the	Project	Designer
window

In	Project	Designer,	select	the	Resources	item	in	the	left	pane,	then	choose	Audio	item
from	the	drop-down	list

Select	the	Add	Existing	File...	item	from	the	Add	Resource	drop-down	list	to	launch	the
Add	existing	file	to	resources	dialog

It	is	advisable	to	use	the	Project	Designer	to	remove	a	resource,	rather	than	deleting	it
from	Solution	Explorer.

You	can	typically	find	the	Windows	sound	files	in	the	folder	on	your	computer	at
C:\Windows\Media.

Browse	to	the	location	of	the	sound	file	you	wish	to	add,	then	select	the	file	and	click	the
Open	button

The	sound	file	now	gets	added	to	the	Resources	folder	in	Solution	Explorer	and	appears
in	the	Resources	window	of	Project	Designer	–	here	it’s	a	file	named	notify.wav

Now,	open	the	Code	Editor	and	add	a	directive	at	the	beginning	of	the	page	to	make
another	C#	class	available	using	System.Media	;

Double-click	the	Button	control,	then	add	this	statement	above	its	Click	event-handler
block	to	create	an	object
SoundPlayer	notifier	=
new	SoundPlayer(Properties.Resources.notify)	;

Now,	add	these	statements	inside	the	Button	control’s	Click	event-handler	to	show	a

message	and	play	the	sound	label1.Text	=	“Notifying...”	;
notifier.Play()	;

Press	Start	or	F5	to	run	the	application	and	push	the	Button	to	hear	the	sound	play

A	sound	can	be	played	repeatedly	using	the	PlayLooping()	method	–	and	the	loop	can
be	ended	with	the	Stop()	method.

The	sound	file	name	only	is	dot-suffixed	to	Properties.Resources	–	without	its	file	extension.

Summary
• The	Windows	Forms	Application	template	in	the	New	Project	dialog	is	used	to	begin	a

Windows	GUI	project.

• The	Form	Designer	window	of	the	Visual	Studio	IDE	is	where	you	create	the	application’s
visual	interface.

• The	Properties	window	contains	details	of	the	item	that	is	currently	selected	in	the	Form
Designer	window.

• The	Common	Controls	section	of	the	Toolbox	contains	a	wide	range	of	visual	controls	to
build	GUI	applications.

• The	Code	Editor	is	used	to	create	the	code-behind	page	that	determines	how	the	application
responds	to	interface	events.

• When	the	user	pushes	a	Button	control,	it	creates	a	Click	event	to	which	its	event-handler	can
respond.

• User	input	into	a	TextBox	control	can	be	assigned	to	a	variable	for	use	within	the	application.

• The	user	cannot	modify	text	that	appears	on	a	Label	control.

• Only	one	option	can	be	checked	in	a	RadioButton	group,	but	any	number	of	options	can	be
checked	in	a	CheckBox	group.

• A	ListBox	control	has	an	Items	property	that	provides	methods	to	add	or	remove	items	from
the	list	it	contains.

• The	Show()	method	of	the	MessageBox	class	accepts	arguments	to	specify	a	message,	caption,
buttons,	and	icon.

• The	Dialogs	section	of	the	Toolbox	contains	components	that	allow	an	application	to	use	the
Windows	system	dialogs.

• The	Menus	&	Toolbars	section	of	the	Toolbox	contains	components	that	allow	an	application
to	include	the	familiar	Windows	system	menu	items.

• The	Menus	&	Toolbars	components	will	not	truly	function	until	code	is	added	to	their	Click
event-handlers.

• The	Project	Designer	window	can	be	used	to	import	resources	into	an	application	project.

• A	SoundPlayer	object	can	be	created	using	the	System.Media	class,	and	provides	methods	to
handle	audio	resources.

11

Building	an	application

This	chapter	demonstrates	how	to	create,	test,	and	publish	a	simple	C#	program	application.

Planning	the	program
Assigning	fixed	properties
Designing	the	layout
Setting	dynamic	properties
Adding	runtime	function
Testing	the	program
Publishing	the	application
Summary

Planning	the	program
When	creating	a	new	application	it	is	useful	to	spend	some	time	planning	its	design.	Clearly
define	the	program’s	precise	purpose,	decide	what	application	functionality	will	be	required,	then
decide	what	interface	components	will	be	needed.

A	plan	for	a	simple	application	to	pick	numbers	for	a	lottery	game	entry	might	look	like	this:

Program	purpose

• The	program	will	generate	a	series	of	six	different	random	numbers	in	the	range	1–59,	and
have	the	ability	to	be	reset.

Omission	of	the	planning	stage	can	require	time-	consuming	changes	to	be	made	later.
It’s	better	to	“plan	your	work,	then	work	your	plan”.

Functionality	required

• A	random	number	generator.

• A	method	to	display	six	different	random	numbers.

• A	method	to	clear	the	last	series	from	display.

Components	needed

• Six	Label	controls	to	display	the	series	of	numbers	–	one	number	per	Label.

• One	Button	control	to	generate	and	display	the	numbers	in	the	Label	controls	when	this	Button
is	clicked.	This	Button	will	not	be	enabled	when	numbers	are	on	display.

• One	Button	control	to	clear	the	numbers	on	display	in	the	Label	controls	when	this	Button	is
clicked.	This	Button	will	not	be	enabled	when	no	numbers	are	on	display.

• One	PictureBox	control	to	display	a	static	image	–	just	to	enhance	the	appearance	of	the
interface.

Toggle	the	value	of	a	Button’s	Enabled	property	to	steer	the	user.	In	this	case,	the
application	must	be	reset	before	a	further	series	of	numbers	can	be	generated.

Having	established	a	program	plan	means	you	can	now	create	the	application	basics	by	adding
the	components	needed	to	a	Form:

Lotto

Open	the	Visual	Studio	IDE	and	create	a	new	Windows	Forms	Application	project	called
“Lotto”

In	the	Form	Designer,	add	six	Label	controls	to	the	Form	from	the	Toolbox

Now,	add	two	Button	controls	and	a	PictureBox	control	to	the	Form

Visual	Studio	2015	supports	classic	desktop	app	development	for	the	Windows	Store.

You	can	drag	and	drop	items	from	the	Toolbox,	or	double-click	them	to	add	them	to	the
Form.

Assigning	fixed	properties
Having	created	the	application	basics	here,	you	can	now	assign	static	values	using	the	Properties
window:

Lotto

Click	on	the	Form	to	select	it,	then	in	the	Properties	window,	set	the	Form’s	Appearance,
Text	property	to	“Lotto	Number	Picker”

Select	the	first	Button	control,	then	in	the	Properties	window,	change	its	Design,	(Name)
property	to	BtnPick,	and	its	Appearance,	Text	to	“Get	My	Lucky	Numbers”

Select	the	second	Button	control,	then	in	the	Properties	window,	change	its	Design,
(Name)	property	to	BtnReset,	and	its	Appearance,	Text	property	to	“Reset”

You	can	open	the	Properties	window	using	the	F4	key,	or	by	clicking	View,	Properties
Window	on	the	Menu	Bar.

The	Label	controls	in	this	program	will	have	their	Text	property	values	assigned
dynamically	at	runtime	–	no	initial	properties	are	required.

Select	the	PictureBox	control,	then	in	the	Properties	window,	click	the	Appearance,
Image	property	ellipsis	button	to	launch	the	Select	Resources	dialog

Click	the	Import	button,	browse	to	the	image	location,	then	click	OK	to	import	the	image
resource	–	this	action	automatically	assigns	it	to	the	PictureBox’s	Image	property

Click	File,	Save	Form1.cs	or	press	the	Ctrl	+	S	keys	to	save	the	changes	made	to	the
project	form	properties

You	can	use	the	drop-	down	list	at	the	top	of	the	Properties	window	to	select	any
control	on	the	form.

Save	your	project	periodically	as	you	build	it	using	File,	Save	All	on	the	Menu	Bar	or
Ctrl	+	Shift	+	S	keys.

Designing	the	layout
Having	assigned	fixed	property	values	here,	you	can	now	design	the	interface	layout.

The	size	of	both	the	PictureBox	control	and	the	BtnPick	control	first	needs	to	be	adjusted	to
accommodate	their	content.	This	can	easily	be	achieved	by	specifying	an	AutoSize	value	so	that
Visual	Studio	will	automatically	fit	the	control	neatly	around	its	content:

Lotto

Select	the	PictureBox	control,	then	in	the	Properties	window,	change	its	Behavior,
SizeMode	to	AutoSize

Select	the	BtnPick	control,	then	in	the	Properties	window,	set	its	Layout,	AutoSize
property	to	True

See	that	the	PictureBox	control	now	snugly	fits	around	the	image,	and	the	BtnPick	control
has	expanded	to	fit	its	text

Hold	down	the	left	mouse	button	and	drag	around	the	Labels	to	select	all	Label	controls

Now,	click	View,	Toolbars,	Layout	to	add	the	Layout	toolbar	to	the	Visual	Studio	menus

Click	the	Align	Tops	button	to	stack	the	Labels	in	a	pile

Alternatively,	you	can	use	the	Smart	Tag	arrow	button	on	a	PictureBox	control	to	set
its	SizeMode	property.

Ensure	that	all	PictureBox	Margin	properties	are	set	to	zero	if	you	do	not	require
margins	around	the	image.

Click	the	Make	Horizontal	Spacing	Equal	toolbar	button	to	arrange	the	pile	of	Labels
into	a	row

Use	the	Form’s	right	grab	handle	to	extend	its	width	to	accommodate	the	row	of	Labels
and	PictureBox,	then	drag	the	row	and	both	Buttons	to	top	right	of	the	Form

Drag	the	PictureBox	control	to	top	left	of	the	Form,	then	use	the	Form’s	bottom	grab
handle	to	adjust	its	height	to	match	that	of	the	image

Use	the	Snap	Lines	that	appear	when	you	drag	controls	around	the	Form	to	position	the
row	of	Labels	and	the	Buttons	to	make	the	interface	look	like	the	layout	below

Set	the	Form’s	Window	Style,	MaximizeBox	and	MinimizeBox	properties	to	False,	as
maximize	and	minimize	buttons	are	not	required	on	this	interface

In	this	case,	it	does	not	matter	in	what	order	the	Labels	appear	in	the	row.

Avoid	the	temptation	to	change	the	default	styles	of	form	controls	so	they	remain
familiar	to	users.

Setting	dynamic	properties
Having	designed	the	interface	here,	you	can	now	add	some	functionality	to	dynamically	set	the
initial	Text	properties	of	the	Label	controls	and	the	initial	Button	states:

Lotto

Click	View,	Code	on	the	Menu	Bar,	or	press	F7,	to	open	the	Code	Editor	window

After	the	Form1()	constructor	method	block,	add	a	new	method	block
private	void	Clear()
{
//	Statements	to	be	inserted	here	(Steps	4-8).

}

With	the	cursor	inside	the	new	method	block,	press	Ctrl	+	J,	to	open	the	IntelliSense	pop-
up	window

Scroll	down	the	list	of	items	in	the	IntelliSense	window	and	double-click	on	the	label1
item	to	add	it	into	the	Clear()	method	block

Type	a	period,	then	double-click	the	Text	item	when	the	IntelliSense	window	reappears,
to	add	that	code

The	technique	described	here	demonstrates	how	to	use	IntelliSense	–	but	you	can,	of
course,	just	type	the	code	directly.

Now,	type	=	“...”	;	to	complete	the	line	so	it	reads	like	this:
label1.Text	=	“...”	;

Repeat	this	procedure	for	the	other	Label	controls	–	so	that	the	Clear()	method	assigns
each	an	ellipsis	string

With	the	cursor	inside	the	Clear()	method	block,	use	IntelliSense	in	the	same	way,	to	add
these	two	lines:
BtnPick.Enabled	=	true	;
BtnReset.Enabled	=	false	;

Type	“Intellisense”	into	the	Quick	Launch	box	at	the	top	of	the	Visual	Studio	window	to
discover	the	IntelliSense	Menus	and	Options.

This	completes	the	Clear()	method	functionality	by	setting	the	Button	states.	All	that	remains	is	to
add	a	call	to	the	Clear()	method	to	execute	all	of	its	instructions	when	the	program	starts.

In	the	Form	Designer	double-click	on	the	Form	to	open	the	Code	Editor	in	its	Load	event-
handler,	then	press	Ctrl	+	J	to	open	the	IntelliSense	window

Scroll	down	the	list	in	the	IntelliSense	window	and	double-click	on	the	Clear	item	you
have	just	created,	to	add	a	call	statement	in	the	Load	event-handler

You	could	add	some	comments	to	make	the	code	more	friendly.

Adding	runtime	function
Having	created	code	to	initialize	dynamic	properties	here,	you	can	now	add	runtime	functionality
to	respond	to	clicks	on	the	Button	controls:

Lotto

In	the	Form	Designer,	double-click	on	the	BtnReset	Button	control	to	open	the	Code
Editor	in	its	Click	event-handler,	then	add	this	method	call
Clear()	;

This	is	all	that	is	needed	to	provide	dynamic	functionality	for	the	BtnReset	control.	The	main
dynamic	functionality	of	this	application	is	provided	by	the	BtnPick	control,	which	requires	an
instance	of	a	Random	class,	random	number	generator	object:

In	the	Form	Designer,	double-click	on	the	BtnPick	Button	control	to	open	the	Code
Editor	in	its	Click	event-handler

In	the	Click	event-handler	block,	add	this	statement	to	create	a	random	number	generator
object
Random	rnd	=	new	Random()	;

Next,	add	a	statement	to	create	an	array	of	59	elements	to	store	a	sequence	of	numbers
int	[]	seq	=	new	int[59]	;

Now,	add	a	loop	to	fill	the	array	elements	(index	0	to	58)	with	integer	values	1	to	59
for	(int	i	=	1	;	i	<	60	;	i++)
{
seq[i	-	1]	=	i	;

}

Add	a	second	loop	to	shuffle	the	values	within	all	the	array	elements	–	an	algorithm	to
randomize	their	order
for	(int	i	=	0	;	i	<	59	;	i++)
{
int	j	=	(rnd.Next()	%	59)	;
int	k	=	seq[i]	;	seq[i]	=	seq[j]	;	seq[j]	=	k	;

}

The	random	number	generator	is	used	here	to	generate	random	values	between	zero
and	58	to	shuffle	array	elements.

You	don’t	need	to	understand	in	detail	the	algorithm	that	is	used	to	shuffle	the	values.

Next,	add	the	following	lines	to	display	the	numbers	contained	in	array	elements	1-6	in	the
Label	controls
label1.Text	=	seq[1].ToString()	;
label2.Text	=	seq[2].ToString()	;
label3.Text	=	seq[3].ToString()	;
label4.Text	=	seq[4].ToString()	;
label5.Text	=	seq[5].ToString()	;
label6.Text	=	seq[6].ToString()	;

Now,	add	these	two	lines	to	set	the	Button	states	ready	to	reset	the	application
BtnPick.Enabled	=	false	;
BtnReset.Enabled	=	true	;

Add	comments	for	others	examining	the	code,	and	for	yourself	when	revisiting	the	code
later

Click	File,	Save	All	or	press	the	Ctrl	+	Shift	+	S	keys	to	save	the	changes	made	to	the
project	code-behind	page

The	Label	controls	can	only	contain	string	values,	so	the	int	numeric	values	must	be
converted.

You	can	have	Visual	Studio	nicely	format	your	code	by	selecting	Edit,	Advanced,
Format	Document,	or	using	the	keyboard	shortcut	shown	there	–	typically,	this	is	Ctrl	+
K,	Ctrl	+	D.

Testing	the	program
Having	worked	through	the	program	plan	on	the	previous	pages,	the	components	needed	and
functionality	required	have	now	been	added	to	the	application	–	so	it’s	ready	to	be	tested:

Lotto

Click	the	Start	button,	or	press	F5,	to	run	the	application	then	examine	its	initial	start-up
appearance

The	Form’s	Load	event-handler	has	set	the	initial	dynamic	values	of	each	Label	control	and
disabled	the	reset	button	as	required.

Click	the	BtnPick	Button	control	to	execute	the	instructions	within	its	Click	event-handler

Notice	that	no	number	is	repeated	in	any	series.

A	series	of	numbers	within	the	desired	range	is	displayed,	and	the	Button	states	have	changed	as
required	–	a	further	series	of	numbers	cannot	be	generated	until	the	application	has	been	reset.

Make	a	note	of	the	numbers	generated	in	this	first	series	for	comparison	later

Click	the	BtnReset	control	to	execute	the	instructions	within	that	Click	event-handler	and
see	the	application	return	to	its	initial	start-up	appearance	as	required

Click	the	BtnPick	Button	control	again	to	execute	its	Click	event-handler	code	a	second
time

Remember	that	this	application	interface	has	no	minimize	or	maximize	buttons	because
their	properties	were	set	to	false	–	here,	Step	11.

Another	series	of	numbers	within	the	desired	range	is	displayed	and	are	different	to	those	in	the
first	series	when	compared	–	good,	the	numbers	are	being	randomized	as	required.

Click	the	Stop	Debugging	button,	then	click	the	Start	button	to	restart	the	application	and
click	the	BtnPick	Button	control	once	more

The	generated	numbers	in	this	first	series	of	numbers	are	different	to	those	noted	in	the	first	series
the	last	time	the	application	ran	–	great,	the	random	number	generator	is	not	repeating	the	same
sequence	of	number	series	each	time	the	application	runs.

Alternatively,	you	can	click	the	app’s	X	button	to	close	the	application	and	stop
debugging.

Publishing	the	application
Having	satisfactorily	tested	the	application	here,	you	can	now	create	a	stand-alone	version	that
can	be	executed	outside	the	Visual	Studio	IDE,	and	that	can	be	distributed	to	others	for
deployment	elsewhere.

Lotto

Click	Project	on	the	Menu	Bar,	choose	Lotto	Properties,	Signing	then	select	a	signature
certificate	or	ensure	the	Sign	the	ClickOnce	manifests	box	is	unchecked

Click	Build,	Build	Lotto,	then	click	Build,	Publish	Lotto	to	launch	the	Publish	Wizard
dialog

Use	the	wizard’s	Browse	button	to	select	a	location	where	you	wish	to	publish	the
application	–	the	chosen	location	shown	here	is	the	root	directory	of	removable	drive	F:

Click	the	Next	button,	then	select	whether	the	user	will	install	the	application	from	a
website,	network,	or	portable	media	such	as	CD,	DVD,	or	removable	drive	–	in	this	case
accept	the	default	portable	media	option

Applications	signing	is	optional,	but	does	verify	authentication.	Find	more	details	on
ClickOnce	at	msdn.microsoft.com/en-us/library/t71a733d.aspx

When	choosing	a	publish	location,	use	the	Create	New	Folder	button	in	the	File
System	dialog	to	make	a	folder	to	contain	all	the	application	files.

Click	the	Next	button,	then	select	whether	the	installer	should	check	for	application
updates	–	accept	the	default	option	not	to	check	for	updates	in	this	case

Click	the	Next	button	to	move	to	the	final	dialog	page,	confirm	the	listed	choices,	then
click	the	Finish	button	to	publish	the	application	at	the	specified	location

Each	time	you	publish	an	application,	its	version	number	is	automatically	incremented	–
1.0.0.0,	1.0.0.1,	1.0.0.2,	etc.

The	Publish	Wizard	generates	a	number	of	files,	including	a	familiar	“setup.exe”	executable
installer.

Move	the	portable	media	to	the	system	where	it	is	to	be	deployed,	then	run	setup.exe	to
install	the	application

When	the	application	is	installed	on	the	client	system,	a	shortcut	is	automatically	added	to	the
Start	menu,	which	can	be	used	to	launch	the	application.	The	user	can	then	run	the	release

https://msdn.microsoft.com/en-us/library/t71a733d.aspx

version	of	the	application	just	as	it	performed	during	testing	of	its	debug	version	in	the	Visual
Studio	IDE.

The	installer	also	adds	an	item	to	the	client	system’s	Add/Remove	Programs	list,	which	can	be
used	to	uninstall	the	application	–	just	like	any	other	Windows	program.

An	application	cannot	be	published	unless	it	has	been	built	first.

Summary
• Always	make	an	initial	program	plan,	to	avoid	the	need	for	time-consuming	changes	later.

• A	program	plan	should	clearly	define	the	program	purpose,	functionality	required,	and
components	needed.

• Fixed	properties	that	will	not	change	when	the	application	is	running	can	be	set	at	Designtime
in	the	Properties	Window.

• The	Import	button	in	the	Select	Resources	dialog	can	automatically	assign	an	image	to	a
PictureBox	control.

• An	AutoSize	property	value	makes	Visual	Studio	automatically	fit	a	control	neatly	around	its
content.

• The	Form	Designer’s	Layout	toolbar	contains	useful	features	to	quickly	align	and	space
multiple	interface	controls.

• Snap	Lines	help	you	to	easily	align	a	selected	control	to	others	in	the	interface	at	Designtime.

• Setting	a	Form’s	Window	Style,	MaximizeBox	and	MinimizeBox	properties	to	False
removes	those	buttons.

• Dynamic	properties	that	will	change	when	the	application	is	running	can	be	initialized	with
the	Form’s	Load	event-handler.

• The	pop-up	IntelliSense	window	lets	you	easily	add	program	code	when	using	the	Code
Editor.

• Runtime	functionality	responds	to	user	actions	by	changing	dynamic	properties.

• A	Debug	version	of	an	application	allows	its	functionality	to	be	tested	as	the	application	is
being	created	in	text	format.

• The	Build	process	compiles	a	Release	version	of	an	application	in	binary	format.

• The	Publish	process	creates	a	final	Release	version	with	an	installer	so	the	application	can
be	deployed	elsewhere.

• Applications	created	with	the	Visual	Studio	IDE	can	be	installed	and	uninstalled	just	like
other	Windows	applications.

12

Targeting	devices

This	chapter	demonstrates	how	to	create	a	Universal	Windows	Platform	application	using	C#	programming.

Starting	a	Universal	project
Inserting	page	components
Importing	program	assets
Designing	the	layout
Adding	runtime	function
Testing	the	program
Adjusting	the	interface
Deploying	the	application
Summary

Starting	a	Universal	project
Windows	10	introduced	the	Universal	Windows	Platform	(UWP)	which	enables	you	to	create	a
single	application	that	will	run	on	any	modern	Windows-based	device	–	phone,	tablet,	or	PC.

The	interface	layout	of	a	UWP	application	uses	the	eXtensible	Application	Markup	Language
(XAML)	to	specify	components.

The	example	in	this	chapter	is	for	Visual	Studio	2015	on	Windows	10	–	it	won’t	work
with	earlier	versions.

In	order	to	develop	apps	for	the	UWP,	you	should	be	running	the	latest	version	of	Windows	10,
and	your	Visual	Studio	IDE	must	include	the	Universal	Windows	App	Development	Tools:

Universal

Open	Control	Panel,	Programs	and	Features,	then	right-click	on	the	Visual	Studio	item
and	select	Change	–	to	launch	the	Visual	Studio	installer

Select	all	options	in	the	Universal	Windows	App	Development	Tools	category,	then	click
the	Next	button	–	to	download	and	install	the	tools

After	installation	of	the	tools,	open	the	Visual	Studio	IDE

A	UWP	application	is	also	known	as	a	“UWA”	–	Universal	Windows	Application.

Depending	upon	your	choices	when	you	installed	Visual	Studio,	you	may	see	the	options
checked	when	the	installer	launches,	to	indicate	you	already	have	the	Universal
Windows	App	Development	Tools.

Next,	select	File,	New,	Project	and	create	a	new	Blank	App	(Universal	Windows)
project	called	“Universal”

When	asked	to	select	the	target	and	minimal	platform	versions,	simply	click	OK	to	accept

the	default	options

After	Visual	Studio	creates	the	new	project,	select	View,	Solution	Explorer	to	examine
the	generated	files:

• A	set	of	logo	images	in	an	Assets	folder

• Internal	XAML	and	C#	files	for	the	App

• XAML	and	C#	files	for	the	MainPage	–	here	is	where	you	will	create	interface	components
and	functional	code

• Other	miscellaneous	Package	files

On	Windows	10	you	should	ensure	that	the	Developer	Mode	option	is	enabled	in
Settings,	Update	&	Security,	For	developers.

Visual	Studio	2015	supports	cross-	platform	mobile	device	development.

These	files	are	essential	to	all	UWP	apps	using	C#,	and	exist	in	every	project	Visual
Studio	creates	to	target	the	Universal	Windows	Platform	with	C#.

Inserting	page	components
Visual	Studio	provides	a	two-part	window	to	insert	interface	components	into	a	UWP	app.	This
comprises	a	Design	view	of	the	components	and	a	XAML	view	for	the	XAML	code:

Universal

Open	Solution	Explorer	then	double-click	on	MainPage.xaml	–	to	launch	the	two-part
window

See	that,	by	default,	the	Design	view	displays	a	blank	canvas	in	Portrait	mode

Explore	these	buttons	to	change	the	magnification	and	grid	characteristics.

Click	the	adjacent	button	in	Design	view	to	change	the	blank	canvas	to	Landscape	mode

XAML	is	pronounced	“zammel”.

There	is	a	Toolbox	that	lets	you	add	components	onto	the	canvas,	but	you	will	need	to
edit	them	in	the	XAML	code	later.	In	this	example,	the	components	are	created	in	XAML
code	from	the	very	start.

Now,	see	that	by	default,	the	XAML	view	reveals	there	are	<Grid>	</Grid>	tags	–	this	is	the
root	element	of	the	canvas	in	which	you	can	add	component	elements

Component	elements	are	best	nested	within	a	<StackPanel>	element,	as	this	can	be	given	an	x:Name
for	reference	in	functional	code,	and	an	Orientation	attribute	to	specify	the	direction	in	which	the
nested	elements	should	appear.	Common	component	elements	include	<Image>,	<TextBox>,
<TextBlock>	(label),	and	<Button>.	Several	<StackPanel>	elements	can	be	nested	within	each	other
to	determine	the	Horizontal	and	Vertical	layout	of	components:

Insert	elements	between	the	root	<Grid>	</Grid>	tags,	so	the	XAML	view	code	looks
precisely	like	this:

As	you	add	the	component	elements	in	XAML	view,	they	appear	in	the	Design	view	until
it	looks	like	this:

The	x:	prefix	before	the	Name	attribute	refers	to	the	XAML	schema	used	by	UWP	apps.

The	outer	<StackPanel>	is	a	horizontal	layout	containing	an	<Image>	and	a	nested
<StackPanel>.	The	nested	<StackPanel>	is	a	vertical	layout	containing	two	further	<StackPanel>
elements	that	each	display	their	components	horizontally.

Notice	that	each	<TextBlock>	element	has	a	Text	attribute	that	can	be	referenced	in
functional	code.	For	example,	textBlock1.Text.

Importing	program	assets
In	order	to	have	a	XAML	<Image>	component	display	a	graphic,	an	image	file	first	needs	to	be
added	to	the	projects	Assets	folder.	It	can	then	be	assigned	to	a	Source	attribute	of	the	<Image>	tag:

Universal

Open	Solution	Explorer,	then	right-click	on	the	Assets	folder	and	choose	Add	from	the
context	menu

Now,	choose	Existing	Item	from	the	next	context	menu	–	to	open	an	Add	Existing	Item
dialog	box

In	the	Add	Existing	Item	dialog,	browse	to	the	location	of	an	image,	then	select	the	file
and	click	the	Add	button

An	image	for	display	may	be	in	any	popular	file	format	–	such	as	.bmp,	.gif,	.jpg,	.png,	or
.tif.

In	Solution	Explorer,	the	selected	image	file	now	appears	in	the	project’s	Asset	folder

Select	the	Image	component	in	Designer	view,	then	click	View,	Properties	to	reveal	its
properties

In	the	Properties	window,	expand	the	Common	category,	then	click	the	Source	item’s
arrow	button	and	select	the	added	image	from	the	drop-down	list

The	image	now	appears	in	the	Design	view,	and	its	path	gets	added	to	the	XAML	view
code	and	Source	property

Explore	the	Appearance	and	Transform	options	in	an	image’s	Properties	window,	to
discover	how	you	can	modify	how	it	will	be	displayed.

Designing	the	layout
To	complete	the	app’s	layout,	design	attributes	can	be	added	to	the	XAML	element	tags	to	specify
what	they	will	display	and	precisely	where	in	the	interface	they	will	appear:

Universal

Open	MainPage.xaml,	then	add	two	attributes	to	the	outer	<StackPanel>	element	to	fix	its
position
HorizontalAlignment	=	”Left”	VerticalAlignment	=	”Top”

Next,	edit	the	<Image>	element	by	modifying	the	initial	assigned	value	of	200	–	to	increase
its	width
Width	=	”300”

Now,	add	an	attribute	to	the	nested	<StackPanel>	element	to	fix	its	position
VerticalAlignment	=	”Center”

Then,	edit	all	six	<TextBlock>	elements	alike,	to	specify	their	initial	content,	width,	and
margin	on	all	four	sides
Text	=	”...”	Width	=	”20”	Margin	=	”15”
Text	=	”...”	Width	=	”20”	Margin	=	”15”
Text	=	”...”	Width	=	”20”	Margin	=	”15”
Text	=	”...”	Width	=	”20”	Margin	=	”15”
Text	=	”...”	Width	=	”20”	Margin	=	”15”
Text	=	”...”	Width	=	”20”	Margin	=	”15”

Edit	the	first	<Button>	element	to	rename	it,	specify	its	button	label	content,	and	margin	on
all	four	sides
x:Name	=	“BtnPick”	Content	=	“Get	My	Lucky	Numbers”
Margin	=	“15”

Edit	the	second	<Button>	element	to	rename	it	and	specify	its	button	label	content
x:Name	=	“BtnReset”	Content	=	“Reset”

Finally,	add	an	attribute	to	each	respective	<Button>	element	to	specify	their	initial	state
IsEnabled	=	“True”
IsEnabled	=	“False”

A	single	Margin	value	sets	all	four	margins	around	that	component.	You	can	specify	two

values	to	set	left	&	right,	top	&	bottom	margins,	e.g.	Margin	=	“10,30”.	Alternatively,	you
can	specify	four	values	to	set	left,top,right,bottom	margins	individually,	e.g.	Margin	=
“10,30,10,50”.

The	order	in	which	the	attributes	appear	in	each	element	is	unimportant,	but	the	elements	within
the	MainPage.xaml	file	should	now	look	similar	to	the	screenshot	below:

You	can	optionally	add	Margin	=	“0”	attributes	to	explicitly	require	elements	to	have	no
margin	width.

As	you	make	changes	to	the	XAML	view	code,	the	component	layout	gets	changed	accordingly	in
the	Design	view	and	should	now	look	like	this:

The	Design	view	shows	the	components’	initial	state	–	the	Reset	button	appears	grayed
out,	as	it	is	not	enabled.

Adding	runtime	function
Having	completed	the	application	component	layout	with	XAML	elements	here,	you	are	now
ready	to	add	functionality	with	C#	programming	code:

Universal

In	Design	view,	double-click	on	the	BtnPick	button

The	MainPage.xaml.cs	code-behind	page	opens	in	the	Code	Editor	at	a	generated
BtnPick_Click	event-handler

In	the	BtnPick_Click	event-handler	block,	insert	these	statements	to	create	a	randomized
array	of	integers	between	1	and	59
Random	rnd	=	new	Random()	;
int	[]	seq	=	new	int[59]	;
for	(int	i	=	1	;	i	<	60	;	i++)	seq[i	-	1]	=	i	;
for	(int	i	=	0	;	i	<	59	;	i++)
{
int	j	=	(rnd.Next()	%	59)	;
int	k	=	seq[i]	;	seq[i]	=	seq[j]	;	seq[j]	=	k	;

}
//	Statements	to	be	inserted	here	(Steps	4-5).

Next,	insert	statements	to	assign	six	array	element	values	to	the	<TextBlock>	components
textBlock1.Text	=	seq[1].ToString()	;
textBlock2.Text	=	seq[2].ToString()	;
textBlock3.Text	=	seq[3].ToString()	;
textBlock4.Text	=	seq[4].ToString()	;
textBlock5.Text	=	seq[5].ToString()	;
textBlock6.Text	=	seq[6].ToString()	;

Next,	insert	statements	to	set	the	<Button>	states
BtnPick.IsEnabled	=	false	;
BtnReset.IsEnabled	=	true	;

Return	to	MainPage.xaml,	then	in	Design	view,	double-click	on	the	BtnReset	button

The	MainPage.xaml.cs	code-behind	page	opens	in	the	Code	Editor	at	a	generated
BtnReset_Click	event-handler

The	randomizer	routine	uses	exactly	the	same	logic	as	that	of	the	Windows	Forms
Application	example	–	see	here.

There	is	no	Label	component	in	UWP	apps;	it	is	called	a	TextBlock	instead.

There	is	no	Enabled	property	in	UWP	apps;	it	is	called	IsEnabled	instead.

In	the	BtnReset_Click	event-handler	block,	insert	statements	to	assign	strings	to	the
<TextBlock>	components
textBlock1.Text	=	“...”	;
textBlock2.Text	=	“...”	;
textBlock3.Text	=	“...”	;
textBlock4.Text	=	“...”	;
textBlock5.Text	=	“...”	;
textBlock6.Text	=	“...”	;
//	Statements	to	be	inserted	here	(Step	9).

Finally,	insert	statements	to	set	the	<Button>	states
BtnPick.IsEnabled	=	true	;
BtnReset.IsEnabled	=	false	;

The	BtnReset	button	simply	returns	the	<TextBox>	and	<Button>	components	to	their	original
states.

The	MainPage.xaml.cs	code-behind	page	should	now	look	like	the	screenshot	below:

Return	to	the	MainPage.xaml	file,	then	in	XAML	view,	see	that	attributes	have	been
automatically	added	to	the	<Button>	elements	to	call	the	event-handler	code

Notice	that	the	first	for	loop	contains	only	one	statement	to	be	executed	on	each
iteration,	so	braces	are	not	required.

Testing	the	program
Having	added	functionality	with	C#	code	here,	you	are	now	ready	to	test	the	program	for	two
devices:

Universal

On	the	Visual	Studio	standard	toolbar,	select	Debug	for	x64	architecture	and	Local
Machine	options,	then	click	the	Start	button	to	run	the	app	for	a	PC	device

Wait	while	the	application	gets	built	and	loaded,	then	click	the	buttons	to	try	out	their
functionality

The	app	looks	good	on	PC	devices	–	numbers	are	being	randomized	and	the	button	states	are
changing	as	required.

Now,	on	the	Visual	Studio	standard	toolbar,	select	Debug,	Stop	Debugging	to	exit	the
running	program

You	must	have	your	PC	set	to	Developer	Mode	in	Settings,	Update	&	Security,	For
developers.

You	can	safely	ignore	the	DEBUG	numbers	that	appear	in	the	black	boxes,	but	if	you
prefer	not	to	see	them,	select	Project,	ProjectName	Properties,	Build,	then	uncheck
the	Define	DEBUG	constant	option.

On	the	Visual	Studio	standard	toolbar,	select	Debug	for	x86	architecture	and	small
Mobile	Emulator	options,	then	click	the	Start	button	to	run	the	app	for	a	mobile	device

Wait	while	the	emulator	starts	up	–	this	takes	a	while

When	the	application	gets	built	and	loaded,	you	see	the	controls	are	not	visible	–	so	you
can’t	try	out	their	functionality!

What’s	going	on	here?	Click	one	of	the	emulators	Rotate	buttons	to	flip	it	over	to
Landscape	orientation	and	look	for	clues

Ah-ha!	Some	of	the	controls	are	now	visible,	but	this	is	unsatisfactory	–	adjustments	will
be	needed	to	the	interface	layout	so	the	app	looks	good	on	mobile	devices

Again,	on	the	Visual	Studio	standard	toolbar,	select	Debug,	Stop	Debugging	to	exit	the
running	program

Test	on	the	emulator	with	lowest	memory	and	smallest	screen,	and	it	should	be	fine
running	on	those	emulators	with	better	features.

Do	not	click	the	X	button	on	the	emulator	window	to	stop	the	running	program,	as	that
will	also	close	the	emulator.

Adjusting	the	interface
The	app	test	for	mobile	devices	here	failed	to	satisfactorily	present	the	controls,	as	the	interface
is	too	wide	for	small	screen	devices.	Happily,	the	interface	can	be	made	to	adapt	to	different
screen	sizes	so	it	can	also	look	good	on	mobile	devices.	The	adaptation	relies	upon	recognizing
the	screen	size	and	changing	the	orientation	of	a	<StackPanel>	element	in	XAML	for	narrow	screen
devices:

Universal

Open	MainPage.xaml,	then	in	XAML	view.	add	these	elements	immediately	below	the
opening	<Grid>	element	and	before	the	component	elements
<VisualStateManager.VisualStateGroups>
<VisualStateGroup>

<!--	Elements	to	be	inserted	here	(Steps	2-3)	-->

</VisualStateGroup>
</VisualStateManager.VisualStateGroups>

Next,	insert	elements	to	recognize	wide	screens
<VisualState	x:Name	=	“wideState”	>

<VisualState.StateTriggers>
<AdaptiveTrigger	MinWindowWidth	=	“641”	/>

</VisualState.StateTriggers>

</VisualState>

Now,	insert	elements	to	recognize	narrow	screens,	and	to	change	the	Orientation	of	the
outer	<StackPanel>
<VisualState	x:Name	=	“narrowState”	>

<VisualState.StateTriggers>
<AdaptiveTrigger	MinWindowWidth	=	“0”	/>

</VisualState.StateTriggers>

<VisualState.Setters>
<Setter
Target	=	“MainStack.Orientation”	Value	=	“Vertical”	/>

</VisualState.Setters>

</VisualState>

XAML	code	recognizes	the	same	<!--	-->	comment	tags	that	are	used	in	HTML	code.

Remember	that	the	outer	<StackPanel>	in	this	app	contains	an	<Image>	and	a	nested
<StackPanel>	displayed	horizontally,	side	by	side.	If	displayed	vertically,	they	should
appear	one	above	the	other.

The	beginning	of	the	MainPage.xaml	file	should	now	look	similar	to	the	screenshot	below:

Select	x64	and	Local	Machine	to	run	the	app	for	a	PC	device	once	more	–	it	still	looks
and	functions	well

Now,	select	x86	and	Mobile	Emulator	to	run	the	app	for	a	mobile	device	–	it	now	also
looks	and	functions	well

You	can	have	Visual	Studio	nicely	format	the	XAML	code	by	pressing	Ctrl	+	K,	Ctrl	+	D.

Although	an	app	may	work	well	on	an	emulator,	it	is	recommended	you	always	test	on
actual	devices	before	deployment.

Deploying	the	application
Having	tested	the	app	in	a	Mobile	Emulator	here,	it	can	now	be	tested	on	a	real	device	before
deployment:

Universal

On	a	Windows	10	device,	select	Developer	mode	from	the	Settings,	Update	&
Security,	For	developers	menu

Next,	connect	the	device	to	your	PC	via	a	USB	socket

On	the	Visual	Studio	toolbar,	select	Debug	for	ARM	architecture	and	Device	options,
then	click	the	Start	button	to	run	the	app	on	the	connected	device

Wait	while	the	application	gets	built	and	loaded,	then	tap	the	buttons	to	try	out	their
functionality

You	can	choose	the	Remote	Machine	option	to	test	via	a	network	connection.

The	app	looks	good,	numbers	are	being	randomized,	and	the	button	states	are	changing	as
required	–	the	app	can	be	deployed.

Remove	the	Debug	version	of	the	app	from	the	device

In	Solution	Explorer,	add	logo	images	to	the	Assets	folder,	then	double-click	on
Package.appmanifest	and	add	them	to	Visual	Assets

Add	three	logo	images	to	the	Assets	folder	of	the	required	sizes,	then	click	these
buttons	to	select	them	to	be	the	app	tiles.	You	can	also	add	tile	images,	a	Splash
Screen	image,	or	select	the	Application	tab	and	change	the	app’s	Display	name	–	to
“Lucky	Numbers”,	for	example.

On	the	Visual	Studio	toolbar,	select	Release	for	ARM	architecture	and	Device	options,
then	click	Build,	Deploy	Solution	to	build	and	install	the	Release	version

You	can	use	your	C#	programming	skills	to	build	apps	for	Android	and	iOS	with	Visual
Studio	and	Xamarin.	Discover	more	online	at	xamarin.com

http://www.xamarin.com

Summary
• The	Universal	Windows	Platform	(UWP)	enables	a	single	app	to	run	on	any	modern

Windows-based	device.

• The	eXtensible	Application	Markup	Language	(XAML)	is	used	to	specify	components	and
layout	on	UWP	apps.

• The	Universal	Windows	App	Development	Tools	are	needed	in	order	to	develop	UWP	apps.

• The	Blank	App	(Universal	Windows)	template	can	be	used	to	create	a	new	UWP	project.

• Visual	Studio	provides	a	graphical	Design	view	and	a	text	code	XAML	view	for	the
MainPage.xaml	file.

• Component	elements	can	be	placed	within	XAML	<StackPanel>	elements	to	arrange	their
orientation.

• Image	files	can	be	added	to	the	Assets	folder	and	assigned	to	XAML	<Image>	elements	for
display	on	the	interface.

• Space	can	be	added	around	a	component	by	adding	a	Margin	attribute	and	assigned	value
within	its	element	tag.

• Functional	C#	programming	code	can	be	added	to	the	MainPage.xaml.cs	code-behind	page.

• The	Developer	Mode	setting	must	be	enabled	in	the	Windows	10	options	in	order	to	develop
and	test	UWP	apps.

• A	UWP	app	can	be	tested	in	Debug	mode	on	the	Local	Machine,	a	Mobile	Emulator,	and	a
connected	Device.

• The	interface	of	a	UWP	app	can	adapt	to	different	screen	sizes	by	changing	the	orientation	of
<StackPanel>	elements.

• Image	files	can	be	added	to	the	Assets	folder	for	assignment	as	logos	in	the
Package.appmanifest	window.

• The	Release	version	can	be	deployed	by	selecting	the	target	configuration,	then	using	the
Build,	Deploy	Solution	menu.

	Title
	Copyright
	Contents
	1 Getting started
	Introducing C#
	Installing Visual Studio
	Exploring the IDE
	Starting a Console project
	Writing your first program
	Following the rules
	Summary

	2 Storing values
	Creating variables
	Reading input
	Employing arrays
	Casting data types
	Fixing constants
	Summary

	3 Performing operations
	Doing arithmetic
	Assigning values
	Comparing values
	Assessing logic
	Examining conditions
	Setting precedence
	Summary

	4 Making statements
	Branching with if
	Switching branches
	Looping for
	Looping while
	Iterating for each
	Summary

	5 Devising methods
	Creating function
	Passing arguments
	Overloading methods
	Refactoring code
	Summary

	6 Handling strings
	Discovering string features
	Manipulating strings
	Joining and comparing strings
	Copying and swapping strings
	Finding substrings
	Formatting strings
	Formatting date strings
	Summary

	7 Accessing files
	Writing a file
	Appending to a file
	Reading text and lines
	Streaming lines
	Manipulating input and output
	Summary

	8 Solving problems
	Detecting real-time errors
	Fixing compile-time errors
	Debugging code
	Setting breakpoints
	Catching run-time errors
	Getting help
	Summary

	9 Creating objects
	Encapsulating data
	Creating multiple objects
	Initializing class members
	Inheriting class properties
	Calling base constructors
	Hiding base methods
	Directing method calls
	Providing capability classes
	Employing partial classes
	Summary

	10 Controlling events
	Starting a Forms project
	Adding visual controls
	Writing functional code
	Gathering text entries
	Ticking option boxes
	Showing user messages
	Calling system dialogs
	Creating application menus
	Making menus work
	Importing audio resources
	Summary

	11 Building an application
	Planning the program
	Assigning fixed properties
	Designing the layout
	Setting dynamic properties
	Adding runtime function
	Testing the program
	Publishing the application
	Summary

	12 Targeting devices
	Starting a Universal project
	Inserting page components
	Importing program assets
	Designing the layout
	Adding runtime function
	Testing the program
	Adjusting the interface
	Deploying the application
	Summary

	Back Cover

