Pro
Spring Boot 2

An Authoritative Guide to Building
Microservices, Web and Enterprise
Applications, and Best Practices

Second Edition

Felipe Gutierrez

Apress’

ww.allitebooks.cor

http://www.allitebooks.org

Pro Spring Boot 2

An Authoritative Guide to Building
Microservices, Web and Enterprise
Applications, and Best Practices

Second Edition

Felipe Gutierrez

Apress’

vww .allitebooks.cond

http://www.allitebooks.org

Pro Spring Boot 2: An Authoritative Guide to Building Microservices, Web and
Enterprise Applications, and Best Practices

Felipe Gutierrez
Albuquerque, NM, USA

ISBN-13 (pbk): 978-1-4842-3675-8 ISBN-13 (electronic): 978-1-4842-3676-5
https://doi.org/10.1007/978-1-4842-3676-5

Library of Congress Control Number: 2016941344

Copyright © 2019 by Felipe Gutierrez

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484236758. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3676-5
http://www.allitebooks.org

To my wife, Norma Castaneda

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AULROKccvimriemmsnmsesmsenss s sann s n e nnnnnns Xiii
About the Technical REVIEWETccuserssassssnsssanssssssssnsssasssssssssnsssassssassssnsssassssasssansss XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
Chapter 1: Spring Framework 5cccccccmmmmrmmmmsssssssssnsmmmmmssssssssssssssssssssssssssssssssssssnns 1
DN N 1 (0] O 1
Design Principles and Patterns..........cocvvrinnnsncnicssncness s sns s e 2
SPriNg FramMeWOIK 5c.v e 3

A Simple Spring Web AppPlICatioNc.covcririersrirrerer s serse e s e sss e s e s saesessessesnes 4
Using Maven for Creating @ ProjECt........ccovvvvrvrennsninie e sese s sss e e ssesnes 4
Adding DEPENUENCIES.....ceverrererrererestrse s sre s s e s b e s s b se e e s s s ae s e e e e e ae s 5
Spring Web Configuration........c.covcrireninnnsniesiens e s se s s ssessssessesaens 9
ClASSES ..vuuuiaerrrsssssesiss s 17
RUNNING ThE APP c.vveericerisesire e e nr s 23
USING JAVA CONTIQ...viueirireerriierinesinese s 26

£ 11114 7 30
Chapter 2: Introduction to Spring Boot.........c.ccccemmnnnnmmnnnsssnmnnmssssssssssssssssssssssssses 31
£ 01T N 0o SRR 31
Spring Boot 10 the RESCUE.........cccrveeerreercer s e 33

03] 0T 500 A X P 34
Spring Boot Application MOGEL..........cccucvvrernririrre e s ene e 36
My First Spring Boot APPliCAtioncccvevrininiene s s se e s 37

WRY SPHING BOOL?......cceerecieserserereses s s e e s e ssessessssessessesaessssessessesssssssessessessessssessessssssnensessens 42
SPring BOOT FEATUIES......veiervererererrerere e s s e s se e sae e s sse s s e s saesaese s e saesaesaesesnesaesaes 43

£ 10T 11T SRR 44

v

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Chapter 3: Spring Boot Internals and Featuresc..covummmsmmmsenmssnsssssssassssasssannas 45
Auto-Configuration.........ccvcinr s 45
Disable a Specific Auto-Configuration............ccoveereerrerrnserre s 48
@EnableAutoConfiguration and @Enable<Technology> annotations............ccccceveererenscene 50
SPring BoOt FRALUIEScccericeriresirese s s 54
SpringApPlIcation ClASS.........ccuierininiirirese e bbb ne 57
CUSTOM BANNET ... e p e np e s 58
SpringAPPICAtIONBUIIARTcoveeeereer e 63
Application ArGUMENTScocceiiereresereese s se s se s srnnsnens 66
ApplicationRunner and CommandLINERUNNETcceevvverrerierenensensesessesessessessesessessessessssessessens 68
Application Configurationccuceverrinieriens s s se e nnen 71
Configuration PropertieS EXAMPIESccccevrerreriererensersenersssessessessessssessessesssssssessessessssessessens 73
Custom Properties PrefiX.....uierrrriere s serserese s sesse e ssssessessessesessessessessssessessessessssessesaens 81
11T 111 T RS RSP 85
Chapter 4: Web Applications with Spring Boot...........ccccunnrmmmmmmninnnnnnsssssssmnmemn. 87
SPING MVC ...t e e et a e e e e R e b e e r e e e nnn e 87
Spring Boot MVC Auto-Configurationc.ccceevervrierenennensensessssssessessessssessessesssssssessessesssssssessenes 88
Spring Boot Webh: TODO APD ...ttt e 90
L0002 o o OSSR 91
RUNNING: TODO ADP .uereeereeerenesessesesesesesesesesesssseses e sessesesssessssesessesssssssssesssssssssssssssssssnnes 104
TESHING: TODO ADP...ceeuerercrerreerreeresesessese e e s e e e e ses e e s e e se e see e sesse e sss e sseesenssssnsenens 105
Spring Boot Web: Overriding Defaults...........cccoveviennesennscssese s 110
SEIrVEr OVEITIAING ...veveervecriseserese s s e s ne s nnnne e 110
JSON Date FOrmMaL........cccoeeriereresirs e s 112
Content-Type: JSON/XML.......ccveeerenerrnesrsese s s ss s e s e sesssssssssensanes 112
Spring MVC: Overriding DEfaultsc.ccocorermrnnesesesrsenesessesess s sessesesss e sessssessssessnns 114
Using a Different Application CONtainer...........ccovvvnvnininnnsns s 114
Spring Boot WED: CHENL..........ccovvrererirrere e re e ss s e s e s saesnes 115
L0100 B 03 =T o 2 O 116
31111117 OO 124

TABLE OF CONTENTS

Chapter 5: Data Access with Spring Boot...........ccccusemmmmnssssnnnnnssssnmnsssssssssssnn 127
SOL DAADASESveveueueereresssseeseseressssesssesesessssssssssssessssssssssssessssasssssssssssssssnsssssasssssssssssensasensans 127
SPHNG DALAceerieereere e 128
£ 01110 1] 2 R 129

JDBC With SPriNg BOOTccvieriiririeriereres s sessere e ssesesesse e sas e ssessessssessessesaessssessessens 130
TODO APP With JDBGccevceruereeiersereresaesesessessesessessessesassassessesaesassessessesaesssnessessessessssessesaes 131
SPriNg DA JPA ... e e nnn 139
Spring Data JPA with SPring BoOt ... sennens 140
ToDo App with Spring Data JPA. ... 141
SPring Data RESTccviiriniiireernse s se s se e s sesssnsnns 150
Spring Data REST with SPring BOOt..........ccccovveernenenenernsesese s seanes 150
ToDo App with Spring Data JPA and Spring Data RESTc.cccvivvnininnnnsnnenesnsensenennns 151
NO SQL DAtADASES.......cuceerererrineiisessssssssssss s s 158
Spring Data MONQODB...........cciiirrerire e s e se s e e e 158
Spring Data MongoDB with Spring BOOt...........cccccvrvnrenrnccrnesr e 159
ToDo App with Spring Data MoNGODB...........cccucirnnnnnerin e e s ssenens 161
ToDo App with Spring Data MongoDB RESTcccccurnnnnnennnnessse s ssssesessessssenens 165
SPring Data REAISccereeererereresernsesesese s 165
Spring Data Redis with Spring BoOt ..o 166
ToDo App with Spring Data Rediscccvvrieriniinin s enes 166
More Data Features with Spring BOOt.........c.ccocvvrvninninin s ssssessesaens 170
Multiple Data SOUICESccouerrrrererinerine s sr e re e s 170
£ 1134 7 171
Chapter 6: WebFlux and Reactive Data with Spring Boot...........ccccccrinsnsnnnnnnnnnnnas 173
REACHIVE SYSTEMS......ccivieercerirc e e r e np s 173
The Reactive ManifeSto ..o s ssssenens 173
o (0T o 3T (] (0 SR 175
QL0 ToJ0AY o] IRy T 21T T (] S 175

vii

TABLE OF CONTENTS

WEDFIUX ..covveeeessresssess et 184
WEDCTENT ... ————— 186
WebFlux and Spring Boot Auto-configuration ... 187
Using WebFlux with Spring BOOTcccooerircrcre s see s e see e nnes 188
REACHIVE DALa.......cccoririiiiririssii s s 196
MongoDB Reactive Streams.........cunnn s 196

£ 1134 R 206
Chapter 7: Testing with Spring Boot..........ccccvvemmmmnnsnnnnmmmssssnnmmssssnmmsssssesssssn 207
Spring TeStiNg FrameEWOTKcoceeerrerereerrcse e s 207
Spring Boot Testing Framework..........couccinrnennesise s s ssssesenns 209
Testing Web Endpoints ... 210
MOCKING BEANSccvirierreerinesnsese s s s 211
Spring Boot TESHING SHICESccuvirerrrrirrrererese s 212

£ 11134 7R 218
Chapter 8: Security with Spring Boot.........ccccuseemrmmssnnnnmmsssssnnmmmssssnssssssssessssssnns 219
B3 LT T =T 1T T 219
Security With SPring BOOt ..o e 220
ToDO ApP With BASIC SECUNTY .vuevuerrererrerierersesensersessessssessessesssssssessessessssessessesssssssessessesssssssessees 220
Overriding SimpPIE SECUITY.....ccccvvverreriererrrserre s s s e e s s sresa s e snesne s 227
Overriding the Default LOGin PAQE.......cccovvvierverereserreriene s seresessssesessesaesessessessessssessessees 229
Custom LOGIn PAge........ccouvimiiiis s s 232
Using Security With JDBCcocrieiercrrerree e serses e e sessesseessesesesssessessesssssssssessesssessessesneens 240
Directory App With JDBC SECUNLYccccereriicircrcre i 241
Using the Directory App within the TODO APp ... 250
WEDFIUX SECUILY ...cuveirierieriesirire st e s e b e e 257
TODO APP With QAULNZ.......ccvecercerere e e ss s saesa e se e s ae s aesa e e nne s 257
Creating the ToDo App in GItHUD.........cc i 261

BT 1] 111 OSSR 268

viil

TABLE OF CONTENTS

Chapter 9: Messaging with Spring Boot...........ccccvnnnmmmnmmnsssnnmmmsssssssssssssssssssnns 269
What IS MESSAGING?.....cucoerreererererererreesesesesse e e ses e sse e se e sessesessesesse e sessesessesessenssessessnsenees 269
JMS With SPring BOOLcccceiicrinisirsse s sr e s ssenens 270

ToDO APP WIth JMS.......o e e e e b e 270
USING JMS PUD/SUD ...ttt 281
Remote ACHVEMAQcccoeveriirieererr e sr s sesp e 282
RabbitMQ with SPring BOOt ..o e 282
Installing RabbitMQccoviiiiiirerre s 283
RabbitMQ/AMQP: Exchanges, Bindings, and QUEUESccvvrrerererrersenensssessessessesessessenses 283
ToDo App With RaDDItMQcoeierieriererirserere s s s sae e s e s saesas s ssesaesnes 285
Remote RabbhitMQ..........ccoiiiiiirr e 297
Redis Messaging with Spring BOOt ... s 298
INSTAIlNG REAIScocerere e e e s s 298
ToDO ApP With REUIS......ccvcerereiirire e s r s s 298
22T 10 (=30 ST N 306
WebSockets With SPring BOOL ..o s 307
ToDo App With WEDSOCKELScccverirccrcr e 307
L1134 OO S 318

Chapter 10: Spring Boot Actuator............ccccuvnnsemnnmnssssnnnnmnssssnnmnnsssssssssssssesssnnn 319
SPring BOOT ACLUALONccoeeeeeeer e e 319
ToDO APP With ACTUALONce i e s 320

T (1T (0] SRS 325
/acCtuAtOr/CONAITIONScvceeeeeerree e r e ne s 326
JACTUALOI/DBANS ... sr e ne e 327
/aCtUALOr/CONTIGPIOPS .. ee it b 328
/actuator/threaddump ... —————————— 329
JACTUALOI/BNV ... na e s n e nnne s 330
JaCtUALOI/NEAIN.........ceeece e ————————— 331
T (121 (0] /4 (o TSRS 333
BT (121 (0] 4 (00 o TSRS 333

ix

TABLE OF CONTENTS

/actuator/10ggers/{iNAME] ...ccevveverreriererir s s e s e resa e sa e s ae e e aennen 334
TR L 10T 11T TS 334
T 0 L0 A1 P 0] 0 T O 336
/actuator/SNULAOWN ... 337
T 0 L0 1110 (o O 339
Changing the ENAPOINT IDccccvivervniererrrsersere s sae e s sse s s e saesas e ssessessssesnesnees 340
Actuator CORS SUPPOITccererrerersereresis s sresessesse s saesas e s ssesss e s e ssesaesessessesaesasssssesaesns 341
Changing the Management Endpoints Pathcccccerinninininnnnsne e 341
SecUriNg ENAPOINTS ...cccvviviririereresersere e srs s e e s s se s s sas e s saesaesss e ssesnesasssssesaees 342
Configuring ENAPOINESccvvverereririerie s s s sae s s sne s e e s sne e 342
Implementing Custom Actuator Endpoints.........cccccorvvrenrnsnnsc s e e 343
ToDo App with Custom Actuator ENApOintsccccervrninnicnnnsnne s sessesessenens 343
Spring Boot Actuator Health...........coecrecrerrrcreser e 353
ToDo App with Custom HealthIndicator ..o 358
Spring Boot ACTUALOr METHICSccvuerierirserere et r e s e e 363
ToDo App with Micrometer: Prometheus and Grafana..........ccccocvvvnvnnennnnsnseniesssensensenes 363
General Stats for Spring Boot with Grafana.............cccocovmnn . 378

£ 1134 7 381
Chapter 11: Spring Integration and Spring Cloud Stream with Spring Boot 383
Spring INtegration Primer..........cocciiinesinesesne s s 384
Programming Spring INTegrationc.ccccuveernnnnnnsnsessese s 386
USING XIML.... ottt s s s sr s s se s nr s nns e neanis 392
USING ANNOTALIONS......cceivierincsere e 395
USING JAVACONTIG.....ceoerrierrriserese s nr s 397
ToDo with File INtegration...........ccovcereneresrnsesnessse s s s ssssenens 398
SPring CloUd SIFEAMcvcece s e s a e e e e sae e e e e s aesa e e e e naennes 405
SPIING ClOUAveeeererrerte s s s e s s sa e e s e s e saess e e s e saesae e s e e aesaesaene e e naesaesensenaesnees 405
SPring Cloud SIrBAMvccvvcerererirrere s s s sa e e s ae s ae e s e aenne s 407
Spring Cloud Stream ApP SEAMErS......cccvvirvriere e ssssessessens 430

BT 1] 111 SRS 431

TABLE OF CONTENTS

Chapter 12: Spring Boot in the Cloudcccccusemmrimssnnnnmmssssnsnmmmssssmsssssssesssnnn 433
The Cloud and Cloud-Native ArchiteCtUrecuuerrrnnnnsn s 433
Twelve-Factor ApPliCAtiONS ... e 434
MICTOSEIVICES.cuirrririsisrist s s 436
Preparing the ToD0 App @S @ MICIOSEIVICEccucrerriiinsenene s ssssessesaens 437
Pivotal Cloud FOUNAIYcocceiriesircsere e s sesse s 438

PAS: Pivotal Application SEIVICEcccvvriivrvninern e 439
PAS FEAUIEScovrviriiiiisi i 440
USING PWS/PAS.........corieiresiresssesssessses e st ssess s ssssssnessssssssnssssnssssnssssnsnss an
Cloud Foundry CLI: Command-Line INterface..........cccuourernsererenernserssesesessssesesessesessssesennes 444
Log in to PWS/PAS Using the CLITOOL..........cccvveerrenenenernsesese e se e e sssessnnes 444
Deploying the ToD0 App int0 PAS.........oo e 445
Creating SEIVICEScucvveerrrerrresersse s s se s s ne s nnnns e nrnnis 448
L0 T T 1 T o 453
BT 11134 R 454

Chapter 13: Extending Spring Boot..........ccccinnnmmmnnmnsnnnnmmssssnnmnssssssssssssssssssssssnnns 455

Creating a spring-bDoot-STArter ... 455
todo-client-spring-boot-Starter ... ——————— 457
todo-client-spring-boot-autoCconfigure..........coovvinrninnnnnn s 459

Creating an @ENable* FEATUNE...........ccvverresmrnesrne e 467

TODO REST APl SEIVICE.....cciuiriririririsssriss e 471

InsStalling and TESHINGccveere e e e a e s e e e nnesne e e ens 474
TaSK PIOJECT ...ttt s e e s p e e s 474
RUNNINgG the TASK APD everriiriirire st 477

B30T 111 T o OSSR 479

Appendix A: Spring Boot CLI........ccccusemmmmmmssnsnmmssssssnmmssssssnssssssssnsssssssssssssssssssssssnns 481
£ 0110 =00 A X R 481
The run COMMANG........cuiiiriii s 483
The test COMMANG..........cccirirririr s 485

xi

TABLE OF CONTENTS

The grab COMMANC........ccevreierierererersere e s s sre s s sa e e s e saesaess e e ssesaesaese s e saesaesae e nsesaeses 488
The jar COMMANG.........cccoiriirrr e e s s s e s b s ne s 489
The War COMMANG..........cccvremmimii s 491
The install CommaN ... ———————— 492
The uninstall Command ... ————— 493
The init COMMAN ... ———— 494
The Shell ComMMAN ... ———————— 498
The help COMMANT ... s e e s p e s 499
BT 1117 o OSSOSO 500
INA@X.ciieiiiesriesnsnsne s s ——————————————— 501

xii

About the Author

Felipe Gutierrez is a solutions software architect, with
bachelor’s and master’s degrees in computer science from
Instituto Tecnologico y de Estudios Superiores de Monterrey
Campus Ciudad de Mexico. Gutierrez has over 20 years of

IT experience and has developed programs for companies
in multiple vertical industries, such as government, retail,
healthcare, education, and banking. He is currently working

as a platform and solutions architect for Pivotal, specializing
in cloud foundry PAS and PKS, Spring Framework, Spring
Cloud Native Applications, Groovy, and RabbitMQ, among other technologies. He

has also worked as a solutions architect for big companies like Nokia, Apple, Redbox,
and Qualcomm. Gutierrez is the author of Spring Boot Messaging (Apress, 2017) and
Introducing Spring Framework (Apress, 2014).

xiii

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic developer and
researcher who enjoys learning new technologies for his
own experiments and creating new integrations. Manuel
won the Springy Award Community Champion and Spring
Champion 2013. In his little free time, he reads the Bible and
composes music on his guitar. Manuel is known as
dr_pompeii. He has tech reviewed numerous books,
including Pro Spring, 4th Edition (Apress, 2014), Practical
Spring LDAP (Apress, 2013), Pro JPA 2, Second Edition
(Apress, 2013), and Pro Spring Security (Apress, 2013). You
can read his detailed tutorials about Spring technologies and contact him through his
blog at www.manueljordanelera.blogspot.com, and follow him on his Twitter account,
@dr pompeii.

http://www.manueljordanelera.blogspot.com/

Acknowledgments

I would like to express all my gratitude to the Apress team: Steve Anglin for accepting
my proposal, Mark Powers for keeping me on track and for his patience with me, and
the rest of the Apress team involved in this project. Thanks to everybody for making this
possible.

Thanks to my technical reviewer, Manuel Jordan, for all the details and effort in his
reviews, and the entire Spring Boot team for creating this amazing technology.

Thanks to my parents, Rocio Cruz and Felipe Gutierrez, for all their love and support;
to my brother, Edgar Gerardo Gutierrez, and my sister-in-law, Auristella Sanchez, and
specially to my girls, who also keep me on track—Norma, Laura “Lau’, Nayely my “Flaca’,
and Ximena my “Gallito”—1I love you girls. And to my baby, Rodrigo!

—Felipe Gutierrez

xvii

CHAPTER 1

Spring Framework 5

Welcome to the first chapter of the book, where I give you an introduction to the Spring
Framework, a little bit of history, and how it has evolved since its inception. This chapter
is for developers that are new to the Spring Framework. If you are an experienced Spring
Framework developer, you can skip this chapter.

Maybe you are thinking, “I want to learn Spring Boot. Why do I need to know about
Spring Framework?” Well, let me tell you that Spring Boot is Spring. Spring Boot has a
different mechanism for running Spring applications; to understand how Spring Boot
really works and does its job, it is necessary to know more about the Spring Framework.

A Little History

The Spring Framework was created in 2003 by Rod Johnson, author of J2EE Development
without EJB (Wrox Publishing, 2004). The Spring Framework was the response to all the
complexity that the J2EE specifications had at that time. Today, it has improved, but you
need to have a whole infrastructure to run certain aspects of the J2EE ecosystem.

We can say Spring is a complementary technology to Java EE. The Spring Framework
integrates several technologies, such as Servlet API, WebSocket API, concurrency
utilities, JSON Binding API, bean validation, JPA, JMS, and JTA/JCA.

The Spring Framework supports the dependency injection and common annotation
specifications that make development easier.

This chapter shows that the Spring Framework version 5.x requires a Java EE 7 level
(Servlet 3.1+ and JPA 2.1) as the minimum. Spring still works with Tomcat 8 and 9,
WebSphere 8, and JBoss EAP 7. Also, I show you the new addition to the Spring
Framework 5— reactive support!

Nowadays, Spring is one of the most used and recognized frameworks in the Java
community, not only because it works, but because it continues to innovate with other
amazing projects, including Spring Boot, Spring Security, Spring Data, Spring Cloud,
Spring Batch, and Spring Integration, among others.

© Felipe Gutierrez 2019
F. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_1

CHAPTER 1 SPRING FRAMEWORK 5

Design Principles and Patterns

To know Spring Boot, you need to learn about a framework; it’s important to know not
only what it does but also which principles it follows. The following are some of the
principles of the Spring Framework.

e Provide choice at every level. Spring lets you defer design decisions as
late as possible. For example, you can switch persistence providers
through configuration without changing your code. The same is true
for many other infrastructure concerns and integration with third-
party APIs. And you will see, this even happens when you deploy
your application to the cloud.

o Accommodate diverse perspectives. Spring embraces flexibility and is
not opinionated about how things should be done. It supports a wide
range of application needs with different perspectives.

e Maintain strong backward compatibility. Spring’s evolution has been
carefully managed to force few breaking changes between versions.
Spring supports a carefully chosen range of JDK versions and third-
party libraries to facilitate maintenance of applications and libraries
that depend on Spring.

e Care about API design. The Spring team puts a lot of thought and
time into making APIs that are intuitive and that hold up across many
versions and many years.

o Set high standards for code quality. The Spring Framework puts a
strong emphasis on meaningful, current, and accurate Javadocs. It is
one of very few projects that can claim clean code structure with no
circular dependencies between packages.

So, what do you need to run a Spring application? Spring works with Plain Old
Java Objects (POJOs), making it easy to extend. Spring is not invasive and makes your
application enterprise ready; but you need to help Spring by adding a configuration to
wire up all dependencies and inject what’s needed to create Spring beans to execute your
application (see Figure 1-1).

CHAPTER 1 SPRING FRAMEWORK 5

S »Java

Classes
K Kotlin O

<xml />
Configuration Spring Context App

@annotation Java Config S /

Figure 1-1. Spring context

Figure 1-1 shows the Spring context that creates all the Spring beans—thanks to the
configuration that references your classes, which makes your application run. You find
out more in the next sections, in which you create a complete REST API app.

Spring Framework 5

Spring makes it easy to create Java enterprise applications because it provides everything
that a developer needs to embrace the Java language in an enterprise environment. It
offers excellent support of Groovy and Kotlin as alternative languages on the JVM (Java
virtual machine).

Spring Framework 5 requires JDK 8+ and provides out-of-the-box-support for
Java Development Kit (JDK) 9, 10, and 11. The Spring team has the same long-term
maintenance support for 11 and version 17, which correlates with the JDK team. This
new version came out in 2017 with a new way to do functional programming with
Reactive Streams.

Spring Web MVC was built to serve the Servlet API and Servlet containers. This was
OK until there was more demand for services, which detected a particular problem:
there was some blocking on each request; and with high demand, it was necessary to
do something else. The result: the reactive stack, a web framework. The Spring WebFlux
module was introduced in version 5, with a fully non-blocking stack that supports
Reactive Streams back pressure and runs on servers such as Netty, Undertow, and
Servlet 3.1+ containers. This was part of the answer for a non-blocking stack that handles
concurrency with a small number of threads that can scale with less hardware.

CHAPTER 1 SPRING FRAMEWORK 5

The WebFlux module depends on another Spring project: Project Reactor. Reactor
is the reactive library of choice for Spring WebFlux. It provides the Mono and Flux API
types to work on data sequences of 0. .1 and 0. . N through a rich set of operators aligned
with the ReactiveX vocabulary of operators. Reactor is a Reactive Streams library, and
therefore, all of its operators support non-blocking back pressure. Reactor has a strong
focus on server-side Java. It is developed in close collaboration with Spring.

I don’t want to get into much of the Spring features because I can show them with
a simple web application. What do you think? All of these cool WebFlux features are
reviewed in its own chapter.

A Simple Spring Web Application

Let’s start by creating a Spring web application— a ToDo app that offers a REST API

that can do a CRUD (create, read, update, and delete). To create a new Spring app, you
need to have Maven installed. In the following chapters, you can choose either Maven or
Gradle.

Using Maven for Creating a Project

Let’s start by using the following command from Maven to create the ToDo Spring
project.

$ mvn archetype:generate -DgroupId=com.apress.todo
-DartifactId=todo -Dversion=0.0.1-SNAPSHOT -DinteractiveMode=false
-DarchetypeArtifactId=maven-archetype-webapp

This command is generating the basic template and structure for web applications.
Normally, it generates the webapp and resources folders but not the java folder, which
you need to create manually.

CHAPTER 1 SPRING FRAMEWORK 5

l— resources

L— webapp
— WEB-INF
| L— web.xml
L— index.jsp

You can import the code in your favorite IDE; this will make it easier to identify any
problems.

Adding Dependencies

Open pom.xml and replace all the content with Listing 1-1.

Listing 1-1. todo/pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.apress.todo</groupId>
<artifactId>todo</artifactId>
<packaging>war</packaging>
<version>0.0.1-SNAPSHOT</version>
<name>todo Webapp</name>

<properties>

<!-- Generic properties -->
<java.version>1.8</java.version>

CHAPTER 1 SPRING FRAMEWORK 5

<!-- Web -->

<jsp.version>2.2</jsp.version>
<jstl.version>1.2</jstl.version>
<servlet.version>3.1.0</servlet.version>
<bootstrap.version>3.3.7</bootstrap.version>
<jackson.version>2.9.2</jackson.version>
<webjars.version>0.32</webjars.version>

<!-- Spring -->
<spring-framework.version>5.0.3.RELEASE</spring-framework.version>

<!-- JPA -->
<spring-data-jpa>1.11.4.RELEASE</spring-data-jpa>
<hibernate-jpa.version>1.0.0.Final</hibernate-jpa.version>
<hibernate.version>4.3.11.Final</hibernate.version>

<!-- Drivers -->
<h2.version»>1.4.197</h2.version>

<!-- Logs -->

<slf4j.version>1.7.25</slf4j.version>

<logback.version>1.2.3</logback.version>
</properties>

<dependencies>
<!-- Spring MVC -->
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-webmvc</artifactId>
<version>${spring-framework.version}</version>
</dependency>

<!-- Spring Data JPA -->

<dependency>
<groupIld>org.springframework.data</groupld>
<artifactId>spring-data-jpa</artifactId>
<version>${spring-data-jpa}</version»

</dependency>

CHAPTER 1 SPRING FRAMEWORK 5

<dependency>
<groupIld>org.hibernate.javax.persistence</groupld>
<artifactId>hibernate-jpa-2.1-api</artifactId>
<version>${hibernate-jpa.version}</version>
</dependency>
<dependency>
<groupId>org.hibernate</groupld>
<artifactId>hibernate-core</artifactId>
<version>${hibernate.version}</version>
</dependency>
<dependency>
<groupIld>org.hibernate</groupld>
<artifactId>hibernate-entitymanager</artifactId>
<version>${hibernate.version}</version>
</dependency>

<!-- Logs -->

<dependency>
<groupId>org.slf4j</groupld>
<artifactId>jcl-over-slf4j</artifactId>
<version>${s1lf4j.version}</version>

</dependency>

<dependency>
<groupIld>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>${logback.version}</version>

</dependency>

<!-- Drivers -->

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<version>${h2.version}</versiony
<scope>runtime</scope>

</dependency>

CHAPTER 1 SPRING FRAMEWORK 5

<!-- Java EE Web dependencies -->

<dependency>
<groupIld>javax.servlet</groupId>
<artifactId>jstl</artifactId>
<version>${jstl.version}</version>

</dependency>

<dependency>
<groupId>javax.servlet</groupId>
<artifactId>javax.servlet-api</artifactId>
<version>${servlet.version}</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupId>javax.servlet.jsp</groupId>
<artifactId>jsp-api</artifactId>
<version>${jsp.version}</version>
<scope>provided</scope>

</dependency>

<!-- Web UI -->

<dependency>
<groupId>org.webjars</groupId>
<artifactId>webjars-locator</artifactId>
<version>${webjars.version}</version>

</dependency>

<dependency>
<groupld>org.webjars</groupld>
<artifactId>bootstrap</artifactId>
<version>${bootstrap.version}</version>
</dependency>

<!-- Web - JSON/XML Response -->

<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>${jackson.version}</version>

</dependency>

CHAPTER 1 SPRING FRAMEWORK 5

<dependency>
<groupId>com.fasterxml.jackson.datatype</groupId>
<artifactId>jackson-datatype-joda</artifactId>
<version>${jackson.version}</version>
</dependency>

<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupld>
<artifactId>jackson-dataformat-xml</artifactId>
<version>${jackson.version}</version>
</dependency>
</dependencies>

<build>
<finalName>todo</finalName>
<plugins>
<plugin>
<groupIld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
</build>

</project>

Listing 1-1 shows the pom. xml file and all the dependencies that you need to create a

simple Spring web app.

Spring Web Configuration

Next, let’s start with the Spring configuration. Spring needs the developer to decide
where the classes are and how they interact with each other, as well some extra

configuration for web applications.

Let’s start by modifying the web.xml file, shown in Listing 1-2.

CHAPTER 1 SPRING FRAMEWORK 5

Listing 1-2. todo/src/main/webapp/WEB-INF/web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2 5.xsd"
version="2.5">
<display-name>ToDo Web Application</display-name>
<servlet>
<servlet-name>dispatcherServlet</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>dispatcherServlet</servlet-name>
<url-pattern>/</url-pattern>
</servlet-mapping>
</web-app>

It is necessary to set up the DispatcherServlet, which is the main entry point for
any Spring web app. This class wires up everything based on the context configuration.
Asyou can see, it is a very trivial configuration.

Next, let’s configure the Spring context by creating a dispatcherServlet-servlet.
xml file. There is a naming convention; if the servlet is named todo in the web.xml file,
then the Spring context file should be named todo-servlet.xml. In this case, the servlet
was named dispatcherServlet, soitlooks for a dispatcherServlet-servlet.xml file
(see Listing 1-3).

Listing 1-3. todo/src/main/webapp/WEB-INF/dispatcherServlet-servlet.xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"

10

CHAPTER 1 SPRING FRAMEWORK 5

xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xmlns:jdbc="http://www.springframework.org/schema/jdbc"
xmlns:tx="http://www.springframework.org/schema/tx"
xsi:schemalocation="http://www.springframework.org/schema/jdbc
http://www.springframework.org/schema/jdbc/spring-jdbc-4.3.xsd
http://www.springframework.org/schema/mvc http://www.
springframework.org/schema/mvc/spring-mvc-4.3.xsd
http://www.springframework.org/schema/beans http://www.
springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context http://www.
springframework.org/schema/context/spring-context-4.3.xsd
http://www.springframework.org/schema/data/jpa http://www.
springframework.org/schema/data/jpa/spring-jpa-1.8.xsd
http://www.springframework.org/schema/tx http://www.
springframework.org/schema/tx/spring-tx-4.3.xsd">

<context:component-scan base-package="com.apress.todo" />

<mvc:annotation-driven»
<mvc:message-converters»

<bean class="org.springframework.http.converter.json.
MappingJackson2HttpMessageConverter"»

<property name="objectMapper" ref="jsonMapper"/»>
</bean>
<bean class="orxg.springframework.http.converter.xml.
MappingJackson2XmlHttpMessageConverter"»

<property name="objectMapper" ref="xmlMapper"/>
</bean>

</mvc:message-convertersy
¢/muc:annotation-driveny

<bean id="jsonMapper" class="org.springframework.http.converter.json.
Jackson20bjectMapperFactoryBean"»

<property name="simpleDateFormat" value="yyyy-MM-dd HH:mm:ss" />
</bean>

11

CHAPTER 1 SPRING FRAMEWORK 5

12

<bean id="xmlMapper" parent="jsonMapper”s
<property name="createXmlMapper" value="true"/»
</bean>

<mvc:resources mapping="/webjars/**" location="classpath:META-INF/
resources/webjars/" />

<jpa:repositories base-package="com.apress.todo.repository” />

<jdbc:embedded-database id="dataSource" type="H2"»
<jdbc:script location="classpath:META-INF/sql/schema.sql" />
<jdbc:script location="classpath:META-INF/sql/data.sql" />
</jdbc:embedded-database>

<bean id="jpaVendorAdapter"

class="org.springframework.orm. jpa.vendor.HibernateJpaVendorAdapter"s»
<property name="showSql" value="true" /»
</bean>

<bean id="entityManagerFactory"

class="org.springframework.oxrm.jpa.
LocalContainerEntityManagerFactoryBean"»
<property name="dataSource" ref="dataSource" /»
<property name="jpaVendorAdapter" ref="jpaVendorAdapter"/»>
</bean>

<bean id="transactionManager"
class="org.springframework.orm.jpa.JpaTransactionManager">
<property name="entityManagerFactory" ref="entityManagerFactory"/»
</bean»

<tx:annotation-driven transaction-manager="transactionManager" /»

<bean
class="org.springframework.web.servlet.view.
InternalResourceViewResolver"s
<property name="prefix" value="/WEB-INF/views/" />
<property name="suffix" value=".jsp" /»
</beany

CHAPTER 1 SPRING FRAMEWORK 5

<bean id="h2WebServer" class="org.h2.tools.Server" factory-
method="createllebServer"
init-method="start" destroy-method="stop"»
<constructor-arg value="-web,-webAllowOthers,-webDaemon,
-webPort,8082" /»
</bean»

</beans>

Listing 1-3 shows the Spring web configuration. Take a look at all the XML
namespaces it uses. This can be helpful because if you use an IDE with code completion,
it gives you the components and their attributes for every entry. Let’s analyze it.

o <context:component-scan/>. This tag tells the Spring container that
it needs to scan all the classes; it looks for annotations, including
@Service and @Configuration. This helps Spring to wire up all the
Spring beans, so that your application can run. In this case, it scans
for the marked classes at the com.apress.todo.* package level and
all the subpackages.

e <mvc:annotation-driven/>. This tag tells the Spring container that
this is a web app, and that it needs to look for every @Controller
and @RestController class and their methods that have
@RequestMapping or other Spring MVC annotations, so it can create
the necessary MVC beans for accepting requests from the user.

e <mvc:message-converters/>. This tag informs the MVC beans
about what to use for message conversion when there is a request.
For example, if there is a request that has the HTTP header Accept:
application/xml, it responds as XML, the same way as when it has
application/json

e jsonMapper and xmlMapper beans. The classes are Spring beans that
help format the data and create the right mapper.

o <mvc:resources/>. This tag tells the Spring MVC which resources to
use, and where to find them. In this case, this app is using Webjars
(declared in the pom.xml file).

13

CHAPTER 1

SPRING FRAMEWORK 5

<jpa:repositories/>. This tag tells the Spring container and

the Spring Data module where the interfaces that extend the
CrudRepository interface are located. In this case, it looks for them
in the com.apress.todo.repository.* package level.

<jdbc:embedded-database/>. Because this app is using JPA and the

H2 driver for an in-memory database, this tag is just a declaration to
use a utility that can execute SQL script at startup; and in this case, it
creates the todo table and inserts some records.

jpaVendorAdapter bean. This bean declaration is needed for using
the JPA implementation; in this case, it is Hibernate (a dependency
used in the pom.xml file). In other words, the Hibernate framework is
used as an implementation of Java Persistence API (JPA).

EntityManagerFactory bean. For every JPA implementation, it is
necessary to create an Entity Manager that holds all the sessions and
executes all the SQL statements on the app’s behalf.

TransactionManager bean. The app needs to have a transaction,
because we don’t want to have duplicates or bad data, right? We
need to apply and be compliant with ACID (Atomicity, Consistency,
Isolation, Durability), so we need transactions.

<tx:annotation-driven/>. This annotation sets up all the
transactions based on the previous declarations.

viewResolver bean. It is necessary to state which kind of a view
engine the web app will use because there are a lot of options, such
as Java Server Faces, JSP, and so forth.

h2WebServer bean. This bean sets up the H2 engine so that it can be
accessed within the application.

As you can see, this part requires a little bit of knowledge on how to wire up Spring.

If you want to understand more, I recommend several books from the Apress, including

Pro Spring 5, by 1. Cosmina, et al.

I want to show you what you need to do to run a simpler REST API; and believe me,

if you think that this is too much, try to do the same with Java EE with all the features this
app has (MVC, JPA, SQL initialization, JSP, transactions).

14

CHAPTER 1 SPRING FRAMEWORK 5

Let’s review the SQL scripts that execute at startup. Create the two files in the
resources/META-INF/sql folder (see Listing 1-4 and Listing 1-5).

Listing 1-4. todo/src/main/resources/ META-INF/sql/schema.sql

create table todo (
id varchar(36) not null,
description varchar(255) not null,
created timestamp,
modified timestamp,
completed boolean,
primary key (id)

);

As you can see, it’s very straightforward for a SQL table creation.

Listing 1-5. todo/src/main/resources/ META-INF/sql/data.sql

insert into todo values ('7fd921cfd2b64dc7b995633e82091385", 'Buy
Milk','2018-09-23 15:00:01",'2018-09-23 15:00:01',false);

insert into todo values ('5820a4c2abe74f409da89217bf905a0c", 'Read a

Book ', '2018-09-02 16:00:01','2018-09-02 16:00:01"',false);

insert into todo values ('a44b6db26aef49e39d1b68622f55c347", 'Go to Spring
One 2018','2018-09-18 12:00:00','2018-09-18 12:00:00',false);

And, of course, some SQL statements and ToDo'’s.

Is important to know that JPA requires a persistence unit where you can configure
things, such as which managed classes are part of the persistence unit, how classes are
mapped to database tables, datasource connections, and so forth. So, it is necessary
create one. You can create the persistence.xml file in the resources/META-INF/ folder
(see Listing 1-6).

Listing 1-6. todo/src/main/resources/ META-INF/persistence.xml

<?xml version="1.0" encoding="UTF-8" ?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence

15

CHAPTER 1 SPRING FRAMEWORK 5

http://java.sun.com/xml/ns/persistence/persistence 1 _0.xsd" version="1.0">
<persistence-unit name="toDo">
<description>My Persistence Unit</description>
</persistence-unit>
</persistence>

Itis not necessary declare mapped classes or connections here because the Spring
Data module takes care of it; you only need to declare a persistence-unit name.
Next, it is important to have to logging for the app, not only for debugging but
you can use it to learn what’s going on in your app. Create the logback.xml file in the
resources folder (see Listing 1-7).

Listing 1-7. todo/src/main/resources/logback.xml

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns="http://ch.qos.logback/xml/ns/logback"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"”
xsi:schemalocation="http://ch.qos.logback/xml/ns/logback

http://ch.qos.logback/xml/ns/logback/logback.xsd">

<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<layout class="ch.qos.logback.classic.PatternLayout”>
<Pattern>
%d{yyyy-MM-dd HH:mm:ss} %-5level %logger{36} - %msgkn
</Pattern>
</layout>
</appender>

<logger name="org.springframework" level="info" additivity="false">
<appender-ref ref="STDOUT" />
</logger>

<logger name="org.springframework.jdbc" level="debug" additivity="false">
<appender-ref ref="STDOUT" />
</logger>

<logger name="com.apress.todo" level="debug" additivity="false"»
<appender-xef ref="STDOUT" />
</logger>

16

CHAPTER 1 SPRING FRAMEWORK 5

<root level="error">
<appender-ref ref="STDOUT" />
</root>

</configuration>

Again, nothing fancy here. Note that the logging level for the com.apress.todo is set
to DEBUG.

Classes

Next, it’s time to create the actual code for the ToDo REST API. Let’s start by creating the
domain model: the ToDo domain class. Create the classes in the src/main/java folder.
Remember that the Maven tool didn’t create this structure; we need to create it manually
(see Listing 1-8).

Listing 1-8. todo/src/main/java/com/apress/todo/domain/ToDo.java
package com.apress.todo.domain;

import org.hibernate.annotations.GenericGenerator;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.ld;

import java.sql.Timestamp;

@Entity
public class ToDo {

@Id

@GeneratedValue(generator = "system-uuid")
@GenericGenerator(name = "system-uuid", strategy = "uuid")
private String id;

private String description;

private Timestamp created;
private Timestamp modified;

private boolean completed;

17

CHAPTER 1 SPRING FRAMEWORK 5

18

public ToDo() {

}

public String getId() {
return id;

}

public void setId(String id) {
this.id = id;
}

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

public Timestamp getCreated() {
return created;

}

public void setCreated(Timestamp created) {
this.created = created;

}

public Timestamp getModified() {
return modified;

}

public void setModified(Timestamp modified) {
this.modified = modified;

}

public boolean isCompleted() {
return completed;

CHAPTER 1 SPRING FRAMEWORK 5

public void setCompleted(boolean completed) {
this.completed = completed;

Asyou can seg, it is just a regular Java class, but because this app persists data (in
this case, the ToDo's) it is necessary to mark the class with the @Entity annotation and
declare the primary key with an @1d annotation. This class also uses extra annotation to
generate a 36-random-character GUID for the primary key.

Next, let’s create a repository that has all the CRUD actions. Here the app uses the
power of the Spring Data module, which hides all the boilerplate mapping classes with
tables and keep sessions, and even does transactions. The Spring Data implements all
the CRUD; in other words, you don’t need to worry how to save, update, delete, and find
records.

Create the ToDoRepository interface that extends from CrudRepository interface
(see Listing 1-9).

Listing 1-9. todo/src/main/java/com/apress/todo/repository/
ToDoRepository.java

package com.apress.todo.repository;

import com.apress.todo.domain.ToDo;
import org.springframework.data.repository.CrudRepository;

public interface ToDoRepository extends CrudRepository<ToDo,Strings {

}

Listing 1-9 shows an interface. This ToDoRepository interface extends from
CrudRepository<T,K>, which is a generic interface. The CrudRepository is asking for a
domain class and the primary key type; in this case, the domain class is the ToDo class
and the primary key type is a String (the one marked with the @Id annotation).

In the XML configuration, you used the <jpa:repositories/> tag. That tagis
pointing to the ToDoRepository package, which means that Spring Data keeps record,
and it wires up everything related to interfaces that extend CrudRepository interfaces.

Next, let’s create the web controller that accepts requests from users. Create the
ToDoController class (see Listing 1-10).

19

CHAPTER 1

SPRING FRAMEWORK 5

Listing 1-10. todo/src/main/java/com/apress/todo/controller/ToDoController.

java

package com.apress.todo.controller;

import
import
import
import
import
import
import
import
import
import
import
import
import

import

@Controller

com.
com.
org.
.springframework.http.HttpHeaders;

org

org.
org.
.springframework.http.ResponseEntity;

org

org.
org.
.springframework.web.bind.annotation.RequestHeader;

org

org.
org.
.springframework.web.servlet.ModelAndView;

org

apress.todo.domain.ToDo;
apress.todo.repository.ToDoRepository;
springframework.beans.factory.annotation.Autowired;

springframework.http.HttpStatus;
springframework.http.MediaType;

springframework.stereotype.Controller;
springframework.web.bind.annotation.GetMapping;

springframework.web.bind.annotation.RequestMapping;
springframework.web.bind.annotation.RequestMethod;

javax.servlet.http.HttpServletRequest;

@RequestMapping("/")
public class ToDoController {

private ToDoRepository repository;

@Autowired
public ToDoController(ToDoRepository repository) {
this.repository = repository;

}

@GetMapping

public ModelAndView index(ModelAndView modelAndView, HttpServletRequest
request) {

modelAndView. setViewName("index");

20

return modelAndView;

CHAPTER 1 SPRING FRAMEWORK 5

@RequestMapping(value = "/toDos", method = { RequestMethod.GET },
produces = {
MediaType.APPLICATION JSON UTF8 VALUE, MediaType.APPLICATION
XML_VALUE, MediaType.TEXT XML VALUE})
public ResponseEntity<Iterable<ToDo>> getToDos(@RequestHeader
HttpHeaders headers) {
return new ResponseEntity<Iterable<ToDo>>(this.repository.findAll(),
headers, HttpStatus.OK);

Listing 1-10 shows the web controller. Take time to review it. Here we need an entire
book to describe all the Spring MVC modules and every feature.

The important thing here is that the class is marked with the @Controller
annotation. Remember the <mv:annotation-driven/> tag? This tag finds each class
marked @Controller and registers the controllers with all the methods that have the
@GetMapping, @RequestMapping, and @PostMapping annotations to accept requests
based on the path defined. In this case, only the / and the /toDos paths are defined

This class uses a constructor that has ToDoRepository as the parameter. This is
injected by the Spring container thanks to the @Autowired annotation. This annotation
can be omitted if you are using the Spring 4.3 version; by default, Spring container
identifies that a constructor needs dependencies and it injects them automatically. It
is like saying, “Hey, Spring container, I need the ToDoRepository bean to be injected
because I will use it.” This is how Spring uses the dependency injection (there is also
method injection, field injection, and setter injection).

@GetMapping (@RequestMapping does the same, by default) responds to the / path
and the name of a view; in this case, it returns the index name that corresponds to the
WEB-INF/view/index.jsp JSP page. @RequestMapping is another way to do the same
(@GetMapping) but this time it is declaring the /toDos path. This method response
depends on the kind of header the requester sends, such as application/json or
application/xml. It is using ResponseEntity as response; it uses the repository instance
to call the findAll methods that return all the ToDo’s from the database, because the
configuration declared in the JSON and XML mappers that the engine takes care of that
conversion.

Again, take the time to analyze what’s is happening. And after you run the app you
can play around with all these annotations.

21

CHAPTER 1 SPRING FRAMEWORK 5

Next, let’s create the view, which is the JSP that is called when the / path is requested.
Create index. jsp in the WEB-INF/views folder (see Listing 1-11).

Listing 1-11. todo/src/main/webapp/WEB-INF/views/index.jsp

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"%>
<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>Simple Directory Web App</title>
<link rel="stylesheet" type="text/css"
href="webjars/bootstrap/3.3.7/css/bootstrap.min.css">
<link rel="stylesheet" type="text/css"
href="webjars/bootstrap/3.3.7/css/bootstrap-theme.min.css">
</head>
<body>
<div class="container theme-showcase" role="main">
<div class="jumbotron">
<h1>ToDo Application</h1>
<p>A simple Rest API Spring MVC application</p>
</div>

<div class="page-header">

<h1>API</h1>
Current ToDos
</div>
</div>
</body>
</html>

I think the only thing to notice here is the use of the resources, like the WebJars. The
app is using Bootstrap CSS. But where are these resources coming from? First, the org.
webjars:bootstrap dependency in pom.xml is declared. Second, the <mvc:resources/>
tag was used in the configuration to state where to find these resources.

22

CHAPTER 1 SPRING FRAMEWORK 5

Running the App

You have finished all the configuration and code needed to run the app. Now, it is time
for the application server. To run this application, follow these steps.

1. Open aterminal and go to your root project (todo/). Execute the
next maven command.

$ mvn clean package

This command packages your app in a WAR file (web archive) that
is ready to be deployed in an application server. The file is in the
target/ folder, and it is named todo.war.

2. Download the Tomcat application server. (You don’t need
heavy application servers to run this app; a light Tomcat will
do). You can download it from https://tomcat.apache.org/
download-90.cgi.

3. Unzip and install it in any directory.

4. Copy the target/todo.war in the <tomcat-installation>/
webapps/ folder.

5. Runyour tomcat. Go to a browser, and click the http://
localhost:8080/todo URL (see Figure 1-2).

23

https://tomcat.apache.org/download-90.cgi
https://tomcat.apache.org/download-90.cgi

CHAPTER 1 SPRING FRAMEWORK 5

eace < i8] (Y B locathost

ToDo Application

A simple Rest APl Spring MVC application

API

Current ToDos

Figure 1-2. http://localhost:8080/todo/

If you click the link, you should have an XML response (see Figure 1-3).

24

CHAPTER 1 SPRING FRAMEWORK 5

e0e® < [im] [] locathost & ol =)

This XML file does not appear to have any style information associated with it. The document tree is shown below.

v<ArrayList>
v<item>
<id>7£d921cfd2b64dc7b995633e8209£385</id>
<description>Buy Milk</description>
<created>2018-09-23 15:00:01</created>
<modified>2018-09-23 15:00:01</modified>
<completed>false</completed>
<fitem>
v<item>
<id>5820a4c2abeT4£409daB9217b£905a0c</id>
<description>Read a Book</description>
<created>2018-09-02 16:00:01</created>
<modified>2018-09-02 16:00:01</modified>
<completed>false</completed>
</item>
v<item>
<id>ad4bbdb26aefd9e3fd1b6B622f55¢c347</id>
<description>Go to Spring One 2018</description>
<created>2018-09-18 12:00:00</created>
<modified>2018-09-18 12:00:00</modified>
<completed>false</completed>
</item>
</ArrayList>

Figure 1-3. http://localhost:8080/todo/toDos

How can you get the JSON response? Open a terminal and execute the following
command.

$ curl -H "Accept: application/json" localhost:8080/todo/toDos

[
"id" : "7fd921cfd2b64dc7b995633e82091385",
"description” : "Buy Milk",
"created" : "2018-09-23 15:00:01",

25

CHAPTER 1 SPRING FRAMEWORK 5

"modified" : "2018-09-23 15:00:01",
"completed" : false

b
"id" : "5820a4c2abe74f409da89217bf905a0c",
"description” : "Read a Book",
"created" : "2018-09-02 16:00:01",
"modified" : "2018-09-02 16:00:01",
"completed" : false

b A
"id" : "a44b6db26aef49e39d1b6862255c347",
"description” : "Go to Spring One 2018",
"created" : "2018-09-18 12:00:00",
"modified" : "2018-09-18 12:00:00",
"completed" : false

3]

You can test with application/xml instead and see the same result as the browser.
Congratulations! You just have created your first Spring MVC REST API app.

Using Java Config

You may be thinking that XML is too verbose for creating a configuration. Well,
sometimes it can be, but Spring has another way to configure the Spring container,
which is through annotation and Java config classes.

If you want to try this, you can create the ToDoConfig class and add the code shown
in Listing 1-12.

Listing 1-12. todo/src/main/java/com/apress/todo/config/ToDoConfig.java

package com.apress.todo.config;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.repository.config.
EnableJpaRepositories;

import org.springframework.http.converter.HttpMessageConverter;

26

CHAPTER 1 SPRING FRAMEWORK 5

import org.springframework.http.converter.json.Jackson20bjectMapperBuilder;
import org.springframework.http.converter.json.
MappingJackson2HttpMessageConverter;

import org.springframework.http.converter.xml.
MappingJackson2XmlHttpMessageConverter;

import org.springframework.jdbc.datasource.embedded.
EmbeddedDatabaseBuilder;

import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.orm.jpa.JpaTransactionManager;

import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
import org.springframework.transaction.PlatformTransactionManager;

import org.springframework.transaction.annotation.
EnableTransactionManagement;

import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.config.annotation.
ResourceHandlerRegistry;

import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;
import org.springframework.web.servlet.resource.WebJarsResourceResolver;
import org.springframework.web.servlet.view.InternalResourceViewResolver;

import javax.sql.DataSource;
import java.text.SimpleDateFormat;
import java.util.list;

@Configuration
@EnableJpaRepositories(basePackages="com.apress.todo.repository")
@EnableTransactionManagement

@EnableliebMvc

public class ToDoConfig implements WebMvcConfigurer {

@Override
public void addResourceHandlers(ResourceHandlexrRegistry registry) {
registry
.addResourceHandler (" /webjars/**")

27

CHAPTER 1 SPRING FRAMEWORK 5

28

.addResourcelocations("classpath:/META-INF/resources/webjars/","/
resources/","/webjars/")
.resourceChain(true).addResolver(new WebJarsResourceResolver());

@Override
public void configureMessageConverters(List<HttpMessageConverter<?»»
converters) {
Jackson20bjectMapperBuilder builder = new
Jackson20bjectMapperBuilder();
builder.indentOutput(true).dateFormat(new
SimpleDateFormat("yyyy-MM-dd HH:mm:ss"));
converters.add(new MappingJackson2HttpMessageConverter(builder.
build()));
converters.add(new MappingJackson2XmlHttpMessageConverter(builder.
createXmlMapper (true).build()));

}

@Bean
public InternalResourceViewResolver jspViewResolver() {
InternalResourceViewResolver bean = new InternalResourceViewResolver();
bean.setPrefix("/WEB-INF/views/");
bean.setSuffix(".jsp");
return bean;

@Bean
public DataSource dataSource() {
EmbeddedDatabaseBuilder builder = new EmbeddedDatabaseBuilder();
return builder.setType(EmbeddedDatabaseType.H2).
addScript("META-INF/sql/schema.sql")
.addScript("META-INF/sql/data.sql").build();

}

@Bean
public LocalContainerEntityManagerFactoryBean entityManagerFactory() {

CHAPTER 1 SPRING FRAMEWORK 5

HibernateJpaVendorAdapter vendorAdapter = new
HibernatelpaVendorAdapter();
vendorAdapter.setShowSql(true);

LocalContainerEntityManagerFactoryBean factory = new
LocalContainerEntityManagerFactoryBean();
factory.setJpaVendorAdapter(vendorAdapter);
factory.setDataSource(dataSource());

return factory;

}

@Bean

public PlatformTransactionManager transactionManager() {
JpaTransactionManager txManager = new JpaTransactionManager();
txManager.setEntityManagerFactory(entityManagerFactory().
getNativeEntityManagerFactory());
return txManager;

Listing 1-12 is actually the same as the XML configuration, but this time, it is using a
Java Config class, where programmatically we declare Spring beans, and it is necessary
to override some web configuration.

If you want to run it to test this JavaConfig class, you need to do something. Open
dispatcherServlet-servlet.xml, which should look like the following.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans http://waww.
springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context http://www.
springframework.org/schema/context/spring-context-4.3.xsd">

<context:component-scan base-package="com.apress.todo" /»

</beans>
29

CHAPTER 1 SPRING FRAMEWORK 5

At the end, it is necessary to tell Spring where to find the @Configuration marked
class (another alternative is to use the WebApplicationInitializer class); once it finds
it, it wires up everything based on the declarations of the Java Config class.

Remember to clean and repackage your app with the mvn clean package to
generate the WAR file again. You can run it, and you get the same result as using the XML
configuration.

So, what do you think of the Spring Framework? Yes, you need to understand what
is happening. You need to know how the Spring beans lifecycle works and how the
dependency injection is being used. Also, it is important to know a little AOP (aspect-
oriented programming) because it’s part of the magic of wiring everything to work for us.

Do you think it’s too much? Well, if you try to make the same app with a regular Java
2 EE profile, it will be even more work. Remember, it’s not only exposing a REST API, but
working with a database, transactions, message converters, view resolvers, and more;
that’s why with Spring, web apps are easier to create.

But guess what? Spring Boot dos all the boilerplate configuration for you, which
speeds up development time by creating enterprise Spring apps!

Note Remember that you can get this book’s source code from the Apress
website or on GitHub at https://github.com/Apress/pro-spring-boot-2.

Summary

There is a lot to learn about the Spring Framework and the role it plays with Spring Boot.
A single chapter won’t be enough. So, if you want to know more about it, I encourage you
to review the Spring documentation at https://docs.spring.io/spring-framework/
docs/current/spring-framework-reference/.

In the next chapter, we start with Spring Boot and learn how easy it is to create the
same application we did in this chapter, but “a la Boot.”

30

https://github.com/Apress/pro-spring-boot-2
https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/
https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/

CHAPTER 2

Introduction to
Spring Boot

In the previous chapter, I showed you what the Spring Framework is, some of its main
features (such as the implementation of the dependency injection design pattern),
and how to use it (by creating a simple web/data application and deploy it to a Tomcat
server). I also showed you every step needed in creating Spring applications (e.g., the
configuration options to add the various XML files, and how to run the app).

In this chapter, I show you what Spring Boot is—its main components, how to use
it to create Spring applications, and how to run or deploy it. It's a more simplified way
to create Spring apps. The rest of the book covers more details; this is only a small
introduction to the Spring Boot technology.

Spring Boot

I can say that Spring Boot is the next chapter of the Spring Framework, but don’t get
me wrong: Spring Boot won’t replace the Spring Framework because Spring Boot

is the Spring Framework! You can look at Spring Boot as a new way to create Spring
applications with ease.

Spring Boot simplifies the way we develop because it makes it easy to create
production-ready Spring-based applications that you can “just run.” You will find out
that with Spring Boot, you can create stand-alone applications with an embedded server
(Tomcat by default, or Netty if you are using the new web-reactive modules), making
them 100% runnable and deployablel talk more about this in several chapters of the
book. applications.

31
© Felipe Gutierrez 2019

F. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_2

CHAPTER 2 INTRODUCTION TO SPRING BOOT

One of Spring Boot’s most important features is an opinionated runtime, which
helps you follow the best practices for creating robust, extensible, and scalable Spring
applications.

You can find the Spring Boot project at https://projects.spring.io/spring-boot/.
Very extensive documentation is at https://docs.spring.io/spring-boot/docs/
current/reference/htmlsingle/. The Spring Boot home page is shown in Figure 2-1.

en® < lim] SO ® = & projects.spring.io ¢ o t| 3N

c Spring - PROJECTS | BLOC QUESTIONS

PROJECTS

Spring Boot O
Takes an opinionated view of building preduction-ready Spring applications. Spring Boot
favers convention over configuration and is designed to get you up and running as
quickly as possible.

QUICK START

Spring Boot makes it easy d-along, p ion-grade Spring based
that you can just run’”. We take an opinionated view of the Spring platform and third-party Spring Bect
libraries so you can get started with minimum fuss. Mast Spring Boot applications need very little
] fon.

Spcng configleadon RELEASE DOCUMENTATION
Features 2.0.1 s Reference | API

« Create stand-alone Spring applications 200X @ Reference | API

Embed Tomcat, Jetty or Undertow direcdy (no need 1o deploy WAR files]
> . A piey) 1511 %= Reference | API
« Provide opinionated 'starter’ POMS to simplify your Maven configuration
1510@ Reference | API
. ally ¢ igure Spring possible
«» Pravide production-ready features such as metrics, health checks and externalized
configuration

. ¥ no code g and no requi for XML g
The reference guide includes detailed descriptions of all the features, plus an extensive hawto for
COMMON USe Cases.
Quick Start
If you are Java developer you can use starLspring.io 1o generate a basic project, follow the "Quick Sample Projects
Start” example below, or read the reference documentation getting started guide. Simple

Tomcat
200 EIX @ = Wl vave | ' Batch
Data JPA

Figure 2-1. Spring Boot home page (http://projects.spring.io/spring-boot/)

32

https://projects.spring.io/spring-boot/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/
http://projects.spring.io/spring-boot/

CHAPTER 2 INTRODUCTION TO SPRING BOOT

Spring Boot to the Rescue

To create Spring apps, you need to know all the configuration techniques and/or
requirements for the technology. There are a lot of steps required to run even the
simplest Spring app. Four years ago, the Spring team brought out the first beta release,
which I was lucky to test. The results were amazing. Now, with more features added to
the technology, it has really become the “de facto” way to create Spring applications.
Spring Boot makes it easier to create enterprise-ready apps.

If you take a look at the Spring Boot project webpage, a statement that says:
Absolutely no code generation and no requirement for XML configuration. Maybe
you are wondering about how you can create Spring apps and run them without any
configuration. The Spring container at least needs to know how to wire up your classes,
right? Or the Spring container needs to know how to use the technology you added to
your app. Well, don’t worry. I will tell you all the secrets behind this amazing technology.
But first, let’s create the simplest Spring web application possible (see Listing 2-1).

Listing 2-1. app.groovy

@RestController
class WebApp{
@GetMapping("/")
String welcome(){
"<hi>Spring Boot Rocks!</h1>"

Listing 2-1 is a Groovy application and the simplest possible Spring web application.
Why Groovy? I always tell my students that if you know Java, then you know Groovy.
Groovy removes all the Java boilerplate, and with a few lines of code, you have a web
app (but don’t worry, this book mostly covers Java; except in the last chapter I talk about
Groovy and Kotlin, a new addition to the Spring language support). How do you run it?
It’s as simple as executing

$ spring run app.groovy

You should then see output logs with a Spring Boot banner, a Tomcat container
initialization, and a note that the application has started on port 8080. If you open a browser
and click http://localhost: 8080, then you should see the text Spring Boot Rocks!

33

CHAPTER 2 INTRODUCTION TO SPRING BOOT

You may be saying, “Wait a minute! What is this spring run command? How canI
install it? What else do I need? Is this Spring Boot?” Well, this is one of the many ways
to create and run a Spring app. This was one of my first attempts to show the power of
this technology (four years ago), a simple script that can run a full Spring web app. The
Spring Boot team created Spring Boot CLI.

Spring Boot CLI

The Spring Boot CLI (command-line interface) is one of the many ways to create Spring
apps, but this approach is normally used for prototype apps. You may consider is as a
Spring Boot playground. A reference model is covered in the following sections. I just
wanted to give you a small taste of the power of Spring Boot using simple Groovy or Java
scripts. For me, the Spring Boot CLI is a fundamental piece of the Spring Boot ecosystem.

Now, let’s get back to the previous code. Did you notice that there were no imports in
Listing 2-1? How does the Spring Boot CLI know about a web application and how to run it?

Spring Boot CLI inspects your code, and based on the Spring MVC annotations (the
@RestController and @GetMapping), it tries to execute your code as a web application
using an embedded Tomcat server, and runs the web app from within. The magic behind
the scenes is that the Groovy programming language provides an easy way to intercept
statements and create on-the-fly code by using an AST (abstract syntax tree); therefore,
it is easy to inject the missing Spring code and run it. In other words, the Spring Boot CLI
finds out about your app and it injects the missing pieces to have a full Spring web app
up and running.

Remember when I mentioned that it can run also Java scripts? Let’s look at a Java
version of the same web app. I'll show you the code just for now; if you want to run these
apps, you can read the appendix, where I explain how to install the Spring Boot CLI and
its features (see Listing 2-2).

Listing 2-2. SimpleWebApp.java
package com.apress.spring;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RestController;

34

CHAPTER 2 INTRODUCTION TO SPRING BOOT

@RestController
@SpringBootApplication
public class SimpleWebApp {

public static void main(String[] args) {
SpringApplication.run(SimpleWebApp.class, args);
}

@RequestMapping("/")
public String greetings(){
return "<h1>Spring Boot Rocks in Java too!</h1>";

Listing 2-2 shows the entry point for a Spring Boot application in Java. Primarily,
ituses a @SpringBootApplication annotation and the SpringApplication singleton
class in the main method, which executes the application. The SpringApplication.
run method call accepts two parameters. The first parameter is the main configuration
class that contains the @Configuration annotation (that happens to be the same name
of the class; but more about this later on). The second parameter are the application
arguments (that we review in the following chapters). As you can see from this Java
version, we are using the Spring MVC annotations: the @RestController and the
@GetMapping.

You can run this example by executing

$ spring run SimpleWebApp.java

If you open your browser and click http://localhost:8080/, you see the message
“Spring Boot Rocks in Java too!”.

If you want to set up your Spring Boot CLI, you can jump to the appendix, where I
include a step-by-step installation, all its features, and the benefits of the Spring Boot
CLI. For a quick prototype of Spring cloud applications, the Spring Boot CLI is the perfect
player; that’s why I include the Spring Boot CLI in this book.

35

CHAPTER 2 INTRODUCTION TO SPRING BOOT

Spring Boot Application Model

Spring Boot defines a way to easily create Spring applications and a programming model
that follows the best practices for Spring apps. To create a Spring Boot app, you need the
following components:

e Abuild/dependency management tool, such as Maven or Gradle
(Spring Boot also supports Ant and Ivy; in this book, you only need
Maven or Gradle for each example).

e Theright dependency management and plugins within the building
tool. If you use Maven, a <parent/> tag is required (of course, there
are more ways to configure a Spring Boot but adding a <parent/> tag
is the easiest) and the spring-boot-maven-plugin. If you are using
Gradle, you need to apply the org.springframework.boot and the
io.spring.dependency-management plugins.

e Add the required dependencies using spring-boot-starters.
o Create a main class that contains

o The@SpringBootApplication annotation

e The SpringApplication.run statement in the main method.

In the next section, we are going to create our first Spring Boot application, and I'll
explain all the preceding components. It is very straightforward, but how do we start?
Is there any tool that can help us start a Spring Boot project? The answer is yes! We
can actually use the Spring Boot CLI because it provides a way to create Spring Boot
projects. We also have IDEs (integrated development environments), such as STS (Spring
Tool Suite https://spring.io/tools), Intelli] IDEA from JetBrains (https://www.
jetbrains.com/idea/), NetBeans (https://netbeans.org), GitHub Atom (https://
atom.io), and Microsoft VSCode (https://code.visualstudio.com). Atom and VSCode
have plugins for handling Spring Boot apps in a very light fashion; but Spring Initializr
(http://start.spring.io) is my preference for starting a Spring Boot project. In this
book, I use Intelli] IDEA.

Let’s look at how to use the Spring Boot Initializr web service by creating our first
Spring Boot application.

36

https://spring.io/tools
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://netbeans.org
https://atom.io
https://atom.io
https://code.visualstudio.com
http://start.spring.io

CHAPTER 2 INTRODUCTION TO SPRING BOOT

My First Spring Boot Application
To create our first Spring Boot application, open your browser and go to http://start.

spring.io (see Figure 2-2).

start.spring.io & il B

so® <] S 0@
SPRING INITIALIZR
Generate a | vavenroec : With . : and Spring Boot 200 5

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies 1o your application

Group Search for dependencies

com.apress a
Artifact Selected Dependencies
Generate Project % + «
Don't know what to look for? Want more options? Switch to the full version

start.spring.io is powered by and

Figure 2-2. http://start.spring.io
Figure 2-2 shows the homepage for Spring Boot Initializr, a web service provided by
Pivotal that helps you easily create Spring Boot projects.
1. Let’s start by filling out the fields.
o Group: com.apress
e Artifact: demo
o Dependencies: web

37

http://start.spring.io
http://start.spring.io
http://start.spring.io

CHAPTER 2

INTRODUCTION TO SPRING BOOT

You can choose either a Maven or Gradle project type. You can
choose the programming language (Java, Groovy, or Kotlin) and
the Spring Boot version. Below the Generate Project button, there
is a link that says “Switch to the full version” link, which shows the
dependencies that you need. In this case, you can enter Web in
the Dependencies field and hit Enter, as shown in Figure 2-2.

Click the Generate Project button to save a file named demo. zip.

Uncompress the demo. zip file and import the project into your
favorite IDE (I use Intelli] IDEA). If you look closely, you see that
inside the .zip file there is a wrapper, depending on the project
type you chose. If it is a Gradle project, then there is a gradlew
(Gradle wrapper); if it is a Maven project, then it should be an
muvnw (Maven wrapper). This means that you don’t need to install
any of these building/management tools because Spring Boot
Initializr brings them to you.

Inspect the build/dependencies management files. Open the pom.
xml or build.gradle file.

If you selected Maven, see Listing 2-3.

Listing 2-3. Maven pom.xml

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.

w3.0rg/2001/XMLSchema-instance”
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.apress</groupld>
<artifactId>demo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>

<name>demo</name>

<description>Demo project for Spring Boot</description>

38

CHAPTER 2 INTRODUCTION TO SPRING BOOT

<parent»
<groupIdyorg.springframework.boot</groupIlds
<artifactld>spring-boot-starter-parent</artifactlds
<version»2.0.0.RELEASE</version»
<relativePath/» <!-- lookup parent from repository --»
</parent>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.
outputEncoding>
<java.version>1.8</java.version>

</properties>

<dependencies>
<dependency>
<groupIdsorg.springframework.boot</groupIds»
<artifactIdyspring-boot-starter-web</artifactId>
</dependency>

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>

<build>
<plugins>
<pluginy
<groupId>org.springframework.boot</groupIlds
<artifactId»spring-boot-maven-plugin</artifactIds
</pluginy
</plugins>
</build>
</project>

39

CHAPTER 2 INTRODUCTION TO SPRING BOOT

As you can see, we have part of the main components: the
<parent/> tag, the spring-boot-starter-web dependency, and
the spring-boot-maven-plugin

If you selected Gradle, see Listing 2-4.

Listing 2-4. build.gradle

buildscript {
ext {
springBootVersion = '2.0.0.RELEASE'

}

repositories {
mavenCentral()

}

dependencies {
classpath("org.springframework.boot:spring-boot-gradle-
plugin:${springBootVersion}")

}

apply plugin: 'java'

apply plugin: 'eclipse’

apply plugin: 'org.springframework.boot’

apply plugin: 'io.spring.dependency-management'’

group = 'com.apress'
version = '0.0.1-SNAPSHOT'
sourceCompatibility = 1.8

repositories {
mavenCentral()

}

dependencies {
compile('org.springframework.boot:spring-boot-starter-web')
testCompile('org.springframework.boot:spring-boot-starter-test")

40

CHAPTER 2 INTRODUCTION TO SPRING BOOT

The build.gradle file shows some of the components required:
the org.springframework.boot and io.spring.dependency-
management plugins, and the spring-boot-starter-web dependency.

5. Open the com.apress.demo.DemoApplication. java class (see
Listing 2-5).
Listing 2-5. com.apress.demo.DemoApplication.java
package com.apress.demo;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class DemoApplication {

public static void main(String[] args) {
SpringApplication.run(DemoApplication.class, args);

As you can see, we have the other components to run our
application: the @SpringBootApplication annotation and the
SpringApplication.run statement.

6. Add a new class for the web controller that shows as text. Create
the com.apress.demo.WebController. java class (see Listing 2-6).
Listing 2-6. com.apress.demo.WebController.java
package com.apress.demo;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class WebController {

@GetMapping
public String index(){
return "Hello Spring Boot";

41

CHAPTER 2

INTRODUCTION TO SPRING BOOT

This is very similar to the scripts—a simple @RestController that
returns a String.

To run your application, you can use the IDE or you can go to
the root of your project and execute the following command.
For maven: ./mvnw spring-boot:run, for Gradle: ./gradlew
bootRun.

Then you can go to your browser and click http://localhost:8080. You see the

“Hello Spring Boot” text.

Congratulations! You have just created your first Spring Boot application.

Note

All the companion code from the book is on the Apress site. In this case,

| created two projects: one with Maven and the other with Gradle.

Why Spring Boot?

Why do we want to use Spring Boot? It is an amazing technology that is suitable for

42

cloud native applications that follow the 12 factor patterns developed
by the Netflix engineering team (http://12factor.net)

better productivity by reducing time of development and
deployment.

Enterprise-Production-Ready Spring applications.

non-functional requirements, like the Spring Boot Actuator

(@ module that provides metrics with the new platform-
agnostic Micrometer (https://micrometer.io), health checks,
and management) and embedded containers for running web
applications (Tomcat, Netty, Undertow, Jetty, etc.).

Microservices, which are getting attention for creating scalable,
highly available, and robust applications. Spring Boot allows
developers to focus only on business logic, leaving the heavy lifting to
the Spring Framework.

http://12factor.net
https://micrometer.io

CHAPTER 2 INTRODUCTION TO SPRING BOOT

Spring Boot Features

Spring Boot has a lot of features, which I show you in the following chapters, but I can

describe some of them in this section.

Spring Boot

Offers the SpringApplication class. I showed you that in a Java
Spring Boot application, the main method executes this singleton
class. This particular class provides a convenient way to initiate a
Spring application.

Allows you to create applications without requiring any XML
configuration. Spring Boot doesn’t do any code generation.

Provides a fluent builder API through the SpringApplicationBuilder
singleton class, which allows you to create hierarchies with multiple
application contexts. This particular feature is more related to the
Spring Framework and how it works internally. If you are a Spring
developer, I explain this feature in the following chapters, but if you
are new to Spring and Spring Boot, then you only need to know

that you can extend Spring Boot to get more control over your
applications.

Offers more ways to configure the Spring application events and
listeners.

Provides “opinionated” technology; this particular feature attempts
to create the right type of application, either as a web application
(embedded Tomcat, Netty, Undertow, or Jetty container) or as a
single application.

Offers the org.springframework.boot.ApplicationArguments
interface, which allows access to any application argument. This is a
useful feature when you try to run your application with parameters.

Allows you to execute code after the application has started. The only
thing you need to do is to implement the CommandLineRunner interface
and provide the implementation of the run(String ...args)
method. A particular example is to initialize records in a database
during the start, or maybe you want to check if services are running

before your application executes.
43

CHAPTER 2 INTRODUCTION TO SPRING BOOT

o Allows you to externalize configurations by using application.
properties or application.yml files. More about this in the
following chapters.

e Allows you to add administration-related features, normally through
JMX, by enabling the spring.application.admin.enabled property
in the application.properties or application.yml files.

o Allows you to have profiles that help your application to run in
different environments.

o Allows you to configure and use logging in a very simple way.

e Provides a simple way to configure and manage your dependencies
by using starter poms. In other words, if you are going to create a web
application, you only need to include the spring-boot-start-web
dependency in your Maven pom.xml or build.gradle file.

o Provides out-of-the box non-functional requirements by using the
Spring Boot Actuator with the new Micrometer platform-agnostic
framework, which allows you to instrument your apps.

e Provides @Enable<feature> annotations that help you include,
configure, and use technologies such as databases (SQL and NoSQL),
caching, scheduling, messaging, Spring Integration, Spring Batch,
Spring Cloud, and more.

Spring Boot has all these features and more. I get into more detail of these features
in the following chapters. Now, it is time to start learning more about of Spring Boot by
seeing how it works internally.

Summary

In this chapter, I gave you a quick overview of the Spring Boot technology, which
specializes in creating Spring enterprise-ready applications with ease.

In the following chapters, I show you the internals of Spring Boot and the behind-
the-scenes magic to create the right application based on your dependencies and code.
I talk about all the Spring Boot cool features as you create different projects.

44

CHAPTER 3

Spring Boot Internals
and Features

In the previous chapter, I gave a quick overview of Spring Boot, the main components
for creating a Spring Boot app, and discussed how easy it is to use Spring Initializr for
creating Spring Boot projects.

In this chapter, I show you what is happening behind the scenes when Spring Boot
starts your application. Everything is about auto-configuration! I start with the Groovy
scripts (again, you can jump to the appendix section and install the Spring Boot CLI).
I use a regular Java project, as with the Spring Boot app in Chapter 2. Let’s start with
learning how auto-configuration works.

Auto-Configuration

Auto-configuration is one of the important features in Spring Boot because it configures
your Spring Boot application according to your classpath, annotations, and any other
configuration declarations, such as JavaConfig classes or XML.

Listing 3-1 is the same example in previous chapters, but in this case, I use it to
explain what happens behind the scenes when Spring Boot runs it.

45
© Felipe Gutierrez 2019

F. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_3

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES
Listing 3-1. app.groovy

@RestController
class WebApp{

@GetMapping('/")
String index(){
"Spring Boot Rocks"

You run this program using the Spring Boot CLI (command-line interface) with
$ spring run app.groovy

Spring Boot won'’t generate any source code but it adds some on the fly. This is
one of the advantages of Groovy: you have access to the AST (abstract syntax tree)
at runtime. Spring Boot starts by importing missing dependencies, such as the org.
springframework.web.bind.annotation.RestController annotation, among other
imports.

Next, it identifies that you need a spring-boot-starter-web (I talk more about it
in the following sections) because you marked your class and method with the
@RestController and the @GetMapping annotations, respectively. It adds to the code the
@Grab("spring-boot-web-starter") annotation (useful for imports in Groovy scripts).

Next, it adds the necessary annotation that triggers auto-configuration, the
@EnableAutoConfiguration annotation (later, I talk about this annotation, which
happens to be the magic behind Spring Boot), and then it adds the main method that is
the entry point for the application. You can see the result code in Listing 3-2.

Listing 3-2. app.groovy Modified by Spring Boot

import org.springframework.web.bind.annotation.RestController
// Other Imports

@Grab("spring-boot-web-starter")
@EnableAutoConfiguration
@RestController
class WebApp{

@GetMapping("/")

46

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

String greetings(){
"Spring Boot Rocks"

}

public static void main(String[] args) {
SpringApplication.run(WebApp.class, args);

Listing 3-2 shows the actual modified program that Spring Boot runs. You can see in
action how the auto-configuration works, but by running Listing 3-1 with the --debug
parameter. Let’s take a look.

$ spring run app.groovy --debug

DEBUG 49009 --- [] autoConfigurationReportlLoggingInitializer :

//You will see all the conditions that were met to enable a Web
application. And this is because you have the //@RestController annotation.

Negative matches:

//You will find all the conditions that failed. For example you will find
that the ActiveMOAutoConfiguration class did //not match, because you don't
have any reference of the ActiveMQConnectionFactory.

Review the output from the command in your terminal. Note all the positive and
negative matches that Spring Boot did before running this simple application. Because
you are running the Spring Boot CLI, it’s doing a lot by trying to guess what kind of
application you want to run. When you create either a Maven or Gradle project, and you
specify dependencies (pom.xml or build.gradle, respectively) you are helping Spring
Boot to make a decision based on your dependencies.

47

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

Disable a Specific Auto-Configuration

In Chapter 2, I talked about the @SpringBootApplication annotation, which is one of
the main components of a Spring Boot app. This annotation is equivalent to declaring
the @Configuration, @ComponentScan, and @EnableAutoConfiguration annotations.
Why am I mentioning this? Because you can disable a specific auto-configuration by
adding the exclude parameter by using either the @EnableAutoConfiguration or the
@SpringBootApplication annotations in your class. Let’s look at an example in a Groovy
script in Listing 3-3.

Listing 3-3. app.groovy

import org.springframework.boot.autoconfigure.jms.activemq.
ActiveMQAutoConfiguration

@RestController
@EnableAutoConfiguration(exclude=[ActiveMQAutoConfiguration.class])
class WebApp{

@RequestMapping("/")
String greetings(){
"Spring Boot Rocks"

Listing 3-3 shows the @EnableAutoConfiguration annotation that has the exclude
parameter. This parameter receives an array of auto-configuration classes. If you run this
again with the following, you see the exclusion on what you did.

$ spring run app.groovy --debug

Exclusions:

org.springframework.boot.autoconfigure.jms.activemq.
ActiveMQAutoConfiguration

This is a very useful technique for Groovy scripts when you want Spring Boot to skip
certain and unnecessary auto-configurations.

48

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

Let’s look at how you can use this on a Java Spring Boot app (see Listing 3-4).

Listing 3-4. DemoApplication.java: Spring Boot Snippet
package com.example;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.autoconfigure.jdbc.
DataSourceAutoConfiguration;

import org.springframework.boot.autoconfigure.jms.activemq.
ActiveMQAutoConfiguration;

@SpringBootApplication(exclude={ActiveMQAutoConfiguration.class,DataSourceA
utoConfiguration.class})
public class DemoApplication {

public static void main(String[] args) {
SpringApplication.run(DemoApplication.class, args);

Listing 3-4 shows a Java version; in this example, the main class is declaring
only the @SpringBootApplication annotation, and within this annotation you
can exclude the auto-configuration classes. Listing 3-4 shows two classes being
excluded: the ActiveMQAutoConfiguration and the DataSourceAutoConfiguration.
Why is @EnableAutoConfiguration annotation not used? Remember that the
@SpringBootApplication annotation inherits @EnableAutoConfiguration,
@Configuration, and @ComponentScan, so that’s why you can use the exclude parameter
within the @SpringBootApplication annotation.

When running a Maven or Gradle project (using the example Listing 3-4) with the
debug option, you see in the console output something like this

Exclusions:

org.springframework.boot.autoconfigure.jms.activemq.ActiveMQAutoConfiguration
org.springframework.boot.autoconfigure. jdbc.DataSourceAutoConfiguration

49

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

@EnableAutoConfiguration and @Enable<Technology>
annotations

The Spring Framework and some of its modules, such as Spring Data, Spring AMQP, and
Spring Integration, provide @Enable<Technology> annotations; for example,
@EnableTransactionManagement, @EnableRabbit, and @EnableIntegration are part of
the modules mentioned. Within Spring applications, you can use these annotations to
follow the convention over configuration pattern, making your apps easier to develop and
maintain, and without worrying too much about its configuration.

Spring Boot takes advantage of these annotations, which are used within the
@EnableAutoConfiguration annotation to do the auto-configuration. Let’s take a closer
look at the @EnableAutoConfiguration annotation to see the logic behind it and where
the @Enable<Technology> annotations fit (see Listing 3-5).

Listing 3-5. org.springframework.boot.autoconfigure.EnableAutoConfiguration.
java

@AutoConfigurationPackage
@Import(AutoConfigurationImportSelector.class)
public @interface EnableAutoConfiguration {

Class<?>[] exclude() default {};

String[] excludeName() default {};

Listing 3-5 shows the @EnableAutoConfiguration annotation; as you already know,
this class attempts to configure the beans that your application likely needs. The auto-
configuration classes are applied based on the classpath and which beans your app
has defined, but what this makes more powerful is the org.springframework.boot.
autoconfigure.AutoConfigurationImportSelector class that finds all the necessary
configuration classes.

The AutoConfigurationImportSelector class has several methods, but one of the
most important for the auto-configuration is the getCandidateConfigurations method
(see Listing 3-6).

50

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

Listing 3-6. org.springframework.boot.autoconfigure.
AutoConfigurationlmportSelector Snippet

protected List<String> getCandidateConfigurations(AnnotationMetadata metadata,
AnnotationAttributes attributes) {
List<String> configurations = SpringFactoriesLoader.loadFactoryNames(
getSpringFactoriesLoaderFactoryClass(),
getBeanClassLoader());

Assert.notEmpty(configurations,

"No auto configuration classes found in META-INF/spring.factories. If you

are using a custom packaging, make sure that file is correct.");
return configurations;

Listing 3-6 shows you a snippet of the AutoConfigurationImportSelector class,
where the getCandidateConfigurations method returns a SpringFactorieslLoader.
loadFactoryNames. The SpringFactorieslLoader.loadFactoryNames looks for the META-
INF/spring.factories defined in the spring-boot-autoconfigure jar (see Listing 3-7
for its contents).

Listing 3-7. spring-boot-autoconfigure-<version>.jar/META-INF/spring.
factories Snippet

Initializers
org.springframework.context.ApplicationContextInitializer=\
org.springframework.boot.autoconfigure.
SharedMetadataReaderFactoryContextInitializer,\
org.springframework.boot.autoconfigure.logging.
ConditionEvaluationReportlLogginglistener

Application Listeners
org.springframework.context.ApplicationlListener=\
org.springframework.boot.autoconfigure.BackgroundPreinitializer

51

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

Auto Configure
org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
org.springframework.boot.autoconfigure.admin.
SpringApplicationAdminJmxAutoConfiguration,\
org.springframework.boot.autoconfigure.aop.AopAutoConfiguration,\
org.springframework.boot.autoconfigure.amgp.RabbitAutoConfiguration,\
org.springframework.boot.autoconfigure.MessageSourceAutoConfiguration,\
org.springframework.boot.autoconfigure.
PropertyPlaceholderAutoConfiguration,\
org.springframework.boot.autoconfigure.batch.BatchAutoConfiguration,\
org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration,\
org.springframework.boot.autoconfigure.cassandra.
CassandraAutoConfiguration,\
org.springframework.boot.autoconfigure.cloud.CloudAutoConfiguration,\

Asyou can see from Listing 3-7, the spring.factories defined all the auto-configuration
classes that are used to set up any configuration that your application needs for running. Let’s
take alook at the CloudAutoConfiguration class (see Listing 3-8).

Listing 3-8. org.springframework.boot.autoconfigure.cloud.
CloudAutoConfiguration.java

package org.springframework.boot.autoconfigure.cloud;

import org.springframework.boot.autoconfigure.AutoConfigureOrder;
import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.boot.autoconfigure.condition.ConditionalOnClass;
import org.springframework.boot.autoconfigure.condition.
ConditionalOnMissingBean;

import org.springframework.boot.autoconfigure.condition.
ConditionalOnProperty;

import org.springframework.cloud.Cloud;

import org.springframework.cloud.app.ApplicationInstanceInfo;

import org.springframework.cloud.config.java.CloudScan;

import org.springframework.cloud.config.java.CloudScanConfiguration;

52

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;

import org.springframework.context.annotation.Profile;
import org.springframework.core.Ordered;

@Configuration

@Profile("cloud")
@AutoConfigureOrder(CloudAutoConfiguration.ORDER)
@ConditionalOnClass(CloudScanConfiguration.class)
@ConditionalOnMissingBean(Cloud.class)
@ConditionalOnProperty(prefix = "spring.cloud", name = "enabled",
havingValue = "true", matchIfMissing = true)
@Import(CloudScanConfiguration.class)

public class CloudAutoConfiguration {

// Cloud configuration needs to happen early (before data, mongo etc.)
public static final int ORDER = Ordered.HIGHEST PRECEDENCE + 20;

Listing 3-8 shows you the CloudAutoConfiguration class. As you can see, it’s
very short class, but it configures a cloud application if it finds on the application
classpath the spring-cloud classes, but how? It uses the @ConditionalOnClass and
@ConditionalOnMissingBean annotations to decide if the application is a cloud app or
not. Don’t worry too much about this, because you are going to use these annotations
when you create your own auto-configuration class in the chapter of the book: Extending
Spring Boot.

Another things to see in Listing 3-8 is the use of the @ConditionalOnProperty
annotation, that only applies if the property spring.cloud is enabled. It's worth
mentioning that this auto-configuration is executed in a cloud profile, denoted by the
@Profile annotation. The @Import annotation is applied only if the other annotations met
their conditions (@Conditional* annotations are used), meaning that the import of the
CloudScanConfiguration class is executed if in the classpath are the spring-cloud-*
classes. I cover more in Chapter 13. For now you need to understand that the auto-
configuration uses your classpath to figure out what to configure for your app. That’s why
we say that Spring Boot is an opinionated runtime, remember?

53

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

Spring Boot Features

In this section, I show you some of the Spring Boot features. Spring Boot is highly
customizable, from the auto-configuration that sets up your application (based on the
classpath) to customizing how it starts, what to show, and what to enable or disable
based on its own properties. So let’s get to know some Spring Boot features that
customize your Spring app.

Let’s create a Spring Boot Java project using the Spring Boot Initializr. Open your
browser and go to https://start.spring.io. Add the following values to the fields.
Make sure to click in the “Switch to the full version” field so that you can modify the

package name.
e Group: com.apress.spring
o Artifact: spring-boot-simple
o Name: spring-boot-simple
o Package Name: com.apress.spring

You can select either a Maven or a Gradle project type. Then press the Generate
Project button, which downloads a ZIP file. Uncompress it wherever you like and import
it into your favorite IDE (see Figure 3-1).

54

https://start.spring.io

2 < im] Sl Ol ®

SPRING INITIALIZR

Generate & Maven Project 4 With Java

Project Metadata

Artifact coordinates

& start.spring.io v} th

: and Spring Boot 200 :

Dependencies

Add Spring Boot Starters and dependencies to your application

Group Search for dependencies
com.apress.spring 0] Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

spring-boot-simple
Name

spring-boot-simple

Description

Demo project for Spring Boot

Package Name

com.apress.spring

Packaging

Jar N

Java Version

8

Too many options? Switch back to the simple version

Generate Project # + =

Figure 3-1. Spring Boot project

Note You can download the source code from the Apress website, and in every
project you find the Maven pom.xml and the Gradle build.gradle files, so you can
choose which building tool you want to use.

Now, run the Spring Boot app. Use your IDE or open a terminal and execute the
following command if you are using Maven.

$./mvnw spring-boot:run

55

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

If you are using Gradle, you can execute

$./gradlew bootRun

AN A G I W W WA
CON_ T PPN YAy
N DD))))
[P IS I 1 O PO A A
m==m=====|_|=smmem==em=a==|_ /=/_/_/_/
:: Spring Boot :: (v2.0.0.RELEASE)

INFO 10669 --- [main] c.a.spring.SpringBootSimpleApplication
Starting SpringBootSimpleApplication on ...

INFO 10669 --- [main] c.a.spring.SpringBootSimpleApplication : No
active profile set, falling back to default profiles: default

INFO 10669 --- [main] s.c.a.AnnotationConfigApplicationContext :
Refreshing org.springframework.context.annotation...
INFO 10669 --- [main] o.s.j.e.a.AnnotationMBeanExporter

Registering beans for IMX exposure on startup

INFO 10669 --- [main] c.a.spring.SpringBootSimpleApplication : Started
SpringBootSimpleApplication in 1.582 seconds (JVM running for 4.518)

INFO 10669 --- [Thread-3] s.c.a.AnnotationConfigApplicationContext :
Closing org.springframework.context.annotation...

INFO 10669 --- [Thread-3] o.s.j.e.a.AnnotationMBeanExporter

Unregistering JIMX-exposed beans on shutdown

You should see something similar to this output. It shows a banner (Spring Boot) and
some logs. Let’s look at the main application in Listing 3-9.

Listing 3-9. src/main/java/com/apress/spring/SpringBootSimpleApplication.java
package com.apress.spring;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

56

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

@SpringBootApplication
public class SpringBootSimpleApplication {

public static void main(String[] args) {
SpringApplication.run(SpringBootSimpleApplication.class, args);

Listing 3-9 shows the main application. You already know about the Spring Boot
components from the previous chapter, but let’s review it again.

o @SpringBootApplication. This annotation is actually the
@ComponentScan, @Configuration, and @EnableAutoConfiguration
annotations. You already know everything about the
@EnableAutoConfiguration from the previous sections.

o SpringApplication. This class provides the bootstrap for the Spring
Boot application that is executed in the main method. You need to
pass the class that is executed.

Now, you are ready to start customizing the Spring Boot app.

SpringApplication Class

You can have a more advance configuration using the SpringApplication, because you
can create an instance out of it and do a lot more (see Listing 3-10).

Listing 3-10. src/main/java/com/apress/spring/SpringBootSimpleApplication.
java Version 2

package com.apress.spring;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class SpringBootSimpleApplication {

public static void main(String[] args) {

57

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

SpringApplication app =
new SpringApplication(SpringBootSimpleApplication.class);
//add more features here.

app.run(args);

SpringApplication allows you to configure the way your app behaves, and you
have control over the main ApplicationContext where all your Spring beans are used.
If you need to know more about ApplicationContext and how to use it, I recommend
Pro Spring Framework 5 (Apress, 2017) in which the authors explain everything about
Spring. In this case, we focus on some of the Spring Boot features. Let ’s start with
something cool.

Custom Banner

Every time you run your application, you see a banner displayed at the beginning of the
application. It can be customized in different ways.
Implement the org. springframework.boot.Banner interface (see Listing 3-11).

Listing 3-11. src/main/java/com/apress/spring/SpringBootSimpleApplication.
java Version 3

package com.apress.spring;
import java.io.PrintStream;

import org.springframework.boot.Banner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.core.env.Environment;

@SpringBootApplication
public class SpringBootSimpleApplication {

public static void main(String[] args) {

58

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

SpringApplication app = new SpringApplication(SpringBootSimpleApplica
tion.class);
app.setBanner(new Banner() {
@verride
public void printBanner(Environment environment, Class<?>
sourceClass, PrintStream out) {
out.print("\n\n\tThis is my own banner!\n\n".toUpperCase());
}
1;

app.run(args);

When you run the application, you see something like this:
$./mvnw spring-boot:run
THIS IS MY OWN BANNER!

INFO[main] c.a.spring.SpringBootSimpleApplication : Starting
SpringBootSimpleApplication ...

INFO[main] c.a.spring.SpringBootSimpleApplication : Started
SpringBootSimpleApplication in 0.789seconds (JVM running for 4.295)
INFO[Th-1] s.c.a.AnnotationConfigApplicationContext : Closing org.
springframework.context.annotation.AnnotationConfigApplicationContext@203f
6b5: startup date [Thu Feb 25 19:00:34 MST 2016]; root of context hierarchy
INFO[Th-1] o.s.j.e.a.AnnotationMBeanExporter : Unregistering JMX-
exposed beans on shutdown

59

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

You can create your own ASCII banner and display it. How? There is a very cool site
that creates ASCII art from text (http://patorjk.com), as shown in Figure 3-2.

Gradient Image Generator

Gradient Image Generator

Keyboard Layout Analyzer

Text Color Fader

Text to ASCII Art Generator

Typing Speed Test

Social Media Showdown

Years Spent Watching YouTube

patorjk.com < LN Eul BN) [+

Blog - Contact

Apps

For creating gradient images (an image that fades from one color to another).
A very old app and there aren't many good reasons use it. But it's here just in
case.

Creates a color palette from an image. I made it one afternoon on a lark a long
time ago.

The default layout of the keys on your keyboard is not very good. There are
actually several popular layouts you can set yourself up with. This app
analyzes the text you type and lets you see what layout would benefit you
most.

Create color faded text for your HTML documents, emails, profiles, message
board posts, and whatever else you can think of.

Create text art from words. Like this:

How fast kind you type? This app is kind of old, but still serves its purposes
and it gives you some nice stats and has some handy options.

Whod€™s more popular on the web? Various APIs are used to pit websites
against each other to see who is &€ceLiked4€ the most.

An app that will tell you how many viewing years people have put into
watching particular YouTube videos.

Figure 3-2. Text to ASCII art generator

Figure 3-2 shows the website at http://patorjk.com. Click the Text to ASCII Art
Generator link. Then, add Pro Spring Boot 2.0 (or whatever you want) in the text field.
Then, click Test All to see all the ASCII art (see Figure 3-3).

60

http://patorjk.com
http://patorjk.com

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

&

patorjk.com & [+]

208 < OOl O} & =

Main Controls - *FIGIet and AOL Macro Fonts Supported®

O G o sering Bout 20

o s

Font Mama: Smatl
Use s¢loct & Copy

Font Name: Small Start
Use Fort | Seloct & Copy

ATLYY
A A
ForNG
LTy l2d ¢ Nt 7 NS
S Ao LY NS S (YA, L) LV

Font Name: Small [sometricl

Use Fork | Swlect & Copy

Font Name: Soft
Use Fort Select & Copy

i, AR T EY TN G Ramer . 3

) A M KL

11w L | I (|

] A] | /

|_.

Font Name: Stancard
Use Fort Select & Copy
F oo d \ f pmpes 7 T Y I o Nl by oA
I I | - (| 1 === 2 11 | | (Y I T | | N5 1 T B | | | Ceeef funee N IRER!
| — / [I | AT § A | ! 1 I« 111 | =1 | I 11 it IREN!
1 D cemmsy || AR e I I T LY I R |1 B S | == 11 {7 A 1 W B
Il I / [R |] . U T RV | Y P ’ Il [A

Font Nama: Star Wars
Use Fore | Select & Copy

Figure 3-3. ASCII art

Figure 3-3 shows all the ASCII art (about 314). Now, you can select one. Click the
Select Text button, copy (Ctrl+C Windows/Cmd+C macOS) it, and create a file named
banner.txt in the stc/main/resources/ directory (see Figure 3-4).

7 Project » @ o | - I g barnoraxt
v Db spring-boot-simple ~/Progs/Booksfy 1 I — _
> .idea 2 | Y f_| () | _ |1 N/ _\
> . 3 I T e I S B Il Y
> gradle 4 | [A A W W ¥ R N S I L N A [RV R UV RN | I 271111
v husre 5 I T e Ty T I I Oy U O |
v humain 6 I O N N O)) P VP [y S VY VY Y I PR S S
> I java 7 |1 1
v I resources a [|—/f
» Bu META-INF 9
7 application properties 1°
% banner.txt ‘_1,

Figure 3-4. src/main/resource/banner.txt content

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES
You can run your application again.
$./mvnw spring-boot:run

You see the ASCII art that you added in the banner. txt file. If you run your app using
Listing 3-11 (where you are setting the banner), it overrides it and uses the banner.txt
file that is in your classpath; that’s the default.

By default, Spring Boot looks for the banner. txt file in the classpath. But you can
change its location. Create another banner. txt file (or copy the one you have already)
in the src/main/resources/META-INF/ directory. Run the application by passing a -D
parameter. Execute the following command if you are using Maven.

$./mvnw spring-boot:run -Dspring.banner.location=classpath:/META-INF/
banner.txt

If you are using Gradle, you need first to add this configuration at the end of the
build.gradle file.

bootRun {
systemProperties = System.properties

Execute the following.
$./gradlew bootRun -Dspring.banner.location=classpath:/META-INF/banner.txt

This command is using the flag -D to pass the spring.banner.location property
that is pointing to the new classpath location, /META-INF/banner.txt. You can declare
this property in the stc/main/resources/application.properties file, as follows.

spring.banner.location=classpath:/META-INF/banner.txt
Run it like this if using Maven:

$./mvnw spring-boot:run
Run it like this if you are using Gradle:

$./gradlew bootRun

You have several options for setting up the banner. txt file.

62

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

You can completely remove the banner. You can define it in the src/main/
resources/application.properties like this

spring.main.banner-mode=off

This command has precedence over the default banner. txt file located at the
classpath:banner.txt location. Also, you can do it programmatically (just remember to
comment out the property) (see Listing 3-12).

Listing 3-12. src/main/java/com/apress/spring/SpringBootSimpleApplication.
java Version 4

package com.apress.spring;

import org.springframework.boot.Banner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class SpringBootSimpleApplication {

public static void main(String[] args) {
SpringApplication app = new SpringApplication(SpringBootSimple
Application.class);
app.setBannerMode (Banner.Mode.OFF);

app.run(args);

SpringApplicationBuilder

The SpringApplicationBuilder class provides a fluent API and is a builder for the
SpringApplication and the ApplicationContext instances. It also provides hierarchy
support and everything that I showed you so far (with the SpringApplication) can be
set with this builder (see Listing 3-13).

63

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

Listing 3-13. src/main/java/com/apress/spring/SpringBootSimpleApplication.
java Version 5

package com.apress.spring;

import org.springframework.boot.Banner;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.builder.SpringApplicationBuilder;

@SpringBootApplication
public class SpringBootSimpleApplication {

public static void main(String[] args) {
new SpringApplicationBuilder()
.bannerMode (Banner.Mode.OFF)
.sources(SpringBootSimpleApplication.class)
.run(args);

Listing 3-13 shows the SpringAplicationBuilder fluent API. Next, let’s look at more
examples.

You can have a hierarchy when creating a Spring app. (If you want to know more
about application context in Spring, I recommend Pro Spring 5th Edition.) You can
create it with SpringApplicationBuilder.

new SpringApplicationBuilder(SpringBootSimpleApplication.class)
.child(OtherConfig.class)
.run(args);

If you have a web configuration, make sure that it’s being declared as a child. Also
parent and children must share the same org.springframework.core.env.Environment
interface (this represents the environment in which the current application is running; it
is related to profiles and properties declarations).

You can log the information at startup; by default it is set to true.

new SpringApplicationBuilder(SpringBootSimpleApplication.class)
.logStartupInfo(false)
.run(args);

64

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES
You can activate profiles.

new SpringApplicationBuilder(SpringBootSimpleApplication.class)
.profiles("prod","cloud")
.run(args);

Later, I'll show you profiles, so that you can make sense of the preceding line.
You can attach listeners for some of the ApplicationEvent events.

Logger log = LoggerFactory.getlLogger(SpringBootSimpleApplication.class);
new SpringApplicationBuilder(SpringBootSimpleApplication.class)
.listeners(new ApplicationListener<ApplicationEvent>() {
@0verride
public void onApplicationEvent(ApplicationEvent event) {
log.info("#i### > " + event.getClass().getCanonicalName());

}
1)

.run(args);

When you run your application, you should see the following output.

> org.springframework.boot.context.event.ApplicationPreparedEvent

> org.springframework.context.event.ContextRefreshedEvent
> org.springframework.boot.context.event.ApplicationReadyEvent

> org.springframework.context.event.ContextClosedEvent

Your application can add the necessary logic to handle those events. You
can also have these additional events: ApplicationStartedEvent (this is sent
at the start), ApplicationEnvironmentPreparedEvent (this is sent when the
environment is known), ApplicationPreparedEvent (this is sent after the bean
definitions), ApplicationReadyEvent (this is sent when the application is ready), and
ApplicationFailedEvent (this is sent in case of exception during the startup). I showed
you the other one in the output (more related to the Spring container).

65

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

You can remove any web environment auto-configuration from happening.
Remember that Spring Boot guesses which kind of app you are running based on the
classpath. For a web app, the algorithm is very simple; but imagine that you are using
libraries that actually run without a web environment, and your app is not a web app, but
Spring Boot configures it as such.

new SpringApplicationBuilder(SpringBootSimpleApplication.class)
.web(WebApplicationType.NONE)
.run(args);

You find that the WebApplicationType is an enum. Your app can be configured as
WebApplicationType.NONE, WebApplicationType.SERVLET, and WebApplicationType.
REACTIVE. Asyou can see, its meaning is very straightforward.

Application Arguments

Spring Boot allows you to get the arguments passed to the application. When you have
SpringApplication.run(SpringBootSimpleApplication.class, args), you have
access to the args in you beans (see Listing 3-14).

Listing 3-14. src/main/java/com/apress/spring/SpringBootSimpleApplication.
java -version 6

package com.apress.spring;

import java.io.IOException;
import java.util.Llist;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.ApplicationArguments;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.stereotype.Component;

@SpringBootApplication
public class SpringBootSimpleApplication {

66

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

public static void main(String[] args) throws IOException {
SpringApplication.run(SpringBootSimpleApplication.class, args);

}

@Component
class MyComponent {

private static final Logger log = LoggerFactory.getLogger(MyComponent.
class);

@Autowired
public MyComponent(ApplicationArguments args) {
boolean enable = args.containsOption("enable");
if(enable)
log.info("## > You are enabled!");

List<String> args = args.getNonOptionArgs();
log.info("## > extra args ...");

if(! args.isEmpty())
_args.forEach(file -> log.info(file));

When you execute containsOption, it expects the argument to be --<arg>. In
Listing 3-14, it is expecting the --enable argument; the getNonOptionArgs takes other
arguments. To test it, you can execute the following command.

$./mvnw spring-boot:run -Dspring-boot.run.arguments="--enable"

You should see ## > You are enabled.
Also, you can run it like this:

$./mvnw spring-boot:run -Dspring-boot.run.arguments="argi,arg2"

If you are using Gradle (and at the time of this writing), you need to wait a little
bit because passing parameters is still an issue (see https://github.com/spring-
projects/spring-boot/issues/1176); but you can pass a parameter in an executable
jar, which I describe in the next section.

67

https://github.com/spring-projects/spring-boot/issues/1176
https://github.com/spring-projects/spring-boot/issues/1176

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

Accessing Arguments with an Executable JAR

You have the option to create a stand-alone app—an executable JAR (you will learn
more about this). To create an executable JAR, execute the following command if you
are using Maven.

$./mvnw package

This command creates the executable JAR in the target directory.
Or if you are using Gradle, you can execute

$./gradlew build

This command creates an executable JAR in the build/1ibs directory.
Now you can run the executable JAR.

$ java -jar spring-boot-simple-0.0.1-SNAPSHOT.jar
You can pass arguments like this:
$ java -jar spring-boot-simple-0.0.1-SNAPSHOT.jar --enable argl arg2

You should get the same text for the enable arg and a list of arg1 and arg2.

ApplicationRunner and CommandLineRunner

If you notice Spring Boot after executing the SpringApplication, it ends. If you are
curious, you cannot use beans after this class is executed, but there is a solution. Spring
Boot has the ApplicationRunner and CommandLineRunner interfaces that exposes a run
method (see Listing 3-15).

Listing 3-15. src/main/java/com/apress/spring/SpringBootSimpleApplication.
java Version 7

package com.apress.spring;

import java.io.IOException;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.ApplicationArguments;

68

import
import
import
import
import

@Sprin
public
Applic

@Bean

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

org.springframework.boot.ApplicationRunner;
org.springframework.boot.CommandLineRunner;
org.springframework.boot.SpringApplication;
org.springframework.boot.autoconfigure.SpringBootApplication;
org.springframework.context.annotation.Bean;

gBootApplication

class SpringBootSimpleApplication implements CommandLineRunner,
ationRunner{

private static final Logger log = LoggerFactory.getlLogger(SpringBoot
SimpleApplication.class);

public static void main(String[] args) throws IOException {

SpringApplication.run(SpringBootSimpleApplication.class, args);

String info(){
return "Just a simple String bean";

}

@Autowired
String info;

@0verride

public void run(ApplicationArguments args) throws Exception {
log.info("## > ApplicationRunner Implementation...");
log.info("Accessing the Info bean: " + info);
args.getNonOptionArgs().forEach(file -> log.info(file));

}

@0verride

public void run(String... args) throws Exception {
log.info("## > CommandLineRunner Implementation...");
log.info("Accessing the Info bean: " + info);
for(String arg:args)

log.info(arg);

69

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

Listing 3-15 shows both CommandLineRunner and ApplicationRunner and their
implementations. CommandLineRunner exposes the public void run(String... args)
method and ApplicationRunner exposes the public void run(ApplicationArguments
args) method. They are practically the same. It is not necessary to implement both at
the same time. Listing 3-16 shows another way to use the CommandLineRunner interface.

Listing 3-16. src/main/java/com/apress/spring/SpringBootSimpleApplication.
java Version 8

package com.apress.spring;
import java.io.IOException;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication

public class SpringBootSimpleApplication {
private static final Logger log = LoggerFactory.getlogger(SpringBoot
SimpleApplication.class);

public static void main(String[] args) throws IOException {
SpringApplication.run(SpringBootSimpleApplication.class, args);
}

@Bean
String info(){
return "Just a simple String bean";

}

@Autowired
String info;

70

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

@®Bean
CommandLineRunner myMethod(){
return args -> {
log.info("## > CommandLineRunner Implementation...");
log.info("Accessing the Info bean: " + info);
for(String arg:args)
log.info(arg);
b5

Listing 3-16 shows a method annotated with the @Bean annotation returning a
CommandLineRunner implementation. This example uses the Java 8 syntax (lambda) to do
the return. You can add as many methods that return CommadLineRunner as you want.

If you wanted to execute in a certain order, you can use the @0rder annotation.

Application Configuration

We developers know that we are never going to get rid of application configuration.
We always look for where to persist for example URLs, IPs, credentials, database
information, and so forth—data that we normally use quite often in our applications.
We know that as a best practice, we need to avoid hard-coding this kind of configuration
information. We need to externalize so that it can be secure, easy to use, and deploy.
With Spring, you have the option to use XML and the <context:property-
placeholder/> tag, or you can use the @PropertySource annotation to declare your
properties pointing to a file that has declared them. Spring Boot offers you the same

mechanism but with more improvements.

e Spring Boot gives you different options for saving your application
configuration.

e Youcan use a file named application.properties that should
be located in the root classpath of your application. (There are
more options where you can add this file, which I show you later.)

e You can use a YAML notation file named application.yml that
also needs to be located in the root classpath. (There are more
options where you can add this file, which I show you later.)

71

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

e You can use environment variables. This is becoming the default
practice for cloud scenarios.

e And you can use command-line arguments.

Remember that Spring Boot is an opinionated technology. Most of its application
configuration is based on a common application.properties or application.yml
file. If none are specified, it already has those properties values as defaults. You can get
the complete list of the common application properties at https://docs.spring.io/
spring-boot/docs/current/reference/html/common-application-properties.html.

One of the best features from Spring (and Spring Boot) is access to the properties
values by using the @/alue annotation (with the name of the property). Or they can be
accessed from the org.springframework.core.env.Environment interface that extends
from the org.springframework.core.env.PropertyResolver interface. For example if
you have a src/main/resources/application.properties file with

data.server=remoteserver:3030

You can access the data.server property in your application by using the @Value
annotation, like in the following snippet.

/...
@Service
public class MyService {

@alue("${data.server}")
private String server;

/...

This code snippet shows the usage of the @Value annotation. Spring Boot injects the
data.server property value from the application.properties file in the server variable
with its value remoteserver:3030.

If you don’t want to use the application.properties, you have the option to inject
the properties via a command line.

$ java -jar target/myapp.jar --data.server=remoteserver:3030

72

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

And you have the same result. If you don’t like the application.properties file
or you hate the YAML syntax, you can use a specialized environment variable named
SPRING_APPLICATION_JSON to expose the same properties and its values.

$ SPRING_APPLICATION JSON='{ "data":{"server":"remoteserver:3030"}}' java
-jar target/myapp.jar

And again, you have the same result. (Windows users should use the SET instruction
to set the environment variable first.) So, Spring Boot gives you options to expose
application properties.

Configuration Properties Examples

Let’s create a simple project that helps you better understand the application
configuration. Open your browser and go to https://start.spring.io. Use the
following field values.

o Group: com.apress.spring

o Artifactld: spring-boot-config

o Package Name: com.apress.spring
o Name: spring-boot-config

You can choose whatever project type you feel comfortable. Click the Generate
Project button, save the ZIP file, uncompress it and import it in your favorite IDE.

Before continuing with the project, you must know that Spring Boot uses an order if
you want to override your application configuration properties:

e Command-line arguments

e SPRING_APPLICATION_JSON

e JNDI (java:comp/env)

e System.getProperties()

e OS Environment variables

o RandomValuePropertySource (random.*)

o Profile-specific (application-{profile}.jar) outside of the package jar.
e Profile-specific (application-{profile}.jar) inside of the package jar.

73

https://start.spring.io

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

» Application properties (application.properties) outside of the

package jar.

Application properties (application.properties) inside of the package jar.

e @PropertySource

o SpringApplication.setDefaultProperties

as you can see, that’s the order for overriding the application properties. Let’s start with

some e

xamples.

Command-Line Arguments

Go to your project and edit the main class to look like Listing 3-17.

Listing 3-17. src/main/java/com/apress/spring/SpringBootConfigApplication.java

packag

import
import
import
import
import
import
import

@Sprin
public

74

e com.apress.spring;

org.slf4j.logger;

org.slf4j.LoggerFactory;
org.springframework.beans.factory.annotation.Value;
org.springframework.boot.CommandLineRunner;
org.springframework.boot.SpringApplication;
org.springframework.boot.autoconfigure.SpringBootApplication;
org.springframework.context.annotation.Bean;

gBootApplication
class SpringBootConfigApplication {

private static Logger log = LoggerFactory.getlogger(SpringBootConfig
Application.class);

public static void main(String[] args) {
SpringApplication.run(SpringBootConfigApplication.class, args);
}

@value("${server.ip}")
String serverlp;

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

@Bean
CommandLineRunner values(){
return args -> {
log.info(" > The Server IP is:

+ serverIp);

I

Listing 3-17 shows the main class. As you can seg, it is using the @Value("${server.
ip}") annotation. This annotation translates the text "${server.ip}". It looks for this
property and its value in the order that I mentioned before.

You can run this example by executing the following command in the root of your

project.
$./mvnw spring-boot:run -Dserver.ip=192.168.12.1
If you package your app first (to create an executable JAR), then run it as follows.

$ /.mvnw package
$ java -jar target/spring-boot-config-0.0.1-SNAPSHOT.jar --server.
ip=192.168.12.1

In either case, you see something similar to the following output.

N\ / () I Y W WA
CON_ T T2 PV
WD))))
ol N
memsmses|_|sememsmmemema|_ /=/_/_/)
:: Spring Boot :: (v2.0.0.RELEASE)

INFO - [main] c.a.spring.SpringBootConfigApplication : Starting
SpringBootConfigApplication vo0.0..

INFO - [main] c.a.spring.SpringBootConfigApplication : No active profile
set, falling back to de..

INFO - [main] s.c.a.AnnotationConfigApplicationContext : Refreshing org.
springframework.context.an..

75

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

INFO - [main] o.s.j.e.a.AnnotationMBeanExporter : Registering beans
for JMX exposure on sta..

INFO - [main] c.a.spring.SpringBootConfigApplication : Started
SpringBootConfigApplication in o...

INFO - [main] c.a.spring.SpringBootConfigApplication : » The Server IP
is: 192.168.34.56

INFO - [main] c.a.spring.SpringBootConfigApplication : » App Name: My
Config App

INFO - [main] c.a.spring.SpringBootConfigApplication : » App Info: This

is an example

INFO - [T-2] s.c.a.AnnotationConfigApplicationContext : Closing org.
springframework.context.annot..

INFO - [T-2] o.s.j.e.a.AnnotationMBeanExporter : Unregistering JIMX-
exposed beans on shutdo...

You see this from the output: > The Server IP is: 1921.68.12.1.

Now, let’s create the application.properties file (see Listing 3-18 for its contents).
Listing 3-18. src/main/resources/application.properties
server.ip=192.168.23.4

If you run the application with the same command-line arguments, you see that the
arguments have precedence from the application.properties file, but if you run it
without the arguments, as follows.

$./mvnw spring-boot:run
or

$ /.mvnw package
$ java -jar target/spring-boot-config-0.0.1-SNAPSHOT. jar

You get the textThe Server IP is: 192.168.3.4.Ifyoudo alot of JSON
formatting, perhaps you are interested in passing your properties in this format. You can
use the spring.application.json property. So, you can run it like this:

$./mvnw spring-boot:run -Dspring.application.json="{"server":{"
ip":"192.168.145.78"}}'

or

76

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

$ java -jar target/spring-boot-config-0.0.1-SNAPSHOT.jar --spring.
application.json="{"server":{"ip":"192.168.145.78"}}"

You can also add it as environment variable.

$ SPRING APPLICATION JSON='{"server":{"ip":"192.168.145.78"}}' java -jar
target/spring-boot-config-0.0.1-SNAPSHOT. jar

You see the text > The Server IP is: 192.168.145.78. And, yes, you can add your
environment variable that refers to your property like this:

$ SERVER_IP=192.168.150.46 ./mvnw spring-boot:run
or

$ SERVER_IP=192.168.150.46 java -jar target/spring-boot-config-0.0.1-
SNAPSHOT. jar

You see the text > The Server IP is: 192.168.150.46.

Note Remember for Windows users, you need to use the SET instruction for
using environment variables.

How does Spring Boot know that the environment variable is related to the server.ip
property?

Relaxed Binding

Spring Boot use relaxed rules for binding (see Table 3-1).

Table 3-1. Spring Boot Relaxed Binding

Property Description
message.destinationName Standard camel case
message.destination-name Dashed notation, which is the recommended way to add in the

application.properties or YML file.

MESSAGE_DESTINATION_NAME Uppercase, which is the recommended way to use with 0S
environment variables

77

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

Table 3-1 shows the relaxed rules that apply to the property names. That’s why in the
previous example, the server.ip property is recognized also as SERVER_IP. This relaxed
rule has to do with the @ConfigurationProperties annotation and its prefix, which you
see in a later section.

Changing Location and Name

Spring Boot has an order for finding the application.properties or YAML file.

1. TItlooks at the /config subdirectory located in the current
directory.

2. The current directory
3. The classpath /config package
4. The classpath root

You can test by creating a /config subdirectory in your current directory and add
anew application.properties, and test that the order is true. Remember that you
should already have an application.properties file in the classpath root (src/main/
resources).

Spring Boot allows you to change the name of the properties file and its location.

So for example, imagine that you use the /config subdirectory, and the name of the
properties file is now mycfg.properties (its content: server.ip=127.0.0.1). Then you
can run the app with the following command.

$./mvnw spring-boot:run -Dspring.config.name=mycfg
or

$ java -jar target/spring-boot-config-0.0.1-SNAPSHOT.jar --spring.config.
name=mycfg

or

$ SPRING_CONFIG_NAME=mycfg java -jar target/spring-boot-config-0.0.1-
SNAPSHOT. jar

78

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

You should see the text: > The Server IP is: 127.0.0.1.Itis notnecessary
to include.properties to the name; it automatically uses it. You can also change its
location. For example, create a subdirectory named app and add amycfg.properties file
(its content: server.ip=localhost). Then you can run or execute your app with

$./mvnw spring-boot:run -Dspring.config.name=mycfg -Dspring.config.
location=file:app/

or

$ java -jar target/spring-boot-config-0.0.1-SNAPSHOT.jar --spring.config.
location=file:app/ --spring.config.name=mycfg

Or you can add the mycfg.properties in the src/main/resources/META-INF/conf
(you can create it)and execute this:

$ mkdir -p src/main/resources/META-INF/conf

$ cp config/mycfg.properties src/main/resources/META-INF/conf/

$./mvnw clean spring-boot:run -Dspring.config.name=mycfg -Dspring.config.
location=classpath:META-INF/conf/

You should see the text > The Server IP is: 127.0.0.1.Try to change that value
of the property so you can see that it is actually looking in the classpath.
Spring Boot also has an order for searching for the properties file.

1. classpath

2. classpath:/config
3. file:

4. file:config/

Unless you change it with the spring.config.location property, which environment
variable is to set to change the location of the properties file? It is SPRING_CONFIG_LOCATION.

Profile Based

Since version 3.1, if 'm not mistaken, the Spring Framework added a cool feature that
allows the developer to create custom properties and beans based on profiles. This
is a useful way to separate environments without having to recompile or package a
Spring app. The only thing to do is specify the active profile with the @ActiveProfiles

79

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

annotation, or getting the current Environment and use the setActiveProfiles method.
Or you can use the environment variable SPRING_PROFILES_ACTIVE, or the spring.
profiles.active property.

You can use the properties file using this format: application-{profile}.
properties. Lets’ create two files in your config/ subdirectory: application-qa.
properties and application-prod.properties. Let’s look at the contents of each one.

o application-ga.properties
server.ip=localhost
o application-prod.properties
server.ip=http://my-remote.server.com
Now you can run your example with
$./mvnw clean spring-boot:run -Dspring.profiles.active=prod

When you execute this command, take a look at the beginning of the logs. You
should see something similar to the following output.

INFO 58270 --- [main] c.a.spring... : The following profiles are active: prod

INFO 58270 --- [main] c.a.spring... : > The Server IP is: http://my-
remote.server.com

INFO 58270 --- [main] c.a.spring... : > App Name: Super App

INFO 58270 --- [main] c.a.spring... : > App Info: This is production

You should see the legend, The following profiles are active: prod, and of
course, the profile application properties active (application-prod.properties) value:
> The Server IP is: http://my-remote.server.com. As an exercise, try to change
the name of the application-prod.properties tomycfg-prod.properties and the
application-qa.properties tomycfg-qa.properties. Use the Spring properties that
get the new name. If you don’t set any active profiles, it uses the default, meaning that it
grabs application.properties

80

http://my-remote.server.com

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

Custom Properties Prefix

Spring Boot allows you to write and use your own custom property prefix for your
properties. The only thing you need to do is annotate with the @ConfigurationProperties
annotation, which is a Java class that has setters and getters as its properties.

If you are using the STS IDE, I recommend including a dependency in your pom.xml
or your build.gradle file (depending of which dependency manager you are using).
This dependency creates a code-insight, and it triggers the editor’s code completion for
the properties. So if you are using Maven, you can add the next dependency in your pom.
xml file.

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-configuration-processor</artifactId>
<optional>true</optional>

</dependency>

If you are using Gradle, you can add the following dependency to your
build.gradle file.

dependencies {
optional "org.springframework.boot:spring-boot-configuration-processor"

}

compileJava.dependsOn(processResources)

This dependency allows you to process your custom properties and have code
completion. Now, let’s look at the example. Modify your src/main/resource/
application.properties file to look like Listing 3-19.

Listing 3-19. src/main/resources/application.properties
server.ip=192.168.3.5

myapp.server-ip=192.168.34.56
myapp .name=My Config App
myapp.description=This is an example

81

CHAPTER 3

SPRING BOOT INTERNALS AND FEATURES

Listing 3-19 shows the application.properties file. The second block is new. It

defines the custom properties with myapp as the prefix. Open your main app class and
edit it to look like Listing 3-20.

Listing 3-20. src/main/java/com/apress/spring/SpringBootConfigApplication.

java Version 9

package com.apress.spring;

import
import
import
import
import
import
import
import
import
import

org
org

org.
org.
.springframework.
springframework.
springframework.

org

org.
org.
.springframework.
springframework.
springframework.

org

org.
org.

.s1f4j.Logger;

.slf4j.LoggerFactory;

@SpringBootApplication

springframework.
springframework.

beans.factory.annotation.Autowired;
beans.factory.annotation.Value;
boot.CommandLineRunner;

boot.SpringApplication;
boot.autoconfigure.SpringBootApplication;
boot.context.properties.ConfigurationProperties;
context.annotation.Bean;

stereotype.Component;

public class SpringBootConfigApplication {

82

private static Logger log = LoggerFactory.getlogger(SpringBootConfig
Application.class);

public static void main(String[] args) {
SpringApplication.run(SpringBootConfigApplication.class, args);

}

@value("${myapp.server-ip}")
String serverIp;

@Autowired
MyAppProperties props;

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

@Bean
CommandLineRunner values(){
return args -> {
log.info(" > The Server IP is:

+ serverIp);
+ props.getName());
+ props.getDescription());

log.info(" > App Name:
log.info(" > App Info: "
}s
}

@Component
@ConfigurationProperties(prefix="myapp")
public static class MyAppProperties {
private String name;
private String description;
private String serverIp;

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

public String getServerIp() {
return serverlp;

}

public void setServerIp(String serverIp) {
this.serverIp = serverlp;

83

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

Listing 3-19 shows the main app class. Let’s examine it.

o @Value("${myapp.server-ip}"). Now the annotation has a myapp.
server-ip, which means that the value is equal to 1921.68.34.56.

e @Autowired MyAppProperties props. This creates an instance of the
MyAppProperties type.

e (@Component @ConfigurationProperties(prefix="myapp").The
@ConfigurationProperties annotation is telling Spring Boot that
the class is used for all the properties defined in the application.
properties file that has the prefix myapp. This means that it
recognizes when you have myapp.serverIp (or myapp.server-ip),
myapp.name, and myapp.description. The @Component annotation
only makes sure that the class is picked up as a bean.

Spring Boot uses relaxed rules binding Environment properties to
@ConfigurationProperties beans, so you don’t have any collision names.
Now if you run your app, you should see all your myapp properties.

$./mvnw clean spring-boot:run

> The Server IP is: 192.168.34.56
> App Name: My Config App
> App Info: This is an example

As you can see, you have plenty of options for using your application configuration
properties, and if you want to use the YAML syntax, please refer to the Spring Boot
documentation for examples.

You can add hits to your IDE by providing metadata information that helps with
property completion. Take a look at the reference documentation at https://docs.
spring.io/spring-boot/docs/current/reference/html/configuration-metadata.
html on how to create this metadata.

84

https://docs.spring.io/spring-boot/docs/current/reference/html/configuration-metadata.html
https://docs.spring.io/spring-boot/docs/current/reference/html/configuration-metadata.html
https://docs.spring.io/spring-boot/docs/current/reference/html/configuration-metadata.html

CHAPTER 3 SPRING BOOT INTERNALS AND FEATURES

Summary

This chapter gave you a tour of Spring Boot insights by explaining the auto-configuration
feature, including how the @EnableAutoConfiguration annotation works behind the
scenes. You learned how to exclude some of the auto-configuration classes as well.

You learned about some of the Spring Boot features and how to use the application
configuration properties. You also learned how to customize your application
configuration properties by adding a prefix.

In the next chapter, you learn more about web applications with Spring Boot.

85

CHAPTER 4

Web Applications with
Spring Boot

Nowadays, the web is the main channel for any type of application—from desktop

to mobile devices, from social and business applications to games, and from simple
content to streaming data. With this is mind, Spring Boot can help you easily develop the
next generation of web applications.

This chapter shows you how to create Spring Boot web applications with ease. You
have already learned, with some examples in earlier chapters, what you can do with
the web. You learned that Spring Boot makes it easier to create web apps with a few
lines of code and that you don’t need to worry about configuration files or look for an
application server to deploy your web application. By using Spring Boot and its auto-
configuration, you can have an embedded application server, such as Tomcat, Netty,
Undertow, or Jetty, which makes your app very distributable and portable.

Spring MVC

Let’s start talking about the Spring MVC technology and some of its features. Remember
that the Spring Framework consists of about 20 modules or technologies, and the web
technology is one of them. For the web technology, the Spring Framework has the
spring-web, spring-webmvc, spring-webflux, and spring-websocket modules.

The spring-web module has basic web integration features, such as multipart file
upload functionality, initialization of the Spring container (by using servlet listeners),
and a web-oriented application context. The spring-mvc module (a.k.a., the web server
module) contains all the Spring MVC (Model-View-Controller) and REST services
implementations for web applications. These modules provide many features, such
as very powerful JSP tag libraries, customizable binding and validation, flexible model
transfer, customizable handler and view resolution, and so on.

87
© Felipe Gutierrez 2019

F. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_4

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

The Spring MVC is designed around the org.springframework.web.servlet.
DispatcherServlet class. This servlet is very flexible and has a very robust
functionality that you won'’t find in any other MVC web framework out there. With the
DispatcherServlet, you have several out-of-the-box resolutions strategies, including
view resolvers, locale resolvers, theme resolvers, and exception handlers. In other words,
the DispatcherServlet take a HTTP request and redirect it to the right handler (the
class marked with the @Controller or @RestController and the methods that use the
@RequestMapping annotations) and the right view (your JSPs).

Spring Boot MVC Auto-Configuration

Web applications can be created easily by adding the spring-boot-starter-web
dependency to your pom.xml or build.gradle file. This dependency provides all the
necessary spring-web jars and some extra ones, such as tomcat-embed* and jackson
(for JSON and XML). This means that Spring Boot uses the power of the Spring MVC
modules and provides all the necessary auto-configuration for creating the right web
infrastructure, such as configuring the DispatcherServlet, providing defaults (unless
you override it), setting up an embedded Tomcat server (so you can run your application
without any application containers), and more.

Auto-configuration adds the following features to your web application.

o Static content support. This means that you can add static content,
such as HTML, JavaScript, CSS, media, and so forth, in a directory
named /static (by default) or /public, /resources, or /META-INF/
resources, which should be in you classpath or in your current
directory. Spring Boot picks it up and serves them upon request. You
can change this easily by modifying the spring.mvc.static-path-
pattern or the spring.resources.static-locations properties.
One of the cool features with Spring Boot and web applications
is that if you create an index.html file, Spring Boot serves it
automatically without registering any other bean or the need for extra
configuration.

e HttpMessageConverters. If you are using a regular Spring MVC
application and you want to get a JSON response, you need to
create the necessary configuration (XML or JavaConfig) for the

88

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

HttpMessageConverters bean. Spring Boot adds this support by
default so you don’t have to; this means that you get the JSON

format by default (due to the Jackson libraries that the spring-
boot-starter-web provides as dependencies). And if Spring Boot
auto-configuration finds that you have the Jackson XML extension

in you classpath, it aggregates an XML HttpMessageConverter to the
converters, meaning that your application can server based on your
content-type request, either application/json or application/xml.

JSON serializers and deserializers. If you want to have more control
over the serialization/deserialization to/from JSON, Spring

Boot provides an easy way to create your own by extending from
JsonSerializer<T> and/or JsonDeserializer<T>, and annotating
your class with the @JsonComponent so that it can be registered

for usage. Another feature of Spring Boot is the Jackson support;

by default, Spring Boot serializes the date fields as 2018-05-
01T23:31:38.141+0000, but you can change this default behavior by
changing the spring.jackson.date-format=yyyy-MM-dd property
(you can apply any date format pattern); the previous value generates
the output, such as 2018-05-01.

Path matching and content negotiation. One of the Spring MVC
application practices is the ability to respond to any suffix to
represent the content-type response and its content negotiation.

If you have something like/api/todo. json or /api/todo.pdf, the
content-typeissetto application/json and application/pdf;

so the response is JSON format or a PDF file, respectively. In other
words, Spring MVC performs . * suffix pattern matching, such as /
api/todo.*. Spring Boot disables this by default. You can still use a
feature where you can add a parameter, by using the spring.mvc.
contentnegotiation.favor-parameter=true property (false by
default); so you can do something like /api/todo?format=xml.
(format is the default parameter name; of course, you can change it
with spring.mvc.contentnegotiation.parameter-name=myparam).
This triggers the content-type to application/xml.

89

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

Error handling. Spring Boot uses /error mapping to create a white
labeled page to show all the global errors. You can change the
behavior by creating your own custom pages. You need to create your
custom HTML page in the src/main/resources/public/error/
location, so you can create 500.html or 404.html pages for example.
If you are creating a RESTful application, Spring Boot responds as
JSON format. Spring Boot also supports Spring MVC to handle errors
when you are using @ControllerAdvice or @ExceptionHandler
annotations. You can register custom ErrorPages by implementing
ErrorPageRegistrar and declaring it as a Spring bean.

Template engine support. Spring Boot supports FreeMarker, Groovy
Templates, Thymeleaf, and Mustache. When you include the spring-
boot-starter-<template engine> dependency, Spring Boot auto-
configure is necessary to enable and add all the necessary view
resolvers and file handlers. By default, Spring Boot looks at the src/
main/resources/templates/ path.

And there are many other features that Spring Boot Web auto-configure provides.

Right now, we are only looking at the Servlet technology, but very soon we get into the

newest addition to the Spring Boot family: WebFlux.

Spring Boot Web: ToDo App

To better understand how Spring Boot works with web applications and the power of

the Spring MVC modules, you are going to create a ToDo app that exposes a RESTful

API. These are the requirements:

90

Create a ToDo domain model that has the following fields and types:
id (String), description (String), completed (Boolean), created
(date with time), modified (date with time).

Create a RESTful API that provides the basic CRUD (create, read,
update, delete) actions. Use the most common HTTP methods:
POST, PUT, PATCH, GET, and DELETE.

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

Create a repository that handles the state of multiple ToDo’s. For now,
an in-memory repository is enough.

Add an error handler when there is a bad request or when submitting
anew ToDo doesn’t have the required fields. The only mandatory
field is the description.

All the requests and responses should be in JSON format.

ToDo App

Open your browser and go to https://start.spring.io to create your ToDo app by

using the following values (also see Figure 4-1).

Group: com.apress.todo
Artifact: todo-in-memory

Name: todo-in-memory

Package Name: com.apress.todo

Dependencies: Web, Lombok

91

https://start.spring.io

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

A K= =3 K3

SPRING INITIALIZR

& start.spring.io < 4]

Generate a mawenroec ¢ With == ¢ and Spring Boot 201 ¢

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies

com.apress.todo & Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies
Name

todo-in-memory
Description

Demo project for Spring Boot
Package Name

com.apress. todo
Packaging

Jar
Java Version

8

Too many options? Switch back to the simple version.
Generate Project % + =

Figure4-1. https://start.spring.io ToDo app

Choosing the Lombok dependency helps easily create the domain model classes and
eliminates the boilerplate setters, getters, and other overrides.

Note If you need more information about Lombok, see the reference docs at
https://projectlombok.org.

You can select either Maven or Gradle as the project type; in this book, we use both
indistinctly. Press the Generate Project button and download the ZIP file. Uncompress it
and import it into your favorite IDE. Some of the best IDEs are STS (https://spring.io/
tools/sts/all), Intelli] IDEA (www. jetbrains.com/idea/), and VSCode

92

https://projectlombok.org
https://spring.io/tools/sts/all
https://spring.io/tools/sts/all
http://www.jetbrains.com/idea/
https://start.spring.io

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

(https://code.visualstudio.com/).1recommend one of these IDEs for the code
completion feature, which helps you see the methods or parameters to add to your code.

Domain Model: ToDo

Based on the requirements, you need to create a ToDo domain model class (see Listing 4-1).

Listing 4-1. com.apress.todo.domain.ToDo.java
package com.apress.todo.domain;
import lombok.Data;

import javax.validation.constraints.NotBlank;
import javax.validation.constraints.NotNull;
import java.time.localDateTime;

import java.util.UUID;

@Data
public class ToDo {

@NotNull

private String id;

@NotNull

@NotBlank

private String description;
private LocalDateTime created;
private LocalDateTime modified;
private boolean completed;

public ToDo(){
LocalDateTime date = LocalDateTime.now();
this.id = UUID.randomUUID().toString();
this.created = date;
this.modified = date;

93

https://code.visualstudio.com/

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

public ToDo(String description){
this();
this.description = description;

Listing 4-1 shows you the ToDo class, which has all the required fields. It also uses the
@Data annotation, which is a Lombok annotation that generates a default constructor
(if you don’t have one) and all the setters, getters, and overrides, such as the toString
method, to make the class cleaner. Also note that the class has the @NotNull and
@NotBlank annotations in some of the fields; these annotations are used in the validation
that we do later on. The default constructor has field initialization, so it is easy to create a
ToDo instance.

Fluent API: ToDoBuilder

Next let’s create a Fluent API class that helps create a ToDo instance. You can see this class
a factory that creates a ToDo with a description or with a particular ID (see Listing 4-2).
Listing 4-2. com.apress.todo.domain.ToDoBuilder.java

package com.apress.todo.domain;

public class ToDoBuilder {

private static ToDoBuilder instance = new ToDoBuilder();
private String id = null;

private String description = "";

private ToDoBuilder(){}

public static ToDoBuilder create() {
return instance;

}

public ToDoBuilder withDescription(String description){
this.description = description;
return instance;

94

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

public ToDoBuilder withId(String id){
this.id = id;
return instance;

}

public ToDo build(){
ToDo result = new ToDo(this.description);
if(id != null)
result.setId(id);
return result;

Listing 4-2 is a simple Factory class that creates a ToDo instance. You extend its
functionality in the next chapters.

Repository: CommonRepository<T>

Next, create an interface that has common persistence actions. This interface is generic,
so it easy to use any other implementation, making the repo an extensible solution (see
Listing 4-3).

Listing 4-3. com.apress.todo.repository.CommonRepository<T>.java
package com.apress.todo.repository;
import java.util.Collection;

public interface CommonRepository<T> {
public T save(T domain);
public Iterable<T> save(Collection<T> domains);
public void delete(T domain);
public T findById(String id);
public Iterable<T> findAll();

Listing 4-3 is a common interface that can be used as a base for any other persistence
implementation. Of course, you can change these signatures at any time. This is just an
example on how to create something that is extensible.

95

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

Repository: ToDoRepository

Let’s create a concrete class that implements the CommonRepository<T> interface.
Remember the specification; for now, it is necessary only to have the ToDo’s in memory
(see Listing 4-4).

Listing 4-4. com.apress.todo.repository.ToDoRepository.java
package com.apress.todo.repository;

import com.apress.todo.domain.ToDo;
import org.springframework.stereotype.Repository;

@Repository
public class ToDoRepository implements CommonRepository<ToDo> {

private Map<String,ToDo> toDos = new HashMap<>();

@verride
public ToDo save(ToDo domain) {
ToDo result = toDos.get(domain.getId());
if(result != null) {
result.setModified(LocalDateTime.now());
result.setDescription(domain.getDescription());
result.setCompleted(domain.isCompleted());
domain = result;
}
toDos.put(domain.getId(), domain);
return toDos.get(domain.getId());

}

@verride

public Iterable<ToDo> save(Collection<ToDo> domains) {
domains.forEach(this::save);
return findAll();

96

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

@verride
public void delete(ToDo domain) {
toDos.remove(domain.getId());

}

@verride

public ToDo findById(String id) {
return toDos.get(id);

}

@verride

public Iterable<ToDo> findAll() {
return toDos.entrySet().stream().sorted(entryComparator).
map(Map.Entry::getValue).collect(Collectors.tolList());

}

private Comparator<Map.Entry<String,ToDo>> entryComparator = (Map.
Entry<String, ToDo> o1, Map.Entry<String, ToDo> 02) -> {
return ol.getValue().getCreated().compareTo(o2.getValue().
getCreated());

};

Listing 4-4 shows the implementation of the CommonRepository<T> interface. Review

the code and analyze it. This class is using a hash that holds all the ToDo’s. All the

operations get simplify due nature of the hash, making it easy to implement.

Validation: ToDoValidationError

Next, let’s create a validation class that exposes any possible errors in the app, such as a

ToDo with no description. Remember that in the ToDo class, the ID and description fields

are marked as @NotNull. The description field has an extra @NotBlank annotation to

make sure that it is never empty (see Listing 4-5).

97

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

Listing 4-5. com.apress.todo.validation.ToDoValidationError.java
package com.apress.todo.validation;
import com.fasterxml.jackson.annotation.JsonInclude;

import java.util.Arraylist;
import java.util.Llist;

public class ToDoValidationError {

@JsonInclude(JsonInclude.Include.NON_EMPTY)
private List<String> errors = new ArraylList<>();

private final String errorMessage;

public ToDoValidationError(String errorMessage) {
this.errorMessage = errorMessage;

}

public void addValidationError(String error) {
errors.add(error);

}

public List<String> getErrors() {
return errors;

}

public String getErrorMessage() {
return errorMessage;

Listing 4-5 shows the ToDoValidationError class, which holds any errors that arise
with any requests. It uses an extra @JsonInclude annotation, which says that even if the
errors field is empty, it must be included.

98

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

Validation: ToDoValidationErrorBuilder

Let’s create another factory that helps build the ToDoValidationError instance (see
Listing 4-6).

Listing 4-6. com.apress.todo.validation.ToDoValidationErrorBuilder.java

package com.apress.todo.validation;

import org.springframework.validation.Errors;
import org.springframework.validation.ObjectError;

public class ToDoValidationErrorBuilder {

public static ToDoValidationError fromBindingErrors(Errors errors) {
ToDoValidationError error = new ToDoValidationError(“Validation
failed. " + errors.getErrorCount() + " error(s)");
for (ObjectError objectError : errors.getAllErrors()) {
error.addValidationError(objectError.getDefaultMessage());

}

return error;

Listing 4-6 is another Factory class that easily creates a ToDoValidationError
instance with all the necessary information.

Controller: ToDoController

Now, it’s time to create the RESTful API and use all the previous classes. You create the
ToDoController class, in which you see all the Spring MVC features, the annotations, the
way to configure endpoints, and how to handle errors. Let’s review the code in Listing 4-7.

Listing 4-7. com.apress.todo.controllerToDoController.java
package com.apress.todo.controller;

import com.apress.todo.domain.ToDo;
import com.apress.todo.domain.ToDoBuilder;
import com.apress.todo.repository.CommonRepository;

99

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

import com.apress.todo.validation.ToDoValidationError;

import com.apress.todo.validation.ToDoValidationErrorBuilder;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.validation.Errors;

import org.springframework.web.bind.annotation.*;

import org.springframework.web.servlet.support.ServletUriComponentsBuilder;

import javax.validation.Valid;
import java.net.URI;

@RestController
@RequestMapping("/api")
public class ToDoController {

100

private CommonRepository<ToDo> repository;

@Autowired
public ToDoController(CommonRepository<ToDo> repository) {
this. repository = repository;

}

@GetMapping("/todo")
public ResponseEntity<Iterable<ToDo»» getToDos(){
return ResponseEntity.ok(repository.findAll());

}

@GetMapping("/todo/{id}")
public ResponseEntity<ToDo> getToDoById(@PathVariable String id){
return ResponseEntity.ok(repository.findById(id));

}

@PatchMapping("/todo/{id}")

public ResponseEntity<ToDo> setCompleted(@PathVariable String id){
ToDo result = repository.findById(id);
result.setCompleted(true);
repository.save(result);

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

URI location = ServletUriComponentsBuilder.fromCurrentRequest()
.buildAndExpand(result.getId()).toUri();

return ResponseEntity.ok().header("Location",location.toString()).
build();
}

@RequestMapping(value="/todo", method = {RequestMethod.POST,
RequestMethod.PUT})
public ResponseEntity<?> createToDo(@Valid @RequestBody ToDo toDo,
Exrors errors){
if (errors.haskrrors()) {
return ResponseEntity.badRequest().
body(ToDoValidationExrorBuilder.fromBindingExrors(errors));

}

ToDo result = repository.save(toDo);
URI location = ServletUriComponentsBuilder.fromCurrentRequest().
path("/{id}")
.buildAndExpand(result.getId()).toUri();
return ResponseEntity.created(location).build();

}

@DeleteMapping("/todo/{id}")

public ResponseEntity<ToDo> deleteToDo(@PathVariable String id){
repository.delete(ToDoBuilder.create().withId(id).build());
return ResponseEntity.noContent().build();

}

@DeleteMapping("/todo")

public ResponseEntity<ToDo> deleteToDo(@RequestBody ToDo toDo){
repository.delete(toDo);
return ResponseEntity.noContent().build();

101

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

@ExceptionHandler
@ResponseStatus(value = HttpStatus.BAD_REQUEST)
public ToDoValidationExror handleException(Exception exception) {
return new ToDoValidationExrror(exception.getMessage());

Listing 4-7 is the ToDoController class. Let’s review it.

e (@RestController. Spring MVC offers the @Controller and
@RestController to express request mappings, request input,
exception handling, and more. All the functionality relies on these
annotations, so there is no need to extend or implement interfaces
specific interfaces.

e (@RequestMapping. This annotation maps requests to controller
methods. There are several attributes to match URLs, HTTP methods
(GET, PUT, DELETE, etc.), request parameters, headers, and media
types. It can be use at class level (to share mappings) or at method
level for specific endpoint mapping. In this case, it is marked with
"/api", meaning that all the methods have this prefix.

e @Autowired. The constructor is annotated with @Autowired, meaning
that it injects the CommonRepository<ToDo> implementation. This
annotation can be omitted; Spring automatically injects any declared
dependency since version 4.3.

e (@GetMapping. This is a shortcut variant of the @RequestMapping
annotation, useful for HTTP GET methods. @GetMapping is equivalent to
@RequestMapping(value="/todo", method = {RequestMethod.GET}).

o (@PatchMapping. This is a shortcut variant of the @RequestMapping
annotation; in this class, it marks a ToDo as completed.

o (@eleteMapping. This is a shortcut variant of the @RequestMapping
annotation; it is used to delete a ToDo. There are two overload
methods: deleteToDo, one accepting a String and the other a ToDo
instance.

102

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

@PathVariable. This annotation is useful when you declare an endpoint
that contains a URL expression pattern; in this case, "/api/todo/{id}",
where the ID must match the name of the method parameter.

@RequestBody. This annotation sends a request with a body.
Normally, when you submit a form or a particular content, this

class receives a JSON format ToDo, then the HttpMessageConverter
deserializes the JSON into a ToDo instance; this is done automatically
thanks to Spring Boot and its auto-configuration because it registers
the MappingJackson2HttpMessageConverter by default.

ResponseEntity<T>. This class returns a full response,

including HTTP headers, and the body is converted through
HttpMessageConverters and written to the HTTP response. The
ResponseEntity<T> class supports a fluent AP], so it is easy to create
the response.

@ResponseStatus. Normally, this annotation is used when a method
has a void return type (or null return value). This annotation sends
back the HTTP status code specified in the response.

@Valid. This annotation validates incoming data and is used as

a method’s parameters. To trigger a validator, it is necessary to
annotate the data you want to validate with @NotNull, @NotBlank,
and other annotations. In this case, the ToDo class uses those
annotations in the ID and description fields. If the validator finds
errors, they are collected in the Errors class (in this case, a hibernate
validator that came with the spring-webmvc jars is registered and
used as a global validator; you can create your own custom validation
and override Spring Boot’s defaults). Then you can inspect and add
the necessary logic to send back an error response.

@ExceptionHandler. The Spring MVC automatically declares built-in
resolvers for exceptions and adds the support to this annotation. In
this case, the @ExceptionHandler is declared inside this controller
class (or you can use it within a @ontrollerAdvice interceptor)

and any exception is redirected to the handleException method.
You can be more specific if needed. For example, you can have a
DataAccessException and handle through a method.

103

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

@ExceptionHandler
@ResponseStatus(value = HttpStatus.BAD REQUEST)
public ToDoValidationError
handleException(DataAccessException exception) {
return new
ToDoValidationError(exception.getMessage());

}

In the class there is a method that accepts two HTTP methods: POST and PUT.
@RequestMapping can accept multiple HTTP methods, so it is easy to assign one method
to process them (e.g., @RequestMapping(value="/todo", method = {RequestMethod.
POST, RequestMethod.PUT}).

We have covered all the necessary requirements for this application, so it’s time to
run it and see the results.

Running: ToDo App

Now, you are ready to run the ToDo app and test it. If you are using an IDE (STS or
IntelliJ), you can right-click the main app class (TodoInMemoryApplication.java) and
select Run Action. If you are using an editor that doesn’t have these features, you can run
your Todo app by opening a terminal window and executing the commands in Listing 4-8
or Listing 4-9.

Listing 4-8. 1f you are using Maven project type

./mvnw spring-boot:run

Listing 4-9. Ifyou are using Gradle project type
./gradlew spring-boot:run

Spring Initializr (https://start.spring.io) always provides the project type
wrappers you selected (Maven or Gradle wrappers), so there is no need to preinstall
Maven or Gradle.

One of defaults for Spring Boot web apps is that it configures an embedded Tomcat
server, so you can easily run your app without deploying it to an application servlet
container. By default, it chooses port 8080.

104

https://start.spring.io

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

Testing: ToDo App

Testing the ToDo app should be very simple. This testing is through commands or a
specific client. If you are thinking about unit or integration testing, I'll explain that in
another chapter. Here we are going to use the cURL command. This command comes in
any UNIX OS flavor by default, but if you are a Windows user, you can download it from
https://curl.haxx.se/download.html.

When running for the first time, the ToDo app shouldn’t have any ToDo’s. You can
make sure of this by executing the following command in another terminal.

curl -i http://localhost:8080/api/todo
You should see something similar to this output:

HTTP/1.1 200

Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked

Date: Wed, 02 May 2018 22:10:19 GMT

[]

You are targeting the /api/todo endpoint, and if you take a look at Listing 4-7, a
getToDos method returns ResponseEntity<Iterable<ToDo>>, which is a collection
of ToDo’s. The default response is a JSON format (see the Content-Type header). The
response is sending back the HTTP headers and status.

Next, let’s add some ToDo’s with the following command.

curl -i -X POST -H "Content-Type: application/json" -d '{
"description”:"Read the Pro Spring Boot 2nd Edition Book"}'
http://localhost:8080/api/todo

In the command, post (-X POST) and data (-d) are JSON format. You are sending only the
description field. It is necessary to add the header (-H) with the right content-type, and point
to the /api/todo endpoint. After executing the command, you should see output like this:

HTTP/1.1 201

Location: http://localhost:8080/api/todo/d8d37c51-10a8-4c82-a7b1-
b72b5301cdab

Content-Length: 0

Date: Wed, 02 May 2018 22:21:09 GMT

105

https://curl.haxx.se/download.html

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

You get back the location header, where the ToDo is read. Location exposes the ID of
the ToDo you have just created. This response was generated by the createToDo method.
Add at least another two ToDo’s so that we can have more data.

If you execute the first command one more time to get all the ToDo’s, you should see
something like this:

curl -i http://localhost:8080/api/todo
HTTP/1.1 200

Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked

Date: Wed, 02 May 2018 22:30:16 GMT

[{"id":"d8d37c51-10a8-4c82-a7b1-b72b5301cdab", "description”:"Read the

Pro Spring Boot 2nd Edition Book","created":"2018-05-02722:27:26.042+0
000", "modified":"2018-05-02T22:27:26.042+0000", "completed":false},{"id"
:"fbb20090-19f5-4abc-a8a9-92718c2c4759", "description”:"Bring Milk after
work","created":"2018-05-02T22:28:23.249+0000", "modified":"2018-05-02T22:
28:23.249+0000", "completed":false},{"id":"2d051b67-7716-4ee6-9c45-1de939-
fa579f","description”:"Take the dog for a walk","created":"2018-05-02T22:29
:28.319+0000", "modified":"2018-05-02722:29:28.319+0000", "completed":false}]

Of course, this does not print very well, but you have the entire ToDo’s list. You can
format this output by using another command-line tool: jq (https://stedolan.github.
io/jq/).

curl -s http://localhost:8080/api/todo | jq

[
{
"id": "d8d37c¢51-10a8-4c82-a7b1-b72b5301cdab",
"description”: "Read the Pro Spring Boot 2nd Edition Book",
"created": "2018-05-02T22:27:26.042+0000",
"modified": "2018-05-02T22:27:26.042+0000",
"completed": false

"id": "fbb20090-19f5-4abc-a8a9-92718c2c4759",
"description": "Bring Milk after work",

106

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

"created": "2018-05-02T722:28:23.249+0000",
"modified": "2018-05-02T22:28:23.249+0000",
"completed": false

"id": "2d051b67-7716-4ee6-9c45-1de939fa579f",
"description”: "Take the dog for a walk",
"created": "2018-05-02T22:29:28.319+0000",
"modified": "2018-05-02T22:29:28.319+0000",
"completed": false

Next, you can modify one of the ToD0’s; for example,

curl -i -X PUT -H "Content-Type: application/json" -d '{
"description":"Take the dog and the cat for a walk", "id":"2d051b67-7716-
4ee6-9c45-1de939fa579f"}' http://localhost:8080/api/todo

HTTP/1.1 201

Location: http://localhost:8080/api/todo/2d051b67-7716-4ee6-9c45-
1de939fas579f

Content-Length: 0

Date: Wed, 02 May 2018 22:38:03 GMT

Here Take the dog for a walkischangedto Take the dog and the cat for a
walk. The command is using the -X PUT and the id field is needed (we can get it from the
location header from previous POSTs or from accessing the /api/todo endpoint). If you
review all the ToDo’s, you have a modified ToDo.

Next, let’s complete a ToDo. You can execute the following command.

curl -i -X PATCH http://localhost:8080/api/todo/2d051b67-7716-4ee6-9c45-
1de939fas579f

HTTP/1.1 200

Location: http://localhost:8080/api/todo/2d051b67-7716-4ee6-9c45-
1de939fas579f

Content-Length: 0

Date: Wed, 02 May 2018 22:50:27 GMT

107

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

The command is using the -X PATCH that process by the setCompleted method. If
you review the location link, ToDo should be completed.

curl -s http://localhost:8080/api/todo/2d051b67-7716-4ee6-9c45-1de939fa579f

| Jg

{
"id": "2d051b67-7716-4ee6-9c45-1de939fa579f",
"description”: "Take the dog and the cat for a walk",
"created": "2018-05-02T22:44:57.652+0000",
"modified": "2018-05-02T22:50:27.691+0000",
"completed”: true

The completed field is now true. If this ToDo is completed, then you can delete it.

curl -i -X DELETE http://localhost:8080/api/todo/2d051b67-7716-4ee6-9c45-
1de939fas579f

HTTP/1.1 204

Date: Wed, 02 May 2018 22:56:18 GMT

The cURL command has -X DELETE, which is processed by the deleteToDo method,
removing it from the hash. If you take a look at all the ToDo’s, you should now have one
less than before.

curl -s http://localhost:8080/api/todo | jq

[
{
"id": "d8d37c51-10a8-4c82-a7b1-b72b5301cdab",
"description”: "Read the Pro Spring Boot 2nd Edition Book",
"created": "2018-05-02T22:27:26.042+0000",
"modified": "2018-05-02T22:27:26.042+0000",
"completed": false

"id": "fbb20090-19f5-4abc-a8a9-92718c2c4759",
"description": "Bring Milk after work",
"created": "2018-05-02T22:28:23.249+0000",

108

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

"modified": "2018-05-02T722:28:23.249+0000",
"completed": false
}
]

Now, let’s test the validation. Execute the following command.

curl -i -X POST -H "Content-Type: application/json" -d '{"description":""}'
http://localhost:8080/api/todo

The command is sending data (-d option) with the description field empty
(normally, this happens when you are submitting a HTML form). You should see the
following output.

HTTP/1.1 400

Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked

Date: Thu, 03 May 2018 00:01:53 GMT
Connection: close

"errors":["must not be blank"],"errorMessage":"Validation failed. 1 error(s)"}

A 400 status code (Bad Request) and the errors and errorMessage (built by the
ToDoValidationErrorBuilder class) response. Use the following command.

curl -i -X POST -H "Content-Type: application/json" http://localhost:8080/
api/todo

HTTP/1.1 400

Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked

Date: Thu, 03 May 2018 00:07:28 GMT
Connection: close

{"errorMessage":"Required request body is missing: public org.
springframework.http.ResponseEntity<?> com.apress.todo.controller.
ToDoController.createToDo(com.apress.todo.domain.ToDo,org. springframework.
validation.Errors)"}

109

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

This command is posting but no data and is responding with an error message. This
is from the @ExceptionHandler annotation and the handleException method. All the
errors (different from the description being blank) are handled by this method.

You can keep testing more ToDo’s or modify some of the validation annotations to
see how they work.

Note If you don’t have the cURL command or you can’t install it, you can use

any other REST client, such as PostMan (https://www.getpostman.com) or
Insomnia (https://insomnia.rest). If you like command lines, then Httpie

(https://httpie.org)is another good option; it uses Python.

Spring Boot Web: Overriding Defaults

Spring Boot web auto-configuration sets defaults to run a Spring web application. In this
section, I show you how to override some of them.

You can override the web defaults by either creating your own configuration (XML or
JavaConfig) and/or using the application.properties (or.yml) file.

Server Overriding

By default, the embedded Tomcat server starts on port: 8080, but you can easily change
that by using the following property.

server.port=8081

One of the cool features of Spring is that you can apply the SpEL (Spring Expression
Language) and apply it to these properties. For example, when you create an executable
jar (./mvnw package or ./gradlew build), you can pass some parameters when
running your application. You can do the following

java -jar todo-in-memory-0.0.1-SNAPSHOT.jar --port=8787
and in your application.properties, you have something like this:

server.port=${port:8282}

110

https://www.getpostman.com
https://insomnia.rest
https://httpie.org

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

This expression means that if you pass the --port argument, it takes that value; if
not, its set to 8282. This is just a small taste of what you can do with SpEL, but if you
want to know more, go to https://docs.spring.io/spring/docs/current/spring-
framework-reference/core.html#expressions

You can also change the server address, which is useful when you want to run your
application using a particular IP.

server.address=10.0.0.7

You can change the context of your application.
server.servlet.context-path=/my-todo-app

And you can do a cURL like this:
curl -I http://localhost:8080/my-todo-app/api/todo

You can have Tomcat with SSL by using the following properties.

server.port=8443
server.ssl.key-store=classpath:keystore. jks
server.ssl.key-store-password=secret
server.ssl.key-password=secret

We revisit these properties and make our app work with SSL in a later chapter.
You can manage a session by using the following properties.

server.servlet.session.store-dir=/tmp
server.servlet.session.persistent=true
server.servlet.session.timeout=15

server.servlet.session.cookie.name=todo-cookie.dat
server.servlet.session.cookie.path=/tmp/cookies

You can enable HTTP/2 support if your environment supports it.

server.http2.enabled=true

111

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

JSON Date Format

By default, the date types are exposed in the JSON response in a long format; but you can
change that by providing your own pattern in the following properties.

spring.jackson.date-format=yyyy-MM-dd HH:mm:ss
spring.jackson.time-zone=MST7MDT

These properties format the date and also use the time zone that you specified
(if you want to know more about the available IDs you can execute java.util.
TimeZonetigetAvailableIDs). If you modify the ToDo app, run it, add some ToDo’s, and
get the list. You should get a response like this:

curl -s http://localhost:8080/api/todo | jq

[
{
"id": "f52d1429-432d-43c5-946d-15c7fa5f50eb",
"description”: "Get the Pro Spring Boot 2nd Edition Book",
"created": "2018-05-03 11:40:37",
"modified": "2018-05-03 11:40:37",
"completed": false

If you want to know more about which properties exists, bookmark https://docs.
spring.io/spring-boot/docs/current/reference/html/common-application-
properties.html.

Content-Type: JSON/XML

Spring MVC uses HttpMessageConverters (client and server side) to negotiate content
conversion in an HTTP exchange. Spring Boot sets the defaults to JSON if it finds the
Jackson libraries in the classpath. But what happens if you want to expose XML as well,
and request JSON or XML content?

Spring Boot makes this very easy by adding an extra dependency and a property.

If you are using Maven, see Listing 4-10.

112

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT
Listing 4-10. Maven: pom.xml

<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupId>
<artifactId>jackson-dataformat-xml</artifactId>
</dependency>

Or if you are using Gradle, see Listing 4-11.

Listing 4-11. Gradle: build.gradle

compile('com.fasterxml.jackson.dataformat:jackson-dataformat-xml")
You can add the following property to the application.properties file.

spring.mvc.contentnegotiation.favor-parameter=true

If you run the ToDo app with these changes, you can have a response in an XML
format by executing the following.

curl -s http://localhost:8080/api/todo?format=xml
<Arraylist><item><id>b3281340-b1aa-4104-b3d2-77a96a0e41b8</
id><description>Read the Pro Spring Boot 2nd Edition Book</
description><created>2018-05-03T19:18:30.260+0000</created><modified>2018-
05-03T19:18:30.260+0000</modified><completed>false</completed></item></
Arraylist>

In the previous command, ?format=xml is appended to the URL; the same goes for a
JSON response.

curl -s http://localhost:8080/api/todo?foxrmat=json | jq

[
{
"id": "b3281340-blaa-4104-b3d2-77a96a0e41b8",
"description”: "Read the Pro Spring Boot 2nd Edition Book",
"created": "2018-05-03T719:18:30.260+0000",
"modified": "2018-05-03T19:18:30.260+0000",
"completed": false

113

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

If you want to prettily print the XML, in UNIX environments there exists the xml1int
command.

curl -s http://localhost:8080/api/todo?format=xml | xmllint --format -

Spring MVC: Overriding Defaults

So far I haven’t showed you how to create Web apps that expose a combination of
technologies such as HTML, JavaScript and so for, and this is because nowadays the
industry is leaning towards to use JavaScript/TypeScript apps for the front end.

This doesn’t mean that you can’t create a Spring Web MVC with backend and
frontend. Spring Web MVC offers you a very well integration with Template Engines and
other technologies.

If you are using any template engine you can choose the view prefix and suffix by
using the following properties:

spring.mvc.view.prefix=/WEB-INF/my-views/
spring.mvc.view.suffix=.jsp

As you can see, Spring Boot can help you with a lot of configuration that normally
you need to do extensively if you are doing regular Spring Web apps. This new way help
you to accelerate your development. If you need more guidance on how to use Spring
MVC and all its features you can take a look at the Reference documentation: https://
docs.spring.io/spring/docs/5.0.5.RELEASE/spring-framework-reference/web.
html#mvc

Using a Different Application Container

By default, Spring Boot uses Tomcat (for web servlet apps) as an application container
and sets up an embedded server. If you want to override this default, you can do it by
modifying the Maven pom.xml or the Gradle build.gradle files.

114

https://docs.spring.io/spring/docs/5.0.5.RELEASE/spring-framework-reference/web.html#mvc
https://docs.spring.io/spring/docs/5.0.5.RELEASE/spring-framework-reference/web.html#mvc
https://docs.spring.io/spring/docs/5.0.5.RELEASE/spring-framework-reference/web.html#mvc

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

Using Jetty Server

The same changes apply to Undertow or Netty (see Listing 4-12 and Listing 4-13).

Listing 4-12. Maven - pom.xml

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>
<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jetty</artifactId>
</dependency>

Listing 4-13. Gradle: build.gradle

configurations {
compile.exclude module: "spring-boot-starter-tomcat”

}

dependencies {
compile("org.springframework.boot:spring-boot-starter-web")
compile("org.springframework.boot:spring-boot-starter-jetty")
/1 ...

Spring Boot Web: Client

Another important feature of creating Spring Boot web applications is that the Spring
Web MVC comes with a useful RestTemplate class that helps create clients.

115

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

ToDo Client App

Open your browser and go to https://start.spring.io site to create your ToDo client
app by using the following values (also see Figure 4-2).

e Group: com.apress.todo

o Artifact: todo-client

e Name: todo-client

o Package Name: com.apress.todo

e Dependencies: Web, Lombok

en® < 1] OSUOL® & start.spring.io & jhio s

SPRING INITIALIZR

ar

Generate a mawenroec ¢ With == ¢ and Spring Boot 201

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies

com.apress.todo & Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies
Name

todo-client

Description

Demo project for Spring Boot

Package Name

com.apress. todo

Packaging

Jar

Java Version

8

Too many options? Switch back to the simple version.

Generate Project % + «

Figure 4-2. ToDo client app

116

https://start.spring.io

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

Press the Generate Project button and download the ZIP file. Uncompress it and
import it into your favorite IDE.

Domain Model: ToDo

Create the ToDo domain model, which should match the minimum fields from the
previous application (see Listing 4-14).

Listing 4-14. com.apress.todo.client.domain.ToDo.java
package com.apress.todo.client.domain;
import lombok.Data;

import java.time.localDateTime;
import java.util.UUID;

@Data

public class ToDo {

private String id;

private String description;
private LocalDateTime created;
private LocalDateTime modified;
private boolean completed;

public ToDo(){
LocalDateTime date = LocalDateTime.now();
this.id = UUID.randomUUID().toString();
this.created = date;
this.modified = date;

}
public ToDo(String description){
this();
this.description = description;
}

Listing 4-14 shows you the ToDo domain model class. The package name is different;
there is no need to match the name of the class. The application doesn’t need to know
what the package is to serialize or deserialize into JSON.

117

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

Error Handler: ToDoErrorHandler

Next, let’s create an error handler that takes care of any error responses that come from
the server. Create the ToDoErrorHandler class (see Listing 4-15).

Listing 4-15. com.apress.todo.client.errorToDoErrorHandler.java
package com.apress.todo.client.error;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.http.client.ClientHttpResponse;

import org.springframework.util.StreamUtils;

import org.springframework.web.client.DefaultResponseErrorHandler;

import java.io.IOException;
import java.nio.charset.Charset;

public class ToDoErrorHandler extends DefaultResponseErrorHandler {
private Logger log = LoggerFactory.getlLogger(ToDoErrorHandler.class);

@verride
public void handleError(ClientHttpResponse response)
throws IOException {
log.error(response.getStatusCode().toString());
log.error(StreamUtils.copyToString(
response.getBody(),Charset.defaultCharset()));

}

Listing 4-15 shows the ToDoErrorHandler class, which is a custom class that
extends from the DefaultResponseErrorHandler. So if we get a 400 HTTP status
(Bad Request), we can catch the error and react to it; but in this case, the class is just
logging the error.

118

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

Custom Properties: ToDoRestClientProperties

It's necessary to know where the ToDo app is running and which basePath to use, which
is why it is necessary to hold that information. One of the best practices is to have this
information externally.

Let’s create a ToDoRestClientProperties class that holds the URL and the basePath
information. This information can be saved in the application.properties file (see
Listing 4-16).

Listing 4-16. com.apress.todo.client.ToDoRestClientProperties.java
package com.apress.todo.client;

import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.stereotype.Component;

@Component
@ConfigurationProperties(prefix="todo")
@Data

public class ToDoRestClientProperties {

private String url;
private String basePath;

Listing 4-16 shows the class that holds the information about the URL and the
basePath. Spring Boot allows you to create custom-typed properties that can be accessed
and mapped from the application.properties file; the only requirement is that you
need to mark the class with the @ConfigurationProperties annotation. This annotation
can accept parameters like prefix.

In the application.properties file, add the following content.

todo.url=http://localhost:8080
todo.base-path=/api/todo

119

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

Client: ToDoRestClient

Let’s create the client that uses the RestTemplate class, which helps exchange
information between this client and the server. Create the ToDoRestClient class (see
Listing 4-17).

Listing 4-17. com.apress.todo.client.ToDoRestClient.java
package com.apress.todo.client;

import com.apress.todo.client.domain.ToDo;

import com.apress.todo.client.error.ToDoErrorHandler;
import org.springframework.core.ParameterizedTypeReference;
import org.springframework.http.*;

import org.springframework.stereotype.Service;

import org.springframework.web.client.RestTemplate;

import java.net.URI;

import java.net.URISyntaxException;
import java.util.HashMap;

import java.util.Map;

@Service
public class ToDoRestClient {

private RestTemplate restTemplate;
private ToDoRestClientProperties properties;

public ToDoRestClient(

ToDoRestClientProperties properties){
this.restTemplate = new RestTemplate();
this.restTemplate.setErrorHandler(

new ToDoErrorHandler());
this.properties = properties;

120

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

public Iterable<ToDo> findAll() throws URISyntaxException {

}

RequestEntity<Iterable<ToDo>> requestEntity = new RequestEntity

<Iterable<ToDo>>(HttpMethod.GET,new URI(properties.getUrl() +

properties.getBasePath()));

ResponseEntity<Iterable<ToDo>> response =
restTemplate.exchange(requestEntity,new ParameterizedType
Reference<Iterable<ToDo>>(){});

if(response.getStatusCode() == HttpStatus.OK){
return response.getBody();

}

return null;

public ToDo findById(String id){

}

Map<String, String> params = new HashMap<String, String>();
params.put("id", id);

return restTemplate.getForObject(properties.getUrl() + properties.
getBasePath() + "/{id}",ToDo.class,params);

public ToDo upsert(ToDo toDo) throws URISyntaxException {

RequestEntity<?> requestEntity = new
RequestEntity<>(toDo,HttpMethod.POST,new URI(properties.getUrl() +
properties.getBasePath()));

ResponseEntity<?> response = restTemplate.exchange(requestEntity,
new ParameterizedTypeReference<ToDo>() {});

if(response.getStatusCode() == HttpStatus.CREATED){
return restTemplate.getForObject(response.getHeaders().
getlLocation(),ToDo.class);

}

return null;

121

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

public ToDo setCompleted(String id) throws URISyntaxException{
Map<String, String> params = new HashMap<String, String>();
params.put("id", id);
restTemplate.postForObject(properties.getUrl() + properties.
getBasePath() + "/{id}?_method=patch",null, ResponseEntity.class,
params);

return findById(id);
}

public void delete(String id){
Map<String, String> params = new HashMap<String, String>();
params.put("id", id);
restTemplate.delete(properties.getUrl() + properties.getBasePath()
+ "/{id}",params);

Listing 4-17 shows the client that interacts with the ToDo application. This class is
using the RestTemplate class. RestTemplate is Spring’s central class for synchronous
client-side HTTP access. It simplifies communication with HTTP servers and enforces
RESTful principles. It handles HTTP connections, leaving application code to provide
URLSs (with possible template variables) and extract results. One of the many features
allows you to handle your own error response. So take a look at the constructor and see
that is setting the ToDoErrorHandler class.

Review the class; it contains all the actions that the ToDo app (Backend) has.

Note By default, RestTemplate relies on standard JDK facilities to establish
HTTP connections. You can switch to use a different HTTP library, such as Apache
HttpComponents, Netty, and OkHttp, through the InterceptingHttpAccessor.
setRequestFactory(org.springframework.http.client.ClientHttpRequestFactory)
property.

122

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

Running and Testing the Client

To run and test the client app, modify the TodoClientApplication class (see Listing 4-18).

Listing 4-18. com.apress.todo.TodoClientApplication.java

package com.apress.todo;

import
import
import
import
import
import
import
import
import

com
com

org.
org.

org

org.
org.
org.
org.

.apress.todo.client.ToDoRestClient;
.apress.todo.client.domain.ToDo;

slf4j.Logger;

slf4j.LoggerFactory;
.springframework.boot.CommandLineRunner;
springframework.boot.SpringApplication;
springframework.boot.WebApplicationType;
springframework.boot.autoconfigure.SpringBootApplication;
springframework.context.annotation.Bean;

@SpringBootApplication
public class TodoClientApplication {

public static void main(String[] args) {

}

SpringApplication app = new
SpringApplication(TodoClientApplication.class);
app.sethiebApplicationType(WebApplicationType.NONE);

app.run(args);

private Logger log = LoggerFactory.getlLogger(TodoClientApplication.
class);

@®Bean
public CommandLineRunner process(ToDoRestClient client){
return args -> {

Iterable<ToDo> toDos = client.findAll();
assert toDos != null;
toDos.forEach(toDo -> log.info(toDo.toString()));

123

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

ToDo newToDo = client.upsert(new ToDo("Drink plenty of Water
daily!"));

assert newToDo != null;

log.info(newToDo.toString());

ToDo toDo = client.findById(newToDo.getId());
assert toDos != null;
log.info(toDo.toString());

ToDo completed = client.setCompleted(newToDo.getId());
assert completed.isCompleted();
log.info(completed.toString());

client.delete(newToDo.getId());
assert client.findById(newToDo.getId()) == null;

};

Listing 4-18 shows you how to test the client. First, turn off the web environment with
WebApplicationType.NONE. Then use CommandLineRunner (as bean) to execute the code
before the app starts.

Before running it, analyze the code to see what’s going on. You can run using a
command line or through your IDE. Make sure the ToDo app is up and running.

You will use this client again.

Note Remember that all the source code can be download it from the Apress
website or at this GitHub location: https://github.com/Apress/pro-
spring-boot-2.

Summary

In this chapter, you learned how Spring Boot manages and auto-configures web
applications and how it uses the power of the Spring MVC. You also learned that you can
override all the sensible defaults that auto-configuration provides.

124

https://github.com/Apress/pro-spring-boot-2
https://github.com/Apress/pro-spring-boot-2

CHAPTER 4 WEB APPLICATIONS WITH SPRING BOOT

With a ToDo app, you learned some of the Spring Boot features for web applications,
such as JSON and XML configurations, the usage of several MVC annotations, such as @
RequestMapping and @ExceptionHandler, and more.

You learned how Spring Boot uses an embedded application container (in this case,
Tomcat was the default) to easiely deploy or transport.

All the annotations that you used in the ToDo app are part of Spring MVC. In the
remainder of the book, we implement more. If you want to know more about Spring
MVC, take a look at Pro Spring 5 (Apress, 2017).

In the next chapter, you learn how Spring Boot auto-configures Spring Data modules
for persistence engines. You also learn more about Spring JDBC, JPA, REST, and NoSQL

modules, such as Mongo.

125

CHAPTER 5

Data Access with
Spring Boot

Data has become the most important part of the IT world, from trying to access, persist,
and analyze it, to using a few bytes to petabytes of information. There have been many
attempts to create frameworks and libraries to facilitate a way for developers to interact
with the data, but sometimes this becomes too complicated.

After version 3.0, the Spring Framework created different teams that specialized
in the different technologies. The Spring Data project team was born. This particular
project’s goal is to simplify uses of data access technologies, from relational and non-
relational databases, to map-reduce frameworks and cloud-based data services. This
Spring Data project is a collection of subprojects specific to a given database.

This chapter covers data access with Spring Boot using the ToDo application from
previous chapters. You are going to make the ToDo app work with SQL and NoSQL
databases. Let’s get started.

SQL Databases

Do you remember those days when (in the Java world) you needed to deal with all the
JDBC (Java Database Connectivity) tasks? You had to download the correct drivers

and connection strings, open and close connections, SQL statements, result sets, and
transactions, and convert from result sets to objects. In my opinion, these are all very
manual tasks. Then a lot of ORM (object-relational mapping) frameworks started

to emerge to manage these tasks—frameworks like Castor XML, ObjectStore, and
Hibernate, to mention a few. They allowed you to identify the domain classes and create
XML that was related to the database’s tables. At some point, you also needed to be an
expert to manage those kinds of frameworks.

127
© Felipe Gutierrez 2019

F. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_5

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

The Spring Framework helped a lot with those frameworks by following the template
design pattern. It allowed you create an abstract class that defined ways to execute the
methods and created the database abstractions that allowed you to focus only on your
business logic. It left all the hard lifting to the Spring Framework, including handling
connections (open, close, and pooling), transactions, and the way you interact with the
frameworks.

It's worth mentioning that the Spring Framework relies on several interfaces and
classes (like the javax.sql.DataSource interface) to get information about the database
you are going to use, how to connect to it (by providing a connection string), and its
credentials. Now, if you have transaction management to do, the DataSource interface is
essential. Normally, the DataSource interface requires the Driver class, the JDBC URL, a
username, and a password to connect to the database.

Spring Data

The Spring Data team has created some of the amazing data-driven frameworks
available today for the Java and Spring community. Their mission is to provide familiar
and consistent Spring-based programming for data access and total control of the
underlying data store technology that you want to use.

The Spring Data project is the umbrella for several additional libraries and data
frameworks, which makes it easy to use data access technologies for relational and non-
relation databases (a.k.a. NoSQL).

The following are some of the Spring Data features.

o Support for cross-store persistence

e Repository-based and custom object-mapping abstractions
e Dynamic queries based on method names

o Easy Spring integration via JavaConfig and XML

e Support for Spring MVC controllers

o Events for transparent auditing (created, last changes)

There are plenty more features—an entire book would be needed to cover each one
of them. This chapter covers just enough to create powerful data-driven applications.
Remember that Spring Data is the main umbrella project for everything that is covered.

128

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Spring JDBC

In this section, I show you how to use the JdbcTemplate class. This particular class
implements the template design pattern, which is a concrete class that exposes defined
ways or templates to execute its methods. It hides all the boilerplate algorithms or a set
of instructions. In Spring, you can choose different ways to form the basis for your JDBC
database access; using the JdbcTemplate class is the classic Spring JDBC approach and
this is the lowest level.

When you are using the JdbcTemplate class, you only need to implement callback
interfaces to create an easy way to interact with any database engine. The JdbcTemplate
class requires a javax.sql.DataSource and can be used in any class, by declaring
it in JavaConfig, XML, or by annotations. The JdbcTemplate class takes care of all
SQLExceptions and are properly handled.

You can use NamedParameterJdbcTemplate (a JdbcTemplate wrapper) to provide
named parameters (:parameterName), instead of the traditional JDBC "?" placeholders.
This is another option for your SQL queries.

The JdbcTemplate class exposes different methods.

e Querying (SELECT). You normally use the query, queryForObject
method calls.

o Updating (INSERT/UPDATE/DELETE). You use the update method
call.

e Operations (database/table/functions). You use the execute and
update method calls.

With Spring JDBC, you have the ability to call stored procedures by using the
SimpleJldbcCall class and manipulating the result with a particular RowMapper interface.
RowMapper<T> is used by the JdbcTemplate class for mapping rows of ResultSet on a
per-row basis.

Spring JDBC has support for embedded database engines, such as HSQL, H2 and
Derby. It is easy to configure and offers quick startup time and testability.

Another feature is the ability to initialize the database with scripts; you can use
embedded support or not. You can add your own schemas and data in a SQL format.

129

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

JDBC with Spring Boot

The Spring Framework has the support for working with SQL databases either using
JDBC or ORMs (I cover this in the following sections). Spring Boot brings even more to
data applications.

Spring Boot uses auto-configuration to set sensible defaults when it finds out that
your application has a JDBC JARs. Spring Boot auto-configures the datasource based on
the SQL driver in your classpath. If it finds that you have any of the embedded database
engines (H2, HSQL or Derby), it is configured by default; in other words, you can have
two driver dependencies (e.g., MySQL and H2), and if Spring Boot doesn’t find any
declared datasource bean, it creates it based on the embedded database engine JAR
in your classpath (e.g., H2). Spring Boot also configures HikariCP as connection pool
manager by default. Of course, you can override these defaults.

If you want to override the defaults, then you need to provide your own datasource
declaration, either JavaConfig, XML, or in the application.properties file.

src/main/resources/application.properties

Custom DataSource

spring.datasource.username=springboot

spring.datasource.password=rocks!
spring.datasource.driver-class-name=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost:3306/testdb?autoReconnect=true
duseSSL=false

Spring Boot supports JNDI connections if you are deploying your app in an
application container. You can set the JNDI name in the application.properties file.

spring.datasource.jndi-name=java:jboss/ds/todos

Another feature that Spring Boot brings to data apps is that if you have a file named
schema.sql, data.sql, schema-<platform>.sql, or data-<platform>.sqlin the classpath, it
initializes your database by executing those script files.

So, If you want to use JDBC in your Spring Boot application, you need to add the
spring-boot-starter-jdbc dependency and your SQL driver.

130

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

ToDo App with JDBC

Is time to work with the ToDo app as we did in the previous chapter. You can start from

scratch or you can follow along. If you are starting from scratch, then you can go to

Spring Initializr (https://start.spring.io) and add the following values to the fields.

Group: com.apress.todo
Artifact: todo-jdbc

Name: todo-jdbc

Package Name: com.apress.todo

Dependencies: Web, Lombok, JDBC, H2, MySQL

You can select either Maven or Gradle as the project type. Then you can press the

Generate Project button, which downloads a ZIP file. Uncompress it and import the

project in your favorite IDE (see Figure 5-1).

131

https://start.spring.io

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

SUO D

SPRING INITIALIZR

Generate a wvevenrroject ¢+ With e

Project Metadata
Artifact coordinates
Group
com.apress.todo G
Artifact
todo-jdbe
Name

todo-jdbe

Description

Demo project for Spring Boot

Package Name

com.apress.todo

Packaging

Jar

Java Version

8

Too many options? Switch back to the simple version.

& start.spring.io &

: and Spring Boot zo: :

Dependencies
Add Spring Boot Starters and dependencies to your application
Search for dependencies

Web, Security, JPA, Actuator, Devtools...

Selected Dependencies

Generate Project * + «

Figure 5-1. Spring Initializr https://start.spring.io

You can copy all the classes from the previous chapter, except for the
ToDoRepository class; this is the only class that is new. Also make sure that in the

pom.xml or build.gradle files, there are two drivers: H2 and MySQL. Based on what I
discussed in the previous section, if I don’t specify any datasource (in the JavaConfig,

XML or application.properties) what does Spring Boot auto-configuration do?
Correct! Spring Boot auto-configures the H2 embedded database by default.

132

https://start.spring.io

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Repository: ToDoRepository

Create a ToDoRepository class that implements the CommonRepository interface (see
Listing 5-1).

Listing 5-1. com.apress.todo.respository.ToDoRepository.java
package com.apress.todo.repository;

import com.apress.todo.domain.ToDo;

import org.springframework.dao.EmptyResultDataAccessException;

import org.springframework.jdbc.core.RowMapper;

import org.springframework.jdbc.core.namedparam.NamedParameterJdbcTemplate;
import org.springframework.stereotype.Repository;

import java.sql.ResultSet;
import java.time.LocalDateTime;
import java.util.*;

@Repository
public class ToDoRepository implements CommonRepository<ToDo> {

private static final String SQL_INSERT = "insert into todo (id,
description, created, modified, completed) values (:id,:description,
:created, :modified, :completed)”;

private static final String SQL_QUERY_FIND ALL = "select id,
description, created, modified, completed from todo";

private static final String SQL QUERY FIND BY ID = SQL QUERY_FIND ALL +
" where id = :id";

private static final String SQL UPDATE = "update todo set description =
:description, modified = :modified, completed = :completed

where id = :id";

private static final String SQL DELETE = "delete from todo where id = :id";

private final NamedParameterJdbcTemplate jdbcTemplate;

public ToDoRepository(NamedParameterJdbcTemplate jdbcTemplate){
this.jdbcTemplate = jdbcTemplate;

133

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

private RowMapper<ToDo» toDoRowMapper = (ResultSet rs, int rowNum) -» {

ToDo toDo = new ToDo();

toDo.setId(rs.getString("id"));
toDo.setDescription(rs.getString("description"));
toDo.setModified(xs.getTimestamp(“modified").toLocalDateTime());
toDo.setCreated(rs.getTimestamp("created").toLocalDateTime());
toDo.setCompleted(rs.getBoolean("completed"));

return toDo;

}s

@verride
public ToDo save(final ToDo domain) {
ToDo result = findById(domain.getId());
if(result != null){
result.setDescription(domain.getDescription());
result.setCompleted(domain.isCompleted());
result.setModified(LocalDateTime.now());
return upsert(result, SQL UPDATE);

}
return upsert(domain,SQL INSERT);

}

private ToDo upsert(final ToDo toDo, final String sql){
Map<String, Object> namedParameters = new HashMap<>();
namedParameters.put("id",toDo.getId());
namedParameters.put("description”,toDo.getDescription());
namedParameters.put("created",java.sql.Timestamp.valueOf(toDo.
getCreated()));
namedParameters.put("modified", java.sql.Timestamp.valueOf(toDo.
getModified()));
namedParameters.put("completed",toDo.isCompleted());

this.jdbcTemplate.update(sql,namedParameters);

return findById(toDo.getId());

134

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

@verride

public Iterable<ToDo> save(Collection<ToDo> domains) {
domains.forEach(this::save);
return findAll();

}

@verride

public void delete(final ToDo domain) {
Map<String, String> namedParameters = Collections.
singletonMap("id", domain.getId());
this.jdbcTemplate.update(SQL_DELETE,namedParameters);

}
@verride
public ToDo findById(String id) {
try {
Map<String, String> namedParameters = Collections.
singletonMap("id", id);
return this.jdbcTemplate.queryForObject(SQL QUERY FIND BY ID,
namedParameters, toDoRowMapper);
} catch (EmptyResultDataAccessException ex) {
return null;
}
}
@verride

public Iterable<ToDo> findAll() {
return this.jdbcTemplate.query(SQL QUERY FIND ALL, toDoRowMapper);

Listing 5-1 shows the ToDoRepository class that uses the JdbcTemplate, not directly
tough. This class is using NamedParameterJdbcTemplate (a JdbcTemplate wrapper) that
helps with all the named parameters, which means that instead of using ? in your SQL
statements, you use names like :id.

This class is also declaring a RowMapper; remember that the JdbcTemplate used the
RowMapper for mapping rows of a ResultSet on a per-row basis.

135

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Analyze the code and check out every method implementation that is using plain
SQL in every method.

Database Initialization: schema.sq|l

Remember that the Spring Framework allows you to initialize your database—creating or
altering any table, or inserting/updating data when your application starts. To initialize

a Spring app (not Spring Boot), it is necessary to add configuration (XML or JavaConfig);
but the ToDo app is Spring Boot. If Spring Boot finds the schema.sql and/or data.sql
files, it executes them automatically. Let’s create the schema.sql (see Listing 5-2).

Listing 5-2. src/main/resources/schema.sql

DROP TABLE IF EXISTS todo;
CREATE TABLE todo

(

id varchar(36) not null primary key,
description varchar(255) not null,
created timestamp,

modified timestamp,

completed boolean

)5

Listing 5-2 shows the schema. sql that executes when the application is starting,
and because H2 is the default datasource that is configured, then this script is executed
against the H2 engine.

Running and Testing: ToDo App

Now it’s time to run and test the ToDo app. You can run it within your IDE, or if you are
using Maven, execute

./mvnw spring-boot:run
If you are using Gradle, execute
./gradlew bootRun

To test the ToDo app, you can run your ToDoClient app. It should work without any
problems.

136

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

H2 Console

Now that you ran the ToDo app, how can you make sure that the app is saving the data in

the H2 engine? Spring Boot has a property that enables a H2 console so that you can interact

with it. It is very useful for development purposes but not for production environments.
Modify the application.properties file and add the following property.

src/main/resources/application.properties
spring.h2.console.enabled=true

Restart the ToDo app, add values with a cURL command, and go to your browser and
hithttp://localhost:8080/h2-console. (see Figure 5-2).

ene® < in| ojlofe locaihost Y LBE=B

[English 4] Preferences Tools Help

Saved Settings: ("Generic H2 (Embedded) 2

Sefting Name: ggneric H2 (Embedded) B save Remove

Driver Class: org.h2.Driver

JDBC URL: jdbc:h2:mem:testdb

User Name: sa

Password: =

|Connect Test Connection

Figure 5-2. http://localhost:8080/h2-console
137

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Figure 5-2 shows the H2 console, which you can reach at the /h2-console endpoint.
(you can override this endpoint as well). The JDBC URL must be jdbc:h2:mem:testdb
(sometimes this is different, so change it to that value). By default, the database name
is testdb (but you can override this as well). If you click the Connect button, you get a
different view, in which you can see the table and data being created (see Figure 5-3).

e0® < i} SHON® localhost ¢ th || & B
| & | BAne commit “0 70 |M.axrows: 0 0 | Auto complete Aulnselect @
|| jdbe:h2imem:testdb Run |Run Selected | Auto complete| Clear SQL statement:
B8 B To00 SELECT * FROM TODO
®= 0o
[DESCRIPTION
[CREATED
[MODIFIED
[COMPLETED
[|3, Indexes
B {_1 INFORMATION_SCH! e e+ FROM TODO;
{§ Users
D DESCRIPTION CREATED MODIFIED COMPLETED
(@ H2 1.4.197 (2018-03-18) !
7f3e00d4-912¢c-4ba5-9e48- Read the Pro Spring Boot 2nd 2018-05-05 2018-05-05 FALSE
ScB41Tfeeles Edition Book 21:58:32.67T1 21:58:32.671
4d466203-ae82-433d-8bb4- Drink plenty of water daily! 2018-05-05 2018-05-05 FALSE
f587309a22ec 21:58:59.373 21:58:50.373
©2025468-bb33-4d6a-98cb- ‘Watch the Spring Tips youtube 2018-05-05 2018-05-05 FALSE
24cTTe116d39 channel 21:59:41.465 21:58:41 465
9c36aecl-421b-4c15-b04d- Pay the rent tomorrow 2018-05-05 2018-05-05 FALSE
3930ddf97aed 21:59:54.113 21:59:54.113
(4 rows, 6 ms)
Edit

Figure 5-3. http://localhost:8080/h2-console

Figure 5-3 shows that you can execute any SQL query and get data back. If you want

to see which SQL queries are being executed in the ToDo app, you can add the following
properties to the application.properties file.

138

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

src/main/resources/application.properties

logging.level.org.springframework.data=INFO
logging.level.org.springframework.jdbc.core.JdbcTemplate=DEBUG

Asyou can see, the JdbcTemplate class offers you a lot of possibilities to interact with
any database engine, but this class is the “lowest level” approach.

At the time of this writing, there was a new way to use the JdbcTemplate classin a
more uniform way—the Spring Data way (something that I describe in the following
sections). The Spring Data team has created the new Spring Data JDBC project, which
follows the aggregate root concept, as described in the book Domain-Driven Design by
Eric Evans (Addison-Wesley Professional, 2003). It has many features, such as CRUD
operations, support for @Query annotations, support for MyBatis queries, events, and
more, so keep an eye on this project. It is a new way to do JDBC.

Spring Data JPA

The JPA (Java Persistence API) provides a POJO persistence model for object-relational
mapping. Spring Data JPA facilitates persistence with this model.

Implementing data access can be a hassle because we need to deal with connections,
sessions, exception handling, and more, even for simple CRUD operations. That’s why
the Spring Data JPA provides an additional level of functionality: creating repository
implementations directly from interfaces and using conventions to generate queries
from method names.

The following are some of the Spring Data JPA features.

o Support of the JPA specification with different providers, such as
Hibernate, Eclipse Link, Open JPA, and so forth.

e Support for repositories (a concept from Domain-Driven Design).
e Auditing for domain class.

o Support for Quesydsl (http://www.querydsl.com/) predicates and
type-safe JPA queries.

» Pagination, sort, dynamic query execution support.

o Support for @Query annotations.

139

http://www.querydsl.com/

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

o Support for XML-based entity mapping.

o JavaConfig based repository configuration by using the
@EnableJpaRepositories annotation.

Spring Data JPA with Spring Boot

One of the most important benefits from the Spring Data JPA is that we don’t need

to worry about implementing basic CRUD functionalities, because that’s what it

does. We only need to create an interface that extends from a Repository<T,ID>,
CrudRepository<T,ID>, or JpaRepository<T,ID>. The JpaRepository interface

offers not only what the CrudRepository does, but also extends from the
PagingAndSortingRepository interface that provides extra functionality. If you review
the CrudRepository<T,ID> interface (which you use in your ToDo app), you can see all
the signature methods, as shown in Listing 5-3.

Listing 5-3. org.springframework.data.repository.CrudRepository.java

@NoRepositoryBean
public interface CrudRepository<T, ID> extends Repository<T, ID> {
<S extends T> S save(S entity);
<S extends T> Iterable<S> saveAll(Iterable<S> entities);
Optional<T> findById(ID id);
boolean existsById(ID id);
Iterable<T> findAll();
Iterable<T> findAllById(Iterable<ID> ids);
long count();
void deleteById(ID id);
void delete(T entity);
void deleteAll(Iterable<? extends T> entities);
void deleteAll();

Listing 5-3 shows the CrudRepository<T, ID> interface, where the T means the
entity (your domain model class) and the ID, the primary key that needs to implement
Serializable.

140

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

In a simple Spring app, you are required to use the @EnableJpaRepositories
annotation that triggers the extra configuration that is applied in the life cycle of the
repositories defined within of your application. The good thing is that you don’t need
this when using Spring Boot because Spring Boot takes care of it. Another feature from
Spring Data JPA are the query methods, which are a very powerful way to create SQL
statements with the fields of the domain entities.

So, to use Spring Data JPA with Spring Boot, you need spring-boot-starter-data-
jpa and the SQL driver.

When Spring Boot executes its auto-configuration and finds out that you have the
Spring Data JPA JAR, it configures the datasource by default (if there is none defined).
It configures the JPA provider (by default it uses Hibernate). It enables the repositories
(by using the @EnableJpaRepositories configuration). It checks if you have defined any
query methods. And more.

ToDo App with Spring Data JPA

You can create your ToDo app from scratch, or take a look the classes you need, as well
the necessary dependencies in your pom.xml or build. gradle files.

Starting from scratch, go to your browser and open Spring Initializr. Add the
following values to the fields.

e Group: com.apress.todo

o Artifact: todo-jpa

o Name: todo-jpa

o Package Name: com.apress.todo

o Dependencies: Web, Lombok, JPA, H2, MySQL

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button, which downloads a ZIP file. Uncompress it and import the
project in your favorite IDE (see Figure 5-4).

141

CHAPTER 5

DATA ACCESS WITH SPRING BOOT

SO B

SPRING INITIALIZR

Generate a wveavenrroject ¢+ With e

Project Metadata
Artifact coordinates
Group

com.apress.todo G

& start.spring.io <

: and Spring Boot zo: :

Dependencies
Add Spring Boot Starters and dependencies to your application
Search for dependencies

Web, Security, JPA, Actuator, Devtools...

Artifact Selected Dependencies

R (weo] iomook Jura Juz s
Name

todo-jpa

Description

Demo project for Spring Boot

Package Name

com.apress. todo

Packaging

Jar

Java Version

8

Too many options? Switch back to the simple version.

Generate Project #* + «

Figure 5-4. Spring Initializr https://start.spring.io

You can copy all the classes from the previous chapter, except for the
ToDoRepository class, which is the only class that is new; you modify the others.

Repository: ToDoRepository

Create a ToDoRepository interface that extends from CrudRepository<T,ID>. The Tis
the ToDo class, and the ID is a String (see Listing 5-4).

142

https://start.spring.io

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Listing 5-4. com.apress.todo.repository.ToDoRepository.java
package com.apress.todo.repository;

import com.apress.todo.domain.ToDo;
import org.springframework.data.repository.CrudRepository;

public interface ToDoRepository extends
CrudRepository<ToDo, String> {}

Listing 5-4 shows the ToDoRepository interface that extends a CrudRepository. It is
not necessary to create a concrete class or implement anything; the Spring Data JPA does
the implementation for us. All the CRUD actions handle anything that we need to persist
the data. That’s it—there’s nothing else that we need to do to use ToDoRepository where
we need it.

Domain Model: ToDo

To use JPA and be compliant, it is necessary to declare the entity (eEntity) and the
primary key (@Id) from the domain model. Let’s modify the ToDo class by adding the
following annotations and methods (see Listing 5-5).

Listing 5-5. com.apress.todo.domain.Todo.java
package com.apress.todo.domain;

import lombok.Data;
import lombok.NoArgsConstructor;
import org.hibernate.annotations.GenericGenerator;

import javax.persistence.*;

import javax.validation.constraints.NotBlank;
import javax.validation.constraints.NotNull;
import java.time.localDateTime;

143

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

@Entity

@Data
@NoAxrgsConstructor
public class ToDo {

@NotNull

@Id
@GeneratedValue(generator = "system-uuid")
@GenericGenerator(name = "system-uuid", strategy = "uuid")

private String id;

@NotNull

@NotBlank

private String description;

@Column(insertable = true, updatable = false)
private LocalDateTime created;

private LocalDateTime modified;

private boolean completed;

public ToDo(String description){
this.description = description;

}
@PrePersist
void onCreate() {
this.setCreated(LocalDateTime.now());
this.setModified(LocalDateTime.now());
}
@PreUpdate
void onUpdate() {
this.setModified(LocalDateTime.now());
}

144

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Listing 5-5 shows the modified version of the ToDo domain model. This class now has

additional elements.

@NoArgsConstructor. This annotation belongs to the Lombok library.
It creates a class constructor with no arguments. It is required that
JPA have a constructor with no arguments.

@Entity. This annotation specifies that the class is an entity and is
persisted into the database engine selected.

@Id. This annotation specifies the primary key of an entity. The
field annotated should be any Java primitive type and any primitive

wrapper type.

@GeneratedValue. This annotation provides the generation strategies
for the values of primary keys (simple keys only). Normally, it is used
with the @Id annotation. There are different strategies (IDENTIY, AUTO,
SEQUENCE, and TABLE) and a key generator. In this case, the class
defined the "system-uuid" (this generates a unique 36-character ID).

@GenericGenerator. This is part of the Hibernate, which allows
you to use the strategy to generate a unique ID from the previous
annotation.

@Column. This annotation specifies the mapped column for persistent
properties; if there is no column annotation in a field, it is the default
name of the column in the database. This class is marking the created
field to be only for inserts but never for updates.

@PrePersist. This annotation is a callback that is triggered before any
persistent action is taken. It sets the new timestamp for the created
and modified fields before the record is inserted into the database.

@PreUpdate. This annotation is another callback that is triggered
before any update action is taken. It sets the new timestamp for the
modified field before it is updated into the database.

The last two annotations (@PrePersist and @PreUpdate) are a very nice way to deal

with dates/timestamps, making it easier for the developer.

Before we continue, analyze the code to see what is different from previous versions

of the ToDo domain model class.

145

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Controller: ToDoController

Now, it’s time to modify the ToDoController class (see Listing 5-6).

Listing 5-6. com.apress.todo.controllerToDoController.java

package com.apress.todo.controller;

import
import
import
import
import
import
import
import
import
import
import

import
import
import

com.apress.todo.domain.ToDo;
com.apress.todo.domain.ToDoBuilder;
com.apress.todo.repository.ToDoRepository;
com.apress.todo.validation.ToDoValidationError;
com.apress.todo.validation.ToDoValidationErrorBuilder;
org.springframework.beans.factory.annotation.Autowired;
org.springframework.http.HttpStatus;
org.springframework.http.ResponseEntity;
org.springframework.validation.Errors;
org.springframework.web.bind.annotation.*;
org.springframework.web.servlet.support.ServletUriComponentsBuilder;

javax.validation.Valid;
java.net.URI;
java.util.Optional;

@RestController
@RequestMapping("/api")

public

class ToDoController {

private ToDoRepository toDoRepository;

@Autowired
public ToDoController(ToDoRepository toDoRepository) {

}

this.toDoRepository = toDoRepository;

@GetMapping("/todo")
public ResponseEntity<Iterable<ToDo>> getToDos(){

146

return ResponseEntity.ok(toDoRepository.findAll());

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

@GetMapping("/todo/{id}")
public ResponseEntity<ToDo> getToDoById(@PathVariable String id){
Optional<ToDo> toDo = toDoRepository.findById(id);
if(toDo.isPresent())
return ResponseEntity.ok(toDo.get());

return ResponseEntity.notFound().build();
}

@PatchMapping("/todo/{id}")
public ResponseEntity<ToDo> setCompleted(@PathVariable String id){
Optional<ToDo> toDo = toDoRepository.findById(id);
if(!toDo.isPresent())
return ResponseEntity.notFound().build();

ToDo result = toDo.get();
result.setCompleted(true);
toDoRepository.save(result);

URI location = ServletUriComponentsBuilder.fromCurrentRequest()
.buildAndExpand(result.getId()).toUri();

return ResponseEntity.ok().header("Location",location.toString()).
build();

}

@RequestMapping(value="/todo", method = {RequestMethod.
POST,RequestMethod.PUT})
public ResponseEntity<?> createToDo(@Valid @RequestBody ToDo toDo,
Errors errors){
if (errors.haskrrors()) {
return ResponseEntity.badRequest().
body(ToDoValidationErrorBuilder.fromBindingErrors(errors));

}

ToDo result = toDoRepository.save(toDo);
URI location = ServletUriComponentsBuilder.fromCurrentRequest().
path("/{id}")

147

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

.buildAndExpand(result.getId()).toUri();
return ResponseEntity.created(location).build();

}

@DeleteMapping("/todo/{id}")

public ResponseEntity<ToDo> deleteToDo(@PathVariable String id){
toDoRepository.delete(ToDoBuilder.create().withId(id).build());
return ResponseEntity.noContent().build();

}

@DeleteMapping("/todo")

public ResponseEntity<ToDo> deleteToDo(@RequestBody ToDo toDo){
toDoRepository.delete(toDo);
return ResponseEntity.noContent().build();

}

@ExceptionHandler

@ResponseStatus(value = HttpStatus.BAD REQUEST)

public ToDoValidationError handleException(Exception exception) {
return new ToDoValidationError(exception.getMessage());

Listing 5-6 shows the modified ToDoController class. It now directly uses the
ToDoRepository interface, and some of the methods, like findById, return a Java 8
Optional type.

Before we continue, analyze the class to see what is different from previous versions.

Most of the code remains the same.

Spring Boot JPA Properties

Spring Boot provides properties that allow you to override defaults when using the
Spring Data JPA. One of them is the ability to create the DDL (data definition language),
which is turned off by default, but you can enable it to do reverse engineering from
your domain model. In other words, this property generates the tables and any other
relationships from your domain model classes.

148

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Also you can tell your JPA provider to create, drop, update, or validate your existing
DDL/data, which is a useful migration mechanism. Also, you can set a property to show
you the SQL statements that are being executed against the database engine.

Add the necessary properties to the application.properties file, as shown in
Listing 5-7.

Listing 5-7. src/main/resources/application.properties

JPA

spring.jpa.generate-ddl=true
spring.jpa.hibernate.ddl-auto=create-drop
spring.jpa.show-sql=true

H2
spring.h2.console.enabled=true

Listing 5-7 shows the application.properties and the JPA properties. It generates
the table based on the domain model class and it creates the tables every time the
application starts. The following are the possible values for the spring.jpa.hibernate.
ddl-auto property.

o create (Creates the schema and destroys previous data).

o create-drop (Creates and then destroys the schema at the end of the
session).

o update (Updates the schema, if necessary).
o validate (Validates the schema, makes no changes to the database).

o none (Disables DDL handling).

Running and Testing: ToDo App

Now it’s time to run and test the ToDo app. You can run it within your IDE. If you are
using Maven, execute

./mvnw spring-boot:run
If you are using Gradle, execute

./gradlew bootRun

149

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

To test the ToDo app, you can run your ToDoClient app. It should work without any
problems. Also you can send ToDo’s with the cURL command and see the H2 console
(http://localhost:8080/h2-console).

Spring Data REST

The Spring Data REST project builds on top of the Spring Data repositories. It analyzes
your domain model classes, and it exposes hypermedia-driven HTTP resources using
HATEOAS (Hypermedia as the Engine of Application State, HAL +JSON). The following
are some of the features.

o Exposes a discoverable RESTful API from your domain model classes
using HAL as the media type.

e Supports pagination and exposes your domain class as collections.

o Exposes dedicated search resources for query methods defined in the
repositories.

o Supports high customization for your own controllers if you want to
extend the defaults.

o Allows hooking into the handling of REST requests by handling
Spring ApplicationEvents.

o Brings a HAL browser to expose all the metadata; very useful for
development purposes.

o Supports Spring Data JPA, Spring Data MongoDB, Spring Data Neo4j,
Spring Data Solr, Spring Data Cassandra, and Spring Data Gemfire.

Spring Data REST with Spring Boot

If you want to use Spring Data REST in a regular Spring MVC app, you need to trigger

its configuration by including the RepositoryRestMvcConfiguration class with the
@Import annotation in your JavaConfig class (where you have your @Configuration
annotation); but you don’t need to anything if you are using Spring Boot directly. Spring
Boot takes care of this thanks to the @EnableAutoConfiguration annotation.

150

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

If you want to use the Spring Data REST in a Spring Boot application, you need
to include the spring-boot-starter-data-rest and spring-boot-starter-data-*

technology dependencies, and/or the SQL driver if you are going to use SQL database

engines.

ToDo App with Spring Data JPA and Spring Data REST

You can create your ToDo app from scratch, or take a look which classes you need, as

well the necessary dependencies, in your pom.xml or build.gradle files.

Starting from scratch, go to your browser and open Spring Initializr . Add the

following values to the fields.

Group: com.apress.todo
Artifact: todo-rest

Name: todo-rest

Package Name: com.apress.todo

Dependencies: Web, Lombok, JPA, REST Repositories, H2, MySQL

You can select either Maven or Gradle as the project type. Then you can press the

Generate Project button, which downloads a ZIP file. Uncompress it and import the

project in your favorite IDE (see Figure 5-5).

151

CHAPTER 5

DATA ACCESS WITH SPRING BOOT

A K= =) K3 i

SPRING INITIALIZR

Generate a | vevenrroject : With seve
Project Metadata

Artifact coordinates

Group

com.apress.todo &

& start.spring.io 17} 4]

: and Spring Boot zo: :

Dependencies
Add Spring Boot Starters and dependencies to your application
Search for dependencies

Web, Security, JPA, Actuator, Devtools...

Artifact Selected Dependencies

28 =28 £ CH e
Name Rest Repositories

todo-rest
Description

Demo project for Spring Boot

Package Name

com.apress.todo

Packaging

Jar

Java Version

8

Too many options? Switch back to the simple version.

Generate Project * + «

Figure 5-5. https://start.spring.io

You can copy only the domain model ToDo, ToDoRepository classes and the
application.properties file; yes, only two classes and one properties file.

Running: ToDo App

Now it’s time to run and test the ToDo app. You can run it within your IDE. If you are

using Maven, execute
./mvnw spring-boot:run
If you are using Gradle, execute

./gradlew bootRun

152

https://start.spring.io

CHAPTER 5 DATA ACCESS WITH SPRING BOOT
One of the important things to see is the output when running the ToDo app.

Mapped "{[/{repository}/search],methods=[HEAD],produces
Mapped "{[/{repository}/search],methods=[GET],produces=
Mapped "{[/{repository}/search],methods=[OPTIONS],produ
Mapped "{[/{repository}/search/{search}],methods=[GET],
Mapped "{[/{repository}/search/{search}],methods=[GET],
Mapped "{[/{repository}/search/{search}],methods=[OPTIO
Mapped "{[/{repository}/search/{search}],methods=[HEAD]
Mapped "{[/{repository}/{id}/{property}],methods=[GET],
Mapped "{[/{repository}/{id}/{property}/{propertyId}],m
Mapped "{[/{repository}/{id}/{property}],methods=[DELET
Mapped "{[/{repository}/{id}/{property}],methods=[GET],
Mapped "{[/{repository}/{id}/{property}],methods=[PATCH
Mapped "{[/{repository}/{id}/{property}/{propertyId}],m
Mapped "{[/ ||],methods=[OPTIONS],produces=[applicatio
Mapped "{[/ ||],methods=[HEAD],produces=[application/h
Mapped "{[/ ||],methods=[GET],produces=[application/ha
Mapped "{[/{repository}],methods=[OPTIONS],produces=[ap
Mapped "{[/{repository}],methods=[HEAD],produces=[appli
Mapped "{[/{repository}],methods=[GET],produces=[applic
Mapped "{[/{repository}],methods=[GET],produces=[applic
Mapped "{[/{repository}],methods=[POST],produces=[appli
Mapped "{[/{repository}/{id}],methods=[OPTIONS],produce
Mapped "{[/{repository}/{id}],methods=[HEAD],produces=[
Mapped "{[/{repository}/{id}],methods=[GET],produces=[a
Mapped "{[/{repository}/{id}],methods=[PUT],produces=[a
Mapped "{[/{repository}/{id}],methods=[PATCH],produces=
Mapped "{[/{repository}/{id}],methods=[DELETE],produces
Mapped "{[/profile/{repository}],methods=[GET],produces
Mapped "{[/profile/{repository}],methods=[OPTIONS],prod
Mapped "{[/profile/{repository}],methods=[GET],produces

T
T

It defines all the mapping endpoints of the repositories (only one in this app), and all
the HTTP methods that you can use.

153

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Testing: ToDo App

To test the ToDo app, we are going to use the cURL command and the browser. The
ToDoClient app needs to be modified to accept the media type, HAL+JSON; so in
this section, we won'’t use it. First take a look at your browser. Go to the http://
localhost:8080 you should see something similar to Figure 5-6.

First, take a look at your browser. Go to http://localhost:8080. You should see
something similar to Figure 5-6.

e®® < > D SUO0L® localhost] L) u)
{ RAW
¥ links: {

¥ toDos: {

href: http://localhost:8080/toDos
}l’
¥ profile: {
href: http://localhost:8080/profile

}

Figure 5-6. http://localhost:8080

154

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Ifyou see the same information but in RAW format, try to install the JSON Viewer
plugin for your browser and reload the page. It exposes the http://localhost:8080/
toDos URL as the endpoint, which means that you can access and execute all the HTTP
methods (from the logs) to this URL.

Let’s add a few ToDo’s with a cURL command (is a single line).

curl -i -X POST -H "Content-Type: application/json" -d '{
"description"”:"Read the Pro Spring Boot 2nd Edition Book"}' http://
localhost:8080/toDos

HTTP/1.1 201

Location: http://localhost:8080/toDos/8a8080876338ae4e016338b2e2ee0000
Content-Type: application/hal+json;charset=UTF-8

Transfer-Encoding: chunked

Date: Mon, 07 May 2018 03:43:57 GMT

{
"description” : "Read the Pro Spring Boot 2nd Edition Book",
"created" : "2018-05-06T21:43:57.676",
"modified" : "2018-05-06T21:43:57.677",
"completed" : false,
" links" : {
"self" : {
"href" : "http://localhost:8080/toDos/8a8080876338ae4e016338b2e2ee0000"
b
"toDo" : {
"href" : "http://localhost:8080/toDos/8a8080876338ae4e016338b2e2ee0000"
}
}
}

You are getting a HAL+JSON result. After adding a couple more, you can go back to
your browser and click the http://localhost:8080/toDos link. You see something like
Figure 5-7.

155

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

eoe® < jim) S 0@ localhost ¢ LN Ml W=D
{ RAW
¥ _embedded: {
¥ toDos: |
v {
description: "Read the Pro Spring Boot 2nd Edition Book",
created: "2018-05-06T21:43:57.676",
modified: "2018-05-06T21:43:57.677",
completed: false,
* _links: {
v self: {
href: http://localhost:8080/toDos/8a8080876338ae4e016338b2e2eel000
}l
¥ toDo: {
href: http://localhost:8080/toDos/B8a8080876338ae4e016338b2e2eel000
}
}
}J’
v {
description: "Drink plenty of water dailyl!l"”,
created: "2018-05-06T22:08:32.72",
modified: "2018-05-06T22:08:32.72",
completed: false,
¥ _links: {
v self: {
href: http://localhost:8080/toDos/8a8080876338ae4e016338c964d00001
T
¥ toDo: {
bhref: http://localhost:8080/toDos/8aB8080876338ae4e016338c964d00001
}
}
}J’
v {

description: "Watch the Spring Tips youtube channel”,

Figure 5-7. http://localhost:8080/toDos

Figure 5-7 shows the HAL+JSON response when accessing the /toDos endpoint.

Testing with HAL Browser: ToDo App

The Spring Data REST project has a tool—the HAL browser. It is a web app that helps
developers visualize all the endpoints in an interactive way. So, if you don’t want to use
the endpoints and/or cURL commands directly, you can use the HAL browser.

To use the HAL browser, add the following dependency. If you are using Maven, add
the following to your pom. xml file.

156

Maven pom.xml

<dependency>

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

<groupId>org.springframework.data</groupId>
<artifactId>spring-data-rest-hal-browser</artifactId>

</dependency>

If you are using Gradle, add the following to your build.gradle file.

Gradle build.gradle

compile 'org.springframework.data:spring-data-rest-hal-browser'

Now, you can restart your ToDo app and go directly to http://localhost:8080in
your browser. You the same as what'’s shown in Figure 5-8.

ene < in] =N

The HAL Browser (for Spring Data REST)

Explorer
/ Go!

Custom Request Headers

Properties

{
}
Links
rel ttle name/index docs GET NOM-GET
toDos ‘ g
profile B 0

localhost & [+ L] @ |

Inspector
Response Headers

200 success

content-type: application/hal+json;charset=UTF-8
date: Mon, @7 May 2018 04:42:38 GMT
transfer-encoding: Identity

Response Body

{
"_Llinks": {
"toDos": {
"href": "http://localhost:808@/toDos"
1,
"profile"”: {
"href": "http://localhost:808@/profile”
}
}
}

Figure 5-8. http://localhost:8080

157

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

You can click in the GET and NON-GET columns to interact with every single
endpoint and HTTP method. This is a great alternative for a developer.

What I showed you is some of the many features that you can do with the Spring Data
REST. You really don’t need any controller anymore. Also, you are able to expose any
domain class, thanks to the easy override in Spring Boot and Spring Data REST.

No SQL Databases

NoSQL databases are another way to persist data, but in a different way than the tabular
relationships of relational databases. There is already a classification system for these
emergent NoSQL databases. You can find it based on its data model.

e Column (Cassandra, HBase, etc.)

e Document (CouchDB, MongoDB, etc.)
e Key-Value (Redis, Riak, etc.)

e Graph (Neo4], Virtuoso, etc.)

e Multimodel (OrientDB, ArangoDB, etc.)

As you can see, you have many options. I think the most important kind of feature
finds a database that is scalable and can easily handle millions of records.

Spring Data MongoDB

The Spring Data MongoDB project gives you the necessary interactions with the
MongoDB document database. One of the important features is that you still work with
domain model classes that use the @ocument annotation and declare interfaces that use
CrudRepository<T,ID>. This creates the necessary collection that the MongoDB uses for
persistence.

The following are some of the features of this project.

o Spring Data MongoDB offer a MongoTemplate helper class (very
similar to JdbcTemplate) that deals with all the boilerplate interacting
with the MongoDB document database.

o Persistence and mapping lifecycle events.

158

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

o MongoTemplate helper class. It also provides low-level mapping using
the MongoReader/MongoWriter abstractions.

e Java-based query, criteria, and update DSLs.
e Geospatial and MapReduce integrations and GridFS support.

o Cross-storage persistence support for JPA entities. This means
that you can use your classes marked with @Entity and other
annotations, and use them to persist/retrieve data using the
MongoDB document database.

Spring Data MongoDB with Spring Boot

To use MongoDB with Spring Boot, you need to add the spring-boot-starter-data-
mongodb dependency and have access to a MongoDB server instance.

Spring Boot uses the auto-configuration feature to set up everything to communicate
with the MongoDB server instance. By default, Spring Boot tries to connect to the local
host and use port 27017 (the MongoDB standard port). If you have a MongoDB remote
server, you can connect to it by overriding the defaults. You need to use the spring.
mongodb . * properties in the application.properties file (the easy way), or you can
have a bean declaration using XML or in a JavaConfig class.

Spring Boot also auto-configures the MongoTemplate class (this class is very similar
to JdbcTemplate), so it’s ready for any interaction with the MongoDB server. Another
great feature is that you can work with repositories, meaning that you can reuse the same
interface that you used for JPA.

MongoDB Installation

Before you start, you need to make sure that you have the MongoDB server installed on
your computer.

If you are using Mac/Linux with the brew command (http://brew.sh/), execute the
following command.

brew install mongodb

159

http://brew.sh/

CHAPTER 5 DATA ACCESS WITH SPRING BOOT
You can run it with this command.
mongod

Or you can install MongoDB by downloading it from the website at https://www.
mongodb .org/downloads#production and following the instructions.

MongoDB Embedded

There is another way to use MongoDB, at least as a development environment. You can
use MongoDB Embedded. Normally, you use this in a test environment, but you can
easily run it in development mode with a runtime scope.

To use MongoDB Embedded, you need to add the following dependency. If you are
using Maven, you can add it into the pom.xml file.

Maven pom.xml

<dependency>
<groupId>de.flapdoodle.embed</groupld>
<artifactId>de.flapdoodle.embed.mongo</artifactId>
<scope>runtime</scope>

</dependency>

If you are using Gradle:

Gradle build.gradle
runtime('de.flapdoodle.embed:de.flapdoodle.embed.mongo")

Next, you need to configure the Mongo client to use the MongoDB Embedded server
(see Listing 5-8).

Listing 5-8. com.apress.todo.config.ToDoConfig.java
package com.apress.todo.config;

import com.mongodb.MongoClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

160

https://www.mongodb.org/downloads#production
https://www.mongodb.org/downloads#production

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

import org.springframework.context.annotation.DependsOn;
import org.springframework.core.env.Environment;

@Configuration
public class ToDoConfig {

private Environment environment;
public ToDoConfig(Environment environment){
this.environment = environment;

}

@®Bean
@DependsOn("embeddedMongoServer")
public MongoClient mongoClient() {
int port =
this.environment.getProperty("local.mongo.port”,
Integer.class);
return new MongoClient("localhost",port);

Listing 5-8 shows the configuration of the MongoClient bean. MongoDB Embedded
uses a random port when the application starts, that’s why it is necessary to also use the
Environment bean.

If you take this approach to use a MongoDB server, you don’t need to set up any

other properties.

ToDo App with Spring Data MongoDB

You can create your ToDo app from scratch, or take a look at which classes you need, as
well the necessary dependencies, in your pom.xml or build.gradle files.

Starting from scratch, go to your browser and open Spring Initializr (https://start.
spring.io). Add the following values to the fields.

o Group: com.apress.todo
o Artifact: todo-mongo

o Name: todo-mongo

161

https://start.spring.io
https://start.spring.io

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

o Package Name: com.apress.todo
o Dependencies: Web, Lombok, MongoDB, Embedded MongoDB

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button, which downloads a ZIP file. Uncompress it and import the
project in your favorite IDE (see Figure 5-9).

& start.spring.io & 4] ui] o [N

SPRING INITIALIZR

Generate a mawenroec ¢ With == ¢ and Spring Boot 201 ¢

Project Metadata
Artifact coordinates
Group

com.apress.todo &

Dependencies
Add Spring Boot Starters and dependencies to your application
Search for dependencies

Web, Security, JPA, Actuator,

Artifact Selected Dependencies
Name Embedded MongoDB

todo-mongo

Description

Demo project for Spring Boot

Package Name

com.apress. todo

Packaging

Jar

Java Version

8

Too many options? Switch back to the simple version.

Generate Project % + «

Figure 5-9. https://start.spring.io

You can copy all the classes from the todo-jpa project. In the next section, you see
which classes need to be modified.

162

https://start.spring.io

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Domain Model: ToDo

Open the ToDo domain model class and modify it accordingly (see Listing 5-9).

Listing 5-9. com.apress.todo.domain.ToDo.java

package com.apress.todo.domain;

import
import
import
import
import
import
import

lombok.Data;

org.springframework.data.annotation.Id;
org.springframework.data.mongodb.core.mapping.Document;
javax.validation.constraints.NotBlank;
javax.validation.constraints.NotNull;
java.time.LocalDateTime;

java.util.UUID;

@Document

@Data
public

class ToDo {

@NotNull

@Id

private String id;

@NotNull

@NotBlank

private String description;

private LocalDateTime created;
private LocalDateTime modified;

private boolean completed;

public ToDo(){

LocalDateTime date = LocalDateTime.now();
this.id = UUID.randomUUID().toString();
this.created = date;

this.modified = date;

163

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

public ToDo(String description){
this();
this.description = description;

Listing 5-9 shows the modified ToDo class. The class is using the @ocument
annotation to be marked as persistent; it is also using @1d to declare a unique key.

If you have a remote MongoDB server, you can override the defaults that point at
the local host. You can go to your application.properties file and add the following
properties.

MongoDB
spring.data.mongodb.host=my-remote-server
spring.data.mongodb.port=27017
spring.data.mongodb.username=myuser
spring.data.mongodb.password=secretpassword

Next, you can review your ToDoRepository and ToDoController classes, which
should not change at all. That’s the beauty of using Spring Data: you can reuse your
model for cross-store and all the previous classes, making development easier and faster.

Running and Testing: ToDo App

Now it’s time to run and test the ToDo app. You can run it within your IDE. Or if you are
using Maven, execute

./mvnw spring-boot:run
If you are using Gradle, execute
./gradlew bootRun

To test the ToDo app, you can run your ToDoClient app—and that’s it. It is very easy
to switch persistence engines without too much hassle. Maybe you are wondering what
happen if you want to use map-reduce or lower-level operations. Well, you can by using
the MongoTemplate class.

164

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

ToDo App with Spring Data MongoDB REST

How can you create a MongoDB REST app? You need to add the spring-boot-starter-
data-rest dependency to your pom.xml or build.gradle files—and that’s it!! Of course,
you need to remove the controller and validation packages and the ToDoBuilder class;
you only need two classes.

Remember that Spring Data REST exposes the repository endpoints and uses
HATEOAS as the media type (HAL+JSON).

Note You can find the solution to this section in the book’s source code on the
Apress website or on GitHub at https://github.com/Apress/pro-spring-
boot-2. The name of the project is todo-mongo-rest.

Spring Data Redis

Spring Data Redis provides an easy way to configure and access a Redis server. It offers
low-level to high-level abstraction to interact with it, and follows the same Spring Data
standard, providing a RedisTemplate class and repository-based persistence.

The following are some of the features of Spring Data Redis.

o RedisTemplate gives the high-level abstraction for all Redis
operations.

e Messaging through Pub/Sub.
¢ Redis Sentinel and Redis Cluster support.

e Uses connection packages as a low level across multiple drivers, like
Jedis and Lettuce.

e Repositories, sorting and paging by using
@EnableRedisRepositories.

e Redis implements for Spring cache, so you can use Redis as your web
cache mechanism.

165

https://github.com/Apress/pro-spring-boot-2
https://github.com/Apress/pro-spring-boot-2

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Spring Data Redis with Spring Boot

If you want to use Spring Data Redis, you only need to add the spring-boot-starter-
data-redis dependency to have access to a Redis server.

Spring Boot uses auto-configuration to set up defaults for using the Redis server.
It automatically uses @EnableRedisRepositories (you don’t need to add it) if you are
using the Repository feature.

By default, use the local host and port 6379. Of course, you can override the defaults
by changing the spring.redis.* properties in the application.properties file.

ToDo App with Spring Data Redis

You can create your ToDo app from scratch, or take a look at which classes you need, as
well the necessary dependencies, in your pom.xml or build.gradle files.

Starting from scratch, go to your browser and open Spring Initializr. Add the
following values to the fields.

e Group: com.apress.todo

o Artifact: todo-redis

o Name: todo-redis

o Package Name: com.apress.todo

e Dependencies: Web, Lombok, Redis

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button, which downloads a ZIP file. Uncompress it and import the
project in your favorite IDE (see Figure 5-10).

166

SPRING INITIALIZR

Generate d Maven Project & With Java

Project Metadata

Artifact coordinates
Group

com.apress.todo &

CHAPTER 5

& start.spring.io & 4]

: and Spring Boot zo: :

Dependencies
Add Spring Boot Starters and dependencies to your application
Search for dependencies

Actuator, Devtools...

Web, Security, JPA,

DATA ACCESS WITH SPRING BOOT

Artifact Selected Dependencies
Name

todo-redis

Description

Demo project for Spring Boot

Package Name

com.apress.todo

Packaging

Jar -

Java Version

ar

8

Too many options? Switch back to the simple version.

Generate Project * + «

Figure 5-10. https://start.spring.io

You can copy all the classes from the todo-mongo project. In the next section, we see
which classes need to be modified.

167

https://start.spring.io

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Domain Model: ToDo

Open the ToDo domain model class and modified accordingly (see Listing 5-10).

Listing 5-10. com.apress.todo.ToDo.java
package com.apress.todo.domain;

import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.redis.core.RedisHash;

import javax.validation.constraints.NotBlank;
import javax.validation.constraints.NotNull;
import java.time.localDateTime;

import java.util.UUID;

@Data
@RedisHash
public class ToDo {

@NotNull

@Id

private String id;

@NotNull

@NotBlank

private String description;
private LocalDateTime created;
private LocalDateTime modified;
private boolean completed;

public ToDo(){
LocalDateTime date = LocalDateTime.now();
this.id = UUID.randomUUID().toString();
this.created = date;
this.modified = date;

168

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

public ToDo(String description){
this();
this.description = description;

Listing 5-10 shows the only class that you modify. The class is using the @RedisHash
annotation that marks the class as persistent and also is using the @Id annotation as part
of a composite key. When inserting a ToDo, there is a hash that contains a key with the
format class:id. For this application, the composite key is something like "com.apress.
todo.domain.ToDo: bbee6e32-37f3-4d5a-8f29-e2c79a28c301".

If you have a remote Redis server, you can override the defaults that point at the local
host. You can go to your application.properties file and add the following properties.

Redis - Remote
spring.redis.host=my-remote-server
spring.redis.port=6379
spring.redis.password=my-secret

You can review your ToDoRepository and ToDoController classes, which should not
change at all; the same as before.

Running and Testing: ToDo App

Now it’s time to run and test this ToDo app. You can run it within your IDE. Or if you are
using Maven, execute

./mvnw spring-boot:run
If you are using Gradle, execute
./gradlew bootRun

To test the ToDo app, you can run your ToDoClient app; and that’s it. If you want to
use a different structure (like SET, LIST, STRING, ZSET) a low-level operations you can
use the RedisTemplate class that is already setup and configured by Spring Boot.

169

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Note Remember that you can get the book’s source code from the Apress
website or on GitHub at https://github.com/Apress/pro-spring-boot-2.

More Data Features with Spring Boot

There are plenty more features and supported engines for manipulating data, from using
a DSL with jOOQ (Java Object-Oriented Querying at www. jooq.org), which generates
Java code from your database and lets you build SQL queries through its own DSL in a
type-safe way.

There are ways to do database migrations, using either Flyway (https://flywaydb.
org/) or Liquibase (http://www.liquibase.org/) that you can run at startup.

Multiple Data Sources

One of the important features in Spring Boot (I believed it is a must-have feature)
manipulates multiple DataSource instances, regardless of the persistent technology used.
As you already know, Spring Boot provides a default auto-configuration based on
the app’s classpath, and you can override it without any problems. To use multiple
DataSource instances, which may be pointing to different databases and/or different
engines, you must override the defaults. If you remember from the Chapter 4, we created
a complete but simple web app that required setup: DataSource, EntityManager,
TransactionManager, JpaVendor, and so forth. Well, we need to add the same
configuration if we want to use multiple datasources. In other words, we need to add
multiple EntityManagers, TransactionManagers, and so forth.

How can we apply this to the ToDo app? Review what you did in Chapter 4. Take a
close look at each configuration, and you can imagine what you need to do.

You can get the solution in the book’s source code. The name of the project is todo-
rest-2ds. This project contains all the User and the ToDo domain classes that persist
data into their own databases.

170

https://github.com/Apress/pro-spring-boot-2
http://www.jooq.org
https://flywaydb.org/
https://flywaydb.org/
http://www.liquibase.org/

CHAPTER 5 DATA ACCESS WITH SPRING BOOT

Summary

In this chapter, you learned different data technologies and how they work with Spring
Boot. You also learned that Spring Boot uses its auto-configuration feature to apply
defaults based on the classpath.

You learned that if you have two or more SQL drivers and one of them is H2, HSQL
or Derby, Spring Boot configures the embedded database engine if you haven’t defined
a DataSource instance yet. You saw how to configure and override some of the data
defaults. You learned that Spring Data implements a Template pattern to hide all the
complex tasks that normally do without the Spring Framework.

In the next chapter, we take the web and data up one level with reactive
programming and explore the WebFlux and reactive data.

171

CHAPTER 6

WebFlux and Reactive
Data with Spring Boot

In this chapter, I show you the newest addition to Spring Framework 5 and how to use it
with Spring Boot. The new reactive stack built for web applications is Spring WebFlux,
which was added in the 5.0 version of the Spring Framework. It is a fully non-blocking
framework that relies on Project Reactor, which supports reactive streams back pressure
and runs on servers like Netty and Undertow, and Servlet 3.1+ containers.

Before I show you how to use WebFlux with Spring Boot, let’s learn about reactive
systems and how Project Reactor (https://projectreactor.io/) implements them.

Reactive Systems

In the past decade, we have been participants in how software changed, by making it
more stable, more robust, more resilient, and more flexible to accept even more modern
demands, not only by users (using desktop or web), but by many devices (mobile
phones, sensors, etc.). Accepting these new workloads has many challenges; that’s why
a group of organizations worked together to bring a manifest to cover many aspects of
today’s data demands.

The Reactive Manifesto

The Reactive Manifesto (https://www.reactivemanifesto.org/) was signed on
September 16, 2014. It defines how reactive systems should be. Reactive systems are
flexible, loosely coupled, and scalable. These systems are more tolerant to failure, and
when a failure occurs, they deal with it by applying patterns to avoid disaster. These
reactive systems have defined certain characteristics.

173
© Felipe Gutierrez 2019

F. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_6

https://projectreactor.io/
https://www.reactivemanifesto.org/

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

Reactive systems are

Responsive. Most systems respond in a timely manner, if possible;
they focus on providing fast and consistent response times and be
reliable for delivering in consistent quality of service.

Resilient. They apply replication, containment, isolation, and
delegation patterns to provide resilient systems. The failures of a
system must be contained through isolation; failures should not
affect other systems. Recovery must be from another system, so that
high availability (HA) is ensured.

Elastic. The systems must be responsive in any kind of workload.
Reactive systems can react to changes in input rate by increasing

or decreasing the resources allocated to service these inputs. There
should not be any bottlenecks, which means that the system has

the ability to share or replicate components. Reactive systems must
support predictive algorithms, which ensures cost-effect elasticity on
commodity hardware.

Message driven. Reactive systems must rely on asynchronous
messaging to establish a boundary between components, making
sure that the systems are loosely coupled, isolated, and location
transparent. It must support load management, elasticity, and
flow control by providing a back-pressure pattern when needed.
The communication must be non-blocking to allow to consumer
resources while active, which leads to lower system overhead.

With the Reactive Manifesto, different initiatives started to emerge and implement

frameworks and libraries that help many developers around the world. Reactive Streams

(www.reactive-streams.org) is a specification that defines four simple interfaces

(Publisher<T», a provider of an unbounded number sequenced elements, publishing

them according to the demand of the subscriber; Subscriber<T> subscribes to the

publisher; Subscription represents the one-to-one lifecycle of a subscriber subscribing

to a publisher; and Processor, which is the processing stage for both Subscriber

and Publisher) and different implementations, such as ReactiveX RXJava (http://
reactivex.io/), Akka Streams (https://akka.io/), Ratpack (https://ratpack.io/),
Vert.X (https://vertx.io/), Slick, Project Reactor, and more.

174

http://www.reactive-streams.org
http://reactivex.io/
http://reactivex.io/
https://akka.io/
https://ratpack.io/
https://vertx.io/

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

The Reactive Streams API has its own implementation in the Java 9 SDK release; in
other words, as of December 2017, Reactive Streams version 1.0.2 is part of the JDK9.

Project Reactor

Project Reactor 3.x is a library that is built around the Reactive Streams specification,
bringing the reactive programming paradigm to JVM. Reactive programming is a paradigm
that is an event-based model, where data is pushed to the consumer as it becomes
available; it deals with asynchronous sequences of events. Offering fully asynchronous and
non-blocking patterns, reactive programming is an alternative to the limited ways of doing
async code in the JDK (callbacks, APIs, and the Future<V> interface).

Reactor is a full, non-blocking reactive programming framework that manages back
pressure and integrates interaction with the Java 8 functional APIs (CompletableFuture,
Stream, and Duration). Reactor provides two reactive composable asynchronous APIs;

Flux [N] (for N elements), and Mono [0|1] (for 0 or 1 elements). Reactor can be used for
developing microservices architectures because it offers IPC (interprocess communication)
with reactor-ipc components and backpressure-ready network engines for HTTP (including
WebSockets, TCP, and UDP), and reactive encoding and decoding is fully supported.

Project Reactor provides processors, operators, and timers that can sustain a high
throughput rate on tens of millions of messages per second with a low memory footprint.

Note If you want to know more about Project Reactor, visit https://
projectreactor.io/ and its documentation at http://projectreactor.
io/docs/core/release/reference/docs/index.html.

ToDo App with Reactor

Let’s start using Reactor in the ToDo App and experiment with the Flux and Mono APIs.
In this section, create a simple Reactor example that takes care of ToDo's.

Open your favorite browser and point to Spring Initializr (https://start.spring.
io); add the following values to the fields.

o Group: com.apress.reactor
o Artifact: example

e Dependencies: Lombok
175

https://projectreactor.io/
https://projectreactor.io/
http://projectreactor.io/docs/core/release/reference/docs/index.html
http://projectreactor.io/docs/core/release/reference/docs/index.html
https://start.spring.io
https://start.spring.io

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

You can select either Maven or Gradle as project type. Then press the Generate
Project button, which downloads a ZIP file. Uncompress it and import the project in your
favorite IDE (see Figure 6-1).

0@ < m SO & start.spring.io (] © th g i+

SPRING INITIALIZR

ar

Generate a crderoec ¢ With 22 ¢ and Spring Boot zos

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies

COm.apress.reactor l Web, Securi ty, JPA, Actuator, Devtools...
Artifact Selected Dependencies

example

Generate Project % +

Don't know what to look for? Want more options? Switch to the full version.

start.spring.io is powered by and
Figure 6-1. Spring Initializr https://start.spring. io

As you can see, there are no significant dependencies this time in Lombok (https://
projectlombok.org/). We are going to make this as simple as possible. This is only a
little taste of the Flux and Mono APIs. Later on, you create a web application with the
WebFlux framework.

If you are using Maven, open your pom.xml and add the following section and
dependency.

176

https://start.spring.io
https://projectlombok.org/
https://projectlombok.org/

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

<dependencyManagement>
<dependencies>
<dependency>
<groupId>io.projectreactor</groupld>
<artifactId>reactor-bom</artifactId>
<version>Bismuth-SR10</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<!-- ... more dependencies here ... -->

<dependency>
<groupId>io.projectreactor</groupld>
<artifactId>reactor-core</artifactId>
</dependency>

</dependencies>

Reactor has a transitive dependency on the reactive-streams jars, so by adding the
bill of materials (BOM), Project Reactor provides all the necessary jars.

If you are using Gradle, add the following section and dependency to your build.
gradle file

dependencyManagement {

imports {
mavenBom "io.projectreactor:reactor-bom:Bismuth-SR10"
}
}
dependencies {
// ... More dependencies here ...
compile('io.projectreactor:reactor-core')
}

177

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

Next, let’s create the ToDo domain class, but this time, there is no persistence to it
(see Listing 6-1).

Listing 6-1. com.apress.reactor.example.domain.ToDo.java
package com.apress.reactor.example.domain;
import lombok.Data;

import java.time.LocalDateTime;
@Data
public class ToDo {

private String id;

private String description;
private LocalDateTime created;
private LocalDateTime modified;
private boolean completed;

public ToDo(){}
public ToDo(String description){
this.description = description;

}

public ToDo(String description, boolean completed){
this.description = description;
this.completed = completed;

Listing 6-1 shows the ToDo class. There is nothing special about this class, but we
had been working with persistent technologies; in this case, you can leave it like that—
simple. Let’s start by defining the Mono and Flux reactive APIs and add the necessary
code to use the ToDo domain class.

Mono<T>, an asynchronous [0I1] result

Mono<T> is a specialized Publisher<T> that emits one item and it can optionally
terminate with onComplete or onError signals. You can apply operators to manipulate
the item (see Figure 6-2).

178

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

This is the eventual item

emitted by the Mono. This vertical line indicates that the Mono

has completed successtully.
This is the timeline of the 1
Mono. Time flows from o L
loft to right. l
\J \J
These dotted lines and this box
indicale that a transformation is being
operator applied to the Mono. The text inside
the box shows the nature of the
transformation.

v v
This Mono is the
result of the o x Lo

transformation,
I for some reason the Mono terminates
abnormally, with an error, the vertical line is
replaced by an X.

Figure 6-2. Mono [0|1] (Image taken from: http://projectreactor.io/
documentation,).

Next, let’s create a MonoExample class and learn how to use the Mono API (see
Listing 6-2).

Listing 6-2. com.apress.reactor.example.MonoExample.java
package com.apress.reactor.example;

import com.apress.reactor.example.domain.ToDo;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.boot.CommandLineRunner;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import reactor.core.publisher.Mono;

import reactor.core.publisher.MonoProcessor;

import reactor.core.scheduler.Schedulers;

import java.time.Duration;

@Configuration
public class MonoExample {

static private Logger LOG = LoggerFactory.getlLogger(MonoExample.class);

179

http://projectreactor.io/

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

@Bean
public CommandLineRunner runMonoExample(){
return args -> {

MonoProcessor<ToDo> promise = MonoProcessor.create();

Mono<ToDo» result = promise
.doOnSuccess(p -> LOG.info("MONO >> ToDo: {}", p.getDescription()))
.doOnTerminate(() -> LOG.info("MONO >> Done"))
.doOnErroxr(t -> LOG.error(t.getMessage(), t))
.subscribeOn(Schedulers.single());

promise.onNext(
new ToDo("Buy my ticket for SpringOne Platform 2018"));
//promise.onError(
new IllegalArgumentException("There is an error processing the ToDo..."));

result.block(Duration.ofMillis(1000));
};

Listing 6-2 shows the MonoExample class; let’s analyze it.

e MonoProcessor. In Reactor, there are processors that are a kind
of publisher that are also a subscriber; this means that you can
subscribe to a processor but also call methods to manually inject
data into the sequence or terminate it. In this case, you are using the
onNext method to emit a ToDo instance.

e Mono. This is a reactive stream publisher with basic operators that
complete successfully by emitting an element or with an error.

e doOnSuccess. This method is called or triggered when the Mono
completes successfully.

e doOnTerminate. This method us called or triggered when the Mono
terminates either by completing successfully or with an error.

180

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

o doOnError. This method is called when the Mono type completes with
an error.

e subscribeOn. Subscribes to the Mono type and requests unbounded
demand on a specified Scheduler worker.

o onNext. This method emits a value that can be marked as @Nullable.

e block. Subscribes to the Mono type and block until a next signal is
received or a timeout expires.

As you can see a very simple example but remember that now we are talking about
reactive programming, where there is no more blocking or polling from the server, but
pushing to the consumer until it sends back a completed signal. This make more efficient
and more robust our apps. We can say that we never can have slow consumers anymore.

You can now run the application either using command line or using your IDE. You
should see the following output:

INFO 55588 - [single-1] c.a.r.e.MonoExample : MONO >> ToDo: Buy my ticket
for SpringOne Platform 2018
INFO 55588 - [single-1] c.a.r.e.MonoExample : MONO >> Done

Note How did this code run? remember that we had marked the class

as @Configuration and we had declared a @Bean that returns a
CommandLineRunner interface. Spring Boot execute this bean after it finish
wiring up all the Spring beans and before the app starts; so it’s a nice way to
execute code (like an initialization) before the app runs.

Flux<T>: An asynchronous Sequence of [0IN] ltems

Flux is a Publisher<T> that represents an asynchronous sequence of 0 to N emitted
items that can optionally terminate by using onComplete or an onError signals (see
Figure 6-3).

181

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

These are items emitted by This vortical ino indicates that the Flux

the Flux. has comploted successiully.
This is the timeline of the
Flux. Time flows from left 1 2 ° 4 5 6
to right. . .
3 o : " " o
y Y Y ¥ Y Y Y These dotted kines and this box
indicale that a translormation is being
operator applied 10 the Flux. The text inside the
box shows the nature of the

transformation,

. . . .
\ \J \J Y
This Flux is the result a x >
of the transformation. =
If for some reason the Flux terminates

abnormally, with an error, the vertical line is
replaced by an X.

Figure 6-3. Flux [0|N] (Image taken from: http://projectreactor.io/
documentation,).

Create the FluxExample class (see Listing 6-3).

Listing 6-3. com.apress.reactor.example.FluxExample.java
package com.apress.reactor.example;

import com.apress.reactor.example.domain.ToDo;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.boot.CommandLineRunner;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import reactor.core.publisher.EmitterProcessor;

import reactor.core.publisher.Mono;

import reactor.core.scheduler.Schedulers;

import java.util.Llist;

@Configuration
public class FluxExample {

static private Logger LOG = LoggerFactory.getlLogger(FluxExample.class);

@Bean
public CommandLineRunner runFluxExample(){
return args -> {

182

http://projectreactor.io/

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

EmitterProcessor<ToDo» stream =
EmitterProcessor.create();

Mono<List<ToDo>> promise = stream
filter(s -» s.isCompleted())
.doOnNext(s -» LOG.info("FLUX »>> ToDo: {}",
s.getDescription()))
.collectList()
.subscribeOn(Schedulers.single());

stream.onNext(new ToDo("Read a Book",true));
stream.onNext(new ToDo("Listen Classical Music",true));
stream.onNext(new ToDo("Workout in the Mornings"));
stream.onNext(new ToDo("Organize my room", true));
stream.onNext(new ToDo("Go to the Car Wash", true));
stream.onNext(new ToDo("SP1 2018 is coming" , true));

stream.onComplete();

promise.block();

};

Listing 6-3 shows the FluxExample class. Let’s analyze it.

EmitterProcessor. Remember that a processor is a kind of
publisher; in this case, we are using a synchronous processor that
can push data both through user action and by subscribing to an
upstream publisher and synchronously draining it. This processor
creates a flux of ToDo instances; it provided an implementation of
a RingBuffer backed messaging-passing processor implementing
publish-subscribe with synchronous drain loops. If you want to
use asynchronous processor, you can use WorkQueueProcessor or
aTopicProcessor.

filter. Remember that you can apply operators to Flux and Mono
APIs; in this case, a filter is applied using a predicate that evaluates
and emits a value if succeeded (i.e., if the ToDo is completed).

183

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

e doOnNext. Triggers when a flux emits an item.

o collectlist. Collects all elements emitted by a flux into a list that is
emitted by the resulting mono when this sequence completes.

e subscribeOn. Subscribes to this flux based on a scheduler worker.
o onNext. Emits a new value to the flux.
o onComplete. Finishes the upstream.

e block. Subscribes to the Mono type and blocks until a next signal is
received or a timeout expires.

Now, you can run the code. You should have something similar to the following

output.

INFO 61 - [single-1] c.a.r.e.FluxExample : FLUX >>> ToDo: Read a Book

INFO 61 - [single-1] c.a.r.e.FluxExample : FLUX >>> ToDo: Listen Classical
Music

INFO 61 - [single-1] c.a.r.e.FluxExample : FLUX >>> ToDo: Organize my room

INFO 61 - [single-1] c.a.r.e.FluxExample : FLUX >>> ToDo: Go to the Car Wash

INFO 61 - [single-1] c.a.r.e.FluxExample : FLUX >>> ToDo: SP1 2018 is coming

Again, this is a simple example with the ToDo app. Imagine that you have millions of
users accessing your app to post ToDos per account, and you want to keep track of every
single one of them—the same as a Twitter feed—and you don’t want to block any users.
You should be reactive!

WebFlux

Spring MVC has been the primary way to create web applications with the Spring
Framework for a long time. Now another player has come into the picture—a reactive
stack, the Spring WebFlux framework! Spring WebFlux is a fully asynchronous and
non-blocking framework that relies on the Reactive Streams implementations by

Project Reactor.

184

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

One of the main features of Spring WebFlux is that it provides two programming models.

Annotated controllers. Consistent with the Spring MVC and based on
the same annotations from the spring-web module; this means that
you can use the same known annotations (@*Controller, @*Mapping,
@RequestBody, etc.) but with all the reactive support from Reactor
and RxJava.

@RestController
public class ToDoController {

@GetMapping("/todo/{id}")
public Mono<ToDo> getToDo(@PathVariable Long id) {
/1 ...

}

@GetMapping("/todo")
public Flux<ToDo> getToDos() {
/...

}

Functional endpoints. A functional programming model, where you
can use lambda-based calls. You need to provide the route endpoints
by declaring RouterFunction beans and the endpoint handler that
returns the response with a Mono or a Flux type.

@Configuration
public class ToDoRoutingConfiguration {

@Bean
public RouterFunction<ServerResponse>
monoRouterFunction(ToDoHandler toDoHandler) {
return
route(GET("/todo/{id}")
.and(accept (APPLICATION JSON)),toDoHandler::getToDo)

.andRoute(GET("/todo")
.and(accept (APPLICATION_JSON)), toDoHandler::getToDos);

}

185

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

@Component
public class ToDoHandler {

public Mono<ServerResponse> getToDo(ServerRequest request){

!l ...
}
public Mono<ServerResponse> getToDos(ServerRequest request){
/] ...
}

}

Filters, exceptions handlers, CORS, view technologies, and web security are handled

in the same way as Spring MVC. That’s the beauty of using Spring Framework— a

consistent ecosystem regardless of new technology.

WebClient

The WebFlux module also introduces a reactive, non-blocking client for HTTP requests

with a functional-style API client and Reactive Streams support. The WebClient interface

has the following characteristics.

a functional API that takes advantage of the lambda programming
style

non-blocking and reactive

supports high concurrency with fewer hardware resources

supports streaming up and down from a server

supports both synchronous and asynchronous communication

The WebClient is very easy to use. This client has the retrieve or exchange methods

to get a response body and decode it.

WebClient client = WebClient.create("http://my-to-dos.com");

// [0|1] ToDo
Mono<ToDo> result = client

186

.get()

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

.uri("/todo/{id}", id)
.accept(MediaType.APPLICATION JSON)
.retrieve()
.bodyToMono(ToDo.class);

//[0|N] ToDos

Flux<ToDo> result = client
.get()
.uri("/todo").accept(MediaType.TEXT EVENT STREAM)
.retrieve()
.bodyToFlux(ToDo.class);

Later, we are going to create a small example for using this client, but if you are
interested in learning more about it, check out https://docs.spring.io/spring/docs/
current/spring-framework-reference/web-reactive.html#webflux-client.

WebFlux and Spring Boot Auto-configuration

With Spring Boot, Spring WebFlux is easier than ever, because Spring Boot offers
auto-configuration by configuring the necessary codecs for HttpMessageReader and
HttpMessageWriter instances. It has the support for serving static resources, including
the support for Web]Jars. It uses the latest template engine technologies that support
WebFlux, such as FreeMarker (https://freemarker.apache.org/), Thymeleaf (www.
thymeleaf.org), and Mustache (https://mustache.github.io/). By default, the auto-
configuration set up Netty (https://netty.io) as the primary container.

If you need to override the default WebFlux auto-configuration, you can add your
own @Configuration class of type WebFluxConfigurer.

Important Note If you want to have full control over the WebFlux auto-
configuration, then you need to add your custom @Configuration annotated
with @EnableWebFlux.

187

https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux-client
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html#webflux-client
https://freemarker.apache.org/
http://www.thymeleaf.org
http://www.thymeleaf.org
https://mustache.github.io/
https://netty.io

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

Using WebFlux with Spring Boot

To use WebFlux with Spring Boot, it is necessary to add the spring-boot-starter-
webflux dependency to your pom.xml or build.gradle file.

Important Note You can use both spring-boot-starter-web and
spring-boot-starter-webflux, but the Spring Boot auto-configure is the
Spring MVC. If you want to use all the WebFlux features, then you need to use
SpringApplication.setWebApplicationType(WebApplicationType.
REACTIVE)

ToDo App with WebFlux

Let’s start by creating the ToDo app using the WebFlux module. Let’s use the new
reactive Flux and Mono APIs.

Open your favorite browser and point to Spring Initializr. Add the following values to
the fields.

e Group: com.apress.todo

o Artifact: todo-webflux

o Name: todo-webflux

o Package Name: com.apress.todo

o Dependencies: Lombok, Reactive Web

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button to download a ZIP file. Uncompress it and import the project in
your favorite IDE (see Figure 6-4).

188

SPRING INITIALIZR

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

& start.spring.io & 0 o |

Generate a MavenProject ¢

Project Metadata

Artifact coordinates
Group

com.apress.todo

Artifact

todo-webflux

¢+ and Spring Boot 204

Dependencies

Add Spring Beot Starters and dependencies to your application
Search for dependencies

Web, Security, JPA, Actuator, Devtools...

Selected Dependencies

e e

Name

todo-webflux

Description

pDemo project for Spring Boot

Package Name

com.apress.todo

Packaging

Jar

Java Version

8 :

Too many options? Switch back to the simple version.
Generate Project % + =

Figure 6-4. Spring Initializr https://start.spring.io

This time you use the Reactive Web dependency; in this case, the spring-boot-
starter-webflux starter. Lets’ create the ToDo domain class, which is similar to other
projects (see Listing 6-4).

Listing 6-4. com.apress.todo.domain.ToDo.java
package com.apress.todo.domain;
import lombok.Data;

import java.time.LocalDateTime;

import java.util.UUID;
189

https://start.spring.io

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

@Data

public class ToDo {
private String id;
private String description;
private LocalDateTime created;
private LocalDateTime modified;
private boolean completed;

public ToDo(){
this.id = UUID.randomUUID().toString();
this.created = LocalDateTime.now();
this.modified = LocalDateTime.now();

}
public ToDo(String description){
this();
this.description = description;
}
public ToDo(String description, boolean completed){
this();
this.description = description;
this.completed = completed;
}

Listing 6-4 shows the ToDo class; as you can see nothing new, except for initialization
in the default constructor.

Next, let’s create the ToDoRepository class, which holds in-memory ToDo’s (see
Listing 6-5).

Listing 6-5. com.apress.todo.repository.ToDoRepository.java

package com.apress.todo.repository;

import com.apress.todo.domain.ToDo;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

import java.util.Arrays;

190

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT
public class ToDoRepository {

private Flux<ToDo> toDoFlux =
Flux.fromIterable(Arrays.asList(
new ToDo("Do homework"),
new ToDo("Workout in the mornings", true),
new ToDo("Make dinner tonight"),
new ToDo("Clean the studio", true)));

public Mono<ToDo> findById(String id){
return Mono
.from(
toDoFlux.filter(todo -> todo.getId().equals(id)));

}

public Flux<ToDo> findAll(){
return toDoFlux;

Listing 6-5 shows the ToDoRepository class, where the toDoFlux instance handles a
Flux<ToDo>. Take a look at the findById method that returns a Mono<ToDo> from the flux.

Using Annotated Controllers

Let’s continue by creating something that you already know about (similar to Spring
MVC): a ToDoController class that handles Flux and Mono types (see Listing 6-6).

Listing 6-6. com.apress.todo.controllerToDoController.java
package com.apress.todo.controller;

import com.apress.todo.domain.ToDo;

import com.apress.todo.repository.ToDoRepository;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;

import reactor.core.publisher.Mono;

191

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

@RestController
public class ToDoController {

private ToDoRepository repository;

public ToDoController(ToDoRepository repository){
this.repository = repository;

}

@GetMapping("/todo/{id}")
public Mono<ToDo> getToDo(@PathVariable String id){
return this.repository.findById(id);

}

@GetMapping("/todo")
public Flux<ToDo> getToDos(){
return this.repository.findAll();

As you can see from the code, you are returning a Mono<ToDo> or a Flux<ToDo>,
which is different from Spring MVC; remember that we are doing async and non-
blocking calls.

You can run the application and go to a browser and point to http://
localhost:8080/todo to see the results—a JSON response of the ToDo’s; or you can
execute the following command in a terminal and see the same output.

$ curl http://localhost:8080/todo
[

{
"completed": false,
"created": "2018-08-14T20:46:05.542",
"description”: "Do homework",
"id": "5520e646-47aa-4be6-802a-ef6df500d6fb",
"modified": "2018-08-14T20:46:05.542"

})

192

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

{
"completed": true,
"created": "2018-08-14T20:46:05.542",
"description”: "Workout in the mornings",
"id": "3fe07f8d-64b0-4a39-ab1b-658bde4815d7",
"modified": "2018-08-14T20:46:05.542"

})

In the console logs, note that the running container is the Netty container—the
default from the Spring Boot auto-configuration.

Using Functional Endpoints

Remember that Spring WebFlux use functional programming to create reactive web apps.
Let’s create the ToDoRouter class that declares the routing functions(see Listing 6-7).

Listing 6-7. com.apress.todo.reactive.ToDoRouter.java
package com.apress.todo.reactive;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.web.reactive.function.server.RouterFunction;
import org.springframework.web.reactive.function.server.ServerResponse;

import static org.springframework.http.MediaType.APPLICATION JSON;
import static org.springframework.web.reactive.function.server.
RequestPredicates.GET;

import static org.springframework.web.reactive.function.server.
RequestPredicates.accept;

import static org.springframework.web.reactive.function.server.
RouterFunctions.route;

@Configuration
public class ToDoRouter {

193

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

@Bean
public RouterFunction<ServerResponse> monoRouterFunction(ToDoHandler
toDoHandler) {
return route(GET("/todo/{id}").and(accept(APPLICATION_JSON)),
toDoHandler: :getToDo)
.andRoute(GET("/todo").and(accept(APPLICATION_JSON)),
toDoHandler: :getToDos);

Listing 6-7 shows the routes that are used (endpoints) and the handler. Spring
WebFlux offers a very nice fluent API to easily build any route.

Next, let’s create the ToDoHandler class that has the logic to server the requests (see
Listing 6-8).

Listing 6-8. com.apress.todo.reactiveToDoHandler.java
package com.apress.todo.reactive;

import com.apress.todo.domain.ToDo;

import com.apress.todo.repository.ToDoRepository;

import org.springframework.stereotype.Component;

import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;
import reactor.core.publisher.Flux;

import reactor.core.publisher.Mono;

import static org.springframework.http.MediaType.APPLICATION JSON;
import static org.springframework.web.reactive.function.BodyInserters.
fromObject;

@Component
public class ToDoHandler {

private ToDoRepository repository;

public ToDoHandler(ToDoRepository repository){
this.repository = repository;

194

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

public Mono<ServerResponse» getToDo(ServerRequest request) {
String toDoId = request.pathVariable("id");
Mono<ServerResponse> notFound =
ServerResponse.notFound().build();
Mono<ToDo> toDo = this.repository.findById(toDoId);
return toDo
flatMap(t -»
ServerResponse
-ok()
.contentType(APPLICATION_JSON)
.body(fromObject(t)))
.switchIfEmpty(notFound);

}

public Mono<ServerResponsey getToDos(
ServerRequest request) {
Flux<ToDo> toDos = this.repository.findAll();
return ServerResponse
.ok()
.contentType(APPLICATION_JSON)
.body(toDos, ToDo.class);

Listing 6-8 shows you the handler. Let’s analyze it.

e Mono<ServerResponse>. This response type is used on both methods,
and it uses the ServerResponse interface with a BodyBuilder fluent
API that adds a body to the response. The BodyBuilder interface
provides useful methods that can help you build the response, such
as adding status with the ok method. You can add headers with the
headers method, and so forth.

Before you run the application, it’s important to remove the ToDoController class from
the Spring container. You can do this by commenting out the @RestController annotation.

Running the application, you get the same results as before. I know that this is a very
simple example, because this app is doing everything in-memory, right? Well, let’s add
reactive persistence!

195

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

Reactive Data

The Spring Data team created reactive repositories with dynamic APIs implemented
using RxJava and Project Reactor. This abstraction defines several wrapper types. Spring
Data converts reactive wrapper types behind the scenes so that you can stick to your
favorite composition library, making it easier for the developer.

o ReactiveCrudRepository

o ReactiveSortingRepository
e RxJava2CrudRepository

e RxJava2SortingRepository

Spring Data offers different reactive modules: MongoDB, Redis, and Cassandra
Reactive Streams, giving you all the flexibility and all the goodies from the Reactive

Streams initiative.

MongoDB Reactive Streams

Spring Data MongoDB is built on top of MongoDB Reactive Streams, and it
provides the maximum interoperability of Reactive Streams. It provides the
ReactiveMongoOperations helper interface to use the Flux and Mono types.

To use MongoDB Reactive Streams it is necessary to include the spring-boot-
starter-data-mongodb-reactive dependency to your pom.xml or build.gradle file.
MongoDB Reactive Streams also provide a dedicated interface for a repository declaration,
the ReactiveMongoRepository<T,ID> interface. Following the same repository pattern,
you can declare your own query named method that returns a Flux or Mono types.

ToDo App with Reactive Data

Let’s complete the ToDo app by adding reactive data with MongoDB and still use
WebFlux for any requests and responses, using the functional programming mode.

You can open your favorite browser and point to Spring Initializr(https://start.
spring.io); add the following values to the fields.

e Group: com.apress.todo

o Artifact: todo-reactive-data

196

https://start.spring.io
https://start.spring.io

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

o Name: todo-reactive-data
o Package Name: com.apress.todo
o Dependencies: Lombok, Reactive Web, Reactive MongoDB

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button to download the ZIP file. Uncompress it and import the project
in your favorite IDE (see Figure 6-5).

o0 ® < m] W N N & start.spring.io ¢ (4] th 3 e

SPRING INITIALIZR

Generate a | vevenrojec ¢ With 2= ¢ @and Spring Boot 204

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies

com.apress.todo Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

todo-reactive-data m Reactive Web Reactive MongoDB
Name

todo-reactive-data

Description

Demo project for Spring Boot

Package Name

com.apress.todo

Packaging

Jar

Java Version

8 :

Generate Project % +

Figure 6-5. Spring Initializr https://start.spring. io

Too many options? Switch back to the simple version.

197

https://start.spring.io

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

As you can see, we now have the Reactive Web and the Reactive MongoDB
dependencies. Because we are using MongoDB, there is no need to have a server. You
use an embedded Mongo; normally, it is for testing but we are going to use it for this app.

Let’s start by adding the embedded Mongo dependency. If you are using Maven,
open your pom. xml file and add the following dependency.

<dependency>
<groupId>de.flapdoodle.embed</groupld>
<artifactId>de.flapdoodle.embed.mongo</artifactId>
<scope>runtime</scope>
</dependency>

If you are using Gradle, you can open the build.gradle file and add the following
dependency.

runtime('de.flapdoodle.embed:de.flapdoodle.embed.mongo")

Next, let’s create the ToDo domain class (see Listing 6-9).

Listing 6-9. com.apress.todo.domain.ToDo.java
package com.apress.todo.domain;

import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.mongodb.core.mapping.Document;

import java.time.LocalDateTime;
import java.util.UUID;

@Document
@Data
public class ToDo {

@Id

private String id;

private String description;
private LocalDateTime created;
private LocalDateTime modified;
private boolean completed;

198

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

public ToDo(){
this.id = UUID.randomUUID().toString();
this.created = LocalDateTime.now();
this.modified = LocalDateTime.now();

}
public ToDo(String description){
this();
this.description = description;
}
public ToDo(String description, boolean completed){
this();
this.description = description;
this.completed = completed,
}
}
This class is using the @ocument and @Id annotation that marks them as a persistent
class for MongoDB.

Next, let’s create the ToDoRepository interface (see Listing 6-10).

Listing 6-10. com.apress.todo.repository.ToDoRepository.java
package com.apress.todo.repository;

import com.apress.todo.domain.ToDo;
import org.springframework.data.mongodb.repository.ReactiveMongoRepository;
import org.springframework.stereotype.Repository;

@Repository
public interface ToDoRepository extends
ReactiveMongoRepository<ToDo, String» {

This interface extends from ReactiveMongoRepository<T, ID>. The interface
provides the same Repository functionality that you already know, but now it returns
Flux and Mono types. Remember that is the same as previous chapters. Here you define
your custom named queries that return the reactive types.

199

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

For this ToDo app, we are going to use functional programming. Let’s create the
router and handler in the ToDoRouter class (see Listing 6-11).

Listing 6-11. com.apress.todo.reactive ToDoRouter.java
package com.apress.todo.reactive;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.web.reactive.function.server.RouterFunction;
import org.springframework.web.reactive.function.server.ServerResponse;

import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.server.
RequestPredicates.*;

import static org.springframework.web.reactive.function.server.
RouterFunctions.route;

@Configuration
public class ToDoRouter {

@Bean
public RouterFunction<ServerResponse>
monoRouterFunction(ToDoHandler toDoHandler) {
return
route(GET("/todo/{id}").and(accept (APPLICATION JSON)),
toDoHandler: :getToDo)

.andRoute(GET("/todo").and(accept (APPLICATION JSON)),
toDoHandler: :getToDos)

.andRoute(POST("/todo").and(accept (APPLICATION JSON)),
toDoHandler: :newToDo);

}

Listing 6-11 shows the endpoint declarations. There is a new method, a POST. Next,
let’s create the handler (see Listing 6-12).

200

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

Listing 6-12. com.apress.todo.reactive.ToDoHandler.java
package com.apress.todo.reactive;

import com.apress.todo.domain.ToDo;

import com.apress.todo.repository.ToDoRepository;

import org.springframework.stereotype.Component;

import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;
import reactor.core.publisher.Flux;

import reactor.core.publisher.Mono;

import static org.springframework.http.MediaType.APPLICATION JSON;
import static org.springframework.web.reactive.function.BodyInserters.
fromObject;

import static org.springframework.web.reactive.function.BodyInserters.
fromPublisher;

@Component

public class ToDoHandler {

private ToDoRepository repository;

public ToDoHandler(ToDoRepository repository){
this.repository = repository;

}

public Mono<ServerResponse> getToDo(ServerRequest request) {
return findById(request.pathVariable("id"));

}

public Mono<ServerResponse> getToDos(ServerRequest request) {
Flux<ToDo> toDos = this.repository.findAll();
return ServerResponse
.ok()
.contentType (APPLICATION_JSON)
.body(toDos, ToDo.class);

201

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

public Mono<ServerResponse> newToDo(ServerRequest request) {
Mono<ToDo> toDo = request.bodyToMono(ToDo.class);

return ServerResponse
.ok()
.contentType (APPLICATION JSON)
.body (fromPublisher(toDo.flatMap(this::save),ToDo.class));

}

private Mono<ServerResponse> findById(String id){
Mono<ToDo> toDo = this.repository.findById(id);

Mono<ServerResponse> notFound = ServerResponse.notFound().build();

return toDo
.flatMap(t -> ServerResponse
.ok()
.contentType(APPLICATION JSON)
.body (fromObject(t)))
.switchIfEmpty(notFound);

}

private Mono<ToDo> save(ToDo toDo) {
return Mono.fromSupplier(

0 ->A
repository
.save(toDo)
.subscribe();

return toDo;

};

Listing 6-12 shows the handler that takes care of the response to the endpoints. Every
method returns a Mono<ServerResponse>. Take a look at the Mono operators that make it
possible save to the MongoDB server, and how the BodyBuilder creates the response.

Next, create the configuration that sets up the connection to the embedded
MongoDB server. Create the ToDoConfig class (see Listing 6-13).

202

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

Listing 6-13. com.apress.todo.configToDoConfig.java
package com.apress.todo.config;

import com.apress.todo.domain.ToDo;

import com.apress.todo.repository.ToDoRepository;

import com.mongodb.reactivestreams.client.MongoClient;
import com.mongodb.reactivestreams.client.MongoClients;
import org.springframework.boot.CommandLineRunner;

import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.DependsOn;
import org.springframework.core.annotation.Order;

import org.springframework.core.env.Environment;

import org.springframework.data.mongodb.config.
AbstractReactiveMongoConfiguration;

import org.springframework.data.mongodb.repository.config.
EnableReactiveMongoRepositories;

import java.util.Arrays;
import java.util.Optional;
import java.util.stream.Collectors;

@Configuration
@EnableReactiveMongoRepositories(basePackages = "com.apress.todo.repository")
public class ToDoConfig extends AbstractReactiveMongoConfiguration {

private final Environment environment;

public ToDoConfig(Environment environment){
this.environment = environment;

}

@verride
protected String getDatabaseName() {
return "todos";

203

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

@verride

@Bean

@DependsOn("embeddedMongoServer")

public MongoClient reactiveMongoClient() {
int port = environment.getProperty(“local.mongo.port”, Integer.class);
return MongoClients.create(String.format("mongodb://localhost:%d",
port));

}

@Bean
public CommandLineRunner insertAndView(ToDoRepository repository,
ApplicationContext context){

return args -> {

repository.save(new ToDo("Do homework")).subscribe();
repository.save(new ToDo("Workout in the mornings", true)).
subscribe();

repository.save(new ToDo("Make dinner tonight")).subscribe();
repository.save(new ToDo("Clean the studio”, true)).subscribe();

repository.findAll().subscribe(System.out: :println);
};

Listing 6-13 shows the configuration required to use the MongoDB Reactive Stream
embedded server. Let’s analyze this class.

e @EnableReactiveMongoRepositories. This annotation is required to
set up all the necessary infrastructure for the reactive stream APIs. It’s
also important to tell this annotation where the repositories are (this
is not necessary if the repos are part of the package).

o AbstractReactiveMongoConfiguration. To set up the embedded
Mongo, it is necessary to extend from this abstract class and
implement the reactiveMongoClient and the getDatabaseName
methods. reactiveMongoClient creates the MongoClient instance
that connects to wherever the port of the embedded MongoDB is set
(thanks to the environment property local.mongo.port).

204

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

o (@DependsOn. This annotation is a helper that creates
reactiveMongoClient after the embeddedMongoServer bean.

The class is also running code where the ToDo’s are saved to the MongoDB.
Now, you are all set to run the ToDo app. After running the app, you can go to the
browser or execute the following command.

$ curl http://localhost:8080/todo

[
{
"completed": false,
"created": "2018-08-14T20:46:05.542",
"description”: "Do homework",
"id": "5520e646-47aa-4be6-802a-ef6df500d6fh",
"modified": "2018-08-14T20:46:05.542"
})
{
"completed": true,
"created": "2018-08-14T20:46:05.542",
"description”: "Workout in the mornings",
"id": "3fe07f8d-64b0-4a39-ab1b-658bde4815d7",
"modified": "2018-08-14T20:46:05.542"
1
]

You can add a new ToDo by executing the following.

$ curl -i -X POST -H "Content-Type: application/json" -d '{
"description”:"Read a book"}"' http://localhost:8080/todo
HTTP/1.1 200 OK

Content-Type: application/json

Content-Length: 164

{
"id":"a3133b8d-1d8b-4b2e-b7d9-48a73999a104",
"description”:"Read a book",
"created":"2018-08-14T22:51:19.734",

205

CHAPTER 6 WEBFLUX AND REACTIVE DATA WITH SPRING BOOT

"modified":"2018-08-14T22:51:19.734",
"completed":false

}

Congratulations! Now, you know how to create a reactive, async, and a non-blocking
application using the power of Spring WebFlux and Project Reactor!

Note All the code is available from the Apress website. You can also get the latest
at https://github.com/felipega8/pro-spring-boot-2nd repository.

Summary

This chapter discussed how to use WebFlux, the new addition to the Spring Framework.
You learned that WebFlux is a non-blocking, asynchronous, and reactive framework that
implements the Reactive Streams.

You also learned that WebFlux provides two ways for programming with Spring Boot:
annotated controllers and functional endpoints, where you can define Flux and Mono
response types. You learned that WebFlux also provides a WebClient interface for using
these new reactive APIs.

You learned that Spring Boot provides an auto-configuration for the reactive stack by
using the spring-boot-starter-webflux, using Netty by default as a server container.

The next chapter tests the apps and shows how Spring Boot makes it easier to
apply TDD.

206

https://github.com/felipeg48/pro-spring-boot-2nd

CHAPTER 7

Testing with Spring Boot

Software testing is a process of executing a program or system to find errors or defects
(normally call bugs) and make sure every program or system really works.

This is one of the many definitions that you can find on the Internet.

Many companies put every effort into finding the right and easy way to do testing by
creating amazing frameworks, a practice called TDD (test-driven development).

TDD is a process that is based on repetition in a very short development cycle; here,
feedback plays an important part of the process, because the developer writes code to
pass a use case with a minimum amount of code. And thanks to the feedback, the code
can be refactored until it passed and acceptable for the final user.

Spring Testing Framework

One of the main ideas of the Spring Framework is to encourage developers to create
simple and loosely coupled classes, program to interfaces, making the software more
robust and extensible. The Spring Framework provides the tools for making unit and
integration testing easy (actually, you don’t need Spring to test the functionality of your
system if you really program interfaces); in other words, your application should be
testable using the JUnit or TestNG test engines with objects (by simple instantiated using
the new operator)—without Spring or any other container.

The Spring Framework has several testing packages that help create unit and
integration testing for applications. It offers unit testing by providing several mock
objects (Environment, PropertySource, INDI, Servlet; Reactive: ServerHttpRequest
and ServerHttpResponse test utilities) that help test your code in isolation.

One of the most commonly used testing features of the Spring Framework is
integration testing. Its primary’s goals are

» managing the Spring IoC container caching between test execution

e transaction management

207
© Felipe Gutierrez 2019

F. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_7

CHAPTER 7 TESTING WITH SPRING BOOT

o dependency injection of test fixture instances
e Spring-specific base classes

The Spring Framework provides an easy way to do testing by integrating the
ApplicationContext in the tests. The Spring testing module offers several ways to use
the ApplicationContext, programmatically and through annotations:

o BootstrapWith. A class-level annotation to configure how the Spring
TestContext Framework is bootstrapped.

o @ContextConfiguration. Defines class-level metadata to determine
how to load and configure an ApplicationContext for integration
tests. This is a must-have annotation for your classes, because that’s
where the ApplicationContext loads all your bean definitions.

o @WebAppConfiguration. A class-level annotation to declare that
the ApplicationContext loads for an integration test should be a
WebApplicationContext.

o @ActiveProfile. A class-level annotation to declare which
bean definition profile(s) should be active when loading an
ApplicationContext for an integration test.

o @TestPropertySource. A class-level annotation to configure
the locations of properties files and inline properties to be
added to the set of PropertySources in the Environment for an
ApplicationContext loaded for an integration test.

e @irtiesContext. Indicates that the underlying Spring
ApplicationContext has been dirtied during the execution of a
test (modified or corrupted for example, by changing the state of a
singleton bean) and should be closed.

There a lot more (@TestExecutionListeners, @Commit, @Rol1lback, @
BeforeTransaction, @AfterTransaction, @5ql, @5q1lGroup, @SqlConfig, @Timed,
@Repeat, @IfProfileValue, and so forth).

As you can see, there are a lot of choices when you test with the Spring Framework.
Normally, you always use the @RunWith annotation that wires up all the test framework
goodies. For example,

208

CHAPTER 7 TESTING WITH SPRING BOOT

@RunWith(SpringRunner.class)

@ContextConfiguration({"/app-config.xml", "/test-data-access-config.xml"})
@ActiveProfiles("dev")

@Transactional

public class ToDoRepositoryTests {

@Test

public void ToDoPersistenceTest(){
/...

}

Now, let’s see how the Spring Test Framework is used and all the features that Spring
Boot offers.

Spring Boot Testing Framework

Spring Boot uses the power of the Spring Testing Framework by enhancing and adding
new annotations and features that make testing easier for developers.

If you want to start using all the testing features by Spring Boot, you only need to add
the spring-boot-starter-test dependency with scope test to your application. This
dependency is already in place in the Spring Initializr service.

The spring-boot-starter-test dependency provides several test frameworks that
play along very well with all the Spring Boot testing features: JUnit, Assert], Hamcrest,
Mockito, JSONassert, and JsonPath. Of course, there are other test frameworks that
play very nicely with the Spring Boot Test module; you only need to include those
dependencies manually.

Spring Boot provides the @SpringBootTest annotation that simplifies the way you
can test Spring apps. Normally, with Spring testing, you are required to add several
annotations to test a particular feature or functionality of your app, but not in Spring
Boot—although you are still required to use the @RunWith(SpringRunner.class)
annotation to do your testing; if you do not, any new Spring Boot test annotation will be
ignored. The @SpringBootTest has parameters that are useful when testing a web app,
such as defining a RANDOM_PORT or DEFINED_PORT.

209

CHAPTER 7 TESTING WITH SPRING BOOT
The following code snippet is the skeleton of what a Spring Boot test looks like.

@RunWith(SpringRunner.class)
@SpringBootTest
public class MyTests {

@Test
public void exampleTest() {

Testing Web Endpoints
Spring Boot offers a way to test endpoints: a mocking environment called the MockMvc class.

@RunWith(SpringRunner.class)
@SpringBootTest
@AutoConfigureMockMvc

public class MockMvcToDoTests {

@Autowired
private MockMvc mvc;

@Test
public void toDoTest() throws Exception {
this.mvc
.perform(get("/todo"))
.andExpect(status().is0k())
.andExpect(content()
.contentType(MediaType.APPLICATION JSON UTF8));

You can also use the TestRestTemplate class.

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM PORT)
public class ToDoSimpleRestTemplateTests {

210

CHAPTER 7 TESTING WITH SPRING BOOT

@Autowired
private TestRestTemplate restTemplate;

@Test

public void toDoTest() {
String body = this.restTemplate.getForObject("/todo", String.class);
assertThat(body).contains("Read a Book");

This code shows a test that is running a full server and using the TestRestTemplate
instance to do a call to the /todo endpoint. Here we are assuming a String return. (This
is not the best way to test a JSON return. Don’t worry, you see the proper way to use the
TestRestTemplate class later on).

Mocking Beans

The Spring Boot testing module offers a @ockBean annotation that defines a Mockito
mock for a bean inside the ApplicationContext. In other words, you can mock a new
Spring bean or replace an existing definition by adding this annotation. Remember, this
is happening inside the ApplicationContext.

@RunWith(SpringRunner.class)
@SpringBootTest
public class ToDoSimpleMockBeanTests {

@MockBean
private ToDoRepository repository;

@Test
public void toDoTest() {
given(this.repository.findById("my-id"))
.Return(new ToDo("Read a Book"));
assertThat(
this.repository.findById("my-id").getDescription())
.isEqualTo("Read a Book");

211

CHAPTER 7 TESTING WITH SPRING BOOT

Spring Boot Testing Slices

One of the most important features that Spring Boot offers is a way to execute test without
the need for a certain infrastructure. The Spring Boot testing module includes slices to test
specific parts of the application without the need of a server or a database engine.

@JsonTest

The Spring Boot testing module provides the @JsonTest annotation, which helps with
object JSON serialization and deserialization, and verifies that everything works as
expected. @JsonTest auto-configures the supported JSON mapper, depending of which
library is in the classpath: Jackson, GSON, or JSONB.

@RunWith(SpringRunner.class)
@JsonTest
public class ToDoJsonTests {

@Autowired
private JacksonTester<ToDo> json;

@Test
public void toDoSerializeTest() throws Exception {
ToDo toDo = new ToDo("Read a Book");

assertThat(this.json.write(toDo))
.isEqualToJson("todo.json");

assertThat(this.json.write(toDo))
.hasJsonPathStringValue("@.description™);

assertThat(this.json.write(toDo))
.extractingJsonPathStringValue("@.description")
.isEqualTo("Read a Book");

}

@Test

public void toDoDeserializeTest() throws Exception {
String content = "{\"description\":\"Read a Book\",\"completed\":
true }";
assertThat(this.json.parse(content))

212

CHAPTER 7 TESTING WITH SPRING BOOT

.isEqualTo(new ToDo("Read a Book", true));
assertThat(
this.json.parseObject(content).getDescription())
.isEqualTo("Read a Book");

}
@WebMvcTest

If you need to test your controllers without using a complete server, Spring Boot provides
the @WebMvcTest annotation that auto-configures the Spring MVC infrastructure and
limits scanned beans to @Controller, @ControllerAdvice, @JsonComponent, Converter,
GenericConverter, Filter, WebMvcConfigurer, and HandlerMethodArgumentResolver;
so you know if your controllers are working as expected.

It’s important to know that beans marked as @Component are not scanned when using
this annotation, but you can still use the @ockBean if needed.

@RunWith(SpringRunner.class)
@WebMvcTest(ToDoController.class)
public class ToDoWebMvcTest {

@Autowired
private MockMvc mvc;

@MockBean
private ToDoRepository toDoRepository;

@Test
public void toDoControllerTest() throws Exception {
given(this.toDoRepository.findById("my-id"))
.Return(new ToDo("Do Homework", true));

this.mvc.perform(get("/todo/my-id").accept(MediaType.APPLICATION
JISON_UTF8))
.andExpect(status().is0Ok()).andExpect(content().
string("{\"id\":\"my-id\",\"description\":\"Do Homework\",
\"completed\":true}"));

213

CHAPTER 7 TESTING WITH SPRING BOOT

@WebFluxTest

Spring Boot provides the @WebFluxTest annotation for any reactive controller. This
annotation auto-configures the Spring WebFlux module infrastructure and scans only
for @Controller, @ControllerAdvice, @JsonComponent, Converter, GenericConverter,
and WebFluxConfigurer.

It’s important to know that beans marked as @Component are not scanned when using
this annotation, but you can still use the @ockBean if needed.

@RunWith(SpringRunner.class)
@WebFluxTest(ToDoFluxController.class)
public class ToDoWebFluxTest {

@Autowired
private WebTestClient webClient;

@MockBean
private ToDoRepository toDoRepository;

@Test
public void testExample() throws Exception {
given(this.toDoRepository.findAll())
.Return(Arrays.asList(new ToDo("Read a Book"), new
ToDo("Buy Milk")));
this.webClient.get().uri("/todo-flux").accept(MediaType.
APPLICATION JSON UTF8)
.exchange()
.expectStatus().is0k()
.expectBody(List.class);

}
@DataJpaTest

If you need to test your JPA application, the Spring Boot testing module offers @ataJpaTest,
which auto-configures in-memory embedded databases. It scans @Entity. This annotation
won’tload any @Component bean. It also provides the TestEntityManager helper class that is
very similar to the JPA EntityManager class, which specializes in testsing.

214

CHAPTER 7 TESTING WITH SPRING BOOT

@RunWith(SpringRunner.class)
@DataJpaTest
public class TodoDatalpaTests {

@Autowired
private TestEntityManager entityManager;

@Autowired
private ToDoRepository repository;

@Test

public void toDoDataTest() throws Exception {
this.entityManager.persist(new ToDo("Read a Book"));
Iterable<ToDo> toDos = this.repository.
findByDescriptionContains("Read a Book");
assertThat(toDos.iterator().next()).toString().contains("Read a Book");

Remember that using @DatalpaTest uses embedded in-memory database engines
(H2, Derby, HSQL), but if you want to test with a real database, you need to add the
following @AutoConfigureTestDatabase(replace=Replace.NONE) annotation as a
marker for the test class.

@RunWith(SpringRunner.class)
@DataJpaTest
@AutoConfigureTestDatabase(replace=Replace.NONE)
public class TodoDatalpaTests {

//...

}
@JdbcTest

This annotation is very similar to @ataJpaTest; the only difference is that it does pure
JDBC-related tests. It auto-configures the in-memory embedded database engine and it
configures the JdbcTemplate class. It omits every class marked as @Component.

215

CHAPTER 7 TESTING WITH SPRING BOOT

@RunWith(SpringRunner.class)

@JdbcTest

@Transactional(propagation = Propagation.NOT SUPPORTED)
public class TodoJdbcTests {

@Autowired
private NamedParameterJldbcTemplate jdbcTemplate;

private CommonRepository<ToDo> repository;

@Test
public void toDoJdbcTest() {
ToDo toDo = new ToDo("Read a Book");

this.repository = new ToDoRepository(jdbcTemplate);
this.repository.save(toDo);

ToDo result = this.repository.findById(toDo.getId());
assertThat(result.getId()).isEqualTo(toDo.getId());

}
}

@DataMongoTest

The Spring Boot testing module provides the @DataMongoTest annotation to test Mongo
applications. It auto-configures the in-memory embedded Mongo server (if available),
ifit doesn’t, you need to add the right spring.data.mongodb.* properties. It configures
the MongoTemplate class and it scans for @ocument annotations. @Component beans
aren’t scanned.

@RunWith(SpringRunner.class)
@DataMongoTest
public class TodoMongoTests {

@Autowired
private MongoTemplate mongoTemplate;

216

CHAPTER 7 TESTING WITH SPRING BOOT

@Test

public void toDoMongoTest() {
ToDo toDo = new ToDo("Read a Book");
this.mongoTemplate.save(toDo);

ToDo result = this.mongoTemplate.findById(toDo.getId(),ToDo.class);
assertThat(result.getId()).isEqualTo(toDo.getId());

}

If you require an external MongoDB server (not in-memory embedded), add the
excludeAutoConfiguration = EmbeddedMongoAutoConfiguration.class parameter to
the @DataMongoTest annotation.

@RunWith(SpringRunner.class)
@DataMongoTest(excludeAutoConfiguration = EmbeddedMongoAutoConfiguration.
class)
public class ToDoMongoTests {
/1 ...

}
@RestClientTest

Another important annotation is the @RestClientTest, which tests your REST clients.
This annotation auto-configures Jackson, GSON, and JSONB support. It configures the
RestTemplateBuilder and adds support for MockRestServiceServer.

@RunWith(SpringRunner.class)
@RestClientTest(ToDoService.class)
public class ToDoRestClientTests {

@Autowired
private ToDoService service;

@Autowired
private MockRestServiceServer server;

217

CHAPTER 7 TESTING WITH SPRING BOOT

@Test
public void toDoRestClientTest()
throws Exception {
String content = "{\"description\":\"Read a Book\",\"completed\":
true }";
this.server.expect(requestTo("/todo/my-id"))
.andRespond(withSuccess(content,MediaType.APPLICATION_JSON_
UTF8));
ToDo result = this.service.findById("my-id");
assertThat(result).isNotNull();
assertThat(result.getDescription()).contains("Read a Book");

There are many other slices that you can check out. The important note to take is
that you aren’t required to have a whole infrastructure or to have servers running to do
testing. Slices facilitate more testing for Spring Boot apps.

Summary

In this chapter, you learned different ways to test apps with Spring Boot. Even though
this chapter is short, I showed you some of the important features, such as slices.
In the next chapter, we cover security and learn how Spring Boot can secure our

applications.

218

CHAPTER 8

Security with Spring Boot

This chapter shows you how to use security in your Spring Boot applications to secure
your web application. You learn everything from using basic security to using OAuth.
Security has become a primary and important factor for desktop, web, and mobile
applications in the last decade. But security is a little hard to implement because you
need to think about everything—cross-site scripting, authorization, and authentication,
secure sessions, identification, encryption, and a lot more. There is still a lot to do to
implement simple security in your applications.

The Spring security team has worked hard to make it easier for developers to bring
security to their applications, from securing service methods to entire web applications.
Spring security is centered around AuthenticationProvider, AuthenticationManager,
and specialized UserDetailsService; it also provides integration with identity provider
systems, such as LDAP, Active Directory, Kerberos, PAM, OAuth, and so on. You are
going to review a few of them in the examples in this chapter.

Spring Security

Spring Security is highly customizable and powerful framework that helps with
authentication and authorization (or access control); it is the default module for securing
Spring applications. The following are some of the important features.

o Servlet API integration
o Integration with Spring Web MVC and WebFlux

o Protection against attacks such as session fixation, clickjacking, CSRF
(cross-site request forgery), CORS (cross-origin resource sharing),
and so forth

219
© Felipe Gutierrez 2019

F. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_8

CHAPTER 8 SECURITY WITH SPRING BOOT

o Extensible and comprehensive support for both authentication and
authorization

o Integration with these technologies: HTTP Basic, HTTP Digest, X.509,
LDAP, Form-based, OpenID, CAS, RMI, Kerberos, JAAS, Java EE, and
more

o Integration with third-party technologies: AppFuse, DWR, Grails,
Tapestry, JOSSO, AndroMDA, Roller, and many more

Spring Security has become the de facto way to use security on many Java and Spring
projects because it integrates and customizes with minimal effort, creating robust and
secure apps.

Security with Spring Boot

Spring Boot uses the power of the Spring Security Framework to secure applications.
To use Spring Security it is necessary to add the spring-boot-starter-security
dependency. This dependency provides all the spring-security core jars and it
auto-configures the strategy to determine whether to use httpBasic or formLogin
authentication mechanisms. It defaults to UserDetailService with a single user. This
username is user and the password is printed (RANDOM string) as a log with INFO level
when the application starts.

In other words, by adding the spring-boot-starter-security dependency, your
application is already secured.

ToDo App with Basic Security

Let’s start with the ToDo app. Here, you use the same code as the JPA REST project; but
I'll review the class once again. So let’s begin. Starting from scratch, go to your browser

and open Spring Initializr (https://start.spring.io). Add the following values to the
fields:

e Group: com.apress.todo
o Artifact: todo-simple-security

e Name: todo-simple-security

220

https://start.spring.io

CHAPTER 8 SECURITY WITH SPRING BOOT

o Package Name: com.apress.todo

e Dependencies: Web, Security, Lombok, JPA, REST
Repositories, H2, MySQL, Mustache

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button; this downloads a ZIP file. Uncompress it and import the project
in your favorite IDE (see Figure 8-1).

0@ < m OO ® & start.spring.io & (4] th a [+

SPRING INITIALIZR

Generate a vewenroec ¢+ With 2= ¢ and Spring Boot 204

Project Metadata Dependencies
Artifact coordinates Add Spring Beot Starters and dependencies to your application
Group Search for dependencies
com.apress.todo Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

todo-simple-security

fiomos Jwe Jseany [omn |
T O O C

Name

todo-simple-security

Description

Demo project for Spring Boot

Package Name

com.apress.todo

Packaging

Jar

Java Version

8 :

Generate Project % + «

Too many options? Switch back to the simple version.

Figure 8-1. Spring Initializr

221

CHAPTER 8 SECURITY WITH SPRING BOOT

This project now has the Security module and a template engine, Mustache. Very
soon you see how to use it.
Let’s start with the ToDo domain class (see Listing 8-1).

Listing 8-1. com.apress.todo.domain.ToDo.java
package com.apress.todo.domain;

import lombok.Data;
import org.hibernate.annotations.GenericGenerator;

import javax.persistence.*;

import javax.validation.constraints.NotBlank;
import javax.validation.constraints.NotNull;
import java.time.localDateTime;

@Entity
@Data
public class ToDo {

@Id

@GeneratedValue(generator = "system-uuid")
@GenericGenerator(name = "system-uuid", strategy = "uuid")
private String id;

@NotNull

@NotBlank

private String description;

@Column(insertable = true, updatable = false)
private LocalDateTime created;

private LocalDateTime modified;

private boolean completed;

public ToDo(){}
public ToDo(String description){
this.description = description;

222

CHAPTER 8 SECURITY WITH SPRING BOOT

@PrePersist

void onCreate() {
this.setCreated(LocalDateTime.now());
this.setModified(LocalDateTime.now());

}

@PreUpdate
void onUpdate() {
this.setModified(LocalDateTime.now());

Listing 8-1 shows the ToDo domain class. You already know about it. It’s marked with
@Entity and it’s using @Id for a primary key. This class is from the fodo-rest project.
Next, let’s review the ToDoRepository interface (see Listing 8-2).

Listing 8-2. com.apress.todo.repository.ToDoRepository.java

package com.apress.todo.repository;

import com.apress.todo.domain.ToDo;
import org.springframework.data.repository.CrudRepository;

public interface ToDoRepository extends CrudRepository<ToDo,String> {

Listing 8-2 shows the ToDoRepository, and of course, you already know about it.
Defining the interface that extends from the CrudRepository<T,ID> that has not only the
CRUD methods, but also the Spring Data REST, creates all the necessary REST APIs to
support the domain class.

Next, let’s review the application.properties and see what is new (see Listing 8-3).

Listing 8-3. src/main/resources/application.properties

JPA

spring.jpa.generate-ddl=true
spring.jpa.hibernate.ddl-auto=create-drop
spring.jpa.show-sql=true

223

CHAPTER 8 SECURITY WITH SPRING BOOT

H2-Console: http://localhost:8080/h2-console
jdbc:h2:mem:testdb
spring.h2.console.enabled=true

REST API
spring.data.rest.base-path=/api

Listing 8-3 shows you the application.properties file. You've seen already some
of the properties, except for the last one, right? The spring.data.rest.base-path tells
the RestController (of the Spring Data REST configuration) that uses the /api as the root
to expose all the REST API endpoints. So if we want to get ToDo’s, we need to access the
endpoint at http://localhost:8080/api/toDos.

Before running the app, let’s add the endpoint in the form of a script. Create the src/
main/resources/data.sql file with the following SQL statements.

insert into to_do (id,description,created,modified,completed)
values ('8a8080a365481fb00165481fbca90000', 'Read a Book','2018-08-17
07:42:44.136"','2018-08-17 07:42:44.137',true);

insert into to do (id,description,created,modified,completed)
values ('ebcf1850563c4de3b56813a52a95€930", 'Buy Movie Tickets','2018-08-17
09:50:10.126",'2018-08-17 09:50:10.126"',false);

insert into to do (id,description,created,modified,completed)
values ('78269087206d472c894f3075031d8d6b', 'Clean my Room', '2018-08-17
07:42:44.136"','2018-08-17 07:42:44.137',false);

Now, if you run your application, you should see in the logs this output:
Using generated security password: 2a569843-122a-4559-a245-60f5ab2b6c51

This is your password. You can now go to your browser and open https://
localhost:8080/api/toDos. When you hit Enter to access that URL, you get something
similar to Figure 8-2.

224

CHAPTER 8 SECURITY WITH SPRING BOOT

00 e < m OO ® localhost] th [+
. i

Login with Username and Password

User: user

Password:

Login

Figure 8-2. ToDo App: http://localhost:8080/1ogin page

Figure 8-2 shows a login page, which is the default behavior when you add the
spring-boot-starter-security dependency. By default, Security is on—so simple!!
So, what is the user and password? Well, I mentioned this earlier, the user is user, and
the password is the random one that was printed in the logs (in this example, 22569843 -

122a-4559-a245-60f5ab2b6c51). So, go ahead and enter the username and password;
then you should get the ToDo’s list (see Figure 8-3).

225

CHAPTER 8 SECURITY WITH SPRING BOOT

oe0® < m S0 ® localhost ¢ h | o

{
¥ _embedded: {
¥ toDos: [
MR
description: "Read a Book",
created: "2018-08-17T07:42:44.136",
modified: "2018-08-17T07:42:44,137",
completed: true,
¥ _links: {
¥ self: {
href:

"http://localhost:8080/api/toDos/8aB080a365481£b00165481£fbca’d00o

description: "Buy Movie Tickets",
created: "2018-08-17T09:50:10.126",
modified: "2018-08-17T09:50:10.126",
completed: false,
¥ _links: {
¥ self: {
href:
"http://localhost:8080/api/toDos/ebcf1850563c4de3b56813a52a95e93
gri
}s
Y toDo: {
href:
"http://localhost:8080/api/toDos/ebcf1850563c4de3b56813a52a95e93
0"

}

1

Figure 8-3. http://localhost:80808/api/toDos

If you want to try using the command line, you can execute the following command
in a terminal window.

$ curl localhost:8080/api/toDos
{"timestamp":"2018-08-19T721:25:47.224+0000", "status":401, "error": "Unauthori

zed", "message": "Unauthorized", "path":"/api/toDos"}

As you can see from the output, you are not authorized to get into that endpoint.
Authentication is needed, right? You can execute the following command.

226

CHAPTER 8 SECURITY WITH SPRING BOOT

$ curl localhost:8080/api/toDos -u user:2a569843-122a-4559-a245-
60f5ab2b6c51

{
" embedded" : {
"toDos" : [{
"description” : "Read a Book",
"created" : "2018-08-17T07:42:44.136",
"modified" : "2018-08-17T07:42:44.137",
"completed" : true,
}

As you can see now, you are passing the username and the random password, and
you are getting the response with the list of ToDo’s.

As probably you already know, every time you restart this app, the security auto-
configuration generates another random password, and that’s not optimal; maybe just
for development.

Overriding Simple Security

Random passwords don’t do the trick in a production environment. Spring Boot
Security allows you to override the defaults in multiple ways. The simplest is to override
itwith the application.properties file by adding the following spring.security.*
properties.

spring.security.user.name=apress
spring.security.user.password=springboot2
spring.security.user.roles=ADMIN,USER

If you run the app again, the username is apress and the password is springboot2
(the same as in a command line). Also notice that in the logs, the random password is no
longer printed.

Another way is to provide authentication programmatically. Create a
ToDoSecurityConfig class that extends from WebSecurityConfigureAdapter. Take a
look at Listing 8-4.

227

CHAPTER 8 SECURITY WITH SPRING BOOT

Listing 8-4. com.apress.todo.config ToDoSecurityConfig.java
package com.apress.todo.config;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.annotation.authentication.
builders.AuthenticationManagerBuilder;

import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

@Configuration
public class ToDoSecurityConfig extends WebSecurityConfigurerAdapter {

@verride
protected void configure(
AuthenticationManagerBuilder auth) throws Exception {
auth.inMemoryAuthentication()

.passwordEncoder (passwordEncoder())
-withUser("apress")
.password(passwordEncoder().encode("springboot2"))
.roles("ADMIN", "USER");

}

@Bean
public BCryptPasswordEncoder passwordEncoder() {
return new BCryptPasswordEncoder();

Listing 8-4 shows the necessary configuration for programmatically building the
security, in this case, with one user (you can add more, of course). Let’s analyze the code.

o WebSecurityConfigurerAdapter. Extending this class is one way to
override security because it allows you to override the methods that
you really need. In this case, the code overrides the configure(Authe
nticationManagerBuilder) signature.

228

CHAPTER 8 SECURITY WITH SPRING BOOT

o AuthenticationManagerBuilder. This class creates an
AuthenticationManager that allows you to easily build in memory,
LDAP, JDBC authentications, UserDetailsService and add
AutheticationProviders. In this case, you are building an in-
memory authentication. It’s necessary to add a PasswordEncoder
and a new and more secure way to use and encrypt/decrypt the
password.

e BCryptPasswordEncoder. In this code you are using the
BCryptPasswordEncoder (returns a PasswordEncoder
implementation) that uses the BCrypt strong hashing function.
You can use also Pbkdf2PasswordEncoder (uses PBKDF2 with a
configurable number of iterations and a random 8-byte random
salt value), or SCryptPasswordEncoder (uses the SCrypt hashing
function). Even better, use DelegatingPasswordEncoder, which
supports password upgrades.

Before you run the application, comment out the spring.security.* properties
that you added to the application.properties file. If you run the app, it should work as
expected. You need to provide the username, apress, and the password, springboot2.

Overriding the Default Login Page

Spring Security allows you to override the default login page in several ways. One way is
to configure HttpSecurity. The HttpSecurity class allows you to configure web-based
security for specific HTTP requests. By default, it is applied to all requests, but can be
restricted using requestMatcher (RequestMatcher) or similar methods.

Let’s look at a modification of the ToDoSecurityConfig class (see Listing 8-5).

Listing 8-5. com.apress.todo.config.ToDoSecurityConfig.java - v2
package com.apress.todo.config;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.annotation.authentication.
builders.AuthenticationManagerBuilder;

229

CHAPTER 8 SECURITY WITH SPRING BOOT

import org.springframework.security.config.annotation.web.builders.
HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

@Configuration
public class ToDoSecurityConfig extends WebSecurityConfigurerAdapter {

@0verride

protected void configure(AuthenticationManagerBuilder auth) throws

Exception {

auth.inMemoryAuthentication()

.passwordEncoder (passwordEncoder())
.withUser("apress")
.password(passwordEncoder () .encode("springboot2"))
.roles("ADMIN","USER");

}

@Bean
public BCryptPasswordEncoder passwordEncoder() {
return new BCryptPasswordEncoder();

}

@Override
protected void configure(HttpSecurity http) throws Exception {
http.authorizeRequests()
.anyRequest().fullyAuthenticated()
.and()
.httpBasic();

Listing 8-5 shows version 2 of the ToDoSecurityConfig class. If you run the app and
go to the browser (http://localhost:8080/api/toDos), you now get a pop-up for the
basic authentication (see Figure 8-4).

230

CHAPTER 8 SECURITY WITH SPRING BOOT

Log in to localhost:2080
Your password will be sent unencrypted.

apress

[Remember this password

Cancel

Figure 8-4. http://localhost:8080/api/toDos—Hlttp Basic Authentication

You can use the username and password that you already know, and you should get
the ToDo’s list. It is the same for the command line. You need to authenticate

$ curl localhost:8080/api/toDos -u apress:springboot2

231

CHAPTER 8 SECURITY WITH SPRING BOOT

Custom Login Page

Normally in applications, you never see a page like that; typically, there is a very nice and
well-designed login page, right? Spring Security allows you to create and customize your
login page.

Let’s prepare the ToDo app with a login page. First, we are going to add some CSS
and the well-known jQuery library. Nowadays in a Spring Boot app, we can use WebJars
dependencies. This new way avoids manually downloading the files; instead, you
can use them as resources. Spring Boot web auto-configuration creates the necessary
access for them.

If you are using Maven, open pom.xml and add the following dependencies.

<dependency>
<groupIld>org.webjars</groupld>
<artifactId>bootstrap</artifactId>
<version>3.3.7</version>
</dependency>

<dependency>
<groupld>org.webjars</groupld>
<artifactId>jquery</artifactId>
<version>3.2.1</version>
</dependency>

If you are using Gradle, open your build.gradle file and add the following
dependencies.

compile ('org.webjars:bootstrap:3.3.7")
compile ('org.webjars:jquery:3.2.1")

Next, let’s create the login page, which has the .mustache extension (login.mustache).
It must be created in the src/main/resources/templates folder (see Listing 8-6).

Listing 8-6. src/main/resources/templates/login.mustache

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">

232

CHAPTER 8 SECURITY WITH SPRING BOOT

<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>ToDo's API Login Page</title>
<link href="webjars/bootstrap/3.3.7/css/bootstrap.min.css"
rel="stylesheet">
<link href="css/signin.css" rel="stylesheet">

</head>

<body>

<div class="container">
<form class="form-signin" action="/login" method="POST">
<h2 class="form-signin-heading">Please sign in</h2>

<label for="username" class="sr-only">Username</label>
<input type="text" name="username" class="form-control"
placeholder="Username" required autofocus>

<label for="inputPassword" class="sr-only">Password</label>
<input type="password" name="password" class="form-control"
placeholder="Password" required>

<button class="btn btn-1lg btn-primary btn-block" id="login"
type="submit">Sign in</button>
<input type="hidden" name="_csrf" value="{{_csrf.token}}" />
</form>
</div>
</body>
</html>

Listing 8-6 shows the HTML login page. This page is using CSS from Bootstrap
(https://getbootstrap.com) through the WebJars (www.webjars.org) dependencies.
These files are taken as file resources from those jars. HTML-FORM is using username
and password as names (a must for Spring Security). We need to include the CSRF token
to avoid any attacks. The Mustache engine provides this with the {{_csrf.token}}
value. Spring Security uses the synchronizer token pattern to avoid any attacks in
requests. Later on, we are going to see how we get this value.

233

https://getbootstrap.com
http://www.webjars.org

CHAPTER 8 SECURITY WITH SPRING BOOT

Next, let’s create an index page that lets you see the homepage and log out. Create
the index.mustache page in the src/main/resources/templates folder (see Listing 8-7).

Listing 8-7. src/main/resources/templates/index.mustache

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>ToDo's API</title>
<link href="webjars/bootstrap/3.3.7/css/bootstrap.min.css"
rel="stylesheet">
<script src="webjars/jquery/3.2.1/jquery.min.js"></script>

</head>

<body>
<div class="container">
<div class="header clearfix">
<nav>
Logout
</nav>
</div>

<div class="jumbotron">
<h1>ToDo's Rest API</h1>
<p class="lead">Welcome to the ToDo App. A Spring Boot
application!</p>
</div>
</div>

<foxrm id="logout" action="/logout" method="POST">

<input type="hidden" name="_csrf" value="{{_csrf.token}}" />
</foxm»
<script>

$(function(){

234

CHAPTER 8 SECURITY WITH SPRING BOOT

$("#logoutLink").click(function(){
$("#logout').submit();
D;
D;

</script>
</body>
</html>

Listing 8-7 shows the index page. We are still using Bootstrap and the jQuery
resources, and the most important part, the {{_csrf.token}}, for logout.

Next, let’s start with the configuration. First, it is necessary to modify the
ToDoSecurityConfig class (see Listing 8-8).

Listing 8-8. com.apress.todo.config ToDoSecurityConfig.java - v3
package com.apress.todo.config;

import org.springframework.boot.autoconfigure.security.servlet.PathRequest;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.annotation.authentication.
builders.AuthenticationManagerBuilder;

import org.springframework.security.config.annotation.web.builders.
HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;
import org.springframework.security.web.util.matcher.AntPathRequestMatcher;

@Configuration
public class ToDoSecurityConfig extends WebSecurityConfigurerAdapter {

@verride
protected void configure(AuthenticationManagerBuilder auth) throws
Exception {
auth.inMemoryAuthentication()
.passwordEncoder (passwordEncoder())
.withUser("apress")

235

CHAPTER 8 SECURITY WITH SPRING BOOT

.password(passwordEncoder().encode("springboot2"))
.roles("ADMIN", "USER");

}

@Bean
public BCryptPasswordEncoder passwordEncoder() {
return new BCryptPasswordEncoder();

}

@0verride
protected void configure(HttpSecurity http) throws Exception {
http
.authorizeRequests()
.requestMatchers(
PathRequest
.toStaticResources()
.atCommonLocations()).permitAll()
.anyRequest().fullyAuthenticated()
.and()
.formLogin().loginPage("/login").permitAll()
.and()
.logout()
.logoutRequestMatcher(
new AntPathRequestMatcher("/logout"))
.logoutSuccessUrl("/login");

Listing 8-8 shows version 3 of the ToDoSecurityConfig class. The new modification
show how HttpSecurity is being configured. First, its adding requestMatchers, which
point to common locations, such as the static resources (static/*). This is where
CSS, JS, or any other simple HTML can live and doesn’t need any security. Then it uses
anyRequest, which should be fullyAuthenticated. this means that the /api/* will be.
Then, it uses formLogin to specify with loginPage("/login") that it is the endpoint
for finding the login page. Next, declare the logout and its endpoint ("/logout"); if the
logout is successful, it redirects to the "/login" endpoint/page.

236

CHAPTER 8 SECURITY WITH SPRING BOOT

Now it is necessary to tell Spring MVC how to locate the login page. Create the
ToDolWebConfig class (see Listing 8-9).

Listing 8-9. com.apress.todo.config ToDoWebConfig.java
package com.apress.todo.config;

import org.springframework.context.annotation.Configuration;

import org.springframework.web.servlet.config.annotation.
ViewControllerRegistry;

import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration
public class ToDoWebConfig implements WebMwcConfigurer {

@0verride
public void addViewControllers(ViewControllerRegistry registry) {
registry.addViewController("/login").setViewName("login");

Listing 8-9 shows a different way of configuring a web controller in Spring MVC. You
can still use a class annotated with @Controller and create the mapping for the login
page; but this is the JavaConfig way.

Here the class is implementing the WebMvcConfigure interface. It's implementing
the addViewControllers method and registering the /login endpoint by telling the
controller where the view is. This locates the templates/login.mustache page.

Finally, it is necessary to update the application.properties file by adding the
following property.

spring.mustache.expose-request-attributes=true

Remember the {{_csrf.token}}? This is how it gets its value—by adding the
spring.mustache.expose-request-attributes property.

237

CHAPTER 8 SECURITY WITH SPRING BOOT

Now, you can run the application. If you go to http://localhost:8080, you get
something similar to Figure 8-5.

e0e® < m [« N« R C] localhost & h | a

Please sign in

apress

Figure 8-5. http://localhost:8080/1ogin

You get the custom login page. Perfect!! Now you can enter the credentials, and it
returns the index page (see Figure 8-6).

238

CHAPTER 8 SECURITY WITH SPRING BOOT

e0® < m [« NN K] localhost & th

[+

Logout

ToDo's Rest API

Welcome to the ToDo App. A Spring Boot application!

Figure 8-6. http://localhost:8080 after login

Once you have the homepage, you can visit http://localhost:8080/api/toDos.
You should be fully authenticated, and you can go back to the ToDo’s list. You can go
back to the homepage and press the Logout link, which redirects you to the /login
endpoint again.

Now, what happens if you try to execute the following command line in a terminal
window?

$ curl localhost:8080/api/toDos -u apress:springboot2

239

CHAPTER 8 SECURITY WITH SPRING BOOT

It won’t return anything. It is an empty line. If you use the -1 flag, it tells you that you
are being redirected to http://localhost:8080/1ogin. But there is no way to interact
from the command line, right? So what can we do to fix this? In reality, there are clients
that never use web interfaces. Most of the clients are apps and programmatically need to
use the REST AP], but with this solution, there is no way to do authentication to interact
with a form.

Open the ToDoSecurityConfig class and modify the configure(HttpSecurity)
method. It should look like the following snippet.

@verride
protected void configure(HttpSecurity http) throws Exception {
http.authorizeRequests()

.requestMatchers(PathRequest.toStaticResources().
atCommonLocations()).permitAll()
.anyRequest().fullyAuthenticated()
.and()
.formLogin().loginPage("/login").permitAll()
.and()
.logout()

.logoutRequestMatcher(

new AntPathRequestMatcher("/logout"))

.logoutSuccessUrl("/login")

.and()
.httpBasic();

}

The last two lines of the method add the httpBasic call, which allows clients (like
cURL) to use the basic authentication mechanisms. You can re-run the ToDo app and
see that the executing the command line works now.

Using Security with JDBC

Imagine for a moment that your company already has an employee database, and you
want to reuse it for authentication and authorization for the ToDo app. It is nice to
integrate something like that, right?

240

CHAPTER 8 SECURITY WITH SPRING BOOT

Spring Security allows you to use AuthenticationManager with in-memory, LDAP

and JDBC mechanisms. In this section, we are going to modify the ToDo app to run
with JDBC.

Directory App with JDBC Security

In this section, you create a new app—a directory application where all the personnel

are. The Directory app is integrated with the ToDo app to do the authentication and
authorization. So, if a client needs to add a new ToDo, it needs to be authenticated with a

USER role.

So let’s begin. Starting from scratch, go to your browser and open Spring Initializr.
Add the following values to the fields.

Group: com.apress.directory
Artifact: directory

Name: directory

Package Name: com.apress.directory

Dependencies: Web, Security, Lombok, JPA, REST Repositories, H2,
MySOL

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button, which downloads a ZIP file. Uncompress it and import the

project in your favorite IDE (see Figure 8-7).

241

CHAPTER 8 SECURITY WITH SPRING BOOT

000 < m (aF KN K & start.spring.io) uf BN

SPRING INITIALIZR

Generate a | vewenrojecr ¢+ With 2= ¢ @and Spring Boot 204

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies
com.apress.directory Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

= N

directory

Description

Demo project for Spring Boot

Package Name

com.apress.directory

Packaging

Jar

Java Version

8 :

Too many options? Switch back to the simple version.

Generate Project % + «

Figure 8-7. Spring Initializr

As you can see, the dependencies are very similar to other projects. We are going to
use the power of Spring Data, Security, and REST. Let’s start by adding a new class that
holds a person’s information. Create the Person class (see Listing 8-10).

Listing 8-10. com.apress.directory.domain.Person.java
package com.apress.directory.domain;
import lombok.Data;

import org.hibernate.annotations.GenericGenerator;

242

CHAPTER 8 SECURITY WITH SPRING BOOT

import javax.persistence.*;

import java.time.localDate;

import java.time.lLocalDateTime;

import java.time.format.DateTimeFormatter;
@Data

@Entity

public class Person {

@Id

@GeneratedValue(generator = "system-uuid")
@GenericGenerator(name = "system-uuid", strategy = "uuid")
private String id;

@Column(unique = true)

private String email;

private String name;

private String password;

private String role = "USER";

private boolean enabled = true;

private LocalDate birthday;

@Column(insertable = true, updatable = false)
private LocalDateTime created;
private LocalDateTime modified;

public Person() {
}

public Person(String email, String name, String password, String
birthday) {
this.email = email;
this.name = name;
this.password = password;
this.birthday = LocalDate.parse(birthday, DateTimeFormatter.
ofPattern("yyyy-MM-dd"));

243

CHAPTER 8 SECURITY WITH SPRING BOOT

public Person(String email, String name, String password, LocalDate
birthday) {

this.email = email;

this.name = name;

this.password = password;

this.birthday = birthday;

}

public Person(String email, String name, String password, String
birthday, String role, boolean enabled) {

this(email, name, password, birthday);

this.role = role;

this.enabled = enabled;

}

@PrePersist

void onCreate() {
this.setCreated(LocalDateTime.now());
this.setModified(LocalDateTime.now());

}

@PreUpdate
void onUpdate() {
this.setModified(LocalDateTime.now());

Listing 8-10 shows the Person class; very simple. It holds enough information about a
person. Next, let’s create the repository—the PersonRepository interface (see Listing 8-11).

Listing 8-11. com.apress.directory.repository.PersonRepository.java
package com.apress.directory.repository;

import com.apress.directory.domain.Person;
import org.springframework.data.repository.CrudRepository;
import org.springframework.data.repository.query.Param;

244

CHAPTER 8 SECURITY WITH SPRING BOOT

public interface PersonRepository extends CrudRepository<Person,String> {
public Person findByEmailIgnoreCase(@Param("email") String email);

Listing 8-11 shows the PersonRepository interface; but what is different from
the others? It declared a query-method findByEmailIgnoreCase with an email as the
parameter (annotated by @Param). This syntax tells the Spring Data REST that it needs to
implement these methods and create the SQL statement accordingly (this is based on
the name and the fields in the domain class, in this case, the email field).

Note If you want to learn more about how to define your own query-method, take
a look at the Spring Data JPA Reference at https://docs.spring.io/spring-
data/jpa/docs/current/reference/html/#jpa.query-methods.

Next, create the DirectorySecurityConfig class that extends from the
WebSecurityConfigurerAdapter class. Remember that by extending from this class, we
can customize the way Spring Security is set for this app (see Listing 8-12).

Listing 8-12. com.apress.directory.config.DirectorySecurityConfig.java
package com.apress.directory.config;

import com.apress.directory.repository.PersonRepository;

import com.apress.directory.security.DirectoryUserDetailsService;

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.annotation.authentication.
builders.AuthenticationManagerBuilder;

import org.springframework.security.config.annotation.web.builders.
HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;

@Configuration
public class DirectorySecurityConfig extends WebSecurityConfigurerAdapter {

private PersonRepository personRepository;

245

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods

CHAPTER 8 SECURITY WITH SPRING BOOT

public DirectorySecurityConfig(PersonRepository personRepository){
this.personRepository = personRepository;

}
@verride
protected void configure(HttpSecurity http) throws Exception {
http
.authorizeRequests()
.antMatchers("/**").hasRole("ADMIN")
.and()
.httpBasic();
}
@Override

public void configure(AuthenticationManagerBuilder auth) throws Exception {
auth.userDetailsService(
new DirectoryUserDetailsService(this.personRepository));

Listing 8-12 shows the DirectorySecurityConfig class. This class is configuring
HttpSecurity by allowing only users with an ADMIN role to any endpoint (/**) using
basic authentication.

What else is different from other security configs? You are right! The
AuthenticationManager is configuring a UserDetailsService implementation. This
is the key to using any other third-party security app and integrating them with Spring
Security.

Asyou can see, the userDetailsService method is using the
DirectoryUserDetailsService class. Let’s create it (see Listing 8-13).

Listing 8-13. com.apress.directory.security.DirectoryUserDetailsService.java
package com.apress.directory.security;

import com.apress.directory.domain.Person;

import com.apress.directory.repository.PersonRepository;

import org.springframework.security.core.userdetails.User;

import org.springframework.security.core.userdetails.UserDetails;

246

CHAPTER 8 SECURITY WITH SPRING BOOT

import org.springframework.security.core.userdetails.UserDetailsService;
import org.springframework.security.core.userdetails.
UsernameNotFoundException;

import org.springframework.security.crypto.factory.
PasswordEncoderFactories;

import org.springframework.security.crypto.password.PasswordEncoder;

public class DirectoryUserDetailsService implements UserDetailsService {
private PersonRepository repo;

public DirectoryUserDetailsService(PersonRepository repo) {
this.repo = repo;

}

@verride
public UserDetails loadUserByUsername(String username) throws
UsernameNotFoundException {

try {
final Person person = this.repo.findByEmailIgnoreCase(username);

if (person != null) {
PasswordEncoder encoder = PasswordEncoderFactories.
createDelegatingPasswordEncoder();
String password = encoder.encode(person.getPassword());

return User.withUsername(person.getEmail()).
accountLocked(!person.isEnabled()).password(password).
roles(person.getRole()).build();

}
}catch(Exception ex){

ex.printStackTrace();

}

throw new UsernameNotFoundException(username);

247

CHAPTER 8 SECURITY WITH SPRING BOOT

Listing 8-13 shows the DirectoryUserDetailsService class. This class implements
the UserDetailsService interface and needs to implement loadUserByUserName and
return a UserDetails instance. In this implementation, the code is showing how the
PersonRepository is being used. In this case, it uses TindByEmailIgnoreCase; so, if a
person is found with the email provided at the time the user wants to access /** (any
endpoint), it compares the email vs. the password provided, the role, and if the account
is locked or not, by creating a UserDetails instance.

This is amazing! This app is using JDBC as a mechanism for authentication. Again,
you can plug in any other security system/app that can implement UserDetailService
and return a UserDetails instance; that’s it.

Next, let’s quickly review the application.properties file and see its properties.

Server
server.port=${port:8181}

JPA

spring.jpa.generate-ddl=true
spring.jpa.hibernate.ddl-auto=create-drop
spring.jpa.show-sql=true

H2
spring.h2.console.enabled=true

The only difference is that it has the server.port property, which says: If you provide
the variable port (either command line, environment) I will use it; if not, I will use port
8181. That's the :. This is part of the SpEL (Spring Expression Language).

Before running the Directory app, let’s add some data. Create the data.sql file in the
src/main/resources folder.

insert into person (id,name,email,password,role,enabled,birthday,created,
modified)

values ('dc952d19ccfc4164b5eb0338d14a6619", ‘Mark', ‘mark@example.com',"
secret', 'USER',true, '1960-03-29', '2018-08-17 07:42:44.136",'2018-08-17
07:42:44.137");

insert into person (id,name,email,password,role,enabled,birthday,created,
modified)

248

CHAPTER 8 SECURITY WITH SPRING BOOT

values ('02288a3b194e49ceb1803f27be5df457", 'Matt', 'matt@example.com',’
secret','USER',true, '1980-07-03",'2018-08-17 07:42:44.136",'2018-08-17
07:42:44.137');

insert into person (id,name,email,password,role,enabled,birthday,created,
modified)

values ('4fe22e358d0e4e38b680eab91787f041", 'Mike", 'mike@example.com',"s
ecret', 'ADMIN',true, '19820-08-05", '2018-08-17 07:42:44.136"','2018-08-17
07:42:44.137");

insert into person (id,name,email,password,role,enabled,birthday,created,
modified)

values ('84e6c4776dcc42369510c26921129644 ", 'Dan’, 'dan@example.com', 'se
cret', "ADMIN', false, '1976-10-11"', '2018-08-17 07:42:44.136",'2018-08-17
07:42:44.137");

insert into person (id,name,email,password,role,enabled,birthday,created,
modified)
values ('03a0c396acee4f6cb52€3964c0274495", 'Administrator’, 'admin@example.
com','admin', 'ADMIN',true, '1978-12-22",'2018-08-17 07:42:44.136", '2018-08-
17 07:42:44.137');

Now we are ready to use this application as an authentication and authorization

mechanism. Run the Directory application. This app starts in port 8181. You can test it
using either the browser and/or cURL command.

$ curl localhost:8181/persons/search/findByEmailIgnoreCase?email=mark@
example.com -u admin@example.com:admin

"email" : "mark@example.com",
"name" : "Mark",
"password" : "secret",

"role" : "USER",

"enabled" : true,

"birthday" : "1960-03-29",

"created" : "2018-08-17T07:42:44.136",
"modified" : "2018-08-17T07:42:44.137",
" links" : {

249

CHAPTER 8 SECURITY WITH SPRING BOOT

"self" : {

"href" : "http://localhost:8181/persons/dc952d19ccfc4164b5eb0338d14a6619"
1
"person” : {

"href" : "http://localhost:8181/persons/dc952d19ccfc4164b5eb0338d14a6619"
}

From the command, you are getting the user, Mark, by providing the username/
password of a person with an ADMIN role; in this case, using the -u admin@example.
com:admin parameter.

Great! You are using JDBC to look up users by using Spring Data REST and Spring
Security! You can leave this project running.

Using the Directory App within the ToDo App

It’s time to integrate this Directory app with the ToDo app. And it is very easy.

Open your ToDo app and let’s create a Person class. Yes, we are going to need a
Person class that holds just enough information for authentication and authorization
purposes. There is no need to have birth dates or any other information (see Listing 8-14).

Listing 8-14. com.apress.todo.directory.Person.java
package com.apress.todo.directory;

import com.fasterxml.jackson.annotation.JsonIgnoreProperties;
import lombok.Data;

@Data
@JsonIgnoreProperties(ignoreUnknown = true)
public class Person {

private String email;
private String password;
private String role;
private boolean enabled;

250

CHAPTER 8 SECURITY WITH SPRING BOOT

Listing 8-14 shows the Person class. This class only has the necessary fields for
the authentication and authorization process. It is important to mention that calling
the Directory app returns a more complete JSON object. It must match to do the
deserialization (from JSON to object using the Jackson library), but because there is no
needforeaninﬂnjnaﬁon,ﬂﬁsckwsisuﬁngthe@JasonIgnoreProperties(ignoreUnk
nown=true) annotation that helps match the fields needed. I think this is a nice way to
decouple classes.

Note Some serialization tools in Java require the same class in the same
package and implementing the java.io.Serializable, making it more difficult
for developers and clients to manage and extend.

Next, create the ToDoProperties class that holds the information about the Directory
app, like Uri (what is the address and base Uri), Username, and Password of the person
that has the ADMIN role and has access to the REST API (see Listing 8-15).

Listing 8-15. com.apress.todo.configToDoProperties.java

package com.apress.todo.config;

import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;

@Data
@ConfigurationProperties(prefix = "todo.authentication")
public class ToDoProperties {

private String findByEmailUri;
private String username;
private String password;

Listing 8-15 shows the ToDoProperties class; note that the prefix is todo.
authentication.*. Next, modify the ToDoSecurityConfig class. You can comment the
whole class and copy the code in Listing 8-16.

251

CHAPTER 8 SECURITY WITH SPRING BOOT

Listing 8-16. com.apress.todo.configToDoSecurityConfig.java

package com.apress.todo.config;

import
import
import
import
import

com.
org.
.slf4j.LoggerFactory;
springframework.
springframework.

org

org.
org.

apress.todo.directory.Person;

s1f4j.Logger;

boot.autoconfigure.security.servlet.PathRequest;
boot.context.properties.

EnableConfigurationProperties;

import
import
import
import
import
import
import
import
import

org

org.
org.

org

org.
org.
org.

org

org.

.springframework.
springframework.
springframework.
.springframework.
springframework.
springframework.
springframework.
.springframework.
springframework.

boot.web.client.RestTemplateBuilder;
context.annotation.Configuration;
core.ParameterizedTypeReference;
hateoas.MediaTypes;

hateoas.Resource;

http.HttpStatus;

http.RequestEntity;

http.ResponseEntity;
security.config.annotation.authentication.

builders.AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.web.builders.
HttpSecurity;

import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;

import org.springframework.
import org.springframework.
import org.springframework.
import org.springframework.

UsernameNotFoundException;

import org.springframework.

PasswordEncoderFactories;

import org.springframework.
import org.springframework.
import org.springframework.

security.core.userdetails.User;
security.core.userdetails.UserDetails;
security.core.userdetails.UserDetailsService;
security.core.userdetails.

security.crypto.factory.
security.crypto.password.PasswordEncoder;

security.web.util.matcher.AntPathRequestMatcher;
web.client.RestTemplate;

import org.springframework.web.util.UriComponentsBuilder;
import java.net.URI;

252

CHAPTER 8 SECURITY WITH SPRING BOOT

@EnableConfigurationProperties(ToDoProperties.class)
@Configuration
public class ToDoSecurityConfig extends WebSecurityConfigurerAdapter {

private final Logger log = LoggerFactory.getlLogger(ToDoSecurityConfig.
class);

//Use this to connect to the Directory App
private RestTemplate restTemplate;

private ToDoProperties toDoProperties;
private UriComponentsBuilder builder;

public ToDoSecurityConfig(RestTemplateBuilder restTemplateBuilder,
ToDoProperties toDoProperties){
this.toDoProperties = toDoProperties;
this.restTemplate = restTemplateBuilder.basicAuthorization(toDoProp
erties.getUsername(),toDoProperties.getPassword()).build();

}

@0verride
protected void configure(AuthenticationManagerBuilder auth) throws
Exception {

auth.userDetailsService(new UserDetailsService(){

@verride
public UserDetails loadUserByUsername(String username) throws
UsernameNotFoundException {

try {
builder = UriComponentsBuilder

«fromUriString(toDoProperties.getFindByEmailUri())
.queryParam("email", username);

log.info("Querying: " + builder.toUriString());

ResponseEntity<Resource<Person»»> responseEntity =

restTemplate.exchange(
RequestEntity.get(URI.create(builder.
toUriString()))

253

CHAPTER 8 SECURITY WITH SPRING BOOT

.accept(MediaTypes.HAL_JSON)

.build()
s new ParameterizedTypeReference<Resource<Pers
on>»>() {
N3

if (responseEntity.getStatusCode() == HttpStatus.OK) {

Resource<Persony resource = responseEntity.getBody();
Person person = resource.getContent();

PasswordEncoder encoder =

PasswordEncoderFactories.createDelegatingPasswordEncoder();
String password = encoder.encode(person.
getPassword());

return User
.withUsername(person.getEmail())
.password(password)
.accountLocked(!person.isEnabled())
.roles(person.getRole()).build();

}

}catch(Exception ex) {
ex.printStackTrace();

}

throw new UsernameNotFoundException(username);

}s
}

@verride
protected void configure(HttpSecurity http) throws Exception {
http.authorizeRequests()
.requestMatchers(PathRequest.toStaticResources().
atCommonLocations()).permitAll()
.antMatchers("/","/api/**").hasRole("USER")
.and()

254

CHAPTER 8 SECURITY WITH SPRING BOOT

.formLogin().loginPage("/login").permitAll()

.and()

.logout()

.logoutRequestMatcher(new AntPathRequestMatcher("/logout"))
.logoutSuccessUrl("/login")

.and()

.httpBasic();

Listing 8-16 shows the new ToDoSecurityConfig class. Let’s analyze it.

WebSecurityConfigurerAdapter. This class overrides what we need
to customize the security for the app; but you already knew that,
right?

RestTemplate. This helper class makes a REST call to the
Directory app endpoint, in particular /persons/search/
findByEmailIgnoreCase Uri.

UriComponentsBuilder. Remember that the /persons/search/
findByEmailIgnoreCase endpoint needs a parameter (email); that’s
the one provided by the loadUserByUsername method (username).

AuthenticationBuilder. The authentication provides
userDetailsService. In this code, there is an anonymous
implementation of the UserDetailsService and the implementation
of the loadUserByUsername method. This is where the RestTemplate
is being used to make a call to the Directory app and the endpoint.

ResponseEntity. Because the Directory app response is HAL+JSON, it
is necessary to use a ResponseEntity that manages all the resources
from the protocol. If there is HttpStatus. 0K, it is easy to get the
content as a Person instance and use it to create UserDetails.

antMatchers. This class is configuring HttpSecurity as before, but
this time it is including an antMatchers method that exposes the
endpoints that are accessed by a valid person with a USER role.

255

CHAPTER 8 SECURITY WITH SPRING BOOT

We are reusing the same technique from the Directory app. AuthenticationManager
is configured to provide a UserDetails instance by calling the directory service using
RestTemplate. The Directory app responded with a HAL+JSON protocol, which is why it is
necessary to use ResponseEntity to get the person as a resource.

Next, append the following todo.authentication.* properties in the application.
properties file.

ToDo - Directory integration
todo.authentication.find-by-email-uri=http://localhost:8181/persons/search/
findByEmailIgnoreCase

todo.authentication.username=admin@example.com
todo.authentication.password=admin

It is necessary to specify the complete Uri that searches for the email endpoint, and
the person that has the ADMIN role.

Now you are ready to use the ToDo app. You can use the browser or the command line.
Make sure that the Directory app is up and running. Run the ToDo app that runs in port 8080.

You can execute the following command in a terminal window.

$ curl localhost:8080/api/toDos -u mark@example.com:secret

{

" embedded" : {
"toDos" : [{
"description” : "Read a Book",

"created" : "2018-08-17T07:42:44.136",
"modified" : "2018-08-17T07:42:44.137",
"completed" : true,

"profile" : {
"href" : "http://localhost:8080/api/profile/toDos"

Now you are authenticating and authorizing with Mark, who has the USER role.
Congrats!! You integrated your own JDBC service with the ToDo application.

256

CHAPTER 8 SECURITY WITH SPRING BOOT

WebFlux Security

To add security to a WebFlux application, nothing changes. You need to add the spring-
boot-starter-security dependency, and Spring Boot takes care of the rest with its
auto-configuration. If you want to customize it as we did before, the only thing you need
to do is use ReactiveUserDetailsService (instead of UserDetailsService) or use
ReactiveAuthenticationManager (instead of AuthenticationManager). Remember that
now you are working with Mono and Flux reactive stream types.

ToDo App with 0Auth2

With Spring Boot and Spring Security, OAuth2 is easier than ever. In this section of this
chapter, we are going to enter directly into the ToDo app with OAuth2. I assume that you
know about OAuth2 and all the benefits of using it as a mechanism for authentication
with third-party providers—like Google, Facebook, and GitHub—directly into your app.

So let’s begin. Starting from scratch, go to your browser and open Spring Initializr.
Add the following values to the fields.

o Group: com.apress.todo

o Artifact: todo-oauth2

o Name: todo-oauth2

o Package Name: com.apress.todo

o Dependencies: Web, Security, Lombok, JPA, REST Repositories,
H2, MySQL

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button; this downloads a ZIP file. Uncompress it and import the project
in your favorite IDE (see Figure 8-8).

257

CHAPTER 8 SECURITY WITH SPRING BOOT

e0® m O ® i start.spring.io & Olldil ol i

SPRING INITIALIZR

Generate a vevenroiecr ¢+ With (2= ¢+ @and Spring Boot 204

Project Metadata Dependencies
Artifact coordinates Add Spring Beot Starters and dependencies to your application
Group Search for dependencies
cam.apress.todn Web, Securi ty, JPA, Actuator, Devtools...
Artifact Selected Dependencies

T G O

todo-oauth2

Description

Demc project for Spring Boot

Package Name

com.apress.todo

Packaging

Jar

Java Version

8

Too many options? Switch back to the simple version.

Generate Project % + =

Figure 8-8. Spring Initializr

If you are using Maven, add the following dependencies to your pom.xml file.

<dependency>
<groupIld>org.springframework.security</groupId>
<artifactId>spring-security-oauth2-client</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-oauth2-jose</artifactId>

</dependency>

258

CHAPTER 8 SECURITY WITH SPRING BOOT
If you are using Gradle, add the following dependencies to your build.gradle:

compile('org.springframework.security:spring-security-oauth2-client")
compile('org.springframework.security:spring-security-oauth2-jose')

As you can imagine, when Spring Boot sees the spring-security-oauth2-client,
it auto-configures all the necessary beans to use the OAuth2 security for the app. It’s
important to mention the need for the spring-security-oauth2-jose that contains the
Spring Security’s support for JOSE (JavaScript Object Signing and Encryption) framework.
The JOSE framework is intended to provide a method to securely transfer claims between
parties. It is built from a collection of specifications: JSON Web Token (JWT), JSON Web
Signature (JWS), JSON Web Encryption (JWE), and JSON Web Key (JWK).

Next, you can reuse the ToDo class and the ToDoRepository interface (see Listings
8-17 and 8-18).

Listing 8-17. com.apress.todo.domain.ToDo.java
package com.apress.todo.domain;

import lombok.Data;
import org.hibernate.annotations.GenericGenerator;

import javax.persistence.*;

import javax.validation.constraints.NotBlank;
import javax.validation.constraints.NotNull;
import java.time.lLocalDateTime;

@Entity
@Data
public class ToDo {

@Id

@GeneratedValue(generator = "system-uuid")
@GenericGenerator(name = "system-uuid", strategy = "uuid")
private String id;

@NotNull

@NotBlank

private String description;

@Column(insertable = true, updatable = false)

259

CHAPTER 8 SECURITY WITH SPRING BOOT

private LocalDateTime created;
private LocalDateTime modified;
private boolean completed;

public ToDo(){}
public ToDo(String description){
this.description = description;

}

@PrePersist

void onCreate() {
this.setCreated(LocalDateTime.now());
this.setModified(LocalDateTime.now());

}

@PreUpdate
void onUpdate() {
this.setModified(LocalDateTime.now());

As you can see nothing changed. It remains the same.

Listing 8-18. com.apress.todo.repository.ToDoRepository.java
package com.apress.todo.repository;

import com.apress.todo.domain.ToDo;
import org.springframework.data.repository.CrudRepository;

public interface ToDoRepository extends CrudRepository<ToDo,String> { }

The same for this interface—nothing changed. Let’s review the application.
properties.

JPA

spring.jpa.generate-ddl=true
spring.jpa.hibernate.ddl-auto=create-drop
spring.jpa.show-sql=true

260

CHAPTER 8 SECURITY WITH SPRING BOOT

H2-Console: http://localhost:8080/h2-console
jdbc:h2:mem:testdb
spring.h2.console.enabled=true

Nothing changed. Well, we are going to add more properties very soon.
Now comes the important part. You are going to use GitHub for OAuth2
authentication for the ToDo app.

Creating the ToDo App in GitHub

I'm assuming that you probably already have a GitHub account; if not, you can open a
new one very easily at https://github.com. You can log in to your account and then
open https://github.com/settings/applications/new. That’s where you create the
application. You can use the following values.

e Application name: todo-app
o Homepage URL: http://localhost:8080
e Application description: ToDo App

o Authorization callback URL: http://localhost:8080/1login/
oauth2/code/github

It’s important to the authorization callback URL because this is how Spring Security’s
OAuth2LoginAuthenticationFilter expects to work with this endpoint pattern: /login/
oauth2/code/*; of course, it is customizable by using the redirect-uri-template
property (see Figure 8-9).

261

https://github.com
https://github.com/settings/applications/new

CHAPTER 8 SECURITY WITH SPRING BOOT

Pull requests Issues Marketplace Explore

Register a new OAuth application

Application name

todo-app

Something users will recognize and trust
Homepage URL

http://localhost:8080
The full URL to your application homepage
Application description

ToDo App

“

This is displayed to all users of your application
Authorization callback URL

http://localhost:8080/login/oauth2/code/github

Your application’s callback URL. Read our OAuth documentation for more information.

Register application [l

® 2018 GitHub, Inc. Terms Privacy Security Status Help

Contact GitHub Pricing APl

Trainir|

Figure 8-9. GitHub new app: https://qithub.com/settings/applications/new

You can click the Register application button. After this, GitHub creates the keys you

need in your application (see Figure 8-10).

262

https://github.com/settings/applications/new

CHAPTER 8 SECURITY WITH SPRING BOOT

Application created successfully

Settings Developer settings

OAuth Apps tOdO'app

GitHub Apps

. felipeg48 owns this application.
Personal access tokens

You can list your application in the GitHub Marketplace so that other

users can discover it.

0O users

Client ID
ac5b347117eb11705070

Client Secret

44abe272a15834a5390423e53b58157¢c35647a98

Revoke all user tokens Reset client secret

Figure 8-10. Client ID and client secret keys

Transfer ownership

List this application in the Marketpl

Once you have this, copy the client id and client secret keys and append them
to the application.properties with the spring.security.oauth2.client.

registration.* keys.

OAuth2
spring.security.oauth2.client.registration
id=ac5b347117eb11705b70
spring.security.oauth2.client.registration
4a5390423e53b58f57c35647a98
spring.security.oauth2.client.registration
GitHub Authentication
spring.security.oauth2.client.registration
spring.security.oauth2.client.registration
spring.security.oauth2.client.registration

.todo.

.todo.

.todo.

.todo.

.todo.
.todo.

client-
client-secret=44abe272a1583
client-name=ToDo App with
provider=github

scope=user
redirect-uri-

template=http://localhost:8080/1ogin/oauth2/code/github

The spring.security.oauth2.client.registration accepts a map that contains
the necessary keys like the client-id and client-secret.

263

CHAPTER 8 SECURITY WITH SPRING BOOT

That’s it!! You don’t need anything else. You can now run your application. Open the
browser and point to http://localhost:8080. You get a link that redirects you to GitHub
(see Figure 8-11).

000 < m (ay Ko localhost & o/t a [

Login with OAuth 2.0

ToDo App with GitHub Authentication

Figure8-11. http://localhost:8080

264

CHAPTER 8 SECURITY WITH SPRING BOOT
You can click the link, which gets you through the login process but using a GitHub

authentication mechanism (see Figure 8-12).

see < >Jm ole Aot e S 2 O

O

| l |
Sign in to GitHub
to continue to todo-app

Username or email address

felipegd8

Password Forgot password?

MNew to GitHub? Create an account.

Terms Privacy Security Contact GitHub

Figure 8-12. GitHub authentication

265

CHAPTER 8 SECURITY WITH SPRING BOOT

You can log in now with your credentials. Next, you are redirected to another page
where you need to give permissions to the todo-app to use contact information (see
Figure 8-13).

eoe < > O ol @ & Github, Inc. ¢ s o

l .0

Authorize todo-app

| . todo-app by felipegd8

wants to access your felipeg48 account

| ‘ Personal user data v
Full access
|
|
Organization access
| P pivotal-education
| P Pivotal-Field-Engineering
‘ . Apress X Request
[platform-acceleration-lab x Request
‘ D obsidian-design Grant
| 4 ABQJUG x Grant
|
® FondeoPyme x Grant

‘

Autherizing will redirect to
http://localhost:8080

Figure 8-13. GitHub authorization process

266

CHAPTER 8 SECURITY WITH SPRING BOOT

You can then click the Authorize button to get back to your app with the ToDo REST
API (see Figure 8-14).

o0® < m [a Y] localhost & o |t A&

ksl
{
¥ _links: {
Y toDos: {
href: "http://localhost:8080/toDos”
Y,

¥ profile: {
href: "http://localhost:8080/profile"
}
}

}

Figure 8-14. After GitHub authorization process

Congratulations!! Now you know how easy it is to integrate OAuth2 with different
providers using Spring Boot and Spring Security.

Note You can find the solution to this section in the book source code on the
Apress website or on GitHub at https://github.com/Apress/pro-spring-
boot-2, or on my personal repository at https://github.com/felipeg48/
pro-spring-boot-2nd.

267

https://github.com/Apress/pro-spring-boot-2
https://github.com/Apress/pro-spring-boot-2
https://github.com/felipeg48/pro-spring-boot-2nd
https://github.com/felipeg48/pro-spring-boot-2nd

CHAPTER 8 SECURITY WITH SPRING BOOT

Summary

In this chapter, you learned different ways to do security with Spring Boot. You learned
how easy it is to secure an application by adding the spring-boot-security-starter
dependency.

You also learned that it is easy to customize and override the defaults that Spring
Boot offers you with Spring Security. You can use the spring.security.* properties or
you can customize it with the WebSecurityConfigurerAdapter class.

You learned how to use JDBC and connect two applications, one of them acting as a
security authority for authentication and authorization.

Lastly, you learned how easy it is to use OAuth2 with third-party authentication and
authorization providers like Facebook, Google, GitHub, and more.

In the next chapter, we start working with messaging brokers.

268

CHAPTER 9

Messaging with Spring
Boot

This chapter is all about messaging. It explains, with examples, how to use ActiveMQ
for implementing the JMS (Java Message Service), RabbitMQ for implementing AMQP
(Advanced Message Queuing Protocol), Redis for Pub/Sub, and WebSockets for
implementing STOMP (Simple or Streaming Text-Oriented Message Protocol) with
Spring Boot.

What Is Messaging?

Messaging is a way of communicating among one or more entities, and it is everywhere.

Computer messaging, in one form or another, has been around since the invention
of the computer. It is defined as a method of communication between hardware and/
or software components or applications. There is always a sender and one or more
receivers. Messaging can be synchronous and asynchronous, pub/sub and peer-to-peer,
RPC, enterprise-based, a message broker, ESB (enterprise service bus), MOM (message-
oriented middleware), and so forth.

Messaging enables distributed communication that must be loosely coupled,
meaning that it doesn’t matter how or what message the sender is publishing, the
receiver consumes the message without telling the sender.

Of course, there is a lot we could say about messaging—from the old techniques and
technologies to new protocols and messaging patterns, but the intention of this chapter
is to work with examples that illustrate how Spring Boot does messaging.

With this in mind, let’s start creating examples using some of the technologies and
message brokers out there.

269
© Felipe Gutierrez 2019

F. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_9

CHAPTER9 MESSAGING WITH SPRING BOOT

JMS with Spring Boot

Let’s start by using JMS. This is an old technology that is still being used by companies
with legacy applications. JMS was created by Sun Microsystems to enable a way to send
messages synchronously and asynchronously; it defines interfaces that need to be
implemented by message brokers, such as WebLogic, IBM MQ, ActiveMQ, HornetQ, and
so forth.

JMS is a Java-only technology, and so there have been attempts to create message
bridges to combine JMS with other programming languages; still, it’s difficult or very
expensive to mix different technologies. I know that you are thinking that this is not true,
because you can use Spring integration, Google Protobuffers, Apache Thrift, and other
technologies to integrate JMS, but it’s still a lot of work because you need to know and
maintain code from all of these technologies.

ToDo App with JMS

Let’s start by creating the ToDo App using JMS with Spring Boot. The idea is to send
ToDo’s to a JMS broker and receive and save them.

The Spring Boot team has several JMS starter poms available; in this case, you use
ActiveMQ, which is an open source asynchronous messaging broker from the Apache
Foundation (http://activemq.apache.org). One of the main advantages is that you can
use either the in-memory broker or a remote broker. (You can download it and install
itif you prefer; the code in this section uses the in-memory broker, but I tell you how to
configure a remote broker).

You can open your favorite browser and point to the known Spring Initializr
(https://start.spring.io); add the following values to the following fields.

e Group: com.apress.todo

o Artifact: todo-jms

o Name: todo-jms

o Package Name: com.apress.todo

o Dependencies: IMS (ActiveMQ), Web, Lombok, JPA, REST
Repositories, H2, MySOL

270

http://activemq.apache.org
https://start.spring.io

CHAPTER9 MESSAGING WITH SPRING BOOT

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button to download a ZIP file. Uncompress it and import the project in
your favorite IDE (see Figure 9-1).

o0® < m ONON® Yo i start.spring.io & o 0 ul

SPRING INITIALIZR

Generate a vaenroec : With e+ and Spring Boot 202

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies
com.apress.todo 0] Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

T O

todo-jms
Description

Demo project for Spring Boot
Package Name

com.apress.todo

Packaging

Jar

ar

Java Version

8

ar

Too many options? Switch back to the simple version.

Generate Project % + =

Figure 9-1. Spring Initializr

As you can see from the dependencies, you reuse the JPA and REST Repositories
code from previous chapters. Instead of using Text message (a common approach for
testing messaging) you use a ToDo instance, and it is converted as JSON format. to do this
you required to add manually the next dependency to your pom.xml or build.gradle.

271

CHAPTER9 MESSAGING WITH SPRING BOOT
If you are using Maven, add the following dependency to your pom. xml file.

<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
</dependency>

If you are using Gradle, add the following dependency to your build.gradle file.
compile("com.fasterxml.jackson.core:jackson-databind")

This dependency provides all the Jackson jars needed to use JSON to serialize the
ToDo entity.

In the following sections I show you the important files, and how JMS is used in
the ToDo app. The example uses the simple Point-to-Point pattern, where there is a
Producer, a Queue and a Consumer. I'll show later on how to configure it for using a
Publisher-Subscriber pattern with a Producer, a Topic and multiple Consumers later on.

ToDo Producer

Let’s start by introducing the Producer that sends a ToDo to the ActiveMQ broker.

This producer can be on its own project; it can be separated from the app; but for

demonstration purposes you have the producer in the same code base, in the ToDo app.
Create the ToDoProducer class. This class sends a ToDo into a JMS Queue (see

Listing 9-1).

Listing 9-1. com.apress.todo.jms.ToDoProducer.java
package com.apress.todo.jms;

import com.apress.todo.domain.ToDo;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.jms.core.JImsTemplate;
import org.springframework.stereotype.Component;

@Component
public class ToDoProducer {

272

CHAPTER9 MESSAGING WITH SPRING BOOT

private static final Logger log = LoggerFactory.getlLogger(ToDoProducer.
class);

private JmsTemplate jmsTemplate;

public ToDoProducer(JmsTemplate jmsTemplate){
this.jmsTemplate = jmsTemplate;

}

public void sendTo(String destination, ToDo toDo) {
this.jmsTemplate.convertAndSend(destination, toDo);
log.info("Producer> Message Sent");

Listing 9-1 shows the producer class. This class is marked using the @Component, so it
is registered as a Spring bean in the Spring application context. The JmsTemplate class is
used, and it is very similar to other *Template classes that wrap all the boilerplate of the
technology in use. The JmsTemplate instance is injected through the class constructor,
and it is used to send a message using the convertAndSend method. You are sending a
ToDo object (JSON String). This template has the mechanism to serialize it and send it to
the ActiveMQ queue.

ToDo Consumer

Next, let’s create the consumer class, which is listening for any incoming message from
the ActiveMQ queue (see Listing 9-2).

Listing 9-2. com.apress.todo.jms.ToDoConsumer.java

package com.apress.todo.jms;

import com.apress.todo.domain.ToDo;

import com.apress.todo.repository.ToDoRepository;
import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.jms.annotation.JImsListener;
import org.springframework.stereotype.Component;

import javax.validation.Valid;

273

CHAPTER9 MESSAGING WITH SPRING BOOT

@Component
public class ToDoConsumer {

private Logger log = LoggerFactory.getlLogger(ToDoConsumer.class);
private ToDoRepository repository;

public ToDoConsumer(ToDoRepository repository){
this.repository = repository;

}

@ImsListener(destination = "${todo.jms.destination}",containerFactory =
"JjmsFactory")
public void processToDo(@Valid ToDo todo){
log.info("Consumer> " + todo);
" + this.repository.save(todo));

log.info("ToDo created>

Listing 9-2 shows the consumer. In this class, you are using ToDoRepository, where
itis listening for any message from the ActiveMQ queue. Make sure that you are using
the @ImsListener annotation that makes the method process any incoming message
from the queue; in this case, a valid ToDo (the @/alid annotation can be used to validate
any field of the domain model). The @ImsListener annotation has two attributes. The
destination attribute emphasizes the name of the queue/topic to connect to (the
destination attribute evaluate the todo.jms.destination property, which you create
/use in the next section). The containerFactory attribute is created as part of the
configuration.

Configuring the ToDo App

Now, it is time to configure the ToDo App to send and receive ToDo’s. Listing 9-1 and
Listing 9-2 show the Producer and Consumer classes, respectively. In both classes you
are using a ToDo instance, meaning that it is necessary to do serialization. Most of the
Java frameworks that work with serialization require that your classes implement from
java.io.Serializable. It is an easy way to convert those classes into bytes, but this
approach has been debated for years because implementing Serializable decreases
the flexibility to modify a class’s implementation once it’s released for usage.

274

CHAPTER9 MESSAGING WITH SPRING BOOT

The Spring Framework offers an alternative way to do serialization without
implementing from Serializable—through a MessageConverter interface. This
interface offers the toMessage and fromMessage methods, in which you can plug in
whatever technology fits for object conversion.

Let’s create a configuration that uses a ToDo instance for the producer and consumer
(see Listing 9-3).

Listing 9-3. com.apress.todo.config.ToDoConfig.java

package com.apress.todo.config;

import com.apress.todo.error.ToDoErrorHandler;

import com.apress.todo.validator.ToDoValidator;

import org.springframework.boot.autoconfigure.jms.
DefaultImsListenerContainerFactoryConfigurer;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.jms.annotation.JImsListenerConfigurer;
import org.springframework.jms.config.DefaultImsListenerContainerFactory;
import org.springframework.jms.config.JImsListenerContainerFactory;
import org.springframework.jms.config.ImsListenerEndpointRegistrar;
import org.springframework.jms.support.converter.
MappingJackson2MessageConverter;

import org.springframework.jms.support.converter.MessageConverter;
import org.springframework.jms.support.converter.MessageType;
import org.springframework.messaging.handler.annotation.support.
DefaultMessageHandlerMethodFactory;

import javax.jms.ConnectionFactory;

@Configuration
public class ToDoConfig {

@®Bean

public MessageConverter jacksonImsMessageConverter() {
MappingJackson2MessageConverter converter = new
MappingJackson2MessageConverter();
converter.setTargetType(MessageType.TEXT);

275

CHAPTER9 MESSAGING WITH SPRING BOOT

276

converter.setTypeIdPropertyName("_class_");
return converter;

}

@Bean
public ImsListenerContainerFactory<?»> jmsFactory(ConnectionFactory
connectionFactory,
DefaultImsListener
ContainerFactory
Configurer configurer) {
DefaultImsListenerContainerFactory factory = new
DefaultImsListenerContainerFactory();
factory.setErrorHandler(new ToDoErrorHandler());
configurer.configure(factory, connectionFactory);
return factory;

}

@Configuration
static class MethodListenerConfig implements ImsListenerConfigurer{

@0verride

public void configureImsListeners (JImsListenerEndpointRegistrar

jmsListenerEndpointRegistrar){
jmsListenerEndpointRegistrar.setMessageHandlerMethodFactory
(myHandlerMethodFactory());

b

@®Bean
public DefaultMessageHandlerMethodFactory myHandlerMethodFactory ()

DefaultMessageHandlexrMethodFactory factory = new
DefaultMessageHandlerMethodFactory();
factory.setValidator(new ToDoValidatox());
return factory;

CHAPTER9 MESSAGING WITH SPRING BOOT

Listing 9-3 shows the ToDoConfig class that is use for the app. Let’s analyze it.

@Configuration. This is a known annotation that marks the class for
configuring the SpringApplication context.

MessageConverter. The method jacksonJmsMessageConverter
returns the MessageConverter interface. This interface promotes

the implementation of toMessage and fromMessage method

that helps plug in any serialization/conversion that you want

to use. In this case, you are using a JSON converter by using the
MappingJackson2MessageConverter class implementation. This
class is one of the default implementations that you can find in

the Spring Framework. It uses the Jackson libraries, which use
mappers to convert to/from JSON to/from an object. Because you are
working with ToDo instances, it is necessary to specify a target type
(setTargetType), this means that the JSON object is taken as text and
a type-id property name (setTypeIdPropertyName) that identifies

a property found from/to the producer and consumer. The type-id
property name must always match both the producer and consumer.
It can be any value you need (preferably something that you recognize
because it is used to set the name (including the package) of the class
to be converted to/from JSON); in other words, the com.apress.
todo.domain.Todo class must be shared between the producer and
consumer so that the mapper knows where to get the class to/from.

JmsListenerContainerFactory. The jmsFactory

method returns JmsListenerContainerFactory.

This bean requires ConnectionFactory and
DefaultImsListenerContainerFactoryConfigurer (both is injected
by the Spring), and it creates DefaultImsListenerContainerFactory,
which sets up an error handler. This bean is used in the @ImsListener
annotation by setting the containerFactory attribute.

JmsListenerConfigurer. In this class, you are creating a static
configuration. The MethodListenerConfig class implements
the JmsListenerConfigurer interface. This interface
requires you to register a bean that has the configuration
of the validator (ToDoValidator class); in this case, the
DefaultMessageHandlerMethodFactory bean.
277

CHAPTER9 MESSAGING WITH SPRING BOOT

If you don’t want to validate yet, you can remove the MethodListenerConfig class
and the setErrorHandler call from the jmsFactory bean declaration; but if you want
to experiment with validation, then you need to create the ToDoValidator class (see
Listing 9-4).

Listing 9-4. com.apress.todo.validatorToDoValidator.java
package com.apress.todo.validator;

import com.apress.todo.domain.ToDo;
import org.springframework.validation.Errors;
import org.springframework.validation.Validator;

public class ToDoValidator implements Validator {
@verride
public boolean supports(Class<?» clazz) {
return clazz.isAssignableFrom(ToDo.class);

}

@verride
public void validate(Object target, Exrors errors) {
ToDo toDo = (ToDo)target;

if (toDo == null) {
errors.reject(null, "ToDo cannot be null");

telse {
if (toDo.getDescription() == null || toDo.getDescription().
isEmpty())
errors.rejectValue("description”,null, "description cannot
be null or empty");
}

Listing 9-4 shows the validator class that is called for every message, and validates
that the description field is not empty or null. This class is implementing the Validator
interface and implements the supports and validate methods.

278

CHAPTER9 MESSAGING WITH SPRING BOOT
This is the ToDoErrorHandler code.
package com.apress.todo.error;

import org.slf4j.Logger;
import org.slf4j.lLoggerFactory;
import org.springframework.util.ErrorHandler;

public class ToDoErrorHandler implements ErrorHandler {
private static Logger log = LoggerFactory.getlLogger(ToDoErrorHandler.
class);

@verride

public void handleError(Throwable t) {
log.warn("ToDo error...");
log.error(t.getCause().getMessage());

Asyou can see, this class is implementing the ExrrorHandler interface.
Now, let’s create the ToDoProperties class that holds the todo. jms.destination
property, which indicates which queue/topic to connect to (see Listing 9-5).

Listing 9-5. com.apress.todo.config.ToDoProperties.java
package com.apress.todo.config;

import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;

@Data
@ConfigurationProperties(prefix = "todo.jms")
public class ToDoProperties {

private String destination;

279

CHAPTER9 MESSAGING WITH SPRING BOOT

Listing 9-5 shows the ToDoProperties class. Remember that in Listing 9-2 (the
ToDoConsumer class), the processToDo method was marked with the @ImsListener
annotation, which exposed the destination attribute. This attribute gets its value
from evaluating the SpEL (Spring Expression Language) ${todo.jms.destination}
expression that you are defining within this class.

You can set this property in the application.properties file.

src/main/resources/application.properties

JPA
spring.jpa.generate-ddl=true
spring.jpa.hibernate.ddl-auto=create-drop

ToDo IMS
todo.jms.destination=toDoDestination

Running the ToDo App

Next, let’s create a config class that sends a message to the Queue using the producer
(see Listing 9-6).

Listing 9-6. com.apress.todo.config ToDoSender.java
package com.apress.todo.config;

import com.apress.todo.domain.ToDo;

import com.apress.todo.jms.ToDoProducer;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.CommandLineRunner;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration
public class ToDoSender {

@Bean
public CommandLineRunner sendToDos(@Value("${todo.jms.destination}")
String destination, ToDoProducer producer){

280

CHAPTER9 MESSAGING WITH SPRING BOOT

return args -> {
producer . sendTo(destination,new ToDo("workout tomorrow morning!"));

b

Listing 9-6 shows the config class that sends the message using a ToDoProducer
instance and the destination (from the todo.jms.destination property).

To run the app, you can either use your IDE (if you imported it) or you can use the
Maven wrapper.

./mvnw spring-boot:run
Or the Gradle wrapper.
./gradlew bootRun
You should get the following text from the logs.

Producer> Message Sent

Consumer> ToDo(id=null, description=workout tomorrow morning!,
created=null, modified=null, completed=false)

ToDo created> ToDo(id=8a808087645bd67001645bd6785b0000, description=workout
tomorrow morning!, created=2018-07-02T10:32:19.546, modified=2018-07-
02T10:32:19.547, completed=false)

You can take a look at http://localhost:8080/toDos and see the ToDo created.

Using JMS Pub/Sub

If you want to use the Pub/Sub pattern, where you want to have multiple consumers
receiving a message (by using a topic for subscription), I'll explain what you need to do
in your app.

Because we are using Spring Boot, this makes it easier to configure a Pub/Sub
pattern. If you are using default listener (a @ImsListener(destination) default listener
container), then you can use the spring. jms.pub-sub-domain=true property in the
application.properties file.

281

CHAPTER9 MESSAGING WITH SPRING BOOT
But if you are using a custom listener container, then you can set it programmatically.

@Bean

public DefaultMessagelistenerContainer jmsListenerContainerFactory() {
DefaultMessagelistenerContainer dmlc = new
DefaultMessagelistenerContainer();
dmlc.setPubSubDomain(true);
// Other configuration here ...
return dmlc;

Remote ActiveMQ

The ToDo App is using the in-memory broker (spring.activemq.in-memory=true). This
is probably good for demos or testing, but in reality, you use a remote ActiveMQ server.
If you required a remote server, add the following keys to your application.properties
file (modify it accordingly).

src/main/resources/application.properties

spring.activemq.broker-url=tcp://my-awesome-server.com:61616
spring.activemq.user=admin
spring.activemq.password=admin

There are many more properties that you can use for the ActiveMQ broker. Go to
https://docs.spring.io/spring-boot/docs/current/reference/html/common-
application-properties.html and look for the spring.activemq.* keys.

RabbitMQ with Spring Boot

Since the first attempts with JMS by companies like Sun, Oracle, and IBM, and Microsoft
with MSMQ, the protocols used were proprietary. JMS defines an Interface API, but
trying to mix technologies or programming languages is a hassle. Thanks to a JPMorgan
team, the AMQP (Advance Message Queuing Protocol) was created. It’s an open
standard application layer for MOM. In other words, AMQP is a wire-level protocol,
meaning that you can use any technology or programming language with this protocol.

282

https://docs.spring.io/spring-boot/docs/current/reference/html/common-­application-­properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-­application-­properties.html

CHAPTER9 MESSAGING WITH SPRING BOOT

Messaging brokers compete with each other to prove that they are robust, reliable,
and scalable, but the most important issue is how fast they are. I've been working
with a lot of brokers, and so far one of the easiest to use and to scale, and the fastest, is
RabbitMQ, which implements the AMQP protocol.

It would take an entire book to describe each part of RabbitMQ and all the concepts
around it, but I'll try to explain some of them based on this section’s example.

Installing RabbitMQ

Before I talk about RabbitMQ, let’s install it. If you are using Mac OS X/Linux, you can
use the brew command.

$ brew upgrade
$ brew install rabbitmg

If you are using a UNIX or a Windows system, you can go to the RabbitMQ web
site and use the installers (www.rabbitmq.com/download.html). RabbitMQ is written
in Erlang, so its major dependency is to install the Erlang runtime in your system.
Nowadays, all the RabbitMQ installers come with all the Erlang dependencies. Make
sure the executables are in your PATH variable (for Windows and Linux, depending of
what OS you are using). If you are using brew, you don’t need to worry about setting the
PATH variable.

RabbitMQ/AMQP: Exchanges, Bindings, and Queues

The AMQP defines three concepts that are a little different from the JMS world, but very
easy to understand. AMQP defines exchanges, which are entities where the messages are
sent. Every exchange takes a message and routes it to zero or more queues. This routing
involves an algorithm that is based on the exchange type and rules, called bindings.

The AMPQ protocol defines five exchange types: Direct, Fanout, Topic, and Headers.
Figure 9-2 shows these different exchange types.

283

http://www.rabbitmq.com/download.html

CHAPTER9 MESSAGING WITH SPRING BOOT

us

myQueue

Europe

Direct Exchange

Fanout Exchange

Figure 9-2. AMQP exchanges/bindings/queues

Figure 9-2 shows the possible exchange types. So, the main idea is to send a message
to an exchange, including a routing key, then the exchange based on its type deliver the
message to the queue (or it won't if the routing key doesn’t match).

The default exchange is bound automatically to every queue created. The direct
exchange is bound to a queue by a routing key; you can see this exchange type as one-
to-one binding. The topic exchange is similar to the direct exchange; the only difference
is that in its binding, you can add a wildcard into its routing key. The headers exchange
is similar to the topic exchange; the only difference is that the binding is based on
the message headers (this is a very powerful exchange, and you can do all and any
expressions for its headers). The fanout exchange copy the message to all the bound
queues; you can see this exchange as a message broadcast.

284

CHAPTER9 MESSAGING WITH SPRING BOOT

You can get more information about these topics at www.rabbitmq.com/tutorials/
amgp-concepts.html.

The example in this section uses the default exchange type, which means that the
routing key is equal to the name of the queue. Every time you create a queue, RabbitMQ
creates a binding from the default exchange (the actual name is an empty string) to the

queue using the queue’s name.

ToDo App with RabbitMQ

Let’s retake the ToDo app and add an AMQP messaging. The same as with the previous
app, you work with ToDo instances. You send and receive a JSON message and convert it
to object.

Let’s start by opening your favorite browser and point to the known Spring Initializr.
Add the following values to the fields.

e Group: com.apress.todo

o Artifact: todo-rabbitmgq

e Name: todo-rabbitmgq

o Package Name: com.apress.todo

¢ Dependencies: RabbitMQ, Web, Lombok, JPA, REST
Repositories, H2, MySOL

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button, which downloads a ZIP file. Uncompress it and import the

project in your favorite IDE (see Figure 9-3).

285

http://www.rabbitmq.com/tutorials/amqp-concepts.html
http://www.rabbitmq.com/tutorials/amqp-concepts.html

CHAPTER9 MESSAGING WITH SPRING BOOT

& start.spring.io v th =

SPRING INITIALIZR

Generate a vaenroec : With e+ and Spring Boot 202

Project Metadata

Artifact coordinates

Dependencies

Add Spring Boot Starters and dependencies te your application

Group Search for dependencies
com.apress.todo 0] Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

2 2 e [
T

todo-rabbitmg
Description

Demo project for Spring Boot
Package Name

com.apress.todo

Packaging

Jar

ar

Java Version

8

ar

Too many options? Switch back to the simple version.

Generate Project % + =

Figure 9-3. Spring Initializr https://start.spring. io

You can copy/paste the code of the JPA/REST project from previous chapters.

ToDo Producer

Lets’ start by creating a Producer class that sends messages to Exchange (Default
Exchange—direct) (see Listing 9-7).

286

https://start.spring.io

CHAPTER9 MESSAGING WITH SPRING BOOT

Listing 9-7. com.apress.todo.rmq.ToDoProducer.java
package com.apress.todo.rmq;

import com.apress.todo.domain.ToDo;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.amqgp.rabbit.core.RabbitTemplate;
import org.springframework.stereotype.Component;

@Component
public class ToDoProducer {

private static final Logger log = LoggerFactory.getlLogger(ToDoProducer.
class);
private RabbitTemplate template;

public ToDoProducer(RabbitTemplate template){
this.template = template;

}

public void sendTo(String queue, ToDo toDo){
this.template.convertAndSend(queue,toDo);
log.info("Producer> Message Sent");

Listing 9-7 shows the ToDoProducer. java class. Let’s examine it.

e @Component. This annotation marks the class to be picked up by the
Spring container.

o RabbitTemplate. The RabbitTemplate is a helper class that simplifies
synchronous/asynchronous access to RabbitMQ for sending and/or
receiving messages. This is very similar to the JmsTemplate you saw
earlier.

287

CHAPTER9 MESSAGING WITH SPRING BOOT

o sendTo(routingKey,message). This method has the routing key
and the message as parameters. In this case, the routing key is the
name of the queue. This method uses the rabbitTemplate instance
to call the convertAndSend method that accepts the routing key and
the message. Remember that the message is sent to the exchange
(the default exchange) and the exchange routes the message to the
right queue. This routing key happens to be the name of the queue.
Also remember that by default RabbitMQ always binds the default
exchange (Direct Exchange) to a queue and the routing key is the

queue’s name.

ToDo Consumer

Next, it’s time to create the Consumer class that is listening to the specified queue (see
Listing 9-8).

Listing 9-8. com.apress.todo.rmq.ToDoConsumer.java
package com.apress.todo.rmgq;

import com.apress.todo.domain.ToDo;

import com.apress.todo.repository.ToDoRepository;

import org.slf4j.Logger;

import org.slf4j.lLoggerFactory;

import org.springframework.amqgp.rabbit.annotation.RabbitlListener;
import org.springframework.stereotype.Component;

@Component
public class ToDoConsumer {

private Logger log = LoggerFactory.getLogger(ToDoConsumer.class);
private ToDoRepository repository;

public ToDoConsumer(ToDoRepository repository){
this.repository = repository;

}

@RabbitListener(queues = "${todo.amqp.queue}")
public void processToDo(ToDo todo){

288

CHAPTER9 MESSAGING WITH SPRING BOOT

log.info("Consumer> " + todo);

log.info("ToDo created> " + this.repository.save(todo));

Listing 9-8 shows the ToDoConsumer. java class. Let’s examine it.

e @Component. You already know this annotation. It marks the class to
be picked up by the Spring container.

e (@RabbitListener. This annotation marks the method (because you
can use this annotation in a class as well) for creating a handler for
any incoming messages, meaning that it creates a listener that is
connected to the RabbitMQ’s queue and passes that message to the
method. Behind the scenes, the listener does its best to convert the
message to the appropriate type by using the right message converter
(an implementation of the org.springframework.amgp.support.
converter.MessageConverter interface. This interface belongs to the
spring-amgp project); in this case, it converts from JSON to a ToDo
instance.

As you can see from the ToDoProducer and ToDoConsumer, the code is very simple.
If you created this by only using the RabbitMQ Java client (www.rabbitmq.com/java-
client.html), at least you need more lines of code to create a connection, a channel,
and a message and send the message, or if you are writing a consumer, then you need
to open a connection, create a channel, create a basic consumer, and get into a loop for
processing every incoming message. This is a lot for simple producers or consumers.
That’s why the Spring AMQP team created this simple way to do a heavy task in a few
lines of code.

Configuring the ToDo App

Next let’s configure the app. Remember that you are sending ToDo instances, so
practically, it is kind of the same configuration that we did with JMS. We need to set our
converter and the listener container (see Listing 9-9).

289

http://www.rabbitmq.com/java-client.html
http://www.rabbitmq.com/java-client.html

CHAPTER9 MESSAGING WITH SPRING BOOT

Listing 9-9. com.apress.todo.config.ToDoConfig.java
package com.apress.todo.config;

import org.springframework.amqp.core.Queue;

import org.springframework.amqp.rabbit.config.
SimpleRabbitListenerContainerFactory;

import org.springframework.amqgp.rabbit.connection.ConnectionFactory;
import org.springframework.amqp.rabbit.core.RabbitTemplate;

import org.springframework.amqp.support.converter.
Jackson2JsonMessageConverter;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class ToDoConfig {

@Bean

public SimpleRabbitListenerContainerFactory rabbitlListenerContainer

Factory(ConnectionFactory connectionFactory) {
SimpleRabbitListenerContainerFactory factory = new
SimpleRabbitListenerContainerFactory();
factory.setConnectionFactory(connectionFactory);
factory.setMessageConverter (new Jackson2JsonMessageConverter());
return factory;

}

@Bean

public RabbitTemplate rabbitTemplate(ConnectionFactory connectionFactory){
RabbitTemplate template = new RabbitTemplate(connectionFactory);
template.setMessageConverter(new Jackson2]sonMessageConverter());
return template;

290

CHAPTER9 MESSAGING WITH SPRING BOOT

@Bean
public Queue queueCreation(@Value("${todo.amqp.queue}") String queue){
return new Queue(queue,true,false,false);

Listing 9-9 shows you the configuration. It has several bean definitions; let’s examine
them.

o SimpleRabbitListenerContainerFactory. This factory is required
when using the @RabbitListener annotation for custom setup
because you are working with ToDo instances; it is necessary set the

message converter.

o Jackson2JsonMessageConverter. This converter is used for
producing (with the RabbitTemplate) and for consuming
(@RabbitListener); it uses the Jackson libraries for doing its
mapping and conversion.

o RabbitTemplate. This a helper class that can send and receive
messages. In this case, it is necessary to customize it to produce JSON
objects using the Jackson converter.

e Queue. You can manually create a queue, but in this case, you are
creating it programmatically. You pass the name of the queue, if is
going to be durable or exclusive, and auto-delete.

Remember that in the AMQP protocol, you need an exchange that is bound to a
queue, so this particular example creates at runtime a queue named spring-boot, and
by default, all the queues are bound to a default exchange. That’s why you didn’t provide
any information about an exchange. So, when the producer sends the message, it is sent
first to the default exchange and then routed to the queue (spring-boot).

291

CHAPTER9 MESSAGING WITH SPRING BOOT

Running the ToDo App

Let’s create the sender class that sends the ToDo message (see Listing 9-10).

Listing 9-10. com.apress.todo.config ToDoSender.java
package com.apress.todo.config;

import com.apress.todo.domain.ToDo;

import com.apress.todo.rmq.ToDoProducer;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.CommandLineRunner;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration
public class ToDoSender {

@Bean
public CommandLineRunner sendToDos(@Value("${todo.amqp.queue}") String
destination, ToDoProducer producer){
return args -> {
producer.sendTo(destination,new ToDo("workout tomorrow morning!"));

};

Add the following keys (that declare the queue to send-to/consume-from) to your
application.properties file.

todo.amgp.queue=spring-boot

Before you run your example, make sure your RabbitMQ server is up and running.
You can start it by opening a terminal and executing the following command.

$ rabbitmg-server

Make sure that you have access to the RabbitMQ web console by going to http://
localhost:15672/ with guest/guest credentials. If you have problems accessing the
web console, make sure that you have the Management plugin enabled by running the
following command.

292

CHAPTER9 MESSAGING WITH SPRING BOOT
$ rabbitmqg-plugins list

If the entire list has the boxes unchecked, then the Management plugin is not
enabled yet (normally happens with fresh installations). To enable this plugin, you can
execute the following command.

$ rabbitmg-plugins enable rabbitmq_management --online

Now, you can try again. You should then see a web console similar to Figure 9-4.

© © @ | Yrovbing Manogement x| | Felige |

€ - C [V localhost:15672/#/ e Q0 =

. User: guest .o
o It Cluster: rabbit@liukang (change)
C i Cch {1 Q! Admin Visualiser

Overview

« Totals

Queved messages (chart: last minute) (?)

1.0

Ready mO
Unacked 0
0.0 Total
14:37:40 14:37:50 14:35:00 14:33:10 14:38:20 14:38:30 otal] | w0
Message rates (chart: last minute) (?)
L Publish | 0.00/5
Deliver 0.00/s
0.0/5 A W 0.00/s
14:37:40 14:37:50 14:38:00 14:38:10 14:38:20 14:38:30
Global counts (7)
Connections: 0 Channels: 0 Exchanges: 8 Queues: 1 Consumers: 0
* Node
Node: rabbit@localhost (More about this node)
File descriptors (?) | Socket descriptors (7) Erlang processes Memory Disk space Info +f-
| 61 0 218 54MB 1768 Disc 7 Stats
2560 awailable 2212 available 1048576 available 4.9GB high watermark | 43MB low watermark

Paths

Config file /usr/local/etc/rabbitmg/rabbitmg.config
Database directory /usr/local/var/lib/rabbiteg/enesia/rabbitdlocalheost
Log file /usr/local/var/log/rabbitmg/rabbitilocalhost.log

SASL log file /usr/leecal/var/leg/rabbitmg/rabbit®lecalhost-sasl.log

¥ Ports and contexts

Figure 9-4. RabbitMQ web console management

293

CHAPTER9 MESSAGING WITH SPRING BOOT

Figure 9-4 shows the RabbitMQ web console. Now you can run the project as usual,
using your IDE. If you are using Maven, execute

$./mvnw spring-boot:run
Ifyou are using Gradle, execute
$./gradlew bootRun

After you execute this command, you should have something similar to the
following output.

Producer> Message Sent

Consumer> ToDo(id=null, description=workout tomorrow morning!,
created=null, modified=null, completed=false)

ToDo created> ToDo(id=8a808087645bd67001645bd6785b0000, description=workout
tomorrow morning!, created=2018-07-02T10:32:19.546, modified=2018-07-
02710:32:19.547, completed=false)

Ifyou take a look at the RabbitMQ web console in the Queues tab, you should have
defined the spring-boot queue (see Figure 9-5).

294

CHAPTER9 MESSAGING WITH SPRING BOOT

® © ® 4 Roobitna Management % | Feipe
€ = C [localhost:15672/#/queues b o ® =
A NN User: quest |
E a]'t| VI L_,' Cluster: rabbit@liukang (change)
RabbitMQ 3.6.0, Erlang 17.5
Overview C i [m Admin Visualiser
Queues
+ All queues (1)
Pagination
page 1 BJ of 1 - Filter: ~ Regex (7) Displaying 1 item , page size up to: 188
Overview Messages Message rates +
Name Features State Ready U Total deliver / get redelivered ack
spring-boot idle 0 0 0.00/s 0.00/s 0.00/s

b Add a new queue

HTTP API | Command Line

Update every 5§ sceonds B

Last update: 2016-02-11 14:59:22

Figure 9-5. RabbitMQ web console Queues tab

Figure 9-5 shows the Queues tab from the RabbitMQ web console. The message

you sent was delivered right away. If you want to play a little more and see a part of the
throughput, you can modify the ToDoSender class as shown in Listing 9-11, but don’t

forget to stop your app.

295

CHAPTER9 MESSAGING WITH SPRING BOOT

Listing 9-11. Version 2 of com.apress.todo.config.ToDoSender.java
package com.apress.todo.config;

import com.apress.todo.domain.ToDo;

import com.apress.todo.rmq.ToDoProducer;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;

import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.scheduling.annotation.Scheduled;

import java.text.SimpleDateFormat;
import java.util.Date;

@EnableScheduling
@Configuration
public class ToDoSender {

@Autowired

private ToDoProducer producer;

@value("${todo.amgp.queue}")

private String destination;

private SimpleDateFormat dateFormat = new SimpleDateFormat("HH:mm:ss");

@Scheduled(fixedRate = 500L)

private void sendToDos(){
producer.sendTo(destination,new ToDo("Thinking on Spring Boot at "
+ dateFormat.format(new Date())));

296

CHAPTER9 MESSAGING WITH SPRING BOOT

Listing 9-11 shows a modified version of the ToDoSender class. Let’s examine this

new version.

@EnableScheduling. This annotation tells (via auto-configuration)
the Spring container that the org.springframework.scheduling.
annotation.ScheduledAnnotationBeanPostProcessor class
needs to be created. It registers all the methods annotated

with @Scheduled to be invoked by an org.springframework.
scheduling.TaskScheduler interface implementation according
to the fixedRate, fixedDelay, or cron expression in the
@Scheduled annotation.

@Scheduled(fixedDelay = 500L). This annotation tells the
TaskScheduler interface implementation to execute the sendToDos
method with a fixed delay of 500 milliseconds. This means that every
half second you send a message to the queue.

The other part of the app you already know. So if you execute the project again,

you should see endless messaging. While this is running, take a look at the RabbitMQ

console and see the output. You can put a for loop to send more messages in a half

second.

Remote RabbitMQ

If you want to access a remote RabbitMQ, you add the following properties to the

application.properties file.

spring.
spring.
spring.
spring.
spring.

rabbitmq.host=mydomain.com
rabbitmqg.username=rabbituser
rabbitmq.password=thisissecured
rabbitmq.port=5672
rabbitmq.virtual-host=/production

You can always read about all the properties for RabbitMQ in the Spring Boot
reference at https://docs.spring.io/spring-boot/docs/current/reference/html/

common-application-properties.html.

297

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

CHAPTER9 MESSAGING WITH SPRING BOOT

Now you know how easy it is to use RabbitMQ with Spring Boot. If you want to learn
more about RabbitM(Q and the Spring AMQP technology, you can get more information
at the main projects web site at http://projects.spring.io/spring-amqp/.

You can stop RabbitMQ by pressing Ctrl+C, where you start the broker. There are
more options on how to use RabbitMQ), like creating a cluster or having high availability.
You can learn more information about it at www.rabbitmq.com.

Redis Messaging with Spring Boot

Now it’s Redis’ turn. Redis (REmote DIctionary Server) is a NoSQL key-value store
database. It's written in C, and even though it has a small footprint in its core, it’s

very reliable, scalable, powerful, and super fast. Its primary function is to store data
structures, such as lists, hashes, strings, sets, and sorted sets. A main feature provides
a publish/subscribe messaging system, which is why you are going to use Redis as the
message broker.

Installing Redis

Installing Redis is very simple. If you are using Mac OS X/Linux, you can use brew and
execute the following.

$ brew update &&% brew install redis

If you are using a different flavor of UNIX or Windows, you can go to the Redis web site
and download the Redis installers at http://redis.io/download. Or if you want to compile
itaccording to your system, you can do that as well by downloading the source code.

ToDo App with Redis

Using Redis for Pub/Sub messaging is very simple and very similar to other technologies.
You send and receive ToDo’s using the Pub/Sub messaging pattern with Redis.

Let’s start by opening your favorite browser and point to Spring Initializr . Add the
following values to the fields.

e Group: com.apress.todo

e Artifact: todo-redis

298

http://projects.spring.io/spring-amqp/
http://www.rabbitmq.com
http://redis.io/download

CHAPTER9 MESSAGING WITH SPRING BOOT

o Name: todo-redis
o Package Name: com.apress.todo

o Dependencies: Redis, Web, Lombok, JPA, REST Repositories,
H2, MySOL

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button, which downloads a ZIP file. Uncompress it and import the
project in your favorite IDE (see Figure 9-6).

@ start.spring.io & Ot || 3\

SPRING INITIALIZR

Generate a | vavenroec ¢ With 2w

Project Metadata

Artifact coordinates
Group

com.apress.todo]
Artifact
todo-redis
Name
todo-redis
Description
Demo project for Spring Boot
Package Name
com.apress.todo

Packaging

Jar

ar

Java Version

g $

Too many options? Switch back to the simple version.

: and Spring Boot zo:

Dependencies

Add Spring Boot Starters and dependencies to your application
Search for dependencies

Web, Security, JPA, Actuator, Devtools...

Selected Dependencies

v Jorn] et tomor
= oo []

Generate Project % + «

Figure 9-6. Spring Initializr

You use the ToDo domain and repo from previous chapters.

299

CHAPTER9 MESSAGING WITH SPRING BOOT

ToDo Producer

Let’s create the Producer class that sends a Todo instance to a specific topic
(see Listing 9-12).

Listing 9-12. com.apress.todo.redis. ToDoProducer.java
package com.apress.todo.redis;

import com.apress.todo.domain.ToDo;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;

@Component
public class ToDoProducer {

private static final Logger log = LoggerFactory.getlLogger(ToDoProducer.
class);
private RedisTemplate redisTemplate;

public ToDoProducer(RedisTemplate redisTemplate){
this.redisTemplate = redisTemplate;

}

public void sendTo(String topic, ToDo toDo){
log.info("Producer> ToDo sent");
this.redisTemplate.convertAndSend(topic, toDo);

Listing 9-12 shows the Producer class. It is very similar to previous technologies. It
uses a *Template pattern class; in this case, the RedisTemplate that sends ToDo instances
to a specific topic.

300

CHAPTER9 MESSAGING WITH SPRING BOOT

ToDo Consumer

Next, create the consumer that subscribes to the topic (see Listing 9-13).

Listing 9-13. com.apress.todo.redisToDoConsumer.java
package com.apress.todo.redis;

import com.apress.todo.domain.ToDo;

import com.apress.todo.repository.ToDoRepository;
import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.stereotype.Component;

@Component
public class ToDoConsumer {

private static final Logger log = LoggerFactory.getlLogger(ToDoConsumer.
class);
private ToDoRepository repository;

public ToDoConsumer(ToDoRepository repository){
this.repository = repository;

}

public void handleMessage(ToDo toDo) {
log.info("Consumer> " + toDo);

log.info("ToDo created> " + this.repository.save(toDo));

Listing 9-13 shows the consumer that is subscribed to the topic for any
incoming ToDo messages. It is important to know that it is mandatory to have a
handleMessage method name to use the listener (this is a constraint when creating a
MessagelistenerAdapter).

301

CHAPTER9 MESSAGING WITH SPRING BOOT

Configuring the ToDo App

Next, let’s create the configuration for the ToDo app (see Listing 9-14).

Listing 9-14. com.apress.todo.configToDoConfig.java

package com.apress.todo.config;

import
import
import
import
import
import
import
import
import

com.
com.

org

org

apress.todo.domain.ToDo;

apress.todo.redis.ToDoConsumer;
beans.factory.annotation.Value;
context.annotation.Bean;

.springframework.
org.
org.
org.
.springframework.
org.
org.

springframework.
springframework.
springframework.

springframework.
springframework.

context.annotation.Configuration;

data.
data.
data.
data.

RedisMessagelistenerContainer;
import org.springframework.data.

MessagelistenerAdapter;
import org.springframework.data.
Jackson2J)sonRedisSerializer;

@Configuration

public class ToDoConfig {

@Bean
public RedisMessagelListenerContainer container(RedisConnectionFactory
connectionFactory,

302

redis.connection.RedisConnectionFactory;
redis.core.RedisTemplate;
redis.listener.PatternTopic;

redis.listener.

redis.listener.adapter.

redis.serializer.

RedisMessagelistenerContainer container =

RedisMessagelistenerContainer();
container.setConnectionFactory(connectionFactory);

MessagelListenerAdapter
toDolListenerAdapter,
@Value("${todo.redis.
topic}") String topic) {

new

}

CHAPTER9 MESSAGING WITH SPRING BOOT

container.addMessagelistener(toDoListenerAdapter, new
PatternTopic(topic));
return container;

@Bean
MessagelistenerAdapter toDolListenerAdapter(ToDoConsumer consumer) {

}

MessagelistenerAdapter messagelistenerAdapter = new Messagelistener
Adapter(consumer);

messagelListenerAdapter.setSerializer(new Jackson2J)sonRedisSerializer
<>(ToDo.class));

return messagelistenerAdapter;

@Bean
RedisTemplate<String, ToDo» redisTemplate(RedisConnectionFactory
connectionFactory){

RedisTemplate<String,ToDo> redisTemplate = new
RedisTemplate<String,ToDo>();
redisTemplate.setConnectionFactory(connectionFactory);
redisTemplate.setDefaultSerializer(new Jackson2)sonRedisSerializer<»
(ToDo.class));

redisTemplate.afterPropertiesSet();

return redisTemplate;

Listing 9-14 shows the configuration needed for the ToDo app. This class declares

the following Spring beans.

RedisMessagelistenerContainer. This class is in charge of
connecting to the Redis topic.

MessagelistenerAdapter. This adapter takes a POJO (Plain Old Java
Object) class to process the message. As a requirement, the method
must be named handleMessage; this method receives the message
from the topic as a ToDo instance, which is why it also requires a

serializer.

303

CHAPTER9 MESSAGING WITH SPRING BOOT

o Jackson2JsonRedisSerializer. This serializer converts from/to the
ToDo instance.

o RedisTemplate. This class implements the Template pattern and is
very similar to the other messaging technologies. This class requires a
serializer to work with JSON and to/from ToDo instances.

This customization is needed to work with the JSON format and do the right
conversion to/from ToDo instances; but you can avoid everything and use the default
configuration that requires a serializable object (like a String) to send and use the
StringRedisTemplate instead.

In the application.properties file, add the following content.

JPA
spring.jpa.generate-ddl=true
spring.jpa.hibernate.ddl-auto=create-drop

ToDo Redis
todo.redis.topic=todos

Running the ToDo App

Before you run the ToDo app, make sure that you have the Redis server up and running.
To start it, execute the following command in a terminal.

$ redis-server

89887:C 11 Feb 20:17:55.320 # Warning: no config file specified, using the
default config. In order to specify a config file use redis-server /path/
to/redis.conf

89887:M 11 Feb 20:17:55.321 * Increased maximum number of open files to
10032 (it was originally set to 256).

304

CHAPTER9 MESSAGING WITH SPRING BOOT

- o -l Redis 4.0.10 64 bit

e R VA S

(' , - 5,) Standalone mode
e T-lesT e T-o It - Port: 6379

| -.. ../ _.-' | PID: 89887
R X

R L PR

| - - IR | http://redis.io

89887:M 11 Feb 20:17:55.323 # Server started, Redis version 3.0.7
89887:M 11 Feb 20:17:55.323 * The server is now ready to accept connections
on port 6379

This output indicates that Redis is ready and listening in port 6379. You can open a
new terminal window and execute the following command.

$ redis-cli

This is a shell client that connects to the Redis Server. You can subscribe to the
"todos" topic by executing the following command.

127.0.0.1:6379> SUBSCRIBE todos

Reading messages... (press Ctrl-C to quit)
1) "subscribe"

2) "todos"

3) (integer) 1

305

CHAPTER9 MESSAGING WITH SPRING BOOT

Now you can run the project as usual (by running it inside your IDE or using Maven
or Gradle). If you are using Maven, execute

$./mvnw spring-boot:run

After executing this command, you should have something similar to the following
output in your logs.

Producer> Message Sent

Consumer> ToDo(id=null, description=workout tomorrow morning!,
created=null, modified=null, completed=false)

ToDo created> ToDo(id=8a808087645bd67001645bd6785b0000, description=workout
tomorrow morning!, created=2018-07-02T710:32:19.546, modified=2018-07-
02T10:32:19.547, completed=false)

If you take a look at the Redis shell, you should see something like the following.

1) "message"”

2) "todos"

3) "{\"id\":null,\"description\":\"workout tomorrow morning!\",\"created\":
null,\"modified\":null,\"completed\":false}"

And of course, you can take a look in your browser at http://localhost:8080/toDos
to see the new ToDo.

Well done! You have created a Spring Bot messaging app using Redis. You can shut
down Redis by pressing Ctrl+C.

Remote Redis

If you want to access Redis remotely, you need to add the following properties to the
application.properties file.

spring.redis.database=0
spring.redis.host=localhost
spring.redis.password=mysecurepassword
spring.redis.port=6379

306

CHAPTER9 MESSAGING WITH SPRING BOOT

You can always read about all the properties for Redis in the Spring Boot reference
athttps://docs.spring.io/spring-boot/docs/current/reference/html/common-
application-properties.html.

You saw that you need to use Redis as a messaging broker, but if you want to know
more about the key-value store with Spring, you can check out the Spring Data Redis
projectat http://projects.spring.io/spring-data-redis/.

WebSockets with Spring Boot

It might seem logical that a topic about WebSockets should be in the web chapter,
but I consider WebSockets more related to messaging, and that’s why this section is
in this chapter.

WebSockets is a new way of communication, replacing client/server web technology.
It allows long-held single TCP socket connections between the client and server. It’s also
called push technology, which is where the server can send data to the web without the
client doing long polling to request a new change.

This section shows you an example where you send a message through a REST
endpoint (Producer) and receive the messages (Consumer) using a webpage and
JavaScript libraries.

ToDo App with WebSockets

Create the ToDo app that uses JPA REST Repositories. Every time there is a new ToDo,
itis posted to a webpage. The connection from the webpage to the ToDo app uses
WebSockets using the STOMP protocol.

Let’s start by opening your favorite browser and point to Spring Initializr. Add the
following values to the fields.

o Group: com.apress.todo

o Artifact:todo-websocket

o Name: todo-websocket

o Package Name: com.apress.todo

e Dependencies: Websocket, Web, Lombok, JPA, REST
Repositories, H2, MySOL

307

https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
http://projects.spring.io/spring-data-redis/

CHAPTER9 MESSAGING WITH SPRING BOOT

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button, which downloads a ZIP file. Uncompress it and import the
project in your favorite IDE (see Figure 9-7).

& start.spring.io) Ot |l 3\ me

SPRING INITIALIZR

Generate a Maven Project W|th Java

Project Metadata
Artifact coordinates
Group

com.apress.todo

B

Artifact

: and Spring Boot 203

Dependencies

Add Spring Boot Starters and dependencies to your application
Search for dependencies

Web, Security, JPA, Actuator, Devtools...

Selected Dependencies

todo-websocket

28 3 e
[J oo oo

Name

todo-websocket
Description

Demo project for Spring Boot
Package Name

com.apress.todo

Packaging

Jar

ar

Java Version

8 &

Too many options? Switch back to the simple version.

Generate Project % + «

Figure 9-7. Spring Initializr

You can reuse and copy/paste the ToDo and ToDoRepository classes. Also you
need to add the following dependencies; if you are using Maven, add the following to
the pom.xml file.

308

CHAPTER 9

<dependency>
<groupIld>org.webjars</groupld>
<artifactId>sockjs-client</artifactId>
<version>1.1.2</version>

</dependency>

<dependency>
<groupId>org.webjars</groupld>
<artifactId>stomp-websocket</artifactId>
<version>2.3.3</version>

</dependency>

<!-- jQuery -->

<dependency>
<groupIld>org.webjars</groupld>
<artifactId>jquery</artifactld>
<version>3.1.1</version>

</dependency>

<!-- Bootstrap -->

<dependency>
<groupId>org.webjars</groupld>
<artifactId>bootstrap</artifactId>
<version>3.3.5</version>

</dependency>

MESSAGING WITH SPRING BOOT

If you are using Gradle, add the following dependencies to the build.gradle file.

compile('org.webjars:sockjs-client:1.1.2")
compile('org.webjars:stomp-websocket:2.3.3")
compile('org.webjars:jquery:3.1.1")
compile('org.webjars:bootstrap:3.3.5")

These dependencies create the web client that you need to connect to the messaging

broker. The Web]Jars are a very convenient way to include external resources as packages,

instead of worrying about downloading one by one.

309

CHAPTER9 MESSAGING WITH SPRING BOOT

ToDo Producer

The producer sends a STOMP message to a topic when a new ToDo is posted by using
the HTTP POST method. To do this, it is necessary to catch the event that the Spring Data
REST emits when the domain class is persisted to the database.

The Spring Data REST framework has several events that allow control before,
during, and after a persistence action. Create a ToDoEventHandler class that is listening
for the after-create event (see Listing 9-15).

Listing 9-15. com.apress.todo.eventToDoEventHandler.java
package com.apress.todo.event;

import com.apress.todo.config.ToDoProperties;

import com.apress.todo.domain.ToDo;

import org.slf4j.Logger;

import org.slf4j.lLoggerFactory;

import org.springframework.data.rest.core.annotation.HandleAfterCreate;
import org.springframework.data.rest.core.annotation.
RepositoryEventHandler;

import org.springframework.messaging.simp.SimpMessagingTemplate;

import org.springframework.stereotype.Component;

@Component
@RepositoryEventHandler(ToDo.class)
public class ToDoEventHandler {

private Logger log = LoggerFactory.getlLogger(ToDoEventHandler.class);
private SimpMessagingTemplate simpMessagingTemplate;
private ToDoProperties toDoProperties;

public ToDoEventHandler(SimpMessagingTemplate simpMessagingTemplate,
ToDoProperties toDoProperties){
this.simpMessagingTemplate = simpMessagingTemplate;
this.toDoProperties = toDoProperties;

310

CHAPTER9 MESSAGING WITH SPRING BOOT

@HandleAfterCreate
public void handleToDoSave(ToDo toDo){

this.simpMessagingTemplate.convertAndSend(this.toDoProperties.
getBroker() + "/new",toDo);

log.info(">> Sending Message to WS: ws://todo/new - " + toDo);

Listing 9-15 shows you the event handler that is receiving the after-create event.

Let’s analyze it.

@RepositoryEventHandler. This annotation tells the
BeanPostProcessor that this class needs to be inspected for handler
methods.

SimpMessagingTemplate. This class is another implementation of

the Template pattern and is used to send messages using the STOMP
protocol. It behaves the same way as the other *Template classes from
previous sections.

ToDoProperties. This class is a custom properties handler. It
describes the broker (todo.ws.broker), the endpoint (todo.
ws.endpoint), and the application endpoint for WebSockets.

@HandleAfterCreate. This annotation marks the method to get
any event that happens after the domain class was persisted

to the database. As you can see, it uses the ToDo instance that

was saved into the database. In this method, you are using the
SimpMessagingTemplate to send a ToDo instance to the /todo/new
endpoint. Any subscriber to that endpoint gets the ToDo in JSON
format (STOMP).

Next, let’s create the ToDoProperties class that hold the endpoints information (see
Listing 9-16).

311

CHAPTER9 MESSAGING WITH SPRING BOOT

Listing 9-16. com.apress.todo.configToDoProperties.java
package com.apress.todo.config;

import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;

@Data
@ConfigurationProperties(prefix = "todo.ws"
public class ToDoProperties {

private String app = "/todo-api-ws";
private String broker = "/todo";
private String endpoint = "/stomp";

The ToDoProperties class is a helper to hold information about the broker (/stomp)
and where the web client connect to (topic - /todo/new).

Configuring the ToDo App

This time the ToDo app creates a messaging broker that accepts WebSocket
communication and uses the STOMP protocol for message interchange.
Create the config class (see Listing 9-17).

Listing 9-17. com.apress.todo.config ToDoConfig.java
package com.apress.todo.config;

import org.springframework.boot.context.properties.
EnableConfigurationProperties;

import org.springframework.context.annotation.Configuration;

import org.springframework.messaging.simp.config.MessageBrokerRegistry;
import org.springframework.web.socket.config.annotation.
EnableWebSocketMessageBroker;

import org.springframework.web.socket.config.annotation.
StompEndpointRegistry;

import org.springframework.web.socket.config.annotation.
WebSocketMessageBrokerConfigurer;

312

CHAPTER9 MESSAGING WITH SPRING BOOT

@Configuration

@EnablelebSocketMessageBroker
@EnableConfigurationProperties(ToDoProperties.class)

public class ToDoConfig implements WebSocketMessageBrokerConfigurer {

private ToDoProperties props;

public ToDoConfig(ToDoProperties props){
this.props = props;

}

@verride

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint(props.getEndpoint()).setAllowedOrigins("*").
withSockJS();

}

@verride

public void configureMessageBroker (MessageBrokerRegistry config) {
config.enableSimpleBroker (props.getBroker());
config.setApplicationDestinationPrefixes(props.getApp());

Listing 9-17 shows the ToDoConfig class. Let’s examine it.

o @Configuration. You know that this marks the class as configuration
for the Spring container.

e (@EnableWebSocketMessageBroker. This annotation uses auto-
configuration to create all the necessary artifacts to enable
broker-backed messaging over WebSockets using a very
high-level messaging subprotocol. If you need to customize
the endpoints, you need to override the methods from the
WebSocketMessageBrokerConfigurer interface

o WebSocketMessageBrokerConfigurer. It overrides methods to
customize the protocols and endpoints.

313

CHAPTER9 MESSAGING WITH SPRING BOOT

o registerStompEndpoints(StompEndpointRegistry registry). This
method registers the STOMP protocol; in this case, it registers the /
stomp endpoint and uses the JavaScript library Sock]S (https://
github.com/sockjs).

o configureMessageBroker (MessageBrokerRegistry config). This
method configures the message broker options. In this case, it
enables the broker in the /todo endpoint. This means that the clients
that want to use the WebSockets broker need to use the /todo to
connect.

Next, let’s add information to the application.properties file.

src/main/resources/application.properties

JPA
spring.jpa.generate-ddl=true
spring.jpa.hibernate.ddl-auto=create-drop

Rest Repositories
spring.data.rest.base-path=/api

WebSocket
todo.ws.endpoint=/stomp
todo.ws.broker=/todo
todo.ws.app=/todo-api-ws

The application.properties file is declaring a new REST base-path endpoint
(/api) because the client is an HTML page and it is the default index.html; this means
that the REST Repositories live in the /api/* endpoint and not in the root of the app.

ToDo Web Client

The web client is the one making a connection to the messaging broker, where subscribe
(using the STOMP protocol) receives any new ToDo that was posted. This client can be
any type that handles WebSockets and knows the STOMP protocol.

Let’s create a simple index.html page that connects to the broker (see Listing 9-18).

314

https://github.com/sockjs
https://github.com/sockjs

CHAPTER9 MESSAGING WITH SPRING BOOT

Listing 9-18. src/main/resources/static/index.html

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>ToDo WebSockets</title>
<link rel="stylesheet" href="/webjars/bootstrap/3.3.5/css/bootstrap.
min.css">
<link rel="stylesheet" href="/webjars/bootstrap/3.3.5/css/bootstrap-
theme.min.css">
</head>
<body>
<div class="container theme-showcase" role="main">
<div class="jumbotron">
<h1>What ToDo?</h1>
<p>An easy way to find out what your are going to do NEXT!</p>
</div>

<div class="page-header">
<h1>Everybody ToDo's</h1>
</div>
<div class="row">
<div class="col-sm-12">
<div class="panel panel-primary">
<div class="panel-heading">
<h3 class="panel-title">ToDo:</h3>
</div>
<div class="panel-body">
<div id="output">
</div>
</div>
</div>
</div>
</div>
</div>

315

CHAPTER9 MESSAGING WITH SPRING BOOT

<script src="/webjars/jquery/3.1.1/jquery.min.js"></script>
<script src="/webjars/sockjs-client/1.1.2/sockjs.min.js"></script>
<script src="/webjars/stomp-websocket/2.3.3/stomp.min.js"></script>

<script>

$(function(){
var stompClient = null;
var socket = new SockJS('http://localhost:8080/stomp’);
stompClient = Stomp.over(socket);

stompClient.connect({}, function (frame) {
console.log('Connected: ' + frame);

stompClient.subscribe('/todo/new', function (data) {
console.log('>>>>> ' + data);
var json = JSON.parse(data.body);
var result = "[" + json.created + "]</
strong> " + json.description + "
";
$("#output").append(result);

};
};

};

</script>
</body>
</html>

Listing 9-18 shows the index.html, the client that uses the SockJS class to connect to
the /stomp endpoint. It subscribes to the /todo/new topic and waits until get a new ToDo
is added to the list. The reference to the JavaScript libraries and the CSS is the WebJars
class resource.

Running the ToDo App

Now you are ready to start your ToDo app. You can run the application as usual, either
using your IDE or in a command line. If you are using Maven, execute

$./mvnw spring-boot:run

316

CHAPTER 9 MESSAGING WITH SPRING BOOT
Ifyou are using Gradle, execute
$./gradlew bootRun

Open a browser and go to http://localhost:8080. You should see an empty ToDo’s
box. Next, open a terminal and execute the following commands.

$ curl -XPOST -d '{"description":"Learn to play Guitar"}' -H "Content-Type:
application/json" http://localhost:8080/api/toDos

$ curl -XPOST -d '{"description":"read Spring Boot Messaging book from
Apress"}' -H "Content-Type: application/json" http://localhost:8080/api/
toDos

You can add more if you like. In your browser, you are seeing the ToDo’s (see Figure 9-8).

What ToDo?

An easy way to find out what your are going to do NEXT!

Everybody ToDo's

[2018-07-05T 16:32:54.44] workout tomorrow!

[2018-07-05T16:33:11.106] bring milk

[2018-07-05T16:33:34.445] read Spring Boot Messaging book from Apress
[2018-07-05T16:33:58.096] Learn to play Guitar

Figure 9-8. Sock]S and Stomp messages: ToDo’s List

Figure 9-8 shows the result of posting messages through WebSockets. Now imagine
the possibilities for new applications that require notification in real time (such as creating
real-time chatrooms, updating stocks on the fly for your customers, or updating your
website without preview or restart). With Spring Boot and WebSockets, you are covered.

Note All the code is available from the Apress site. You can also get the latest at
https://github.com/felipeg48/pro-spring-boot-2nd.

317

https://github.com/felipeg48/pro-spring-boot-2nd

CHAPTER9 MESSAGING WITH SPRING BOOT

Summary

This chapter discussed all the technologies that are used for messaging, including JMS
and Artemis. It also discussed how to connect to a remote server by providing the server
name and port in the application.properties file.

You learned about AMQP and RabbitMQ and how you can send and receive
messages using Spring Boot. You also learned about Redis and how to use its Pub/Sub
messaging. Finally, you learned about WebSockets and how easy it is to implement it
with Spring Boot.

If you are into messaging, I wrote Spring Boot Messaging (Apress, 2017) (www.apress.
com/us/book/9781484212257), which talks about it in detail and exposes more messaging
patterns, from simple application events to cloud solutions using Spring Cloud Stream and
its transport abstraction.

The next chapter discusses the Spring Boot Actuator and how to monitor your Spring
Boot application.

318

http://www.apress.com/us/book/9781484212257
http://www.apress.com/us/book/9781484212257

CHAPTER 10

Spring Boot Actuator

This chapter discusses the Spring Boot Actuator module and explains how you can use
all its features to monitor your Spring Boot applications.

A common task during and after development that every developer does is to
start checking out the logs. Developers check to see if the business logic works as it
supposed to, or checks out the processing time of services, and so on. Even though they
should have their unit, integration, and regression tests in place, they are not exempt
from external failures, including the network (connections, speed, etc.), disk (space,
permissions, etc.), and more.

When you deploy to production, it’s even more critical. You must pay attention to
your applications and sometimes to the whole system. When you start depending on
non-functional requirements, such as monitoring systems that check the health of the
different applications, or maybe that sets alerts when your application gets to a certain
threshold, or worse, when your application crashes, you need to act ASAP.

Developers depend on many third-party technologies to do their job, and I'm not
saying that this is bad, but this means that all the heavy lifting is by the DevOps teams.
They must monitor every single application and the entire system as a whole.

Spring Boot Actuator

Spring Boot includes an Actuator module, which introduces production-ready non-
functional requirements to your application. The Spring Boot Actuator module provides
monitoring, metrics, and auditing—right out of the box.

What makes the Actuator module more attractive is that you can expose data through
different technologies, such as HTTP (endpoints) and JMX. Spring Boot Actuator metrics
monitoring can be done using the Micrometer Framework (http://micrometer.io/),
that allows you to write once your metrics code and use it in any vendor-neutral engine,
such as Prometheus, Atlas, CloudWatch, Datadog, and many, many more.

319
© Felipe Gutierrez 2019

E. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_10

http://micrometer.io/

CHAPTER 10 SPRING BOOT ACTUATOR

ToDo App with Actuator

Let’s start using the Spring Boot Actuator module in the ToDo application to see how

Actuator works. You can start from scratch or you can follow along in the next sections

to learn what you need to do. If you are starting from scratch, then you can go to Spring

Initializr (https://start.spring.io) and add the following values to the fields.

Group: com.apress.todo
Artifact: todo-actuator

Name: todo-actuator

Package Name: com.apress.todo

Dependencies: Web, Lombok, JPA, REST Repositories,
Actuator, Hz, MySQL

You can select either Maven or Gradle as the project type. Then you can press the

Generate Project button, which downloads a ZIP file. Uncompress it and import the

project in your favorite IDE (see Figure 10-1).

320

https://start.spring.io

CHAPTER 10 SPRING BOOT ACTUATOR

[NoN] m SN @ & start.spring.io ¢ (4] th a

SPRING INITIALIZR

Generate a waenroec 5 With e ¢ and Spring Boot 204

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies

com.apress.todo

Artifact Selected Dependencies

todo-actuator m m Rest Repositories m
o Joveer []

todo-actuator

Description

Demo project for Spring Boot

Package Name

com.apress.todo

Packaging

Jar s

Java Version

8

Too many options? Switch back to the simple version

Figure 10-1. Spring Initializr

There is nothing from other projects right now; the only new dependency is the
Actuator module. You can copy/reuse the ToDo domain class and the ToDoRepository
interface (see Listings 10-1 and 10-2).

Listing 10-1. com.apress.todo.domain.ToDo.java
package com.apress.todo.domain;

import lombok.Data;
import org.hibernate.annotations.GenericGenerator;

import javax.persistence.*;
321

CHAPTER 10 SPRING BOOT ACTUATOR

import javax.validation.constraints.NotBlank;
import javax.validation.constraints.NotNull;
import java.time.LocalDateTime;

@Entity
@Data
public class ToDo {

@Id

@GeneratedValue(generator = "system-uuid")
@GenericGenerator(name = "system-uuid", strategy = "uuid")
private String id;

@NotNull

@NotBlank

private String description;

@Column(insertable = true, updatable = false)
private LocalDateTime created;

private LocalDateTime modified;

private boolean completed;

public ToDo(){}
public ToDo(String description){
this.description = description;

}

@PrePersist

void onCreate() {
this.setCreated(LocalDateTime.now());
this.setModified(LocalDateTime.now());

}

@PreUpdate
void onUpdate() {
this.setModified(LocalDateTime.now());

322

CHAPTER 10 SPRING BOOT ACTUATOR
Listing 10-2. com.apress.todo.repository.ToDoRepository.java
package com.apress.todo.repository;

import com.apress.todo.domain.ToDo;
import org.springframework.data.repository.CrudRepository;

public interface ToDoRepository extends CrudRepository<ToDo,String> { }

Before running the ToDo app, take a look that you have the spring-boot-starter-
actuator dependency in your pom.xml (if you are using Maven) or build.gradle (if you
are using Gradle).

You can run the ToDo app, and the important thing to notice is the logs output. You
should have something similar.

INFO 41925 --- [main] s... : Mapped "{[/actuator/health],methods=[GET],
produces=[application/vnd.spring-boot.actuator.v2+json || application/

json]}"

INFO 41925 --- [main] s... : Mapped "{[/actuator/info],methods=[GET],
produces=[application/vnd.spring-boot.actuator.v2+json || application/
json]}"

INFO 41925 --- [main] s... : Mapped "{[/actuator],methods=[GET],produces=

[application/vnd.spring-boot.actuator.v2+json || application/json]}"

By default, the Actuator module exposes three endpoints that you can visit.

o /actuator/health. This endpoint provides basic application health
information. If access is from the browser or with a command line,
you get the following response:

{
"status": "UP"

}

e /actuator/info. This endpoint displays arbitrary application
information. If you access this endpoint, you get an empty response;
but if you add the following to your application.properties file:

spring.application.name=todo-actuator

info.application-name=${spring.application.name}

323

CHAPTER 10 SPRING BOOT ACTUATOR

info.developer.name=Awesome Developer
info.developer.email=awesome@example.com

You get the following:

{

"application-name": "todo-actuator",
"developer": {
"name": "Awesome Developer",
"email": "awesome@example.com"

e /actuator. This endpoint is the prefix of all the actuator endpoints. If you
go to this endpoint through a browser or command line, you get this:

{
" links": {
"self": {
"href": "http://localhost:8080/actuator”,
"templated": false
})
"health": {
"href": "http://localhost:8080/actuator/health”,
"templated": false
1
"info": {
"href": "http://localhost:8080/actuator/info",
"templated": false
}
}
}

By default, all the endpoints (there are more) are enabled, except for the /actuator/
shutdown endpoint; but why are only two endpoints exposed (health and information)?
Actually, all of them are exposed through JMX, and this is because some of them contain
sensitive information; so, it’s important to know what information to expose through the
web.

324

CHAPTER 10 SPRING BOOT ACTUATOR

If you want to expose them over the web, there are two properties: management.
endpoints.web.exposure.include and management.endpoints.web.exposure.
exclude. You can list them individually separated by a comma or include all of them by
using the *.

The same applies for exposing the endpoints through JMX with the properties.

management.endpoints.jmx.exposure.include and management.endpoints. jmx.
exposure.exclude. Remember that by default all the endpoints are exposed through JMX.

As I mentioned before, you not only have a way to expose the endpoints but also to
enable them. You can use the following semantic: management.endpoint.<ENDPOINT-
NAME>.enabled. So, if you want to enable the /actuator/shutdown (it is disabled by
default) you need to do this in application.properties.

management.endpoint.shutdown.enabled=true

You can add the following property to your application.properties file to expose
all the web actuator endpoints.

management.endpoints.web.exposure.include=*

If you take a look at the output, you get more actuator endpoints, like /actuator/
beans, /actuator/conditions, and so forth. Let’s review some of them in more detail.

/actuator

The /actuator endpoint is the prefix of all the endpoints, but if you access it, it provides
a hypermedia-based discovery page for all the other endpoints. So, if you go to http://
localhost:8080/actuator, you should see something similar to Figure 10-2.

325

CHAPTER 10 SPRING BOOT ACTUATOR

¥ _links: {

-

-

self: {
href: http://localhost
templated: false

b

auditevents: {

href: http://localhost:

templated: false
}J’

¥ beans: {

href: http://localhost:

templated: false
}l

¥ health: {

-

-

-

-

href: http://localhost:

templated: false
}l

conditions: {

href: http://localhost:

templated: false

}t
configprops: {

href: http://localhost:

templated: false

}J

env: {
href: http://localhost
templated: false

}l

env-toMatch: {
href: http://localhost
templated: true

}t

¥ info: {

href: http://localhost:

localhost < ui] (=)

:8080//actuator,

8080/ /actuator/auditevents,

8080/ /actuator/beans,

8080//actuator/health,

8080/ /actuator/conditions,

8080//actuator/configprops,

:8080//actuator/env,

:8080//actuator/env/{toMatch},

8080/ /actuator/info,

Figure 10-2. http://localhost:8080/actuator

/actuator/conditions

This endpoint displays the auto-configuration report. It gives you two groups:

positiveMatches and negativeMatches. Remember that the main feature of Spring Boot

is that it auto-configures your application by seeing the classpath and dependencies.

This has everything to do with the starter poms and extra dependencies that you add
to your pom. xml file. If you go to http://localhost:8080/actuator/conditions, you

should see something similar to Figure 10-3.

326

CHAPTER 10 SPRING BOOT ACTUATOR

00 0® < m O ® localhost] h | d =

{ RAW
¥ contexts: {

¥ todo-actuator: {
~ positiveMatches: {
¥ "AuditAutoConfiguration#auditListener": [

M
condition: "OnBeanCondition",
message: "€ConditionalOnMissingBean (types:
org.springframework.boot.actuate.audit.listener.AbstracthAuditListener;
SearchStrategy: all) did not find any beans"
}
]l’
¥ "AuditAutoConfiguration.AuditEventRepositoryConfiguration”: [
T q
condition: "OnBeanCondition®,
message: "€ConditionalOnMissingBean (types:
org.springframework.boot.actuate.audit.AuditEventRepository;
SearchStrategy: all) did not find any beans”
}
]I’
¥ "AuditEventsEndpointAutoConfiguration#auditEventsEndpoint": [
T {
condition: "OnBeanCondition",
message: "€ConditionalOnBean (types:
org.springframework.boot.actuate.audit.AuditEventRepository;
SearchStrategy: all) found bean 'auditEventRepository';
€ConditionalOnMissingBean (types:
org.springframework.boot.actuate.audit.AuditEventsEndpoint;
SearchStrategy: all) did not find any beans”
}l
v {
condition: "OnEnabledEndpointCondition”,
message: "EConditionalOnEnabledEndpoint no property
management.endpoint.auditevents.enabled found so using endpoint default”
}

]I’

Figure 10-3. http://localhost:8080/actuator/conditions

/actuator/beans

This endpoint displays all the Spring beans that are used in your application. Remember
that even though you add a few lines of code to create a simple web application, behind
the scenes, Spring starts to create all the necessary beans to run your app. If you go

to http://localhost:8080/actuator/beans, you should see something similar to
Figure 10-4.

327

CHAPTER 10 SPRING BOOT ACTUATOR

00 0® < m SN ® localhost] h | d

{
¥ contexts: {
¥ todo-actuator: {
~ beans: {
¥ "gpring.jpa-org.springframework.boot.autoconfigure.orm.jpa.JpaProperties": {
aliases: [],
scope: "singleton",
type: "org.springframework.boot.autoconfigure.orm.jpa.JpaProperties”,
resource: null,
dependencies: []

b

- an
»ray

yurcesh bler: {

aliases: [],

scope: "singleton",

type: "org.springframework.data.web.PagedResourcesAssembler”,

resource: "class path resource
[org/springframework/data/rest/webmvc/config/RepositoryRestMveConfiguration.cl
¥ dependencies: [
"pageableResolver"

]

b

¥ "org.springframework.boot.autoconfigure.hateoas.HypermediahAutoConfiguration": {

aliases: [],
scope: "singleton”,
type:
"org.springframework.boot.autoconfigure.hateoas.HypermediaAutoConfiguration$$E
resource: null,
dependencies: []

}I’

¥ "management.endpoint.health-

org.springframework.boot.actuate.autoconfigure.health.HealthEndpointProperties":

{
aliases: [],
scope: "singleton”,
type:
"org.springframework.boot.actuate.autoconfigure.health.HealthEndpointPropertie

Figure 10-4. http://localhost:8080/actuator/beans

/actuator/configprops

This endpoint lists all the configuration properties that are defined by the
@ConfigurationProperties beans, which is something that I showed you in earlier
chapters. Remember, you can add your own configuration properties prefixes and they
can be defined and accessed in the application.properties or YAML files. Figure 10-5
shows an example of this endpoint.

328

CHAPTER 10 SPRING BOOT ACTUATOR
enDe® < im] (Y Ko localhost h | @ It

¥ contexts: {
¥ todo-actuator: {
¥ beans: {
¥ "spring.jpa-org.springframework.boot.autoconfigure.orm.jpa.JpaProperties”: {
prefix: "spring.jpa”,
¥ properties: {
mappingResources: [],
showsSql: true,
¥ hibernate: {
ddlAuto: "create-drop"”,
naming: { }
} r
generateDdl: true,
properties: { }
}
} r
¥ "spring.transaction-
org.springframework.boot.autoconfigure.transaction.TransactionProperties”: {
prefix: "spring.transaction"”,
properties: { }
} r
¥ "management.trace.http-
org.springframework.boot.actuate.autoconfigure.trace.http.HttpTraceProperties”:
{
prefix: "management.trace.http”,
¥ properties: {
¥ include: [
"TIME_TAKEN",
"RESPONSE_HEADERS",
"COOKIE_HEADERS",
"REQUEST_HEADERS"

}

}’
¥ "spring.http.encoding-

Figure 10-5. http://localhost:8080/actuator/configprops

/actuator/threaddump

This endpoint performs a thread dump of your application. It shows all the threads
running and their stack trace of the JVM that is running your app. Go to http://
localhost:8080/actuator/threaddump endpoint (see Figure 10-6).

329

CHAPTER 10 SPRING BOOT ACTUATOR

o0® < im] S ® localhost ¢ (4] th
{
¥ threads: [

MR

threadName: "DestroyJavavVM",
threadId: 59,
blockedTime: -1,
blockedCount: 0,
waitedTime: -1,
waitedCount: 0,

lockName: null,
lockOwnerld: -1,
lockOwnerName: null,
inNative: false,
suspended: false,
threadState: "RUNNABLE",
stackTrace: [],
lockedMonitors: [],
lockedSynchronizers: [],
lockInfo: null

threadName: "http-nio-B8080-AsyncTimeout”,

threadId: 57,

blockedTime: -1,

blockedCount: 0,

waitedTime: -1,

waitedCount: 994,

lockName: null,

lockOwnerId: -1,

lockOwnerName: null,

inNative: false,

suspended: false,

threadState: "TIMED WAITING",
~ stackTrace: |

T {
methodName: "sleep",

2

RAW

Figure 10-6. http://localhost:8080/actuator/threaddump

/actuator/env

This endpoint exposes all the properties from Spring’s ConfigurableEnvironment
interface. This shows any active profiles and system environment variables and
all application properties, including the Spring Boot properties. Go to http://
localhost:8080/actuator/env (see Figure 10-7).

330

CHAPTER 10 SPRING BOOT ACTUATOR

ene < in] S ® localhost ¢ o|djO

activeProfiles: [],
¥ propertySources: [
-
{
name: "server.ports”,
~ properties: {
¥ "local.server.port”: {
value: BOBO

}
}
}J
T {
name: "servletContextInitParams",
properties: { }
}J
T {

name: "systemProperties”,
¥ properties: {
¥ "com.sun.management.jmxremote.authenticate”: {
value: "false"
}.I'
¥ "java.runtime.name”: {
value: "Java(TM) SE Runtime Environment"
be
¥ "spring.output.ansi.enabled”: {
value: "always"

}!
¥ "sun.boot.library.path”: {
value:
"/Library/Java/JavavirtualMachines/jdkl1.8.0_141.jdk/Contents/Home/jre/lib"
}!
¥ "java.vm.version": {
value: "25.141-b15"
}’

¥ gopherProxySet: {
value: "false"

Figure 10-7. http://localhost:8080/actuator/env

/actuator/health

This endpoint shows the health of the application. By default, it shows you the overall
system health.

{
"status": "UP"

331

CHAPTER 10 SPRING BOOT ACTUATOR

If you want to see more information about other systems, you need to use the
following property in the application.properties file.

management.endpoint.health.show-details=always

Modify the application.properties and re-run the ToDo app. If you have a
database app (we are), you see the database status, and by default, you also see the
diskSpace from your system. If you are running your app, you can go to http://
localhost:8080/actuator/health (see Figure 10-8).

e0e® < i} S ® localhost Ot

status: "UP",
¥ details: {
~ diskSpace: {
status: "UP",
¥ details: {
total: 500068036608,
free: 11909472256,
threshold: 10485760
}
}J
Ydb: {
status: "UP",
¥ details: {
database: "H2",
hello: 1

Figure 10-8. http://localhost:8080/actuator/health - with details

332

CHAPTER 10 SPRING BOOT ACTUATOR

/actuator/info

This endpoint displays the public application information. This means that you need to
add this information to application.properties. It's recommended that you add it if

you have multiple Spring Boot applications.

/actuator/loggers

This endpoint displays all the loggers available in your app. Figure 10-9 shows the level

for a specific package.

enDe® < i O @ Iocalhost

{
¥ levels: |
"OFF",
"ERROR",
"WARN",
"INFO",
"DEBUG" ,
"TRACE"
]t
¥ loggers: {
¥ ROOT: {
configuredLevel: "INFO",
effectiveLevel: "INFO"
}J’
Y com: {
configuredLevel: null,
effectiveLevel: "INFO"
}J
"com.apress”: {
configuredLevel: null,
effectiveLevel: "INFO"

-

}J

"com.apress.todo": {
configuredLevel: null,
effectiveLevel: "INFOQ"

-

}J’
"com.apress.todo.TodoActuatorApplication": {
configuredLevel: null,
effectiveLevel: "INFO"

-

}J

"com.apress.todo.interceptor": {
configuredLevel: null,
effectiveLevel: "INFO"

-

}l’
"com.apress.todo.interceptor.ToDoMetricInterceptor”: {
configuredLevel: null,

-

Figure 10-9. http://localhost:8080/actuator/loggers

333

CHAPTER 10 SPRING BOOT ACTUATOR

/actuator/loggers/{name}

With this endpoint, you can look for a particular package and its log level. So, if you
configure, for example, logging.level.com.apress.todo=DEBUG and you reach the
http://localhost:8080/actuator/loggers/com.apress.todo endpoint, you get the
following.

{
"configuredLevel": DEBUG,

"effectivelevel": "DEBUG"

/actuator/metrics

This endpoint shows the metrics information of the current application, where you can
determine the how much memory it’s using, how much memory is free, the uptime of
your application, the size of the heap being used, the number of threads used, and so on
(see Figure 10-10 and Figure 10-11).

334

CHAPTER 10 SPRING BOOT ACTUATOR

oee < > @D S ® localhost & o|djO EE

{ RAW
¥ names: [

"jvm.memory.max",
"jdbc.connections.active”,
"process.files.max",
"jvm.gc.memory.promoted”,
"tomcat.cache.hit",
"system.load.average.lm",
"tomcat .cache.access”,
"jvm.memory.used",
"jvm.gc.max.data.size",
"jdbc.connections.max",
"jdbc.connections.min",
"jvm.gc.pause"”,
"jvm.memory.committed"”,
"system.cpu.count",
"logback.events",
"tomcat.global.sent",
"http.server.requests”,
"jvm.buffer.memory.used",
"tomcat .sessions.created”,
"jvm.threads .daemon",
"system.cpu.usage",
"jvm.gc.memory.allocated"”,
"tomcat.global.reguest.max",
"hikaricp.connections.idle",
"hikaricp.connections.pending”,
"tomcat.global.reguest”,
"tomcat.sessions.expired”,
"hikaricp.connections”,
"jvm.threads.live",
"jvm.threads.peak",
"tomcat.global.received”,
"hikaricp.connections.active”,
"hikaricp.connections.creation",
"process.uptime"”,

Figure 10-10. http://localhost:8080/actuator/metrics
You can access every metric by adding the name at the end of the endpoint; so if you

want to know more about jvm.memory.max, you need to reach http://localhost:8080/
actuator/metrics/jvm.memory.max (see Figure 10-11).

335

CHAPTER 10 SPRING BOOT ACTUATOR
s0® < > @ o ® localhost ¢ (-} Hu] &) [&

name: “jvm.memory.max”,
description: "The maximum amount of memory in bytes that can be used for memory
management"”,
baseUnit: "bytes",
¥ measurements: [
T {
statistic: "VALUE",
value: 11196694526
}
]!
¥ availableTags: [
T {
tag: "area"”,
¥ values: [
"heap",
"nonheap"

}J
T o
tag: "id",
¥ values: |
"Compressed Class Space",
"PS Survivor Space",
"PS 01ld Gen",
“Metaspace",
"PS Eden Space",
"Code Cache"

Figure 10-11. http://localhost:8080//actuator/metrics/jvm.memory.max

If you take a look at Figure 10-11, in the availableTags section, you can get more
information by appending tag=KEY: VALUE. You can use http://localhost:8080/
actuator/metrics/jvm.memory.max?tag=area:heap and get information about the heap.

/actuator/mappings

This endpoint shows all the lists of all the @RequestMapping paths declared in your
application. This is very useful if you want to know more about which mappings are
declared. If your application is running, you can go to the http://localhost:8080/
actuator/mappings endpoint (see Figure 10-12).

336

CHAPTER 10 SPRING BOOT ACTUATOR

ene < in] S ® localhost ¢ o|djO

¥ contexts: {
¥ todo-actuator: {
¥ mappings: {
¥ dispatcherServlets: {
¥ dispatcherServlet: [
T {
handler: "ResourceHttpRequestHandler [locations=[class path resource
[META-INF/resources/], class path resource [resources/], class path
resource [static/], class path resource [public/], ServletContext
resource [/], class path resource []], resolvers=
[org.springframework.web.servlet.resource.PathResourceResolverf2b2£7516]
predicate: "/**/favicon.ico",
details: null

-

handler: "public java.lang.Object
org.springframework.boot.actuate.endpoint.web.servlet.AbstractWebMvcEndg
java.lang.String>)",
predicate: "{[/actuator/auditevents],methods=[GET],produces=
[application/vnd.spring-boot.actuator.v2+json || application/json]}",
¥ details: {
¥ handlerMethod: {
className:
"org.springframework.boot.actuate.endpoint.web.servlet.AbstractWe
name: "handle",
descriptor: "
(Ljavax/servlet/http/HttpServletRequest;Ljava/util/Map;)Liava/lan
}!
¥ requestMappingConditions: {
consumes: [],
headers: [],
¥ methods: [
"GET"
]l

params: [],

Figure 10-12. http://localhost:8080/actuator/mappings

/actuator/shutdown

This endpoint is not enabled by default. It allows the application to be gracefully shut

down. This endpoint is sensitive, which means that it can be used with security, and

it should be. If your application is running, you can stop it now. If you want to enable
the /actuator/shutdown endpoint, you need to add the following to the application.
properties.

management.endpoint.shutdown.enabled=true

337

CHAPTER 10 SPRING BOOT ACTUATOR

It’s wise to have this endpoint secured. You'd need to add the spring-boot-starter-
security dependency to your pom.xml (if you are using Maven).

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>

If you are using Gradle, you can add the following dependency to your build.gradle.
complie ('org.springframework.boot: spring-boot-starter-security')

Remember that by adding the security dependency, you enable security by default.
The username is user and the password is printed in the logs. Also, you can establish
better security by using in-memory, database, or LDAP users; see the Spring Boot
security chapter for more information.

For now, let’s add management.endpoint.shutdown.enabled=true and the spring-
boot-starter-security dependency and rerun the application. After running the
application, take a look at the logs and save the password that is printed so that it can be
used with the /actuator/shutdown endpoint.

Using default security password: 2875411a-e609-4890-9aa0-22f90b4e0a11

Now if you open a terminal, you can execute the following command.

$ curl -i -X POST http://localhost:8080/shutdown -u user:2875411a-e609-
4890-9aa0-22f90bge0a11

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Pragma: no-cache

Expires: 0

338

CHAPTER 10 SPRING BOOT ACTUATOR

X-Frame-Options: DENY

Strict-Transport-Security: max-age=31536000 ; includeSubDomains
X-Application-Context: application

Content-Type: application/json;charset=UTF-8

Transfer-Encoding: chunked

Date: Wed, 17 Feb 2018 04:22:58 GMT

{"message":"Shutting down, bye..."}

As you can see from this output, you are using a POST method to access the
/actuator/shutdown endpoint, and you are passing the user and the password that was
printed before. The result is the Shutting down, bye.. message. And of course, your
application is terminated. Again, it’s important to know that this particular endpoint
must be secured at all times.

/actuator/httptrace

This endpoint shows the trace information, which are normally the last few HTTP
requests. This endpoint can be useful to see all the request information and the
information returned to debug your application at the HTTP level. You can run your
application and go to http://localhost:8080/actuator/httptrace. You should see
something similar to Figure 10-13.

339

CHAPTER 10 SPRING BOOT ACTUATOR

o0® < i1 D@ localhost V] O hl d
8080, i locainst:8080 | lecainost:8080/taD0s |+
{ RAW
¥ traces: [
T {

timestamp: "2018-08-23T03:42:03.137Z2",
principal: null,
session: null,
¥ request: {
method: "GET",
uri: http://localhost:8080/toDos,
¥ headers: {
¥ referer: |
http://localhost:8080/
]!
¥ accept-language: [
"en-us"
]I’

¥ upgrade-insecure-requests: [

¥ host: [
"localhost:8080"

]l’
¥ connection: [
"keep-alive"

]I’
¥ accept-encoding: [
"gzip, deflate"

1.
¥ user-agent: [
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10 13 6) AppleWebKit/605.1.15
(KHTML, like Gecko) Version/ll.1.2 Safari/605.1.15"

]I’
¥ accept: [
"text/html,application/xhtml+xml,application/xml;g=0.9,*/*;g=0.8"
1

Figure 10-13. http://localhost:8080/actuator/httptrace

Changing the Endpoint ID

You can configure the endpoint ID, which changes the name. Imagine that you don’t like
the /actuator/beans endpoint, which is referring to Spring beans, so what about if you
change this endpoint to /actuator/spring.

You make this change in the application.properties file in the form of
management.endpoints.web.path-mapping.<endpoint-name>=<new-name>; for
example, management.endpoints.web.path-mapping.beans=spring.

If you re-run your application (stop and restart to apply the changes), you can access
the /actuator/beans endpoint using the /actuator/spring endpoint instead.

340

CHAPTER 10 SPRING BOOT ACTUATOR

Actuator CORS Support

With the Spring Boot Actuator module, you can configure CORS (cross-origin resource
sharing), which allows you to specify which cross domains are authorized to use the
actuator’s endpoints. Normally, this allows interapplications connect to your endpoints,
and due to security reasons, only the authorized domains are able to execute these
endpoints.

You configure this in the application.properties file.

management.endpoints.web.cors.allowed-origins=http://mydomain.com
management.endpoints.web.cors.allowed-methods=GET, POST

If your application is running, stop it and re-run it.

Normally in the management.endpoints.web.cors.allowed-origins, you should
put a domain name like http://mydomain.com or maybe http://localhost:9090 (not
the *), which allows access to your endpoints to avoid any hack to your site. This would
be very similar to using the @CrossOrigin(origins = "http://localhost:9000")
annotation in any controller.

Changing the Management Endpoints Path

By default, the Spring Boot Actuator has its management in /actuator as the root,
which means that all the actuator’s endpoints can be accessed from /actuator; for
example, /actuator/beans, /actuator/health, and so on. Before you continue, stop
your application. You can change its management context path by adding the following
property to the application.properties file.

management.endpoints.web.base-path=/monitor

If you re-run your application, you see that EndpointHandlerMapping is mapping
all the endpoints by adding the /monitor/<endpoint-name> context path. You can now
access the /httptrace endpoint through http://localhost:8080/monitor/httptrace.

You can also change the server address, add SSL, use a particular IP, or change the
port for the endpoints, with the management.server.* properties.

management.server.servlet.context-path=/admin
management.server.port=8081
management.server.address=127.0.0.1

341

http://mydomain.com

CHAPTER 10 SPRING BOOT ACTUATOR

This configuration has its endpoint with the context-path /admin/
actuator/<endpoint-name>. The port is 8081 (this means that you have two ports
listening: 8080 for your application and 8081 for your management endpoints). The
endpoints or management is bound to the 127.0.0.1 address.

If you want to disable the endpoints (for security reasons), you have two options,
you can use management.endpoints.enabled-by-default=false or you can use the
management.server.port=-1 properties.

Securing Endpoints

You can secure your actuator endpoints by including spring-boot-starter-security
and configuring WebSecurityConfigurerAdapter; this is through the HttpSecurity and
RequestMatcher configurations.

@Configuration
public class ToDoActuatorSecurity extends WebSecurityConfigurerAdapter {

@0verride

protected void configure(HttpSecurity http) throws Exception {
http
.requestMatcher (EndpointRequest.toAnyEndpoint())
.authorizeRequests()
.anyRequest().hasRole("ENDPOINT_ADMIN")
.and()
.httpBasic();

Itis important to know that the ENDPOINT_ADMIN role is required to access the
endpoints for security.

Configuring Endpoints

By default, you see that actuator endpoints cache responds to read operations that
don’t accept any parameters; so if you need to change this behavior, you can use the
management.endpoint.<endpoint-name>.cache.time-to-live property. And as

342

CHAPTER 10 SPRING BOOT ACTUATOR

another example, if you need to change the /actuator/beans cache, you can add the
following to the application.properties file.

management.endpoint.beans.cache.time-to-1live=10s

Implementing Custom Actuator Endpoints

You can extend or create a custom actuator endpoint. You need to mark your class with
@Endpoint and also mark your methods with @ReadOperation, @WriteOperation or
@DeleteOperation; by default, your endpoint is exposed over JMX and through the web
over HTTP.

You can be more specific and decide if you only want to expose your endpoint to
JMX, and then mark your class as @ImxEndpoint. If you only need it for the web, then you
mark your class with @WebEndpoint.

When creating the methods, you can accept parameters, which are converted to
the right type needed by the ApplicationConversionService instance. These types
consume the application/vnd.spring-boot.actuator.v2+json and application/
json content type.

You can return any type (even void or Void) in any method signature. Normally, the
returned content type varies depending on the type. If it is an org. springframework.
core.io.Resource type, it returns an application/octet-stream content type; for
all other types, it returns an application/vnd.spring-boot.actuator.v2+json,
application/json content type.

When using your custom actuator endpoint over the web, the operations have their
own HTTP method defined: @ReadOperation (Http.GET), @WriteOperation (Http.POST)
and @DeleteOperation (Http.DELETE).

ToDo App with Custom Actuator Endpoints

Let’s create a custom endpoint (/todo-stats) that shows the count of ToDo’s in the
database and how many are completed. Also, we can create a write operation that can
complete a ToDo and even an operation for removing a ToDo.

Let’s create ToDoStatsEndpoint to hold all the logic of the custom endpoint (see
Listing 10-3) .

343

CHAPTER 10 SPRING BOOT ACTUATOR

Listing 10-3. com.apress.todo.actuatorToDoStatsEndpoint.java

package com.apress.todo.actuator;

import com.apress.todo.domain.ToDo;

import com.apress.todo.repository.ToDoRepository;

import lombok.AllArgsConstructor;
import lombok.Data;
import org.springframework.boot.actuate.endpoint.annotation.*;

import org.springframework.stereotype.Component;

@Component
@Endpoint(id="todo-stats")
public class ToDoStatsEndpoint {

344

private ToDoRepository toDoRepository;

ToDoStatsEndpoint(ToDoRepository toDoRepository){
this.toDoRepository = toDoRepository;

}

@ReadOperation

public Stats stats() {
return new Stats(this.toDoRepository.count(),this.toDoRepository.
countByCompleted(true));

}

@ReadOperation
public ToDo getToDo(@Selector String id) {
return this.toDoRepository.findById(id).orElse(null);

}

@WriteOperation
public Operation completeToDo(@Selector String id) {
ToDo toDo = this.toDoRepository.findById(id).orElse(null);
if(null != toDo){
toDo.setCompleted(true);
this.toDoRepository.save(toDo);
return new Operation("COMPLETED",true);

CHAPTER 10 SPRING BOOT ACTUATOR

return new Operation("COMPLETED",false);
}

@DeleteOperation
public Operation removeToDo(@Selector String id) {
try {
this.toDoRepository.deleteById(id);
return new Operation("DELETED",true);
}catch(Exception ex){
return new Operation("DELETED",false);

}

@A11ArgsConstructor

@Data

public class Stats {
private long count;
private long completed;

}

@AllArgsConstructor

@Data

public class Operation{
private String name;
private boolean successful;

Listing 10-3 shows the custom endpoint that does operations such as showing stats
(the total number of ToDo’s and the number that are completed). It gets a ToDo object,
removes it, and sets it as completed. Let’s review it.

e (@Endpoint. Identifies a type as being an actuator endpoint that
provides information about the running application. Endpoints
can be exposed over a variety of technologies, including JMX and
HTTP. This is the ToDoStatsEndpoint class that is your endpoint for
the actuator.

345

CHAPTER 10 SPRING BOOT ACTUATOR

e (@ReadOperation. Identifies a method on an endpoint as being a read
operation (sees that this class returns the ToDo by ID).

o (@Selector. A selector can be used on a parameter of an endpoint
method to indicate that the parameter selects a subset of the
endpoint’s data. This is a way to modify a value, in this case, for
updating the ToDo as completed.

o (@WriteOperation.Identifies a method on an endpoint as being a
write operation. This is very similar to a POST event.

o (@DeleteOperation. Identifies a method on an endpoint as being a
delete operation.

Listing 10-3 is very similar to a REST AP], but in this case, all of these methods are
exposed through a JMX protocol. Also, the stats method is using toDoRepository to
call the countByCompleted method. Let’s add it to the ToDoRepository interface (see
Listing 10-4).

Listing 10-4. com.apress.todo.repository.ToDoRepository.java - v2
package com.apress.todo.repository;

import com.apress.todo.domain.ToDo;
import org.springframework.data.repository.CrudRepository;

public interface ToDoRepository extends CrudRepository<ToDo,String> {
public long countByCompleted(boolean completed);

Listing 10-4 shows version 2 of the ToDoRepository interface. This interface now
has a new method declaration, countByCompleted; remember that this is a named query
method and the Spring Data module takes care of creating the proper SQL statement to
count the number of ToDo'’s that are already completed.

As you can see, this is very straightforward for creating a custom endpoint. Now, if
you run the application, and go to http://localhost:8080/actuator, you should see
the todo-stats endpoint listed (see Figure 10-14).

346

CHAPTER 10 SPRING BOOT ACTUATOR

eoe® < i ay o) localhost ¢ Ojdjil @]
{ RAW
¥ _links: {
¥ self: {
href: http://localhost:8080//actuator, ToDo Custom Endpoint

templated: false
}J’
¥ todo-stats: {
href: http://localhost
templated: false
}J’
¥ todo-stats-arg0: {

href: http://localhost:

templated: true

}J’
¥ auditevents: {

href: http://localhost:

templated: false

}J’
Y beans: {
href: http://localhost:
templated: false
}J’
¥ health: {
href: http://localhost:
templated: false
}J’

¥ conditions: {

href: http://localhost:

templated: false
}J
T configprops: {

href: http://localhost:

templated: false
}J’

Y env: {

href: http://localhost:

:8080//actuator/todo-stats,

8080//actuator/todo-stats/{arg0},

B80B0//actuator/auditevents,

B8080//actuator/beans,

B8080//actuator/health,

B0B0//actuator/conditions,

8080/ /actuator/configprops,

8080//actuator/env,

Figure 10-14. http://localhost:8080/actuator - todo-stats custom endpoint

If you click the first todo-stats link, you see what’s shown in Figure 10-15.

347

CHAPTER 10 SPRING BOOT ACTUATOR

e0e < im] ra s) localhost * (4]] O s

count: 3,
completed: 1

Figure 10-15. http://localhost:8080/actuator/todo-stats

Very easy right? But what about the other operations. Let’s try them out. For this we
are going to use JMX with JConsole (it comes with the JDK installation). You can open a
terminal window and execute the jconsole command.

1. Select from the com.apress.todo.ToDoActuatorApplication list
and click Connect.

348

CHAPTER 10

@ @ Java Monitoring & Management Console
Connection Window Help

SPRING BOOT ACTUATOR

[] JConsole: New Connection

New Connection

(o] Local Process:

[Name PID
org.jetbrains.idea.maven.server.RemoteMavenSer... 56710
56537
org.jetbrains.jps.cmdline. Launcher /Users/fgutierr... 76715
sun.tools.jconsole JConsole 82860

todo. TodoActuatorApplication

Remote Process:

Usage: <hostname>:<port> OR service:jmx: <protocol>:<sap>

Username: Password:

Connect Cancel

2. Right now there is no secured connection, but it’s OK to click the

Insecure Connection button.

Secure connection failed. Retry
insecurely?

The connection to 76716 could not be
made using SSL.

Would you like to try without SSL?
(Username and password will be sentin
plain text)

Cancel Insecure connection

349

CHAPTER 10 SPRING BOOT ACTUATOR

3. From the main screen, select the MBeans tab. Expand the
org.springframework.boot package and the Endpoint folder. You
see the Todo-stats. You can expand it and see all the operations.

[XN] Java Monitoring & Management Console
Connection Window Help

[N] pid: 76716 com.apress.todo.TodoActuatorApplication
Overview Memory Threads Classes \NSummarV_

[DefaultDomain

9 JMImplementation

[Tomcat

[com.sun.management

[com.zaxxer. hikari

0 java.lang

[java.nio

[java.util.logging

[metrics

=5 org.springframework.boot

» [Admin

¥ [Endpoint

» @ Auditevents

@ Beans

@ Conditions

@ Configprops

@ Env

@ Health

@@ Httptrace

@ Info

@ Loggers

@ Mappings

@ Metrics

@ Scheduledtasks

@ Threaddump

@ Todo-stats

¥ Operations
stats
getToDo
completeToDo
removeToDo

d vy vy Yy Yy vy Yy vy vy

4 7Y Y Y Y Y Y YYYYTYY

4. Click the stats item to see the MBeans operation stats.

350

CHAPTER 10 SPRING BOOT ACTUATOR
LK] Java Monitoring & Management Consol
Connection Window Help
LK J pid: 76716 com.apress.todo.TodoActuatorApplication
| Overview Memory Threads Classes VMS B MBeans =
» [DefaultDomain - Operation invocation
» [JMimplementation
- B oru java.util.Map 0
» [com.sun.management “MeanOperationinfo
» [com.zaxxer.hikari N Vilila
» [java.lang Operation:
» [java.nio Name stats
» [java.util.logging Description Invoke stats for endpoint todo-stats
> . metrics Impact !NFO
v i org.springframework.boot ReturnType Jjava.util.Map
» [0 Admin
v S Endpoint
» @ Auditevents
» @ Beans
» @@ Conditions
> @ Configprops U
> @ Env
> @@ Health
» @ Huptrace - Descriptor
» @ Info gamea“on. Value
-9 W_'s dr::rinloﬂvpe operation
> @ Mappings displayName stats
> @ Metrics name stats
» @ Scheduledtasks role operation
» @ Threaddump
v @ Todo-stats
¥ Operations
getToDo
completeToDo
removeToDo

5. You can click the stats button (that actually is the call to the stats
method), and you will get.

@ () Operation return value

N

2

count=3

completed=1

351

CHAPTER 10 SPRING BOOT ACTUATOR

As you can seg, this is the same as going through the web. You can experiment with

the completeToDo operation.

6. Click the completeToDo operation. On the right, fill out the ID
field with ebcf1850563c4de3b56813a52a95e930, which is the Buy
Movie Tickets ToDo that is not completed.

0@ Java Monitoring & Management Console
Connection Window Help
[=N] pid: 76716 com.apress.todo.TodoActuatorApplication '
Overview Memory Threads Classes VMS y <=
» [DefaultDomain r Operation invocation
» [JMimplementation java.util.Maj
> B9 Tomeat . P completeToDo (id h56813a52a05¢930])
L3 Com.sun. g
» [com.zaxxer.hikari “MBeanOperationinfo]
» [java.lang Name Value |
. : Operation: |
> .
> g{ava m: . Name completeToDo
java.util.logging Description Invoke completeToDo for endpoint todo-stats
> [metrics Impact ACTION
v |8 org.springframework.boot ReturnType Jjava.util.Map
» [Admin Parameter-0:
o . Name id
v End it
? c; ::clll:t ; Description
e Type java.lang.String
» @@ Beans
» @ Conditions
» @ Configprops
> @ Env
> @ Health
» @ Huptrace Descriptor]
» @ Info Name Value |
» @ Loggers Operation: |
L descriptorType operation
> M i
" gMaPle displayName completeToDo
e name completeToDo
» @@ Scheduledtasks role operation
» @@ Threaddump
v @ Todo-stats
¥ Operations
stats
getToDo
completeToDo
removeToDo
-

7. Click completeToDo to get the confirmation (an Operation object).

352

CHAPTER 10 SPRING BOOT ACTUATOR

© Operation return value

name=COMPLETED

<= successful=true

8. Ifyouredo the stats operation, you should now see that two are
completed.

@] Operation return value

count=3

{ = completed=2

As you can see, it is very easy to use JMX with the JConsole tool. You now know how
to create a custom endpoint for the data that you need.

Spring Boot Actuator Health

Nowadays, we are looking for visibility in our systems, meaning that we need to monitor
them closely and react to any event. I remember a long time ago, the way to monitor a
server was with a simple ping; but now that’s not enough. We not only monitor servers
but systems and their insights. We are still required to see if our system is up, and if not,
we need to get more information about the problem.

Spring Boot Actuator health endpoint to the rescue! The /actuator/health
endpoint provides the status, or a health check, of your running application. It provides a
particular property, management.endpoint.health.show-details, which you can use to
show more information about the entire system. The following are the possible values.

353

CHAPTER 10 SPRING BOOT ACTUATOR

o never. The details are never shown; this is the default.

e when-authorized. Details are shown only to authorized users; you
can configure the roles by setting the management.endpoint.health.
roles property.

o always. All the details are shown to all users.

Spring Boot Actuator offers the HealthIndicator interface that collects all information
about the system; it returns a Health instance that contains all of this information. Actuator
Health has several out-of-the-box health indicators that are auto-configured using a health
aggregator to determine the final status of the system. It is very similar to a logging level.
You can up and running. Don’t’ worry. I am going to show this with an example.

The following are some of the health indicators that are auto-configured.

o (CassandraHealthIndicator. Checks that the Cassandra database is

up and running.
o DiskSpaceHealthIndicator. Checks for low disk space.
e RabbitHealthIndicator. Checks that he Rabbit server is up and

running.

e RedisHealthIndicator. Checks that the Redis server is up and
running.

o DataSourceHealthIndicator. Checks for a database connection
from the data source.

e MongoHealthIndicator. Checks that the MongoDB is up and

running.
e MailHealthIndicator. Checks that the mail server is up.
e SolrHealthIndicator. Checks that the Solr server is up.
o JmsHealthIndicator. Checks that the JMS broker is up and running.

e FElasticsearchHealthIndicator. Checks that the FlasticSearch
cluster is up.

o Neo4jHealthIndicator. Checks that the Neo4j sever is up and
running.

e InfluxDBHealthIndicator. Checks that the InfluxDB server is up.

354

CHAPTER 10 SPRING BOOT ACTUATOR

There are many more. All of these are auto-configured if the dependency is in your
classpath; in other words, you don’t need to worry about configuring or using them.
Let’s test the health indicator.

1. Make sure that you have (in the ToDo app) the management.
endpoints.web.exposure.include=*in the application.
properties file.

2. Add the management.endpoint.health.show-details=always
property to the application.properties file.

3. Ifyourun the ToDo app, and access http://localhost:8080/
actuator/health, you should get the following.

status: "UP",
¥ details: {
~ diskSpace: {
status: "UP",
¥ details: {
total: 500068036608,
free: 9864806400,
threshold: 10485760
}
}l
*db: {
status: "UP",
¥ details: {
database: "H2",
hello: 1

The H2 database DataSourceHealthIndicator and
DiskSpaceHealthIndicator are being auto-configured.

355

CHAPTER 10 SPRING BOOT ACTUATOR

4. Add the following dependency to your pom.xml file (if you are
using Maven).

<dependency>
<groupIld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-amgp</artifactId>
</dependency>

If you are using Gradle, add the following dependency to your
build.gradle file.

compile('org.springframework.boot:spring-boot-starter-amgp")

5. You guessed right. We are adding AMQP dependencies. Re-run
the app and take a look at the /actuator/health endpoint.

e0e < in] (ay 1) Iocalhost & ull] W=

RAW
status: "DOWN",

¥ details: {
¥ rabbit: {
status: "DOWN",
¥ details: {
error: "org.springframework.amgp.AmgpConnectException:
java.net.ConnectException: Connection refused (Connection
refused)"”
}
Yo
¥ diskSpace: {
status: "UP",
¥ details: {
total: 500068036608,
free: 10926116864,
threshold: 10485760
}
Yo
¥ db: {
status: "UP",
* details: {
database: "H2",
hello: 1

356

CHAPTER 10 SPRING BOOT ACTUATOR

Because you added the spring-boot-starter-amqgp dependency, it is about the
RabbitMQ broker, and you have the actuator, RabbitHealthIndicator is auto-configured
to reach for a local host (or a specific broker with spring.rabbitmq.* properties settings).
Ifitis alive, then it reports it. In this case, you see that some failed to connect in the logs,
and in the health endpoint, you see that the system is down. If you have a RabbitMQ
broker (from the previous chapter), you can run it (with the rabbitmqg-server command)
and refresh the health endpoint. You see that everything is up!

*0e < [im] [l 1) localnost

RAW
status: "UP",

¥ details: {
¥ rabbit: {
status: "UPRP",
¥ details: {
version: "3.7.7"
}
}e
¥ diskSpace: {
status: "UPR",
¥ details: {
total: 500068036608,
free: 11998363648,
threshold: 10485760
}
Yo
¥ db: {
status: "UP",
¥ details: {
database: "H2",
hello: 1

That’s it. This is how you can use all the out-of-the-box health indicators. Add the
required dependency—and you got it!

357

CHAPTER 10 SPRING BOOT ACTUATOR

ToDo App with Custom HealthIndicator

Now it’s the ToDo’s app turn to have its own custom health indicator. It’s very easy to
implement one. You need to implement the HealthIndicator interface and return the
desired state with a Health instance.

Create ToDoHealthCheck to visit a FileSystem path and perform a check up to see if
it is available, readable, and writeable (see Listing 10-5).

Listing 10-5. com.apress.todo.actuatorToDoHealthCheck.java
package com.apress.todo.actuator;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.actuate.health.Health;
import org.springframework.stereotype.Component;

import java.io.File;

@Component
public class ToDoHealthCheck implements HealthIndicator {

private String path;

public ToDoHealthCheck(@Value("${todo.path:/tmp}")String path){
this.path = path;

}
@verride
public Health health() {
try {
File file = new File(path);
if(file.exists()){
if(file.canWrite())
return Health.up().build();
return Health.down().build();
}else{

358

CHAPTER 10 SPRING BOOT ACTUATOR

return Health.outOfService().build();
}
}catch(Exception ex) {
return Health.down(ex).build();

Listing 10-5 shows the ToDoHealthCheck class that is marked as @Component and is
the implementation of the HealthIndicator interface. It is necessary to implement the
health method (see that the Health class has a fluent API that helps create the status of
the health. Analyze the code and see what the path variable must be set as (a property in
the environment, an argument in the command line, or in application.properties);
otherwise, use /tmp by default. If this path exists, then it checks if you can write it; if so,
it exposes the UP status, and if not, it reports a DOWN status. If the path doesn’t exist, it
reports an OUT_OF_SERVICE status. If there is any exception, it exposes a DOWN status.

In the preceding code, a todo.path property is required. Let’s create a
ToDoProperties class that holds the information about this property. You already know
about it (see Listing 10-6) .

Listing 10-6. com.apress.todo.configToDoProperties.java

package com.apress.todo.config;

import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;

@Data
@ConfigurationProperties(prefix = "todo")
public class ToDoProperties {

private String path;

As you can see, it’s very simple. If you remember, to use a @ConfigurationProperties
marked class, it is necessary to call it with @EnableConfigurationProperties. Let’s
create the ToDoConfig class to support it (see Listing 10-7).

359

CHAPTER 10 SPRING BOOT ACTUATOR

Listing 10-7. com.apress.todo.configToDoConfig.java
package com.apress.todo.config;

import org.springframework.boot.context.properties.
EnableConfigurationProperties;
import org.springframework.context.annotation.Configuration;

@EnableConfigurationProperties(ToDoProperties.class)
@Configuration
public class ToDoConfig {

}

There is nothing extraordinary in this class. Add the application.properties file in
the new property.

todo.path=/tmp/todo
If you are using Windows, you can play around with something like
todo.path=C:\\tmp\\todo

Review the documentation for the right characters. So, you are all set. If you re-run
your ToDo app, and take a look at the response of the /actuator/health you should get
the following.

360

CHAPTER 10

localhost

status: "OUT _OF_SERVICE",
¥ details: {
¥ toDoHealthCheck: ({

status: "OUT OF SERVICE"

b
¥ diskSpace: {
status: "UP",
¥ details: {
total: 500068036608,
free: 8785756160,
threshold: 10485760
}
be
¥ db: {
status: "UP",
¥ details: {
database: "H2",
hello: 1

SPRING BOOT ACTUATOR

RAW

You have the toDoHealthCheck key in the JSON response; and it match with the logic
set. Next, fix the issue by making a writeable /tmp/todo directory and if you refresh the

page you get.

361

CHAPTER 10 SPRING BOOT ACTUATOR

o0 e < im ay g localhost . it (=) [+

status: "UP",
¥ details: {
¥ toDoHealthCheck: {
status: "UP"
b
¥ diskSpace: {
status: "UP",
¥ details: {
total: 500068036608,
free: 9855713280,
threshold: 10485760
}
be
¥ db: {
status: "UP",
¥ details: {
database: "H2",
hello: 1

You can configure the status/severity order (e.g., a logging level) by using the
following property in your application.properties file.

management.health.status.order=FATAL, DOWN, OUT_OF SERVICE, UNKNOWN, UP

If you are using the health endpoint over HTTP, every status/severity has its own
HTTP code or mapping available.

e DOWN -503

e OUT_OF_SERVICE - 503
o UP-200

e DOWN -200

362

CHAPTER 10 SPRING BOOT ACTUATOR
You can use you own code by using
management.health.status.http-mapping.FATAL=503

Also, you can create your own status, like IN. BAD_CONDITION, by using Health.
status("IN_BAD CONDITION").build();
Creating a custom health indicator with Spring Boot Actuator is very easy!

Spring Boot Actuator Metrics

Nowadays, every system is required to be monitored. It is necessary to keep visibility
by watching what is happening in every application, both individually and as a whole.
Spring Boot Actuator offers basic metrics and integration and auto-configuration with
Micrometer (http://micrometer.io).

Micrometer provides a simple face over instrumentation clients for many popular
monitoring systems; in other words, you can write the monitoring code once, and use
any other third-party system, such as Prometheus, Netflix Atlas, CloudWatch, Datadog,
Graphite, Ganglia, JMX, InfluxDB/Telegraf, New Relic, StatsD, SignalFX, and WaveFront
(and more coming).

Remember that Spring Boot Actuator has /actuator/metrics. If your run the ToDo
app, you get the basic metrics; you learned that in previous sections. What I haven’t
shown you is how to create your custom metrics using Micrometer. The idea is to write
the code once and use any other third-party monitoring tool. Spring Boot Actuator and
Micrometer expose those metrics to the chosen monitoring tool.

Let’s jump directly to implementing Micrometer code and use Prometheus and
Grafana to see how easy it is to use.

ToDo App with Micrometer: Prometheus and Grafana

Let’s implement Micrometer code and use Prometheus and Grafana.

So far we have seen that the Spring Data REST module creates web MVC controllers
(REST endpoints) on our behalf once it sees all the interfaces that extend the
Repository<T,ID> interface. Imagine for a moment that we need to intercept those
web requests and start creating an aggregate; a metric that tells us how many times a
particular REST endpoint and HTTP method have been requested. This helps us to

363

http://micrometer.io

CHAPTER 10 SPRING BOOT ACTUATOR

identify which endpoint is a candidate for a microservice. This interceptor also gets all
the requests, including the /actuator ones.

To do this, Spring MVC offers a HandlerInterceptor interface that we can use. It
has three default methods, but we only need one of them. Let’s start by creating the
ToDoMetricInterceptor class (see Listing 10-8).

Listing 10-8. com.apress.todo.interceptorToDoMetriclnterceptor.java
package com.apress.todo.interceptor;

import io.micrometer.core.instrument.MeterRegistry;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.web.servlet.HandlerInterceptor;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ToDoMetricInterceptor implements HandlerInterceptor {

private static Logger log = LoggerFactory.
getLogger(ToDoMetricInterceptor.class);

private MeterRegistry registry;
private String URI, pathKey, METHOD;

public ToDoMetricInterceptor(MeterRegistry registry) {
this.registry = registry;

}

@verride
public void afterCompletion(HttpServletRequest request,
HttpServletResponse response, Object handler, Exception ex)
throws Exception {
URI = request.getRequestURI();
METHOD = request.getMethod();
if (!URI.contains("prometheus")){
log.info(" >> PATH: {}",URI);
log.info(" >> METHOD: {}", METHOD);

364

CHAPTER 10 SPRING BOOT ACTUATOR

pathKey = "api ".concat(METHOD.tolLowerCase()).concat(URI.
replaceAll("/"," ").toLowerCase());
this.registry.counter(pathKey).increment();

Listing 10-8 shows the ToDoMetricInterceptor class (it is implementing the
HandlerInterceptor interface). This interface has three default methods: preHandle,
postHandle, and afterCompletion. This class only implements the afterCompletion
method. This method has HttpServletRequest, which is helpful for discovering which
endpoint and HTTP method have been requested.

You class is using the MeterRegistry instance, which is part of the Micrometer
Framework. The implementation gets the path and the method from the request
instance and uses the counter method to get incremented. The pathKey is very simple;
if there is a GET request to the /toDos endpoint, the pathKey is api_get todos. If there is
a POST request to the /toDos endpoint, the pathKey is api_post_todos, and so forth. So,
if there are several requests to the /toDos, the registry increments (using that pathKey)
and aggregates to the existing value.

Next, let’s make sure that ToDoMetricInterceptor is being picked up and configured
by Spring MVC. Open the ToDoConfig class and add a MappedInterceptor bean (see
Listing 10-9 for version 2).

Listing 10-9. com.apress.todo.configToDoConfig.java v2
package com.apress.todo.config;

import com.apress.todo.interceptor.ToDoMetricInterceptor;

import io.micrometer.core.instrument.MeterRegistry;

import org.springframework.boot.context.properties.
EnableConfigurationProperties;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.handler.MappedInterceptor;

@EnableConfigurationProperties(ToDoProperties.class)
@Configuration
public class ToDoConfig {

365

CHAPTER 10 SPRING BOOT ACTUATOR

@Bean
public MappedInterceptor metricInterceptor(MeterRegistry registry) {
return new MappedInterceptor(new String[]{"/**"},
new ToDoMetricInterceptor(registry));

Listing 10-9 shows the new ToDoConfig class, which has MappedInterceptor. It uses
ToDoMetricInterceptor for every request by using the "/**" matcher.

Next, let’s add two dependencies that export data to JMX and Prometheus. If you
have Maven, you can add the following dependencies to the pom.xml file.

<dependency>
<groupId>io.micrometer</groupId>
<artifactId>micrometer-registry-jmx</artifactId>
</dependency>
<dependency>
<groupId>io.micrometer</groupId>
<artifactId>micrometer-registry-prometheus</artifactId>
</dependency>

If you are using Gradle, you can add the following dependencies to build.gradle.

compile('io.micrometer:micrometer-registry-jmx")
compile('io.micrometer:micrometer-registry-prometheus")

Spring Boot Actuator auto-configures and registers every Micrometer registry, and in
this case, JMX and Prometheus. For Prometheus, the actuator configures the /actuator/
prometheus endpoint.

Prerequisites: Using Docker

Before testing the ToDo app with the metrics, it is necessary to install Docker (try to
install the latest release).

o Install Docker CE (Community Edition) from https://docs.docker.
com/install/

o Install Docker Compose from https://docs.docker.com/compose/
install/

366

https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

CHAPTER 10 SPRING BOOT ACTUATOR

Why did I choose Docker? Well, it is an easy way to install what we need. And we
are going to use it again in the following chapters. Docker Compose facilitates installing
Prometheus and Grafana by using Docker’s internal network that allows us to use DNS

names.

docker-compose.yml
This is the docker-compose.yml file used to start up Prometheus and Grafana.
version: '3.1'

networks:
micrometer:

services:

prometheus:

image: prom/prometheus

volumes:

- ./prometheus/:/etc/prometheus/

command:
'--config.file=/etc/prometheus/prometheus.yml’
- '--storage.tsdb.path=/prometheus’
- '--web.console.libraries=/usr/share/prometheus/console_libraries'
- '--web.console.templates=/usr/share/prometheus/consoles’

ports:

- 9090:9090
networks:

- micrometer
restart: always

grafana:
image: grafana/grafana
user: "104"
depends_on:
- prometheus
volumes:
- ./grafana/:/etc/grafana/

367

CHAPTER 10 SPRING BOOT ACTUATOR

ports:

- 3000:3000
networks:

- micrometer
restart: always

You can create this file with any editor. Remember, it is a YML file and there are no
tab spaces for indentation. You need to create two folders: prometheus and grafana. In
each folder, there is a file.

In the prometheus folder, there is a prometheus.yml file with the following content.

global:
scrape_interval: 5s
evaluation_interval: 5s

scrape_configs:
- job_name: 'todo-app'

metrics_path: '/actuator/prometheus’
scrape_interval: 5s
static_configs:

- targets: ['host.docker.internal:8080']

The important thing about this file is the metrics path and targets keys. When
it finds out about micrometer-registry-prometheus, Spring Boot Actuator auto-
configures the /actuator/prometheus endpoint. This value is necessary for metrics
path. Another very important value is the targets key. Prometheus scrapes the /
actuator/prometheus endpoint every 5 seconds. It needs to know where it is located (it
is using the host.docker.internal domain name). This is the part of Docker that looks
for its host (the localhost:8080/todo-actuator app that is running).

The grafana folder contains an empty grafana. ini file. To make sure Grafana takes
the default values, you show have the following directory structure.

368

CHAPTER 10 SPRING BOOT ACTUATOR

—— docker-compose.yml
—— grafana

- grafana.ini
—— prometheus

-— prometheus.yml

2 directories, 3 files

Running the ToDo App Metrics

Now, it’s time to start testing and configuring Grafana to see useful metrics. Run your
ToDo app. Check out the logs and make sure that the /actuator/prometheus endpoint is
there.

Open a terminal, go where you have the docker-compose.yml file, and execute the
following command.

$ docker-compose up

This command line starts the docker-compose engine, and it downloads the images
and runs them. Let’s make sure that the Prometheus app works by opening a browser
and hitting http://localhost:9090/targets.

369

CHAPTER 10 SPRING BOOT ACTUATOR

ene < L @ localbost u th =8

Targets
Al Unhealthy
todo-app (1/1 up) B2
Last
Endpoint State Labels Scrape Error

http://host.docker.internal:8080 UP 4.696s ago
factuator/prometheus

This means that the prometheus.yml configuration was successfully taken. In other
words, Prometheus is scraping the http://localhost:8080/actuator/prometheus
endpoint.

Next, let’s configure Grafana.

1. Open another browser tab and hit http://localhost:3000.

370

CHAPTER 10 SPRING BOOT ACTUATOR

o0® < i) 7y (0] localhost of t g e

LOg In Forgot your password?

Grafana

You can use admin/admin as credentials.

371

CHAPTER 10 SPRING BOOT ACTUATOR

372

2. You can press the Skip button the following screen.

3. Click the Add Data Source icon.

localhost

Change Password

Before you can get started with awesome
dashboards we need you to make your account more
secure by changing your password.

You can change your password again later.

CHAPTER 10 SPRING BOOT ACTUATOR

eoe® < > m ol locaihost ¢ th

@ 88 Home -

Home Dashboard

© S 7 &4 5%

rastattErafana Add data source Create your first dashboard Invite your team Install apps & plugins
Starred dashboards Installed Apps
Recently viewed dashboards None installed. B Grafana.com

Installed Panels
None installed. Browse Grafana.com
Installed Datasources

None installed. Browse Grafana.com

4. Fill out all the required fields. The important ones are
o Name: todo-app
o Type: Prometheus
e URL: http://prometheus:9090

e Scrape interval: 3s

373

CHAPTER 10 SPRING BOOT ACTUATOR

5. Click the Save button.

e0e® < in} () B

Data Sources / New

Type: Prometheus

%= Settings -
Name todo-app
Type Prometheus
HTTP
URL http://prometheus:9090
Access Server (Default)
Auth
Basic Auth 1 With Credentials [i]
TLS Client Auth O With CA Cert o
Skip TLS Verification (Insecure) £
Advanced HTTP Settings

localhost

i] Default
LiJ
- Help »

The URL value, http://prometheus:9090, refers to the docker-
compose service, which is the internal DNS that docker-compose

offers, so no need to do local host. You can leave the other values

by default and click Save & Test. If everything works as expected,

you see a green banner saying, Data source is working at the

bottom of the page.

374

g

I
| 70

CHAPTER 10 SPRING BOOT ACTUATOR

6. You can go home by going back or pointing the browser to
http://localhost:3000. You can click the New Dashboard

button on the homepage.

o0® < m [o) localhost] t & Lt
IS5 28 New dashboard - il # Olast6hours £
ilal* New Panel Add Paste x

il L BEE

Graph Singlestat Table
' e =
Text Heatmap Alert List
: — :
= == =
Dashboard list Row Plugin list

375

CHAPTER 10 SPRING BOOT ACTUATOR

7. You can click the Graph icon, a panel appears. Click Panel Title

and then click Edit.
o0® < m [(0] localhost ¢ t G BB
I5 88 New dashboard - Wt B & Olastéhours &
Panel Title «
W © View @ v
Edit = e
0.5 ~* Share B ps
& More... »
0 @ Remove [pr
0.5
1.0
06:00 08.00 10:00

8. Configure two queries, the api_get total and api_post todos
total, which were generated as metrics by the Micrometer and
Spring Boot Actuator for Prometheus engine.

376

CHAPTER 10 SPRING BOOT ACTUATOR

Graph General Metrics Axes Legend Display Alert Time range x
&4 DataSource default ~ » Options * Query Inspector
T A api_get__total == |
Legend format © Minstep ¢ Resolution /1 v
Formatas Time series = Instant) (1
" B api_post_todos_total = =y
Legend format @ Minstep ¢ Resolution 1/1 -
Formatas Timeseries = Instant 0O (=3

3 -

9. Perform requests to the /toDos (several times) and post to the /
toDos endpoints. You see something like the next figure.

377

CHAPTER 10 SPRING BOOT ACTUATOR

o0® < in] [y Bo) localhost o th G BB
I == todo-dashboard - W 2B % ® Aug 24,2018 10:42:16 1o Aug 24...
Panel Title -
7.0
6.0
50
40
30 2018-08-24 10:53:05
-2p ; tdockerintermnal B0 3.000
ap 1. internal-80) 2pp} 3.000
2.0
10
10:44 1046 1048 10:50 10:52 10:54 10:56 1058 1100 11:02 1104 11:06 1108 11:0

== api_get__total{instance="host.docker.internal:8080" job="todo-app"} apl_post_todos_total{instance="host.docker.internal:8080" job="todo-app’}

Congratulations! You have created custom metrics using Micrometer, Prometheus,
and Grafana.

General Stats for Spring Boot with Grafana

I found a very useful configuration for Grafana that allows you to take advantage of every
metric that Spring Boot Actuator exposes. This configuration can be imported into Grafana.
Download this configuration from https://grafana.com/dashboards/6756. The file
name is spring-boot-statistics rev2.json. You need it next.
In the left corner of the Grafana homepage (http://localhost:3000), click the
Grafana icon, which opens a side bar. Click the + symbol and choose Import.

378

https://grafana.com/dashboards/6756

CHAPTER 10 SPRING BOOT ACTUATOR

88 Home -~ -3

Create Home Dashboard

8* Dashboard

@ Folder
% Import
: x
© © © o
Instal-Grafana GCreate yourfirst-data Create yourfirst Install apps & plugins
SOUFCe dashboard
Starrad dachhnarde Installed Abbns
Level the default value, but in the Prometheus field, choose todo-app (the data
source that you configured earlier).

e < T (o] Iocathcst v LR

L]
G
g,‘ Import
Import dashboard from file or Grafana.com

Importing Dashboard from Gr
Published by
Updated on

Options
Name Spring Boot Statistics ot
Folder General ~
Unique identifier (uld) 0 auto-generated m
Prometheus © todo-app - ¥

379

CHAPTER 10 SPRING BOOT ACTUATOR

Click Import—and voila! You have a complete dashboard with all the Spring Boot
Actuator metrics and monitoring!

eoe < [in] s il & Icahast

6 88 Spring Boot Statistics - W T BB & ¢ 8 > Oustiher =

host.docker.internal: 8080 ~ J i None = Hik v HikariPool-1 = . P Al F 2 Al

~ Basic Statistics

Uptime Heap Used Non-Heap Used Process Open Files
150
12.6 hour .
Start time 5,000
1.7% 6.3% 0
2018-08-23 22:47:17 V= = o
= Open Files — Max Files
CPU Usage Load Average -
04 10.0
03 75
[I | |
0.1 'L'fl ' ..',_ l A "_I'I|. ' .'-'T.l.._i_lf | I\‘.f\'lall.*'..l.".rwll '.._"'-lJ { 5
0
1030 10:40 1050 100 1110 120 10:30 10:40 1050 11:00 110 1120
— System CPU Usage 00490 03747 nocz;s 00873 = Load Aversge [1rm] 193 680 308 SE2
Process CPU Usage 00002 00049 00005 0.0005 CPU Care Size 800 800 600 8O0

Take a moment to review every single graph. All the data comes from the /actuator/
prometheus endpoint.

You can shut down docker-compose by executing the following in another terminal
window.

$ docker-compose down

Note You can find the solution to this section in the book’s source code on the
Apress website or on GitHub at https://github.com/Apress/pro-spring-
boot-2, or on my personal repository at https://github.com/felipeg48/
pro-spring-boot-2nd.

380

https://github.com/Apress/pro-spring-boot-2
https://github.com/Apress/pro-spring-boot-2
https://github.com/felipeg48/pro-spring-boot-2nd
https://github.com/felipeg48/pro-spring-boot-2nd

CHAPTER 10 SPRING BOOT ACTUATOR

Summary

This chapter discussed Spring Boot Actuator, including its endpoints and how
customizable it is. With the Actuator module, you can monitor your Spring Boot
application, from using the /health endpoint to using /httptrace for more granular
debugging.

You learned that you can use Micrometer and plug in any third-party tool to use the
Spring Boot actuator metrics.

In the next chapter, you take a step forward and see how to use Spring Integration
and Spring Cloud Stream.

381

CHAPTER 11

Spring Integration and
Spring Cloud Stream with
Spring Boot

In this chapter, I show you one of the best integration frameworks for the Java
community: the Spring Integration project, which is based on the Spring Framework.

I also present the Spring Cloud Stream, which is based on Spring Integration. It creates
robust and scalable event-driven microservices connected to shared messaging
systems—all done with Spring Boot.

If we take a look at software development and business needs, as a developer or an
architect, we are always looking at how to integrate components and systems, either
internal or external to our architecture, and probe what is fully functional, highly
available, and easy to maintain and enhance.

The following are the main uses cases that developers or architects typically face.

o Creating a system that does a reliable file transfer or file analysis.
Most of the applications out there need to read information from a
file and then process it, so we need to create robust file systems that
save and read data but also share and deal with the size of the files.

o The ability to use data in a shared environment where multiple
clients (systems or users) need access to the same database or
the same table and do operations and deal with inconsistency,
duplication, and more.

¢ Remote access to different systems, from executing remote
procedures, to sending a lot of information. We always want to have
this in real time and in an asynchronous way. The ability to get a

383
© Felipe Gutierrez 2019

E. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_11

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

response as fast as possible without forgetting that the remote system
always needs to be reachable; in other words, have the fault tolerance
and high availability required.

o Messaging—from a basic internal call to billions of messages
per second to remote brokers. Normally, we do messaging in
an asynchronous way, so we need to deal with concurrency,
multithreading, speed (network latency), high availability, fault
tolerance, and so forth.

How can we solve or implement all of these use cases? Almost 15 years ago, software
engineers Gregor Hohpe and Bobby Woolf wrote Enterprise Integration Patterns:
Designing, Building and Deploying Messaging Solutions (Addison-Wesley, 2003). This
book exposes all the messaging patterns needed to solve the use cases that I mentioned.
It gives a better understanding on how systems interconnect and work, and how you can
create a robust integration system with application architecture, object-oriented design,
and message-oriented.

In the following sections, I'll show you some of these patterns using the Spring
Integration project from the Spring Framework.

Spring Integration Primer

Spring Integration is a simple model for implementing enterprise integration solutions.
It facilitates the asynchronous and message-driven within a Spring Boot application. It
implements all the enterprise integration patterns for creating enterprise, robust, and
portable integration solutions.

The Spring Integration project offers a way to have components that are loosely
coupled for modularity and testability. It helps to enforce the separation of concerns
between your business and integration logic.

Spring Integration exposes the following main components.

e Message. This is a generic wrapper for any Java object. It consists
of headers and a payload. The headers normally have important
information like ID, timestamp, correlation ID, and return address;
and of course, you can add your own. The payload can be any
type of data, from an array of bytes to custom objects. You can
find its definition in the spring-messaging module in the org.
springframework.messaging package.

384

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

public interface Message<T> {
T getPayload();
MessageHeaders getHeaders();

}

As you can see, there’s nothing fancy in the definition.

o Message channel. Pipes and filters architecture, very similar to the
command you use in a UNIX system. To use it, you need to have
producers and consumers; the producer sends the message to the
message channel and a consumer receives it (see Figure 11-1).

send(Message) —_— receive()
Producer > — »| Consumer

essage
Channel

Figure 11-1. Message channel

This message channel follows messaging patterns, such as the
Point-to-Point and Publish/Subscribe models. Spring Integration
offers several message channels, like pollable channels (that
allows you to have buffering messages within a queue) or
subscribable channels for the consumers.

e Message endpoint. A filter that connects the application code to
the messaging framework. Most of these endpoints are part of the
Enterprise Integration Patterns implementations.

e Filter. A message filter determines when a message should be
passed to the output channel.

o Transformer. A message transformer modifies the content or
structure of a message and passes it to the output channel.

e Router. Amessage router decides what to do and where to send
the message based on rules. These rules can be in the headers or
in the same payload. This message router has many patterns that
can be applied. I'll show you at least one of them.

385

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

o Splitter. A message splitter accepts a message (input channel),
and it splits and returns new multiple messages (output channel).

e Service activator. This is an endpoint that acts as a service by
receiving a message (input channel) and processes it. It can
either end the flow of the integration or it can return the same
message or an entirely new one (output channel).

o Aggregator. This message endpoint received multiple messages
(input channel); it combines them in a new single message (base
on a release strategy) and sends it out (output channel).

o Channel adapters. This is a particular endpoint that connects
a message channel to other systems or transports. Spring
Integration offers inbound or outbound adapters. Where a
response is required, it offers a gateway adapter. You see that
these are the most commonly used. Why? If your solution is
looking to connect to RabbitMQ, JMS, FTP, a File System, HTTP
or any other technology, Spring Integration has the adapter to
connect to it without you coding any client.

It would take a whole new book to write about Spring Integration and message
patterns, messaging channels, adapters, and more, but if you are interesting in this
technology, I recommend Pro Spring Integration by Dr. Mark Lui (Apress, 2011).

In the next section, I'll show you some of the components and patterns, which are
enough to get you started.

Programming Spring Integration

With Spring Integration, there are several ways to configure all the components
(message, message channel and message endpoints): XML, JavaConfig classes,
annotations, and the new Integration DSL.

ToDo App with Spring Integration

Let’s start with the well-known ToDo App and use Spring Integration right away. You can
start from scratch or you can follow along in the next sections to learn what you need to
do. If you are starting from scratch, then you can go to Spring Initializr (https://start.
spring.io) and add the following values to the fields.

386

https://start.spring.io
https://start.spring.io

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

e Group: com.apress.todo

o Artifact: todo-integration

o Name: todo-integration

o Package Name: com.apress.todo

o Dependencies: Spring Integration, Lombok

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button, which downloads a ZIP file. Uncompress it and import the
project in your favorite IDE (see Figure 11-2).

ere® 0 S @ & start.spring.io ¢ ot o

SPRING INITIALIZR

Generate a vaenpoec ¢ With == : and Spring Boot 204

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies
com.apress.todo Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies
todo-integration Spring Integration -
Name

todo-integration

Description

Demo project for Spring Boot

Package Name

com.apress.todo

Packaging

Jar

Java Version

8 v

Too many options? Switch back to the simple version,

Generate Project # + «

Figure 11-2. Spring Initializr
387

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

As you can see from the dependencies, we are now using Spring Integration. You can
reuse or copy the ToDo class (see Listing 11-1).

Listing 11-1. com.apress.todo.domain.ToDo.java
package com.apress.todo.domain;

import lombok.Data;
import java.time.LocalDateTime;
import java.util.UUID;

@Data
public class ToDo {

private String id;

private String description;
private LocalDateTime created;
private LocalDateTime modified;
private boolean completed;

public ToDo(){
this.id = UUID.randomUUID().toString();
this.created = LocalDateTime.now();
this.modified = LocalDateTime.now();

}
public ToDo(String description){
this();
this.description = description;
}

public ToDo(String description,boolean completed){
this(description);
this.completed = completed;

388

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Listing 11-1 shows you well-known ToDo class. There’s nothing new about it. Next,

let’s create a ToDoIntegration class that has the first Spring Integration flow using DSL
(see Listing 11-2).

Listing 11-2. com.apress.todo.integration.ToDolntegration.java

package com.apress.todo.integration;

import
import
import
import
import
import
import
import

com.apress.todo.domain.ToDo;
org.springframework.context.annotation.Bean;
org.springframework.context.annotation.Configuration;
org.springframework.integration.channel.DirectChannel;
org.springframework.integration.config.EnableIntegration;
org.springframework.integration.dsl.IntegrationFlow;
org.springframework.integration.dsl.IntegrationFlows;
org.springframework.integration.dsl.channel.MessageChannels;

@EnableIntegration
@Configuration

public

class ToDoIntegration {

@Bean
public DirectChannel input(){

}

return MessageChannels.direct().get();

@Bean
public IntegrationFlow simpleFlow(){

return IntegrationFlows
from(input())
.filter(ToDo.class, ToDo::isCompleted)
.transform(ToDo.class,
toDo -» toDo.getDescription().toUpperCase())
.handle(System.out: :println)

-get();

389

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Listing 11-2 shows a basic example. This example receives a message from the input
channel (a ToDo instance), filters this message if only the ToDo is completed, and then
transforms the message by uppercasing the description and handles it by printing it on
the console. All of this is called an integration flow. But let’s take a deeper look inside.

o IntegrationFlow. Exposes the DSL as a bean (it is required
to have a @Bean annotation). This class is a factory for the
IntegrationFlowBuilder and defines the flow of the integration. It
registers all the components, such as message channels, endpoints,
and so forth.

o IntegrationFlows. This class exposes a fluent API that helps building
the integration flow. It’s easy to incorporate endpoints such as
transform, filter, handle, split, aggregate, route, bridge. With these
endpoints, you can use any Java 8 (and above) lambda expressions as

an argument.

o from. This is an overloaded method where you normally pass the
message source; in this case, we are calling the input method that
returns a DirectChannel instance through the MessageChannels
fluent APL

o filter. This overloaded method populates MessageFilter. The
MessageFilter delegates to a MessageSelector that sends the
message to the filter’s output channel if the selector accepts the
message.

e transform. This method can receive a lambda expression, but
actually receives GenericTransformer<S,T>, where S is the
source and the T is the type that it is converted to. Here we can
use out-of-the-box transformers, like ObjectToJsonTransformer,
FileToStringTransformer, and so forth. In this example, we are the
class type (ToDo) and a lambda is executed; in this case, getting the
ToDo’s description and transforming it to uppercase.

¢ handle. This is an overloaded method that populates
ServiceActivatingHandler. Normally, we can use a POJO that
allows you to receive the message and either return a new message or
trigger another call. This is a useful endpoint that we are going to see
in this chapter and in the next one as a service activator endpoint.
390

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

e (@EnableIntegration. Here we are using a new annotation that
sets up all the Spring Integration beans that we need for our flow.
This annotation registers different beans, like exrrorChannel,
LoggingHandler, taskScheduler, and more. These beans
complement our flow in an integration solution. This annotation is
necessary when using Java configurations, annotations, and DSL in a
Spring Boot application.

Don’t worry too much if this looks different from what you have probably done in the
past with integration solutions. You will get more comfortable with all the examples that
I show you next, and it gets even easier.

Next, let’s create the ToDoConfig class in which a ToDo is sent through the input
channel (see Listing 11-3).

Listing 11-3. com.apress.todo.configToDoConfig.java

package com.apress.todo.config;

import com.apress.todo.domain.ToDo;

import org.springframework.boot.ApplicationRunner;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.messaging.MessageChannel;

import org.springframework.messaging.support.MessageBuilder;

@Configuration
public class ToDoConfig {

@Bean
public ApplicationRunner runner(MessageChannel input){
return args -> {
input.send(
MessageBuilder
.withPayload(new ToDo("buy milk today",true))
.build());

b

391

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Listing 11-3 shows the ApplicationRunner bean, where it is executed when the
application starts (see that the MessageChannel is injected—the one declared in the
ToDoIntegration class). This method is using a MessageBuilder class that offers a fluent
API that creates messages. In this case, the class is using the withPayload method that
creates a new ToDo instance, marked as completed.

Now it’s time to run our application. If you run it, you should see something similar
to the following output.

INFO 39319 - [main] o.s.i.e.EventDrivenConsumer: started simpleFlow.org.
springframework.integration.config.ConsumerEndpointFactoryBean#2

INFO 39319 - [main] c.a.todo.TodoIntegrationApplication : Started
TodoIntegrationApplication in 0.998 seconds (JVM running for 1.422)
GenericMessage [payload=BUY MILK TODAY, headers={id=c245b7a3-3191-641b-
7ad8-1f6eb950f62e, timestamp=1535772540543}]

Remember that a message is about headers and payload, which is why we get the
GenericMessage class with a payload where the final message is “BUY MILK TODAY”
and headers that include the ID and the timestamp. This is the result of applying a filter
and transforming the message.

Using XML

Next, let’s modify the classes to use another type of configuration, an XML, and see how
to configure your integration flow. Create the src/main/resources/META-INF/spring/
integration/todo-context.xml file (see Listing 11-4).

Listing 11-4. src/main/resources/META-INF/spring/integration/todo-context.
xml

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:int="http://www.springframework.org/schema/integration”
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

392

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

http://www.springframework.org/schema/integration http://www.
springframework.org/schema/integration/spring-integration.xsd">

<int:channel id="input" />
<int:filtexr input-channel="input"
expression="payload.isCompleted()"

output-channel="filter" />
<int:channel id="filter" /»
<int:transformer input-channel="filter"
expression="payload.getDescription().toUpperCase()"
output-channel="log" />
<int:channel id="log" />
<int:logging-channel-adapter channel="log" />

</beans>

Listing 11-4 shows the XML version for configuring the ToDo integration flow. I think
that it is very straightforward. If you are using the STS IDE, you can use the drag-and-
drop panel for Spring Integration flows (integration graph), or generate the graph if you
are using IDEA Intelli] (see Figure 11-3).

) spi-contextxm! 52 =

NS

fitter

e
[[
8
Input

4 maping/

| connection
w@p

& Channels

@ Routing

@ Transformation
@ Endpoints

Source | Namespaces _Ovﬂew beans |integration | integration-graph | Beans Graph
Figure 11-3. Spring integration-graph panel from STS

Figure 11-3 shows the integration-graph panel, where you can create your flows
graphically by using the drag-and-drop components. This feature is only for the STS
IDE. IDEA Intelli] generates a graph based on the XML (right-click).

393

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

As you can see in Figure 11-X, there are channels, routing, transformations,
endpoints, and more. Figure 11-3 is actually the translation of the XML; in other words,
you can start by using the XML, and if you switch to the integration graph, it shows you
what you have so far, and vice versa. You can use this feature and switch to the source to
have the XML. It is a very cool way to create flows, don’t you think?

To run this example, it is necessary to comment out all the bean declarations from the
ToDoIntegration class. Then you need to use the @ImportResource annotation to indicate
where is the XML you created is located. It should look like the snippet shown in Listing 11-5.

Listing 11-5. com.apress.todo.integration. ToDolntregration.java - v2
package com.apress.todo.integration;

import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.ImportResource;
import org.springframework.integration.config.EnableIntegration;

@ImportResource("META-INF/spring/integration/todo-context.xml")
@EnableIntegration

@Configuration

public class ToDoIntegration {

}

Listing 11-5 shows the new version of the ToDoIntegration class (there is practically
no code). We added the @ImportResource annotation. This tells Spring Boot that there
is a configuration file that needs to be processed. If you run it, you should have the
following output.

INFO 43402 - [main] o.s.i.channel.PublishSubscribeChannel : Channel
"application.errorChannel’ has 1 subscriber(s).

2018-09-01 07:23:20.668 INFO 43402 --- [main] o.s.i.endpoint.
EventDrivenConsumer : started _org.springframework.integration.
errorlLogger

INFO 43402 - [main] c.a.todo.TodoIntegrationApplication : Started

TodoIntegrationApplication in 1.218 seconds (JVM running for 1.653)
INFO 43402 - [main] o.s.integration.handler.LoggingHandler : BUY MILK TODAY

394

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Using Annotations

Spring Integration has integration annotations that help you use POJO (Plain Old Java
Object) classes, so you can add more business logic to your flow and have a little more
control.

Let’s modify the ToDoIntegration class to look like Listing 11-6.

Listing 11-6. com.apress.todo.integration. ToDolntegration.java - v3
package com.apress.todo.integration;

import com.apress.todo.domain.ToDo;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.integration.annotation.Filter;

import org.springframework.integration.annotation.MessageEndpoint;
import org.springframework.integration.annotation.ServiceActivator;
import org.springframework.integration.annotation.Transformer;
import org.springframework.integration.channel.DirectChannel;
import org.springframework.integration.config.EnableIntegration;
import org.springframework.integration.dsl.channel.MessageChannels;
import org.springframework.messaging.MessageChannel;

@EnableIntegration
@Configuration
public class ToDoIntegration {

@Bean
public MessageChannel input(){
return new DirectChannel();

}

@Bean
public MessageChannel toTransform(){
return new DirectChannel();

395

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

@Bean
public MessageChannel tolog(){
return new DirectChannel();

}

@MessageEndpoint
class SimpleFilter {
@Filter(inputChannel="input"
,outputChannel="toTransform")
public boolean process(ToDo message){
return message.isCompleted();

}

@MessageEndpoint
class SimpleTransformer{
@Transformer(inputChannel="toTransform'
;outputChannel="toLog")
public String process(ToDo message){
return message.getDescription().toUpperCase();

}

@MessageEndpoint
class SimpleServiceActivator{
Logger log = LoggerFactory
.getLogger(SimpleServiceActivator.class);
@ServiceActivator(inputChannel="tolLog")
public void process(String message){
log.info(message);

Listing 11-6 shows you the same flow as before, where now we are using integration
annotations. Also take a look at the inner classes to facilitate the example. Let’s see this

code in detail.

396

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

o MessageChannel. This is an interface that defines methods for
sending messages.

e DirectChannel. This is a message channel that invokes a single
subscriber for each message sent. It is normally used when you don’t
require any message queue.

e (@MessageEndpoint. This is a useful annotation that marks a class as
the endpoint.

e @Filter. This annotation marks a method to do the functionality of a
message filter. Normally, you need to return a boolean value.

o @Transformer. This annotation marks a method to do the
functionality of transforming a message, its header, and/or payload.

e @ServiceActivator. This annotation marks a method capable of
handling a message.

To run this example, comment out the @ImportResource annotation. That’s it. You
should have logs similar to the following output.

INFO 43940 - [main] c.a.todo.TodoIntegrationApplication : Started
TodoIntegrationApplication in 1.002 seconds (JVM running for 1.625)
INFO 43940 - [main] i.ToDoIntegration$SimpleServiceActivator : BUY MILK
TODAY

Using JavaConfig

JavaConfig is very similar to what we just did. What we are going to do next is change the
last part of the flow. So, comment out the SimpleServiceActivator inner class message
endpoint and replace it with the following code.

@Bean
@ServiceActivator(inputChannel = "tolLog")
public LoggingHandler logging() {
LoggingHandler adapter = new
LoggingHandler(LoggingHandler.Level.INFO);

397

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

adapter.setLoggerName("SIMPLE_LOGGER");

adapter.setlLogExpressionString
("headers.id + ': ' + payload");

return adapter;

This code creates a LoggingHandler object, which is actually the same object that
the XML generates from the logging-channel-adapter tag. It logs the SIMPLE_LOGGER
message with the header’s ID and the payload, in this case, the “BUY MILK TODAY”
message.

Again, I know that this is just a trivial example, but at least it gives you an idea of
how Spring Integration works and how it can be configured. Clients often ask me if it is
possible to mix configurations. Absolutely! We are going to see that very soon.

ToDo with File Integration

Next, let’s see how to integrate file reading. It is a very common task to integrate
systems. This is one of the use cases most commonly used. Let’s start by creating a
ToDoProperties class that helps external properties read the path and the name of the
file (see Listing 11-7).

Listing 11-7. com.apress.todo.configToDoProperties.java
package com.apress.todo.config;

import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;

@Data
@ConfigurationProperties(prefix="todo")
public class ToDoProperties {

private String directory;
private String filePattern;

398

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

As you can see in Listing 11-7, there is nothing new. Because this app reads from a
file, it is necessary to create a converter that reads a String entry, parses it, and returns a
new ToDo instance. Create the ToDoConverter class (see Listing 11-8).

Listing 11-8. com.apress.todo.integration.ToDoConverter.java
package com.apress.todo.integration;

import com.apress.todo.domain.ToDo;
import org.springframework.core.convert.converter.Converter;
import org.springframework.stereotype.Component;

import java.util.list;
import java.util.stream.Collectors;
import java.util.stream.Stream;

@Component
public class ToDoConverter implements Converter<String, ToDo> {
@0verride
public ToDo convert(String s) {
List<String> fields = Stream.of(s.split(",")).map(String::trim).
collect(Collectors.tolist());
return new ToDo(fields.get(0),Boolean.parseBoolean(fields.get(1)));

There is nothing special in Listing 11-8. The only requirement here is to implement
the generic Converter interface. I'll talk about it in the next section. Another necessary
class is a handler that processes the ToDo instance. Create the ToDoMessageHandler class
(see Listing 11-9).

Listing 11-9. com.apress.todo.integration. ToDoMessageHandler.java
package com.apress.todo.integration;

import com.apress.todo.domain.ToDo;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.stereotype.Component;

399

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

@Component
public class ToDoMessageHandler {
private Logger log = LoggerFactory.getlLogger(ToDoMessageHandler.class);

public void process(ToDo todo){
log.info(">>> {}", todo);
// More process...

As Listing 11-9 is a simple POJO class; a method that receives the ToDo instance.
Next, let’s create the main flow. Create the ToDoFileIntegration class (see
Listing 11-10).

Listing 11-10. com.apress.todo.integration.ToDoFilelntegration.java
package com.apress.todo.integration;

import com.apress.todo.config.ToDoProperties;

import org.springframework.boot.context.properties.
EnableConfigurationProperties;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.dsl.Pollers;

import org.springframework.integration.dsl.Transformers;
import org.springframework.integration.file.dsl.Files;
import org.springframework.integration.file.splitter.FileSplitter;

import java.io.File;

@EnableConfigurationProperties(ToDoProperties.class)
@Configuration
public class ToDoFileIntegration {

private ToDoProperties props;
private ToDoConverter converter;

400

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

public ToDoFileIntegration(ToDoProperties props,
ToDoConverter converter){
this.props = props;
this.converter = converter;

}

@Bean
public IntegrationFlow fileFlow(){
return IntegrationFlows
«from(
Files.inboundAdapter(
new File(this.props.getDirectory()))
.preventDuplicates(true)
.patternFilter(this.props.getFilePattern())
, e =
e.poller(Pollers.fixedDelay(5000L))
)
.split(Files.splitter().markexs())
filter(
p -> !(p instanceof FileSplitter.FileMarker))
.transform(Transformers.converter(converter))

.handle("toDoMessageHandler","process")
-get();

Listing 11-10 shows the main integration flow, which reads a file’s contents (from the
file system), converts the content into an object (in this case, into a ToDo object using the
ToDoConverter class), and handles the message for any extra logic. Let’s analyze this in detail.

o from. This is an overloaded method where you normally pass the
MessageSource; in this case, we are passing two values: Files.
inboundAdapter (that I'll explain next) and a consumer that receives
SourcePollingChannelAdapterSpec; in this case, we are using a
lambda expression to poll in the file system for new files every 5
seconds by using the Pollers class.

401

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

o Files. This is a protocol adapter that works out of the box; you just
need to configure it. This adapter is used to pick up files from the file
system. The Files class belongs to the Spring Integration Java DSL
and provides several useful methods:

e 1inboundAdapter. This adapter brings a fluent API that returns
FileInboundChannelAdapterSpec that has methods such as

o preventDuplicates. This means that you can avoid reading the
same file more than one time by setting this to true.

o patternFilter. This looks for files that name patterns.

In this example, we read from the directory (from the todo.
directory property value) and the name based on the pattern
(from the todo.file-pattern property value), both from the
ToDoProperties class.

o split. This method call indicates that the parameter provided (it
could be a bean, service, handler, etc.) can split a single message or
message payload and produce multiple messages or payloads; in this
case, we are using FileMarker , which delimits the file data when
there is a sequential file process.

o filter. Because we are using markers to see each message start and
end, we receive the content of the file as a FileMarker start, then the
actual content and finally the FileMarker end, so that’s why we are
saying here, “pass me the payload or content, not the marker.”

o transform. Here we are using a Transformers class with several
implementations for transforming a message, and the converter
(a custom converter, the ToDoConverter class, see Listing 11-8).

e handle. Here we are using a class that handles the message
by passing as first parameter the name of the bean
(toDoMessageHandler) and the method that takes care of the process
(look at the code in the ToDoMessageHandler class, see Listing 11-9)
of the message. The ToDoMessageHandler class is a POJO marked
using the @Component annotation.

402

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Note Spring Integration Java DSL supports (just for now) the following protocol
adapter classes: AMQP, JMS, Files, SFTP, FTP, HTTP, Kafka, Mail, Scripts, and Feed.
These classes are in the org.springframework.integration.dsl.* package.

In the application.properties, add the following content.

todo.directory=/tmp/todo
todo.file-pattern=list.txt

Of course, you can add any directory and/or file pattern. The list.txt can be
anything you want. If you reviewed ToDoConverter, it’s expecting only two values: the
description and the boolean value. So, the 1ist.txt file is like this:

buy milk today, true
read a book, false

go to the movies, true
workout today, false
buy some bananas, false

To run the code, comment out all the code from the ToDoIntegration class. Once
you run it, you should have something similar to the following output.

INFO 47953 - [main] c.a.todo.TodoIntegrationApplication

Started TodoIntegrationApplication in 1.06 seconds (JVM running for 1.633)
INFO 47953 - [ask-scheduler-1] c.a.todo.integration.ToDoMessageHandler

>>> ToDo(id=3037a45b-285a-4631-9cfa-f89251e1a634, description=buy milk
today, created=2018-09-01T19:29:38.309, modified=2018-09-01T19:29:38.310,
completed=true)

INFO 47953 - [ask-scheduler-1] c.a.todo.integration.ToDoMessageHandler

>>> ToDo(id=7eb0ae30-294d-49d5-92e2-d05f88a7befd, description=read a

book, created=2018-09-01T19:29:38.320, modified=2018-09-01T19:29:38.320,
completed=false)

INFO 47953 - [ask-scheduler-1] c.a.todo.integration.ToDoMessageHandler

>>> ToDo(id=5380decb-5a6f-4463-b4b6-1567361c37a7, description=go to the
movies, created=2018-09-01T19:29:38.320, modified=2018-09-01T19:29:38.320,
completed=true)

403

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

INFO 47953 - [ask-scheduler-1] c.a.todo.integration.ToDoMessageHandler

>>> ToDo(id=ac34426f-83fc-40ae-b3a3-0a816689a99a, description=workout
today, created=2018-09-01T19:29:38.320, modified=2018-09-01T19:29:38.320,
completed=false)

INFO 47953 - [ask-scheduler-1] c.a.todo.integration.ToDoMessageHandler

>>> ToDo(id=4d44b9a8-92a1-41b8-947c-8c872142694c, description=buy some
bananas, created=2018-09-01T19:29:38.320, modified=2018-09-01T19:29:38.320,
completed=Ffalse)

As you can see, it is a very simple way to integrate with files, read its content, and do
any business logic with the data.

Remember that previously I told you that you could mix the way that you can
configure Spring Integration? So, what do you need to do if you want to use an actual
annotation to handle the message? You can use the @ServiceActivator annotation as
part of the configuration.

@ServiceActivator(inputChannel="input")
public void process(ToDo message){

}

To use this service activator method, you need to change the flow. Replace this line:
handle("toDoMessageHandler", "process")

With this one:
.channel("input")

If you re-run the example, you get the same results. Did you realize that there is no
input channel defined? The best part is that Spring Integration figures out that you need
this channel, and it creates one behind the scenes for you.

It requires a complete book to explain all the Spring Integration goodies; of course,
this book is a primer—a basic introduction on the power of integrating multiple systems.

404

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Spring Cloud Stream

So far, you have seen all the messaging techniques that are available, and that using the
Spring Framework and Spring Boot makes it easy for developers and architects to create
very robust messaging solutions. In this section, we take a new step forward; we enter into
cloud-native application development, which is an introduction for the following chapter.

In the next section, I talk about Spring Cloud Stream and how this new technology
can helps us write message-driven microservices applications.

Spring Cloud

Before I start talking about Spring Cloud Stream internals and usage, let’s talk about its
umbirella project, Spring Cloud.

Spring Cloud is a set of tools that allows developers to create applications that use
all the common patterns in distributed systems: configuration management, service
discovery, circuit breakers, smart routing, micro-proxy, control bus, global locks,
distributed sessions, service-to-service calls, distributed messaging, and much more.

Based on Spring Cloud, there are several projects, including Spring Cloud Config,
Spring Cloud Netflix, Spring Cloud Bus, Spring Cloud for Cloud Foundry, Spring Cloud
Cluster, Spring Cloud Stream, and Spring Cloud Stream App Starters.

If you want to start with any of these technologies, you can add the following sections
and dependencies to your pom.xml file if you are using Maven.

o Add the <dependencyManagement/> tag with a GA release; for
example

<dependencyManagement>
<dependencies>
<dependency>
<groupld>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>Finchley.SR1</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

405

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

e Add the technologies you want to use in the <dependencies/> tag; for

example,

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

<!-MORE Technologies here -->
</dependencies>

If you are using Gradle, you can add the following content to your build. gradle file.

ext {
springCloudVersion = 'Finchley.SR1'
}
dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-dependencies:${spr
ingCloudVersion}"
}
}
dependencies {
/1 ...
compile ('org.springframework.cloud:spring-cloud-starter-stream-
rabbit")
/1 ...
}

If you take a deep look into the pom.xml file of a Spring Cloud annotation, you see
that the naming convention is now spring-cloud-starter-<technology to use>.Also
note that we are adding a dependency management tag that allows you to deal with
transitive dependencies and library version management.

406

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Spring Cloud Stream

It’s time to talk about Spring Cloud Stream. Why am I not covering other technologies?
What is special about it? Well, Spring Cloud Stream is a lightweight messaging-driven
microservices framework based on Spring Integration and Spring Boot (providing the
opinionated runtime for easy configuration). You can create enterprise-ready, messaging
and integration solution applications with ease. It provides a simple declarative model
for sending and receiving messages using either RabbitMQ or Apache Kafka.

I think one of the most important features of Spring Cloud Stream is the decoupling
of messaging between producers and consumers by creating bindings that can be used
out of the box. In other words, you don’t need to add any broker-specific code to your
application for producing or consuming messages. Add the required binding (I'll explain
this later on) dependencies to your application, and Spring Cloud Stream takes care of
the messaging connectivity and communication.

So, let’s go ahead and look at the main components of Spring Cloud Stream and
learn how to use this framework.

Spring Cloud Stream Concepts

The following are the main components of Spring Cloud Stream.

o Application model. The application model is a middleware-neutral
core, which means that the application communicates using input
and output channels to external brokers (as a way of transporting
messages) through binder implementations.

e Binder abstraction. Spring Cloud Stream provides at the Kafka
and RabbitMQ binder implementations. This abstraction makes it
possible for Spring Cloud Stream apps to connect to the middleware.
But, how does this abstraction know about the destinations? It can
dynamically choose at runtime the destinations based on channels.
Normally, we need to provide this through the application.
properties file as spring.cloud.stream.bindings. [input|ouput].
destination properties. I'll discuss this when we take a look at the
examples.

407

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

o Persistent Publish/Subscribe. The application communication is
through the well-known Publish/Subscribe model. If Kafka is used, it
follows its own Topic/Subscriber model, and if RabbitMQ is used, it
creates a topic exchange and the necessary bindings for each queue.
This model reduces any producer and consumer complexity.

o Consumer groups. You find out that your consumers probably need to
be able to scale up at some point. That’s why scalability is done using
the concept of consumer groups (this is similar to the Kafka consumer
groups feature), where you can have multiple consumers in a group for
aload-balancing scenario, making the scale very easy to set up.

o Partitioning support. Spring Cloud Stream supports data partitions,
which allows multiple producers to send data to multiple consumers
and ensure that common data is processed by the same consumer
instances. This is a benefit for performance and consistency of data.

e Binder API. Spring Cloud Stream provides an API interface— a
Binder SPI (service provider interface) where you can extend the core
by modifying the original code, so it’s easy to implement a specific
binder like JMS, WebSockets, and so forth.

In this section, we talk more about the programming model and the binders. If you
want to learn more about the other concepts, take a look at the Spring Cloud Stream
reference. The idea is to show you how to start creating event-driven microservices with
Spring Cloud Stream. To show you what we are going to cover, take a look at Figure 11-4.

N’

A

Spring Cloud Stream

Application Binder | Middleware

outputs

© | &

J

Figure 11-4. Spring Cloud Stream application
408

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Spring Cloud Stream Programming

Looking at Figure 11-4, what do you need to create a Spring Cloud Stream app?

<dependencyManagement/>. You need to add this tag with the latest

Spring Cloud library dependencies.

Binder. You need to choose which kind of a binder you need.

Kafka. If you choose Kafka as your binder, then you need to
add the following dependency in your pom.xml if you are using
Maven.

<dependency>
<groupIld>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-stream-kaftka</artifactId>
</dependency>

If you are using Gradle, then you need to add the following
dependency in the build.gradle file.

compile('org.springframework.cloud:spring-cloud-starter-stream-
katka')

RabbitMQ. If you choose RabbitMQ as your binder, then you
need to add the following dependency in your pom.xml if you are
using Maven.

<dependency>
<groupIld>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

If you are using Gradle, then you need to add the following
dependency in the build.gradle file.

compile('org.springframework.cloud:spring-cloud-starter-stream-
rabbit")

409

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Have Kafka or RabbitMQ up and running. Can you use both at the same time? Yes,
you can. You can configure them in the application.properties file.

e (@EnableBinding. This is a Spring Boot application, so adding the
@EnableBinding is enough to convert the app to a Spring Cloud Stream.

In the following sections, we send and receive messages from one application to
another using RabbitMQ as a transport layer without knowing any specifics about the
brokers’ API or how to configure to producer or consumer messages.

Spring Cloud Stream uses channels (input/output) as a mechanism to send
and receive messages. A Spring Cloud Stream application can have any number of
channels, so it defines two annotations, @Input and @0utput, which identify consumers
and producers. Normally, a SubscribableChannel class is marked with the @Input
annotation to listen to incoming messages, and the MessageChannel class is marked with
@0utput to send messages.

Remember that I told you that Spring Cloud Stream is based on Spring Integration?

If you don’t want to deal directly with these channels and annotations, Spring
Cloud Stream simplifies things by adding three interfaces that cover the most common
messaging use cases: Source, Processor, and Sink. Behind the scenes, these interfaces
have the channels (input / output) that your application needs.

e Source. A Source is used in an application where you are ingesting
data from an external system (by listening into a queue, a REST call,
file system, database query, etc.) and sending it through an output
channel. This is the actual interface from Spring Cloud Stream:

public interface Source {
String OUTPUT = "output”;

@Output(Source.OUTPUT)
MessageChannel output();

e Processor. You can use a Processor in an application when you
want to start listening for new incoming messages from the input
channel, make processing to the message received (enhancement,

410

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

transformation, etc.), and send a new message to the output channel.
This is the actual interface in Spring Cloud Stream:

public interface Processor extends Source, Sink {

}

o Sink.You can use a Sink application when you want to start listening
for anew incoming message from the input channel, do processing,
and end the flow (saving data, fire a task, log into the console, etc.).
This is the actual interface in Spring Cloud Stream:

public interface Sink {

String INPUT = "input";

@Input(Sink.INPUT)
SubscribableChannel input();
}
Figures 11-5 and 11-6 are the models that we work with.
source sink
s ~\ 4 A
Spring Cloud _ : Spring Cloud
Stream % Rz'abb|t &ur Stream
. Binder L
Application Application
_©

Figure 11-5. Source» Sink
411

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

source processor

C C

Spring Cloud Spring Cloud
Stream Stream
Application Application

@ ©

Spring Cloud
Stream
Application

©

Figure 11-6. Source » Processor » Sink

ToDo App with Spring Cloud Stream

The purpose of this project is to show how you can create a Source interface and send a
message through its output channel; a Processor interface and how to receive and send
messages from the input and output channels respectively; and a Sink interface and how
to receive messages from the input channel. I'm showing what Figure 11-6 describes, but
taking each Stream app at a time.

Right now, the communication between these applications is manual, meaning
that we need to do some steps in between because I want you to learn how each of the
applications work. In the next section, we see how the whole flow works.

You can start from scratch or you can follow along in the next sections to learn what
you need to do. If you are starting from scratch, then you can go to Spring Initializr and
add the following values to the fields.

e Group: com.apress.todo

o Artifact: todo-cloud

e Name: todo-cloud

o Package Name: com.apress.todo

¢ Dependencies: Cloud Stream, Lombok

412

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

You can select either Maven or Gradle as the project type. Then you can press the
Generate Project button, which downloads a ZIP file. Uncompress it and import the
project in your favorite IDE (see Figure 11-7).

o
(]
o
2

=

e0e® :n} [T) i start.spring.io

SPRING INITIALIZR

Generate a waeneoiec ¢ With == ¢ and Spring Boot 2o«

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies
com.apress.toedo Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies
Name

todo-cloud

Description

Demo project for Spring Boot

Package Name

com.apress.toedo

Packaging

Jar

Java Version

8 s

Too many options? Switch back to the simple version.

Generate Project % + &

Figure 11-7. Spring Initializr

413

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

You can use the ToDo domain class from the previous todo-integration project (see
Listing 11-1).

Source

We are going to start by defining a Source. Remember that this component has an output
channel. Create the ToDoSource class. It should look like Listing 11-11.

Listing 11-11. com.apress.todo.cloud.ToDoSource.java
package com.apress.todo.cloud;

import com.apress.todo.domain.ToDo;

import org.springframework.cloud.stream.annotation.EnableBinding;

import org.springframework.cloud.stream.messaging.Source;

import org.springframework.context.annotation.Bean;

import org.springframework.integration.annotation.InboundChannelAdapter;
import org.springframework.integration.core.MessageSource;

import org.springframework.messaging.support.MessageBuilder;

@EnableBinding(Source.class)
public class ToDoSource {

@Bean
@InboundChannelAdapter(channel=Source.OUTPUT)
public MessageSource<ToDo» simpleToDo(){
return () -» MessageBuilder
.withPayload(new ToDo("Test Spring Cloud Stream"))
.build();

Listing 11-11 shows the simplest Source stream application that you can have. Let’s
take a look.

e @EnableBinding. This annotation enables this class as a Spring Cloud
Stream application, and it enables the necessary configuration for
sending or receiving message through the binder provided.

414

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Source. This interface marks the Spring Cloud Stream app as a
Source stream. It creates the necessary channels; in this case, the
output channel to send messages to the binder provided.

@InboundChannelAdapter. This annotation is part of the Spring
Integration framework. It polls over the simpleToDo method every
second, which means that a new message is sent every second. You
can actually change the frequency and the number of messages by
adding a poller and modifying the default settings; for example,

@InboundChannelAdapter(value = Source. OUTPUT, poller =
@Poller(fixedDelay = "5000", maxMessagesPerPoll = "2"))

The important part in this declaration is the channel, where in this
case is pointing to Source.OUTPUT means that it uses the output
channel (MessageChannel output()).

MessageSource. This is an interface that sends back Message<T>,
a wrapper that has payload and headers.

MessageBuilder. You are already familiar with this class, which sends
aMessageSource type; in this case, we are sending a ToDo instance
message.

Before you run the example, remember that it is necessary to have the binder

dependency, and because we are going to use RabbitMQ, it is necessary to add to your

pom.xml file if you are using Maven.

<dependency>
<groupIld>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

If you are using Gradle, add the following dependency to your build.gradle file.

compile('org.springframework.cloud:spring-cloud-starter-stream-rabbit")

Make sure that you have RabbitMQ up and running. Next, run the example. You

probably won’t see much, but it is actually doing something. Now, we go into RabbitMQ.

415

CHAPTER 11

SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

1. Open the RabbitMQ Web Management in a browser. Go to
http://localhost:15672. The username is guest and the
password is guest.

2. Go to the Exchanges tab (see Figure 11-8).

® < im] all®lo
BRabbitVI(
Overview Ci tions Ch
Exchanges

+ All exchanges (9)
Pagination

Page (1 %) of 1 - Filter:

Name Type
(AMQP default) direct
amgq.direct direct
amgq.fanout fanout
amgq.headers headers
amg.match headers

amgq.rabbitmgq.log topic
amaq.rabbitmg.trace topic
amaq.topic topic

output topic
} Add a new exchange

HTTP API Command Line

Features M

D

(=l = i = I =

localhost < th a
. ! User: guest Log out
Cluster: rabbit@pivotal-es (change)
RabbitMQ 3.6.6, Erlang 19.2.3
Queues Admin Visualiser
~1 Regex (?)(?) Displaying 9 items , page size up to: 160

rate in M rate out +/-

1.0/s 0.00/s

Update

Last update: 2017-03-07 20:05:12

Figure 11-8. RabbitMQ Exchanges tab

416

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Note that an output (a topic Exchange) was created and the
message rate is 1.0/s.

3. Next, let’s bind this exchange to a queue; but first, let’s create a
queue. Go to the Queues tab and create a new queue named my -
queue (see Figure 11-9).

o0 ® < i} O ®O localhost < th (=)
. i User: guest |
E R a b b | t [\ﬂ () Cluster: rabbit@pivotal-es (change) og ot
RabbitMQ 3.6.6, Erlang 19.2.3
Overview C ti Ch I Exchang Admin Visualiser

litsd

Queues

b All queues (0)
... NO gueues ...

+ Add a new queue

Name: my-queue

Durability; [Durable 7
Auto delete: (?) [(No D)
Arouments: - (s)

Add Message TTL (7) | Auto expire (7) | Max length (7] | Max length bytes (?)
Dead letter exchange (7) | Dead letter routing key (7] | Maximum pricrity (7)

Add queue

HTTP API Command Line Update

Last update: 2017-03-07 20:06:31

Figure 11-9. Create a Queue: my-queue

417

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

4. Once the queue is created, it appears in the list. Click my-queue.
Go to the Bindings section and add the binding. See Figure 11-10
for the values.

Queue my-queue

b Overview
» Consumers

v Bindings

From Routing key Arguments

(Default exchange binding)

N

This queue
Add binding to this queue
From exchange: output
Routing key: #
Arguments: .

£

Figure 11-10. Bindings

5. Fill out the From Exchange field with the value output (this is
the name of the exchange). The Routing Key field has the value #,
which allows any message to get into my-queue.

6. After you bind the output exchange to my-queue, you start seeing
several messages. Open the Overview panel (see Figure 11-11).

418

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

< I Y[® | O Iocalhost [«

kRabbitMO T . AT

Overview C ti Ch I Exchanges Admin Visualiser

Queue my-queue
v Overview

Queued messages (chart: last minute) (?)

40
Read m 30

30 Y

20 Unacked o

10

0 . 30
20:07:00 20:07:10 20:07:20 20:07:30 20:07:40 20:07:50 Tow) -
Message rates (chart: last minute) (?)

1.5 T .

s Publish M 1.0/s

1.0/s
e / Confirm 0.00/s
0.0/s

20:07:00 20:07:10 20:07:20 20:07:30 20:07:40 20:07:50 PUb(I;ir; W 0.00/s
Publish
(Out) W 0.00/s

Redelivered W 0.00/s

Acknowledge W 0.00/s
Return = M 0.00/s

Disk read M 0.00/s

Figure 11-11. Overview

7. Let’s review a message by opening the Get Messages panel.
You can get any number of messages and see its contents (see
Figure 11-12).

419

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Get messages

Warning: getting messages from a queue is a destructive action. ?
Ack Mode: | Nack message requeue true ¥
Encoding:; | Auto string / base64 5 | ?

Messages: 1

Message 1
The server reported 15 messages remaining.

Exchange output

Routing output

Key
Redelivered o
Properties priority: 0
delivery_mode: 2
headers: contentType: applicationfjson
content_type: application/json
Payloa

527 bytes {"id":"48655e81-23ae-4dc4-9b30-bd4bdh1567c5", "description” : "Test Spring Cloud Stream",

Figure 11-12. Get messages

If you chose several messages, take a look at the payload. You have a message every
second. (Note that the format by default is a JSON payload. Also note that the message
has properties, such as headers with contentType: application/jsonand delivery
mode: 2, which means that the message is being persisted). This is how Spring Cloud
Stream and its binder connect to RabbitMQ to publish messages.

Ifyou take a look at the message, you see that the dates are exposed with all the
details.

{"id":"68d4100a-e706-4a51-a254-d88545ffe7ef", "description”:"Test Spring
Cloud Stream","created":{"year":2018,"month":"SEPTEMBER", "hour":21, "minute
":9,"second":5,"nano" :451000000, "monthValue":9, "dayOfMonth":2, "dayOfiWeek":
"SUNDAY", "dayOfYear":245, "chronology":{"id":"IS0","calendarType": "is08601
"}},"modified":{"year":2018, "month":"SEPTEMBER", "hour":21,"minute":9,"seco
nd":5,"nano":452000000, "monthValue":9, "dayOfMonth":2, "dayOflWeek" : " SUNDAY" , "
dayOfYear":245,"chronology" :{"id":"IS0","calendarType":"is08601"}},"complet
ed":false}

420

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

You can see a very verbose date serialization, but you can change this by adding the
following dependency in the pom.xml file if you are using Maven.

<dependency>
<groupId>com.fasterxml.jackson.datatype</groupld>
<artifactId>jackson-datatype-jsr310</artifactId>
</dependency>

If you are using Gradle, add the following dependency to the build.gradle file.
compile('com.fasterxml.jackson.datatype:jackson-datatype-jsr310")
Re-run the app. Now you should see the following messages.

"id":"37be2854-91b7-4007-bf3a-d75c805d3a0a", "description”:"Test Spring
Cloud Stream","created":"2018-09-02T21:12:12.415","modified":"2018-09-
02T21:12:12.416","completed” : false}

Processor

This part uses a Listener for the channel input (where all new incoming messages
arrive). It gets a ToDo message. It converts into an uppercase description, marks the ToDo
as completed, and then sends it to the output channel.

Create the ToDoProcessor class. It should look like Listing 11-12.

Listing 11-12. com.apress.todo.cloud.ToDoProcessor.java
package com.apress.todo.cloud;

import com.apress.todo.domain.ToDo;

import org.slf4j.Logger;

import org.slf4j.lLoggerFactory;

import org.springframework.cloud.stream.annotation.EnableBinding;
import org.springframework.cloud.stream.annotation.StreamListener;
import org.springframework.cloud.stream.messaging.Processor;
import org.springframework.messaging.handler.annotation.SendTo;

import java.time.LocalDateTime;

421

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

@EnableBinding(Processor.class)
public class ToDoProcessor {

private Logger log = LoggerFactory.getlLogger(ToDoProcessor.class);

@StreamListener(Processor.INPUT)
@SendTo(Processor .OUTPUT)

public ToDo transformToUpperCase(ToDo message) {
log.info("Processing >>> {}", message);
ToDo result = message;
result.setDescription(message.getDescription().toUpperCase());
result.setCompleted(true);
result.setModified(LocalDateTime.now());
log.info("Message Processed >>> {}", result);
return result;

Listing 11-12 shows a simple Processor stream. Let’s review it.

e (@EnableBinding. This annotation enables this class as a Spring
Cloud Stream application. It enables the necessary configuration for
sending or receiving messages through the binder provided.

e Processor. This interface marks the Spring Cloud Stream app as a
Processor stream. It creates the necessary channels; in this case, the
input (for listening to new incoming messages) and output channels
(for sending messages to the binder provided).

e @StreamListener. This annotation is part of the Spring Cloud Stream
Framework, very similar to @RabbitListener or @ImsListener. It
listens for new incoming messages in the Processor.INPUT channel
(SubscribableChannel input()).

e @SendTo. You already know this annotation; it is the same one used
in a previous chapter. Its task is the same; you can see it as a reply or
as a producer. It sends a message to the Processor.0OUTPUT channel
(MessageChannel output()).

422

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

I think this is a trivial but good example of what you can do with a Processor stream.
So before you run it, make sure to comment out the @EnableBinding annotation from
the ToDoSource class, and delete the output exchange and the my-queue queue.

Run the example. Again, the application is not doing too much, but let’s go to
RabbitM(Q web management.

1. Go toyour browser and hit http://localhost:15672 (username:
guest, password: guest).

2. Click the Exchanges tab, and you see the same output exchange and
a new input exchange being created. Remember that the Processor
stream uses input and output channels (see Figure 11-13).

eDe < (im] ajl®jo localhost [th (=1}

. e User: guest Log out
a [t \ Cluster: rabbit@pivotal-es (change)

RabbitMQ 3.6.6, Erlang 19.2.3
Overview C i Ch I Queues Admin Visualiser

Exchanges

+ All exchanges (10)

Pagination
Page (1_¢] of 1 - Filter: Regex (7)(7) Displaying 10 items , page size up to: 100
Name Type Features M ge rate in M ge rate out +/-
(AMQP default) direct D
amgq.direct direct D
amgq.fanout fanout D
amg.headers headers D
amgq.match headers D
amgq.rabbitmgq.log topic D1
amgq.rabbitmgq.trace topic DI
amgq.topic topic
input topic
output topic
» Add a new exchange
HTTP API | Command Line Update

Last update: 2017-03-07 21:25:33

Figure 11-13. Exchanges

423

CHAPTER 11

SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Note that now there is no message rate in any of the new exchanges.

3. Next, go to the Queues tab. You notice a new queue named input.
anonymous and random text has been created (see Figure 11-14).

YESEY His) oSli®ilo

BhRabbitMC

Overview C Ch I Exchang Admin

Queues
= All queues (1)
Pagination

Page (1_¢] of 1 - Filter:

Regex (7)(?)

Overview

Name Features State

input.anonymous.3UXb_awZTQWS7EwmnllyIQ Excl idle
AD

¥ Add a new queue

HTTP API | Command Line

localhost

User: guest
Cluster: rabbit@pivotal-es (change)
RabbitMQ 3.6.6, Erlang 19.2.3

Log out

Visualiser

Displaying 1 item , page size up to: 100

Messages Message rates

Ready Unacked Total ack

incoming deliver /
get

0 0 0

Update

Last update: 2017-03-07 21:16:40

+-

Figure 11-14. Queues

That'’s it. The ToDoProcessor stream creates the output exchange
and the input.anonymous.* queue, which means that the stream
is connected to the binder, in this case, RabbitMQ. Now’ the
question is how to send a message, right? There are different
ways to do it: emulate a message using the RabbitMQ or do it

programmatically. We are going to do both.

424

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

We are going to create a queue named my-queue and bind it to the
output, very similar to what we did in the Source stream part.

4. Go to the Queues tab and create a queue named my-queue and
bind it to the output exchange with a routing key, #. This is similar
to steps 2 and 3 from the Source stream. Also note that the input.
anonymous.* queue has a binding to the input exchange.

5. Now, we are going to send a message using the input exchange.
Go to the Exchanges tab. Click the input exchange and select the
Publish Message panel.
6. Enter the following in the Payload field.
"id":"37be2854-91b7-4007-bf3a-d75c805d3a0a", "description”:
"Test Spring Cloud Stream","created":"2018-09-02T21:12:12.415",
"modified":"2018-09-02T21:12:12.416","completed":false}

Enter content-type=application/json in the Properties field (see
Figure 11-15).

Publish message

Routing key:
Delivery mode: | 1- Non-persistent 3

Headers: ? = String
Properties: 7 content_type = application/json

Payload: {"id":"37be2854-91b7-4007-bf3a-d75c805d3a0a","description™:"Test Spring Cloud Stream","created":"2018-09-
02T21:12:12.415","modified":"2018-09-02T21:12:12.416" "completed":false}

Publish message

Figure 11-15. Publish message

425

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Then click the Publish Message button. It should appear as a
message saying “Message published.”

7. Next, take a look at the app’s logs. You should have something
similar to the following output.

Processing >>> ToDo(id=37be2854-91b7-4007-bf3a-
d75c805d3a0a, description=Test Spring Cloud Stream,
created=2018-09-02T21:12:12.415, modified=2018-09-
02721:12:12.416, completed=false)

Message Processed >>> ToDo(id=37be2854-91b7-4007-bf3a-
d75c805d3a0a, description=TEST SPRING CLOUD STREAM,
created=2018-09-02T21:12:12.415, modified=2018-09-
02T21:54:55.048, completed=true)

And if you take a look at the my-queue queue, and get the message,
you should see practically the same results (see Figure 11-16.

Got meveages

Wiarring: aing messagas lrom & queie s A destructve scton. 7

Ack Modo | Nack message reause e &
Encoging: | Auto string / base6s & | 7

{*14" 1" 37be2854~3 16T =4007 =01 Ja=A75c805d3a0a" , "descript lon® | *TEST SPRING CLOUD STREAM','created®:®2018-09=02T21:12:12.415", "podifisd® 1 2018=09=02T21154155.04

Figure 11-16. Get messages

426

8°, "completeditrue}

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

This is simple but it is not the right way. You are never going to send a message using
the RabbitMQ console, except maybe for a small test.

I mentioned that we are able to send messages programmatically. Create the
ToDoSender class (see Listing 11-13).

Listing 11-13. com.apress.todo.sender.ToDoSender.java
package com.apress.todo.sender;

import com.apress.todo.domain.ToDo;

import org.springframework.boot.ApplicationRunner;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;
import org.springframework.messaging.MessageChannel;

import org.springframework.messaging.support.MessageBuilder;

@Configuration
public class ToDoSender {

@Bean
public ApplicationRunner send(MessageChannel input){
return args -> {
input
.send(MessageBuilder
.withPayload(new ToDo("Read a Book"))
.build());

};

If you run the application, now you have a ToDo with the description in uppercase
and set as completed in the logs and in the my-queue queue. As you can see, we are using
a class that you know from Spring Integration and using the MessageChannel interface.
What is interesting is that Spring knows which channel to inject. Remember that the
@Processor annotation exposes the input channel.

427

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT
Sink

The Sink stream creates an input channel to listen for new incoming messages. Let’s
create the ToDoSink class (see Listing 11-14).

Listing 11-14. com.apress.todo.cloud.ToDoSink.java
package com.apress.todo.cloud;

import com.apress.todo.domain.ToDo;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.cloud.stream.annotation.EnableBinding;
import org.springframework.cloud.stream.annotation.StreamListener;
import org.springframework.cloud.stream.messaging.Sink;

@EnableBinding(Sink.class)
public class ToDoSink {

private Logger log = LoggerFactory.getlLogger(ToDoSink.class);

@StreamListener(Sink.INPUT)
public void process(ToDo message){
log.info("SINK - Message Received >>> {}",message);

Listing 11-14 shows a Sink stream, and you already know the annotations. The
@EnableBinding converts this class into a Source stream, and it listens for new incoming
messages through the @StreamListener and the Sink.INPUT channel. Sink.INPUT
creates an input channel (SubscribableChannel input()).

If you use Listing 11-13 to comment out the @EnableBinding from the
ToDoProcessor class and run the application, take a look at the RabbitMQ management,
you see the input exchange and the input.anonymous.* created and bound to each
other. You should get the same ToDo with the Sink logs.

Remember, the Sink stream does extra work with the message received but it ends
the flow.

428

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

What I've explained so far doesn’t do too much in the sense that are kind of probe of
concept, and actually that was my intention because [want you to understand how does
work internally. Now, let’s use a real-life scenario, where we actually create a complete
flow and see how these Streams can communicate with each other without going into
the RabbitMQ management.

Microservices

I want to talk about this new way to create scalable and highly available applications
using microservices. The most important part of this section is the ability to
communicate between streams using messaging. At the end, you should consider and

see each stream (source, processor, and sink) as a microservice.

ToDo App: A Complete Flow

Let’s list some of the requirements for this new ToDo app.

e Create a Source that reads any ToDo’s declared from a file and filter
the ones that are completed returning a ToDo instance.

o Create a Processor that accepts a ToDo and create a text message.
o Create a Sink that receives the text and sends an email to a recipient.

Do you think can you do it? See Figure 11-17.

source processor

C C

rson i rson
ToDoSource L Eia:dt:: L ToDoProcessor

O

©

B

list.txt

©

Email

—

Figure 11-17. ToDo Flow

429

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Figure 11-17 shows the real flow (note that each part is an independent app). In
other words, you create todo-source, todo-processor and todo-sink.

Take a look at the source code for Chapter 11 to find every project. This is your
homework. Make them work. Change the properties according to your settings, in this
case, in the todo-sink project.

Spring Cloud Stream App Starters

What if I told you that we could avoid creating the previous example and use the Spring
Cloud Stream app starters?

Spring Cloud Stream provides out-of-the-box applications starters that run. The
Spring Cloud team already implemented about 52 applications that you can download,
configure, and execute. These application starters are divided by Source, Processor, and
Sink models.

o Source: file, ftp, gemfire, gemfire-cq, http, jdbc, jms, load-generator,
loggregator, mail, mongodb, rabbit, s3, sftp, syslog, tcp, tcp-client,
time, trigger, triggertask, twitterstream

o Processor: bridge, filter, groovy-filter, groovy-transform, httpclient,
pmml, scriptable-transform, splitter, tcp-client, transform, and more

e Sink: aggregate-counter, cassandra, counter, field-value-counter,
file, ftp, gemfire, gpfdist, hdfs, hdfs-dataset, jdbc, log, rabbit, redis-
pubsub, router, s3, sftp, task-launcher-local, task-launcher-yarn, tcp,
throughput, websocket, and many more

Note If you need to get the latest release of the app starters, you can get them
from http://repo.spring.io/libs-release/org/springframework/
cloud/stream/app/.

If you want to use the other Spring Cloud Stream application starters and see their
configuration, take a look at http://docs.spring.io/spring-cloud-stream-app-
starters/docs/current/reference/html/ for reference.

430

http://repo.spring.io/libs-release/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-release/org/springframework/cloud/stream/app/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/html/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/html/

CHAPTER 11 SPRING INTEGRATION AND SPRING CLOUD STREAM WITH SPRING BOOT

Summary

In this chapter, you learned how to use Spring Integration and Spring Cloud Stream with
Spring Boot.

You learned how Spring Integration helps you create robust and scalable
applications that can be integrated with other systems.

You learned how Spring Cloud Stream gives the facility to create microservices with
ease. And you learned how to use this framework and any transport method you want.
It is an agnostic transport protocol framework, hiding all the messaging details; in other
words, you don’t need to learn RabbitMQ or Kafka to use this framework.

In the next chapter, you see how Spring Boot can live in the cloud.

431

CHAPTER 12

Spring Boot in the Cloud

Cloud computing is one of the most important concepts in the IT industry. Companies
that want to be on the cutting-edge of the latest technologies are looking to be fast by
increasing the speed of their services. They want to be safe by recovering from errors or
mistakes as fast as possible without the client knowing about it. They want to be scalable
by growing horizontally (typically refers to scaling infrastructure capacity outward, such
as spawning more servers to share the load) instead of vertically (refers to the ability to
increase available resources (CPU, memory, disk space, etc.) for an existing entity like a
server). But what kind of technology can provide all of these concepts?

The term cloud-native architecture is beginning to emerge. It allows developers
to follow patterns that provide speed, safety, and scalability with ease. In this chapter,
I show you how you can create and deploy Spring Boot applications for the cloud by
following some of these patterns.

The Cloud and Cloud-Native Architecture

Iimagine you have heard about these companies: Pivotal, Amazon, Google, Heroku,
Netflix, and Uber. They are applying all the concepts I mentioned. But how do these
companies accomplish being fast, safe, and scalable at the same time?

One of the first pioneers of cloud computing was Amazon, which started using
virtualization as primary tool to create resource elasticity; this means that any deployed
application can have more computer power by increasing the number of virtual boxes,
memory, processors, and so forth, without any IT person involved. All of these new ways
to scale an application was the result of satisfying growing user demand.

How can Netflix satisfy all of their user demands? We are talking about millions of
users who are streaming media content daily.

All of these companies have the IT infrastructure required for the cloud era, but don’t
you think that any application that wants to be part of the cloud needs to be adaptable
to this new technology? You need to start thinking about how scaling resources impact

433
© Felipe Gutierrez 2019

E Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_12

CHAPTER 12 SPRING BOOT IN THE CLOUD

an application. You need to start thinking more about distributed systems, right? How
applications communicate with legacy systems or between each other in these kinds
of environments. What happened if one of your systems is down? How do you recover?
How do users (and if millions) take advantage of the cloud?

The new cloud-native architecture responds to all of these questions. Remember that
your applications need to be fast, safe, and scalable.

First, you need to have visibility in this new cloud environment, meaning that you
need to have a better way to monitor your applications—set alerts, have dashboards,
and so forth. You need fault isolation and tolerance, which means applications that are
context-bounded, and that the applications shouldn’t have any dependencies between
each other. If one of your applications is down, the other apps should keep running. If
you are continuously deploying an application, it shouldn’t affect the entire system. This
means that you need to think about auto-recovery, where the entire system is capable of
identifying the failure and recover.

Twelve-Factor Applications

The engineers at Heroku identified a lot of patterns that became the twelve-factor

application guide (https://12factor.net). This guide shows how an application

(a single unit) needs to focus on declarative configuration, being stateless and

deployment independent. Your application needs to be fast, safe, and scalable.
The following is a summary of the twelve-factor application guide.

e Codebase. One codebase tracked in VCS/many deploys. One app
has a single code base that is tracked by a version control system
(VCS) like Git, Subversion, Mercurial, and so forth. You can do many
deployments (from the same code base) for development, testing,
staging, and production environments.

o Dependencies. Explicitly declare and isolate dependencies.
Sometimes environments don’t have an Internet connection (if
is a private system), so you need to think about packaging your
dependencies (JARs, gems, shared libraries, etc.). If you have an
internal repository of libraries, you can declare a manifest like poms,
gemfile, bundles, and so forth. Never rely on everything in your final
environment.

434

https://12factor.net

CHAPTER 12 SPRING BOOT IN THE CLOUD

Configuration. Store config in the environment. You shouldn’t
hardcode anything that varies. Use the environment variables or a
configuration server.

Backing services. Treat backing services as attached resources.
Connect to services via URL or configuration.

Build, release, run. Strictly separate build and run stages. Related to a
CI/CD (continuous integration, continuous delivery).

Processes. Execute the app as one or more stateless processes.
Processes should not store internal states. Share nothing. Any
necessary state should be considered a backing service.

Port binding. Export services via port binding. Your application is
self-contained, and these apps are exposed via port binding. An
application can become another app’s service.

Concurrency. Scale out via the process model. Scale by adding more
application instances. Individual processes are free to multithread.

Disposability. Maximize robustness with fast startup and graceful
shutdown. Processes should be disposable (remember, they are
stateless). Fault tolerant.

Environment parity. Keep development, staging, and production
environments as similar as possible. This is a result of high quality
and ensures continuous delivery.

Logs. Treat logs as event streams. Your apps should write to stdout.
Logs are streams of aggregated, time-ordered events.

Admin processes. Run admin and management tasks as one-off
processes. Run admin processes on the platform: DB migrations, one
time scripts, and so forth.

435

CHAPTER 12 SPRING BOOT IN THE CLOUD

Microservices

The term microservices is a new way to create applications. You need to see
microservices as a way to decompose monolithic applications into different and
independent components that follow the twelve-factor app guide. When deployed, they
work (see Figure 12-1).

Monolithic Microservices
{ Ul] [Ul / APl Gateway J
[Business Layer]
[Data Access Layer Microservice

[Microservice] [Microservice [Microservice]
T))

Figure 12-1. Monolithic vs. microservices

I think microservices have around since the invention of UNIX, because you can
use one of the command-line tools, for example, grep, which is a single unit that
does its job well. And if you combine several of these commands (e.g., find . -name
microservices.txt | grep -i spring-boot), you can create a better app or system.
But these commands are independent of each other and communicate through the
UNIX pipe (|). This analogy can be the same within your applications.

Microservices help you accelerate development. Why? Because you can designate
a small team that works on only one feature of the application with a bounded-context
that follows the twelve-factor application guidelines.

There is a lot to say about microservices and the guides on how to migrate existing
architectures into microservices, but the idea here is to explore Spring Boot and learn
how to deploy it into a cloud environment.

436

CHAPTER 12 SPRING BOOT IN THE CLOUD

Preparing the ToDo App as a Microservice

What would you need to do to convert the Spring Boot ToDo app to a microservice?
Actually, nothing! Yes, nothing, because Spring Boot is a way to create microservices with
ease. So, you are going to use the same ToDo app to deploy to a cloud platform. Which
platform? The Pivotal Cloud Foundry!

You can choose the fodo-rest project from previous chapters. Review it if you modify
it, and make sure that you can run it.

It is important to make sure that you have these dependencies; if you are using
Maven, you should have the following dependencies in your pom. xml file.

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<scope>runtime</scope>

</dependency>

<dependency>
<groupId>mysql</groupIld>
<artifactId>mysql-connector-java</artifactId>
<scope>runtime</scope>

</dependency>

If you are using Gradle, see if you have these dependencies in your build.gradle file.

runtime('com.h2database:h2")
runtime("'mysql:mysql-connector-java')

Why are these dependencies important? You learn that in the next sections. Next, go
to your application.properties file and make sure that it is like the following content.

JPA

spring.jpa.generate-ddl=true
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true

437

CHAPTER 12 SPRING BOOT IN THE CLOUD

What changed here was the dd1-auto property; before you used create-drop, which
creates and destroys the schema at the end of the session. And you are changing this
property to update, which means that it updates the schema if necessary. There is a
point here, but see it in action in the next sections.

Let’s prepare the app by executing the following command, where the source code
is. (You can also execute a Maven goal or Gradle task inside your IDE; take a look at the
documentation for how to do it.) If you are using Maven, you can execute

$./mvnw clean package
If you are using Gradle, you can execute
$./gradlew clean build

These commands generate the JAR that is deploying very soon. So, keep it safe; we
are going back to it.

Note If you have issues with a Java constructor for the ToDo domain class,
you are using an old version of Lombok (because in the domain class is the
@NoArgsConstructor annotation). The Spring Boot team hasn’t updated yet this
library, so use Lombok version 1.18.2 or higher.

Pivotal Cloud Foundry

Cloud Foundry has been around since 2008; it began as an open source project by
VMWare, then it was moved to Pivotal in 2013. Since then, Cloud Foundry has been the
most used open source PaaS. Cloud Foundry, as an open source solution, has the largest
community support. It's backed up by several large IT companies, including IBM (with
Bluemix), Microsoft, Intel, SAP, and of course, Pivotal (with Pivotal Cloud Foundry—PAS
and PKS) and VMware.

Cloud Foundry is the only open source solution that you can actually download and
run without any problems. You can find two versions of Cloud Foundry: open source
atwww.cloudfoundry.org and the Pivotal Cloud Foundry PAS and PKS (commercial
version) at http://pivotal.io/platform. If you are interested in downloading the

commercial version, you can actually do it without any trials or limited time at

438

http://www.cloudfoundry.org
http://pivotal.io/platform

CHAPTER 12 SPRING BOOT IN THE CLOUD

https://network.pivotal.io/products/pivotal-cf. Actually, this is a free version, but
if you want to have support or help on how to install it, that’'s when you need to contact a
Pivotal sales representative.

At the beginning of 2018, Pivotal released version 2.0 of Platform, which has more
options for the end user. It brings the Pivotal Application Service (PAS) and the Pivotal
Container Service (PKS, based on Kubernetes) solutions to the market (see Figure 12-2).

Github .
[
‘e
.5. . H E H
et c0@O@ ¢ | T iy PublicCloud

"'] «@e@oo T Sarvices
N k : Lé

£4 Pivotal Application Pivotal Container Pivotal Services | 3 :| Customer

conconesn Service (PAS) Service (PKS) Marketplace § | Neroged
- asectl run [9
. L A

eves s
Preduct Updates s NET w—.us B
! () “3Rs™
CLOUSFOUNDRY
. B@SH Embedded OS NSY-T Reps Regave Rotats
[Whncows & Linu) CVEs Croanu
A
N

Concourse)

Azure &
wEpharo Cpanstack. AWS Google Cloud Azue Stk

Figure 12-2. Pivotal Cloud Foundry 2.x

In the following sections, I cover only PAS and easy way to start with a cloud-native
development, because you only need to care about your app, the data, and nothing else!

PAS: Pivotal Application Service

Pivotal Application Service (PAS) is built on open architecture, and it offers the following
features.

e Router. Routes incoming traffic to the appropriate component,
usually the cloud controller or a running application on a DEA node.

o Authentication. The OAuth2 server and login server work together to
provide identity management.

439

https://network.pivotal.io/products/pivotal-cf

CHAPTER 12 SPRING BOOT IN THE CLOUD

o Cloud controller. The cloud controller is responsible for managing the
life cycle of application.

e Monitoring. Monitors, determines, and reconciles applications to
determine their state, version, and number of instances, and redirects

to the cloud controller to take action to correct any discrepancies.

e Garden/Diego Cells. Manages application instances, tracks started
instances, and broadcasts state messages.

e Blob store. Resources, application code, build packs, and droplets.

o Service brokers. When a developer provisions and binds a service to
an application, the service broker is responsible for providing the
service instance.

e Message bus. Cloud Foundry uses NATS (different from the
network nats), a lightweight publish-subscribe and distributed
queueing messaging system, for internal communication between
components.

o Logging and statistics. The metrics collector gathers metrics from
the components. Operators can use this information to monitor an

instance of Cloud Foundry.

PAS Features

PAS, powered by Cloud Foundry (open source), delivers a turnkey Paa$S experience on
multiple infrastructures with leading application and data services.

o Commercially supported release based on Cloud Foundry open

source.

e Fully automated deployment, updates, and one-click horizontal and
vertical scaling on vSphere, vCloud Air, AWS, Microsoft Azure, Google
Cloud, or OpenStack with minimal production downtime.

o Instant horizontal application-tier scaling.

440

CHAPTER 12 SPRING BOOT IN THE CLOUD

e Web console for resource management and administration of
applications and services.

o Applications benefit from built-in services, like load balancing and
DNS, automated health management, logging, and auditing.

e Java Spring support through provided Java buildpack.
e Optimized developer experience for the Spring Framework.
e MySQL service for rapid development and testing.

e Automatic application binding and service provisioning for Pivotal
services, such as Pivotal RabbitMQ, Pivotal Redis, Pivotal Cloud
Cache (based on GemFire), and MySQL for Pivotal Cloud Foundry.

What is the difference between the open source version and the commercial version?
Well, all the features listed. In the open source version, you need to do everything
manually using the command line mostly (to install, configure, upgrade, etc.), but in the
commercial version, you can use a web console to manage your infrastructure and run
your applications. It’s important to know that you can install Cloud Foundry on Amazon
AWS, OpenStack, Google Cloud, Microsoft Azure, and vSphere. Pivotal Cloud Foundry
(PAS and PKS) is IaaS agnostic!

Using PWS/PAS

To use PWS/PAS, you need to open an account in Pivotal Web Services at https://run.
pivotal.io. You can get a trial account (see Figure 12-3).

441

https://run.pivotal.io
https://run.pivotal.io

CHAPTER 12 SPRING BOOT IN THE CLOUD

ece < im (al fo] & run.pivotalio % [l (=) T

= Enter curious. Exit smarter.

& Pivotal Web Services

The Agile Platform for the Agile Team
Powered by Cloud Foundry

SIGN UP FOR FREE

587 of free trial credit. No credit card required

Speed comes in many forms

ncrease your velocity with an easy to learn CLIJAPI and deploy with

Figure 12-3. Pivotal Web Services - https://run.pivotal.io

When you sign up, you are prompted for a phone number, where you receive a code
to start your trial. It also asks you for an organization, which could be your name with a
-org; mine is fg-org, for example. By default, it creates the space (named development)
where you will work (see Figure 12-4).

442

https://run.pivotal.io

CHAPTER 12 SPRING BOOT IN THE CLOUD

ece 1] > § & i commol.sa photalis

&S Pivotal Web Services Search by App Name

ORG QUOTA necrease Quota Billing Statement
fg—org 0 ME [100 GB 0%

Space (1)

development
Spaces CREATE NEW SPACE
M

Name Apps App Status Services Org Quota Usage

Domains (3) Member (1) Settings

development 0 ®0 °0 o0 1 0 Bytes/ 100 GB (0%)

sftware Inc. All rights reserved. Last login: 9/17/18 9:16 am GIVE FEEDBACK

Figure 12-4. Pivotal Web Services

Now you are ready to deploy apps. By default, and because it is a trial account, you
only have 2GB of memory, but this is enough to deploy the ToDo App. You can explore
the tabs on the left.

The Tools tab shows links for downloading the CLI tool (which you install in the next
section) and how to log in to the PWS instance.

Note In the next sections, | use PWS/PAS indistinctly, but it refers to Cloud
Foundry.

443

CHAPTER 12 SPRING BOOT IN THE CLOUD

Cloud Foundry CLI: Command-Line Interface

Before you start using PAS, you must install a command-line tool that is useful for
deploying and do a lot of other tasks. If you are using a Windows OS, you can get the
latest version from https://github.com/cloudfoundry/cli#downloads or you can use
the Tools tab (from the previous section) and install based on your OS.

If you are using Mac OS/Linux, you can use brew.

$ brew update
$ brew tap cloudfoundry/tap
$ brew install cf-cli

After you install it, you can test it by running

$ cf --version
cf version 6.39.0+607d4f8be.2018-09-11

Now you are ready to use Cloud Foundry. Don’t worry too much. I will show you the
basic commands to get the ToDo App deployed and running.

Log in to PWS/PAS Using the CLI Tool

To log in to PWS and your account, you can execute the following command.

$ cf login -a api.run.pivotal.io
API endpoint: api.run.pivotal.io

Email> your-email@example.org

Password>
Authenticating...
0K

Targeted org your-org
Targeted space development

API endpoint: https://api.run.pivotal.io (API version: 2.121.0)

User: your-email@example.org
Org: your-org
Space: development

444

https://github.com/cloudfoundry/cli#downloads

CHAPTER 12 SPRING BOOT IN THE CLOUD

By default, you are placed in the development space. You are ready to execute
commands for creating, deploying, scaling, and so forth to PWS (a PAS instance).

Deploying the ToDo App into PAS

It’s time to deploy the ToDo App in PAS. It’s important to know that the application that
you deploy must have a unique subdomain. I'll talk about it later on.
Locate your JAR file (todo-rest-0.0.1-SNAPSHOT. jar). If you use Maven, it should
be in the target directory. If you use Gradle, it should be in the build/1ibs directory.
To push an application, you need to use the following command.

$ cf push <name-of-the-app> [options]
So, to deploy the ToDo app, you can execute the following command.
$ cf push todo-app -p todo-rest-0.0.1-SNAPSHOT.jar -n todo-app-fg

Pushing app todo-app to org your-org / space development as your-email@
example.org...
Getting app info...
Creating app with these attributes...
+ name: todo-app
path: /Users/Books/pro-spring-boot-2nd/ch12/todo-rest/target/todo-
rest-0.0.1-SNAPSHOT. jar
routes:
+ todo-app-fg.cfapps.io

Creating app todo-app...

Mapping routes...

Comparing local files to remote cache...
Packaging files to upload...

state since cpu memory disk
#0 running T01:25:10Z 33.0% 292.7M of 1G 158.3M of 1G

445

CHAPTER 12 SPRING BOOT IN THE CLOUD

The cf command offers several options.

e -p.Tell the cf command that it uploads a file or all the content of a
specific directory.

e -n. Creates a subdomain that must be unique. By default, every app
has the <sub-domain>.cfapps.io URI, which must be unique. You
can omit the -n option, but cf takes the name of the app, and it can
collide with other names. In this example, I use the todo-app-[my-
initials] (todo-app-fg). I suggest that you do this.

Behind the scenes, the ToDo app is running in a container (not a Docker container).
This container is created by RunC (https://github.com/opencontainers/runc), which
uses the host’s resources and is isolated without compromising security. Now, you can
go to your browser and use the URI given; in this example, https://todo-app-fg.
cfapps.io/toDos.

Take a look at the PWS to see your app (see Figure 12-5).

eae < 8] O & e i coneolerun.phvotalio < -8 -

press D

& Pivotal Web Services Search by App Name

fgutierrezcruz@pivotalio ~

SHcE RUNNING STOPPED CRASHED

fe-org development ®1 e0 @0

App (1) Service (1) Routes (8) Member (1) Settings

development
Apps

Marketplace
Marketplace Status Name Instances Memory Last Push Route

® Running todo-app 1 1GB 16 minutes ago https:/ftodo-app-fg.clappsio 4

Software Inc. All rights reserved. Last login: 5/17/18 1:09 pm GIVE FEEDBACK

Figure 12-5. PWS ToDo App
446

https://github.com/opencontainers/runc
https://todo-app-fg.cfapps.io/toDos
https://todo-app-fg.cfapps.io/toDos

CHAPTER 12 SPRING BOOT IN THE CLOUD

If you hover over the name of the todo-app, you see what’s shown in Figure 12-6.

ene < 8 O & e i coneoleun.phvotalio < eld) O

& Pivotal Web Services Search by App Name

APP
o) tOdO-app Iz\ c l £ I @ Running VIEW APP [

Overview Services Route (1) Logs Tasks Settings Buildpack: N/A

development
Last Push: 07:24 PM 09/17/18 App Summary

Marketplace

Started app Instances | Mllocated Memory / Allocated Disk / Allocated
@ fgutierrezcruz@pivotal.io 09/17/2018 at 1/1 0.36/ 1.00 GB 0.15/1.00 GB

OT:24:16 PM

Mapped route to app Processes and Instances View in PCF Metrics [
& futierezcruapivotalio 09/17/2018 at

O7:23:56 PM web

Created app)

o Instances 1 MemoryAllocated 1GB Disk Allocated 1GBE SCALE

¥ fgutierrezcrua@pivotal.io 09/17/2018 at

07:23:55 PM Autoscaling

CPU Memory Disk Uptime

0% 158,26 MB

Last login: 9/17/18 1.09 pm GIVE FEEDBACK

Figure 12-6. PWS ToDo App details

You can inspect each link. You can check out the logs by clicking the Logs tab. You
can get metrics by clicking the View in PCF Metrics link to learn more about your app’s
memory, requests per minute, CPU usage, disk, and so forth.

Another way to see the logs is by executing the following command.

$ cf logs todo-app

This command tails the logs. You can refresh or send requests to the app to see logs.
It's a useful way to debug your application.

447

CHAPTER 12 SPRING BOOT IN THE CLOUD

Creating Services

You can add ToDo’s to the app by executing a command like the following.

$ curl -XPOST -d '{"description”:"Learn to play Guitar"}' -H "Content-Type:
application/json" https://todo-app-fg.cfapps.io/toDos

{
"description” : "Learn to play Guitar",
"created" : "2018-09-18T01:58:34.211",
"modified" : "2018-09-18T01:58:34.211",
"completed" : false,
" links" : {
"self" : {
"href" : "https://todo-app-fg.cfapps.io/toDos/8a70ee1f65ea47de0165eab
68de30000"
})
"toDo" : {
"href" : "https://todo-app-fg.cfapps.io/toDos/8a70ee1f65ea47de0165ea6b
68de30000"
}
}
}

So, where has the previous ToDo been saved? Remember that the app has two
drivers: one is the H2 (in-memory) and the other is MySQL, right? Deploying this app to
PWS uses the same H2 driver as local. Why? Because we haven’t specified any external
MySQL service.

PAS offers a way to create services. If you review the section of the twelve-factor
principles, you see that there is an item that talks about using services as attached
resources. PAS helps with that by provisioning a service so you don’t need to worry about
installing it, hardening it, or managing it. PAS calls this a managed service.

Let’s see how many services PWS has. You can execute the following command.

$ cf marketplace

448

CHAPTER 12 SPRING BOOT IN THE CLOUD

This command prints out all available managed services that were installed and
are provisioned by PAS. In this case, we are going to use the ClearDB service that has a
MySQL service.

To tell PAS that we are going to create a cleardb instance service, you need to
execute the command.

$ cf create-service <provider> <plan> <service-name>
So, to use a MySQL service, execute the following command.

$ cf create-service cleardb spark mysql

Creating service instance mysql in org your-org / space development as
your-email@example.org...

0K

The plan you chose was the spark plan, which is a free plan. If you choose something
different, you need to add your credit card and expect to be charged every month.
You can review the services with the following command.

$ cf services
Getting services in org your-org / space development as your -email@
example.org...

name service plan bound apps last operation
mysql cleardb spark create succeeded

See from previous command that the bound apps column is empty. Here we need to
tell the ToDo app to use this service (mysql). To bound the app with the service, you can
execute the following command.

$ cf bind-service todo-app mysql

Binding service mysql to app todo-app in org your-org / space development
as your-email@example.org...

0K

TIP: Use 'cf restage todo-app' to ensure your env variable changes take effect

449

CHAPTER 12 SPRING BOOT IN THE CLOUD

Behind the scenes, the container in which the ToDo app is running creates an
environment variable with all the credentials, VCAP_SERVICES;, so it is easy for the ToDo
app to connect to the mysql service. For the ToDo app to recognize this environment
variable, it is necessary to restart the app. You can execute the following command.

$ cf restart todo-app

After the app restarts, take a look if it's working. Go to the browser and add ToDo’s. Let’s
take a look at the VCAP_SERVICES environment variable. Execute the following command.

$ cf env todo-app

Getting env variables for app todo-app in org your-org / space development
as your-email@example.org...

0K

System-Provided:

{
"VCAP_SERVICES": {
"cleardb": [
{

"binding name": null,
"credentials": {
"hostname": "us-cdbr-iron-east-01.cleardb.net",
"jdbcUrl": "jdbc:mysql://us-cdbr-iron-east-01.cleardb.net/ad 9a533ebf2
e8e79a?user=b2c041b9ef8f25\u0026password=30e7a38b",
"name": "ad_9a533ebf2e8e79a",
"password": "30e7a38b",
"port": "3306",
"uri": "mysql://b2c041b9ef8f25:30e7a38b@us-cdbr-iron-east-01.cleardb.
net:3306/ad_9a533ebf2e8e79a?reconnect=true”,
"username": "b2c041b9ef8f25"
})
"instance name": "mysql",
"label": "cleardb",
"name": "mysql",
"plan": "spark",...

450

CHAPTER 12 SPRING BOOT IN THE CLOUD

See that the VCAP_SERVICES variable has the hostname, username, password, and the
jdbcUrl properties. Actually, you can connect to it. You can use any MySQL client and
use those properties. For example, if you have the mysql client command line, you can
execute

$ mysql -h us-cdbr-iron-east-01.cleardb.net -ub2c041b9ef8f25 -p30e7a38b
ad_9a533ebf2e8e79a

mysql> show tables;

e +
| Tables in ad 9a533ebf2e8e79a |
dm e +
| to do |
e +

1 row in set (0.07 sec)

mysql> select * from to_do \G
Frokstokstoksokokokok ok stokstokokokok ok soksok - oy RERRsRKskoksokstokstokskokok ok ok stokskokok ok
id: 8a72072165ea86ef0165€a887cd10000
completed:
created: 2018-09-18 02:35:38

description: Learn to play Guitar

modified: 2018-09-18 02:35:38
1 row in set (0.07 sec)

mysql>

As you can see, now the ToDo app is using the MySQL service. But how? Cloud
Foundry uses buildpacks that inspect your app and knows which programming
language you are trying to run. Cloud Foundry is programming-language agnostic; so,
itrecognizes that you are using a Spring Boot app. It also sees that you have a bounded
service (mysql), so it checks if you have the right drivers (in this case, it is the MySQL
driver that is embedded in the fat JAR) so it can connect to it. But what is the best part?
Well, you don’t even need to change anything in your code!! Cloud Foundry and the Java
buildpack auto-configures the datasource on your behalf. That’s simple!

451

CHAPTER 12 SPRING BOOT IN THE CLOUD

Cloud Foundry helps you focus only on your application, without worrying about
infrastructure, services, and more.

Everything that you did to create a service can be done using the web console. You
can client in the Marketplace tab on the PWS page, and select the service that you need
(see Figure 12-7).

eoe < [in] < @ ceemiele.fun photslio o L8 ol

& Pivotal Web Services Search by App Name oress fgutierrezcruz@pivotalio v

Marketplace
Get started with our free marketplace services. Upgrade select plans to gain access to premium service plans.

development

Services ~
Marketplace

App Autoscaler
Scales bound applications in response to load

BlazeMeter
Performance Testing Platform

Cedexis Openmix

Openmix Global Cloud and Data Center Load Balancer

Circuit Breaker
Circuit Breaker Dashboard for Spring Cloud Applications

.00

ClearDB MySQL Database
Highly available MySQL for your Apps.

o

CloudaMQP
Managed HA RabbitMQ servers in the cloud

- CloudForge
Development Tools In The Cloud

<

Config Server

Config Server for Spring Cloud Applications
q_’ ElephantSQL
Figure 12-7. PWS Marketplace

You can click the ClearDB MySQL Database icon and select the Spark plan to
configure it.

Congratulations! Now you know how to deploy Spring Boot apps into the cloud. Can
you deploy the other examples? How about the todo-mongo, todo-redis, todo-rabbitmq
projects?

452

CHAPTER 12 SPRING BOOT IN THE CLOUD

Cleaning Up

It's important to clean your services and your apps. This helps you to use more credits
when you need it. Let’s start by unbinding the service from the app. Execute the
following command.

$ cf unbind-service todo-app mysql

Unbinding app todo-app from service mysql in org your-org / space
development as your-email@example.org...

0K

Then, let’s delete this service with the following command.
$ cf delete-service mysql

Really delete the service mysql?> y

Deleting service mysql in org your-org / space development as your-email@
exmaple.org...

0K

As you can see, you are prompted to confirm that you want to remove the service.
You can use the - flag to avoid this.
Lastly, let’s remove the app. Execute the following command.

$ cf delete -f todo-app

Deleting app todo-app in org your-org / space development as your-email@
example.org...

0K

You can execute

$ cf apps
Getting apps in org your-org / space development as your-email@example.org...
0K

No apps found

to see if your current apps running.

453

CHAPTER 12 SPRING BOOT IN THE CLOUD

Note Remember that you can get the book source code from the Apress website
or on GitHub at https://github.com/Apress/pro-spring-boot-2.

Summary

In this chapter, you learned more about microservices and the cloud. You learned more
about the twelve-factor principles that help you to create cloud-native applications.

You also learned about Cloud Foundry and what it offers, including the Pivotal
Application Service and the Pivotal Container Service. You learned that Cloud Foundry
is programming-language agnostic and that buildpacks inspect your app and auto-
configures it.

In the next chapter, you learn how to extend and create your own spring-boot-start
technology.

454

https://github.com/Apress/pro-spring-boot-2

CHAPTER 13

Extending Spring Boot

Developers and software architects are often looking for design patterns to apply, new
algorithms to implement, reusable components that are easy to use and maintain,
and new ways to improve development. It’s not always easy to find a unique or perfect
solution, and it’s necessary to use different technologies and methodologies to
accomplish the goal of having an application that runs and never fails.

This chapter explains how the Spring and Spring Boot teams created a pattern for
reusable components that are easy to use and implement. Actually, you have been
learning about this pattern throughout the entire book, especially in the Spring Boot
configuration chapter.

This chapter covers auto-configuration in detail, including how you can extend and
create new Spring Boot modules that are reusable. Let’s get started.

Creating a spring-boot-starter

In this section, I show you how to create a custom spring-boot-starter, butlet’s discuss

some of the requirements first. Because you are working in the ToDo app, this custom

starter is a client that you can use to do any operations for the ToDo’s, such as create,

find, and findAll. This client needs a host that connects to a ToDo REST API service.
Let’s start by setting up the project. So far, there is no template that sets up a

baseline for a custom spring-boot-starter, so, we need to do this manually. Create the

following structure.

todo-client-starter/
— todo-client-spring-boot-autoconfigure
L— todo-client-spring-boot-starter

455
© Felipe Gutierrez 2019

E Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5_13

CHAPTER 13 EXTENDING SPRING BOOT

You need to create a folder named todo-client-starter, where you create two
subfolders: todo-client-spring-boot-autoconfigure and todo-client-spring-boot-
starter. Yes, there is a naming convention here. The Spring Boot team suggests that
any custom starter follow this naming convention: <name-of-starter>-spring-boot-
starter and <name-of-starter>-spring-boot-autoconfigure. The autoconfigure
module has all the code and necessary dependencies that the starter needs; don’t worry,
I give you the information on what is needed.

First, let’s create a main pom.xml file that has two modules: autoconfigure and
starter. Create a pom. xml file in the todo-client-starter folder. Your structure should
look like this:

todo-client-starter/

F— pom.xml

— todo-client-spring-boot-autoconfigure
L— todo-client-spring-boot-starter

The pom. xml file looks Listing 13-1.

Listing 13-1. todo-client-starter/pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.
w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.apress.todo</groupId>
<artifactId>todo-client</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packagingspom</packaging>
<name>todo-client</name>

<modules>
<modulestodo-client-spring-boot-autoconfigure</modules
<modules>todo-client-spring-boot-starter</modules
</modules»

456

CHAPTER 13 EXTENDING SPRING BOOT

<dependencyManagement>
<dependencies»
<dependency>
<groupIdyorg.springframework.boot</groupIds
<artifactId»spring-boot-dependencies</artifactIds
<version»2.0.5.RELEASE</version»
<types>pom</types
<scopeyimport</scope>
</dependency>
</dependencies»
</dependencyManagement>
</project>

Listing 13-1 shows the main pom.xml that has two modules. One important thing to
mention is that the <packaging/> tagis a pom, because at the end it is necessary to install
these jars into the local repo to be used later. Also important is that this pomis declaring
a <dependencyManagement/> tag that allows us to use the Spring Boot jars and all its
dependencies. At the end, we don’t need to declare versions.

todo-client-spring-boot-starter

Next, let’s create another pom. xml file in the todo-client-spring-boot-starter folder.
You should have the following structure.

todo-client-starter/

F— pom.xml

— todo-client-spring-boot-autoconfigure
L— todo-client-spring-boot-starter
L— pom.xml

See Listing 13-2.
Listing 13-2. todo-client-starter/todo-client-spring-boot-starter/pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.
w3.0rg/2001/XMLSchema-instance”

457

CHAPTER 13 EXTENDING SPRING BOOT

xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.apress.todo</groupId>
<artifactId>todo-client-spring-boot-starter</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>

<name>todo-client-spring-boot-starter</name>
<description>Todo Client Spring Boot Starter</description>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.
outputEncoding>

</properties>

<parent»
<groupIdscom.apress.todo</groupld>
<artifactIdstodo-client</artifactIdy
<version»0.0.1-SNAPSHOT</vexrsiony
<relativePathy..</relativePathy
</parent>

<dependencies»
<dependency>
<groupId>com.apress.todo</groupIld>
<artifactId>todo-client-spring-boot-autoconfigure</artifactIds
<version»0.0.1-SNAPSHOT</version»
</dependency>
</dependenciesy

</project>

Asyou can see, Listing 13-2 is nothing new. It is declaring a <parent/> tag that
relates to the previous pom.xml file, and it is declaring the autoconfigure module.

That’s it for the todo-client-spring-boot-starter; nothing else. You can see this
as a marker where you declare the modules that do the heavy work.

458

CHAPTER 13 EXTENDING SPRING BOOT

todo-client-spring-boot-autoconfigure

Next, let’s create the structure for within the todo-client-spring-boot-autoconfigure
folder. You should have the following final structure.

todo-client-starter/

F— pom.xml

— todo-client-spring-boot-autoconfigure

F— java

L— resources
L— todo-client-spring-boot-starter
L— pom.xml

|
|
| L— main
|
|

Your todo-client-spring-boot-autoconfigure folder should look like this:

todo-client-spring-boot-autoconfigure/

— java

L resources

A basic Java project structure. Let’s start with the pom.xml file (see Listing 13-3).

Listing 13-3. todo-client-starter/todo-client-spring-boot-autoconfigure
<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.
w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

459

CHAPTER 13 EXTENDING SPRING BOOT

<groupId>com.apress.todo</groupId>
<artifactId>todo-client-spring-boot-autoconfigure</artifactId>
<version>0.0.1-SNAPSHOT</version>
<build>
<plugins>
<plugin>
<groupIld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>8</source>
<target>8</target>
</configuration>
</plugin>
</plugins>
</build>
<packaging>jar</packaging>

<name>todo-client-spring-boot-autoconfigure</name>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.
outputEncoding>
<java.version>1.8</java.version>

</properties>

<parent>
<groupId>com.apress.todo</groupld>
<artifactId>todo-client</artifactId>
<version>0.0.1-SNAPSHOT</version>
<relativePath>..</relativePath>
</parent>

<dependencies>

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>

460

CHAPTER 13 EXTENDING SPRING BOOT

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-security</artifactId>
</dependency>

<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.2</version>
</dependency>

<dependency>
<groupld>org.springframework.hateoas</groupId>
<artifactId>spring-hateoas</artifactId>
</dependency>

<!-- JSON / Traverson -->

<dependency>
<groupld>org.springframework.plugin</groupId>
<artifactId>spring-plugin-core</artifactId>

</dependency>

<dependency>
<groupId>com.jayway.jsonpath</groupId>
<artifactId>json-path</artifactId>
</dependency>

<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-configuration-processor</artifactId>
<optional>true</optional>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupld>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>

461

CHAPTER 13 EXTENDING SPRING BOOT

<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>

</project>

In this case, the autoconfigure project depends on the web, Lombok, security,
Hateoas, and JsonPath.

spring.factories

If you remember from the first chapters, I told you about the Spring Boot way to auto-
configure everything based on the classpath; that’s the real magic behind Spring Boot.
I mentioned that when the application starts, the Spring Boot auto-configuration loads
all the classes from the META-INF/spring.factories files to do each auto-configuration
class, which provides the app the defaults it needs to run. Remember, Spring Boot is an
opinionated runtime for Spring applications.

Let’s create the spring.factories file that contains the class that does the auto-
configuration and sets some defaults (see Listing 13-4).

Listing 13-4. src/main/resources/META-INF/spring.factories

org.springframework.boot.autoconfigure.EnableAutoConfiguration=com.apress.
todo.configuration.ToDoClientAutoConfiguration

Note that the spring.factories file is declaring the ToDoClientAutoConfiguration
class.

auto-configuration

Let’s start by creating the ToDoClientAutoConfiguration class (see Listing 13-5).

Listing 13-5. com.apress.todo.configuration.ToDoClientAutoConfiguration.java
package com.apress.todo.configuration;

import com.apress.todo.client.ToDoClient;
import lombok.RequiredArgsConstructor;

462

CHAPTER 13 EXTENDING SPRING BOOT

import org.slf4j.Logger;

import org.slf4j.lLoggerFactory;

import org.springframework.boot.autoconfigure.condition.ConditionalOnClass;
import org.springframework.boot.context.properties.
EnableConfigurationProperties;

import org.springframework.boot.web.client.RestTemplateBuilder;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.hateoas.Resource;

import org.springframework.web.client.RestTemplate;

@RequiredArgsConstructor

@Configuration

@ConditionalOnClass({Resource.class, RestTemplateBuilder.class})
@EnableConfigurationProperties(ToDoClientProperties.class)
public class ToDoClientAutoConfiguration {

private final Logger log = LoggerFactory.getlLogger(ToDoClientAutoConfig
uration.class);
private final ToDoClientProperties toDoClientProperties;

@Bean
public ToDoClient client(){
log.info("»»> Creating a ToDo Client...");
return new ToDoClient(new RestTemplate(),this.toDoClientProperties);

Listing 13-5 shows the auto-configuration that is executed. It is using the
@ConditionalOnClass annotation, which says that if it finds in the classpath,
Resource.class and RestTemplateBuilder.class will continue with the configuration.
Of course, because one of the dependencies is spring-boot-starter-web, it has those
classes. But what happens when somebody excludes these resources? That’s when this
class does its job.

This class is declaring a TodoClient bean that uses a RestTemplate and the
ToDoClientProperties instances.

That’s it. Very simple auto-configuration. It sets the default ToDoClient bean if it
finds those resource classes in your project where you are using this custom starter.

463

CHAPTER 13 EXTENDING SPRING BOOT

Helper Classes

Next, let’s create the helper classes. Create the ToDoClientProperties and the ToDoClient
classes (see Listings 13-6 and 13-7).

Listing 13-6. com.apress.todo.configuration.ToDoClientProperties.java

package com.apress.todo.configuration;

import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;

@Data
@ConfigurationProperties(prefix="todo.client")
public class ToDoClientProperties {

private String host = "http://localhost:8080";
"/toDos";

private String path

As you can see, nothing new—just two fields that hold a default for the host and the
path. This means that you can override them in the application.properties files.

Listing 13-7. com.apress.todo.clientToDoClient.java
package com.apress.todo.client;

import com.apress.todo.configuration.ToDoClientProperties;
import com.apress.todo.domain.ToDo;

import lombok.AllArgsConstructor;

import lombok.Data;

import org.springframework.core.ParameterizedTypeReference;
import org.springframework.hateoas.MediaTypes;

import org.springframework.hateoas.Resources;

import org.springframework.hateoas.client.Traverson;
import org.springframework.http.MediaType;

import org.springframework.http.RequestEntity;

import org.springframework.http.ResponseEntity;

import org.springframework.web.client.RestTemplate;

464

CHAPTER 13 EXTENDING SPRING BOOT

import org.springframework.web.util.UriComponents;
import org.springframework.web.util.UriComponentsBuilder;

import java.net.URI;
import java.util.Collection;

@A11ArgsConstructor
@Data
public class ToDoClient {

private RestTemplate restTemplate;
private ToDoClientProperties props;

public ToDo add(ToDo toDo){
UriComponents uriComponents = UriComponentsBuilder.newInstance()
.uri(URI.create(this.props.getHost())).path(this.props.
getPath()).build();

ResponseEntity<ToDo> response =
this.restTemplate.exchange(
RequestEntity.post(uriComponents.toUri())
.body (toDo)
,nhew ParameterizedTypeReference<ToDo>() {});

return response.getBody();

}

public ToDo findById(String id){

UriComponents uriComponents = UriComponentsBuilder.newInstance()
.uri(URI.create(this.props.getHost())).pathSegment(this.
props.getPath(), "/{id}")

.buildAndExpand(id);

ResponseEntity<ToDo> response =
this.restTemplate.exchange(
RequestEntity.get(uriComponents.toUri()).
accept(MediaTypes.HAL JSON).build()
,new ParameterizedTypeReference<ToDo>() {});

return response.getBody();

465

CHAPTER 13 EXTENDING SPRING BOOT

public Collection<ToDo> findA1ll() {
UriComponents uriComponents = UriComponentsBuilder.newInstance()
.uri(URI.create(this.props.getHost())).build();

Traverson traverson = new Traverson(uriComponents.toUri(),
MediaTypes.HAL JSON, MediaType.APPLICATION JSON UTF8);
Traverson.TraversalBuilder tb = traverson.follow(this.props.
getPath().substring(1));
ParameterizedTypeReference<Resources<ToDo>> typeRefDevices =
new ParameterizedTypeReference<Resources<ToDo>>() {};

Resources<ToDo> toDos = tb.toObject(typeRefDevices);

return toDos.getContent();

The ToDoClient class is a very straightforward implementation. This class is using
the RestTemplate in all the methods; even though the findAll method is using a
Traverson (an implementation in Java of the JavaScript Traverson library (https://
github.com/traverson/traverson), which is a way to manipulate all the HATEOAS
links) instance; behind the scenes it is using the RestTemplate.

Take a few minutes to analyze the code. Remember that this is a client that is
requesting and posting to a ToDo’s REST API server.

To use this client, it is necessary to create the ToDo domain class (see Listing 13-8).

Listing 13-8. com.apress.todo.domain.ToDo.java
package com.apress.todo.domain;

import com.fasterxml.jackson.annotation.JsonFormat;

import com.fasterxml.jackson.annotation.JsonIgnoreProperties;
import com.fasterxml.jackson.databind.annotation.JsonDeserialize;
import com.fasterxml.jackson.datatype.jsr310.deser.
LocalDateTimeDeserializer;

import lombok.Data;

import lombok.NoArgsConstructor;

import java.time.localDateTime;

466

https://github.com/traverson/traverson
https://github.com/traverson/traverson

CHAPTER 13 EXTENDING SPRING BOOT

@JsonIgnoreProperties(ignoreUnknown = true)
@NoArgsConstructor

@Data

public class ToDo {

private String id;
private String description;

@JsonDeserialize(using = LocalDateTimeDeserializer.class)
@JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss")
private LocalDateTime created;

@JsonDeserialize(using = LocalDateTimeDeserializer.class)
@JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss")
private LocalDateTime modified;

private boolean completed;

public ToDo(String description){
this.description = description;

Here we are introducing @Json* annotations. One ignores any of the links (provided
by the HAL+JSON protocol) and one serializes the LocalDateTime instances.

We are almost done. Let’s add a security utility that helps encrypt/decrypt ToDo
descriptions.

Creating an @Enable* Feature

One of the cool features of the Spring and Spring Boot technologies is that they expose
several @Enable* features that hide all the boilerplate configuring and does the heavy
lifting for us.

So, let’s create a custom @EnableToDoSecurity feature. Let’s start by creating the
annotation that is picked up by Spring Boot, auto-configuration (see Listing 13-9).

467

CHAPTER 13 EXTENDING SPRING BOOT

Listing 13-9. com.apress.todo.annotation.EnableToDoSecurity.java
package com.apress.todo.annotation;

import com.apress.todo.security.ToDoSecurityConfiguration;
import org.springframework.context.annotation.Import;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
@Import(ToDoSecurityConfiguration.class)
public @interface EnableToDoSecurity {

Algorithm algorithm() default Algorithm.BCRYPT;

This annotation uses an algorithm enum; let’s create it (see Listing 13-10).

Listing 13-10. com.apress.todo.annotation.Algorithm.java
package com.apress.todo.annotation;

public enum Algorithm {
BCRYPT, PBKDF2

This means that we can have some parameters passed to the @EnableToDoSecurity.
We choose either BCRYPT or PBKDF2, and if there is no parameter, by default it is BCRYPT.

Next, create the ToDoSecurityConfiguration class that triggers any configuration if
the @EnableToDoSecurity is declared (see Listing 13-11).

Listing 13-11. com.apress.todo.security.ToDoSecurityConfiguration.java
package com.apress.todo.security;

import com.apress.todo.annotation.Algorithm;
import com.apress.todo.annotation.EnableToDoSecurity;

468

CHAPTER 13 EXTENDING SPRING BOOT

import org.springframework.context.annotation.ImportSelector;
import org.springframework.core.annotation.AnnotationAttributes;
import org.springframework.core.type.AnnotationMetadata;

public class ToDoSecurityConfiguration implements ImportSelector {
public String[] selectImports(AnnotationMetadata annotationMetadata) {
AnnotationAttributes attributes =
AnnotationAttributes.fromMap(
annotationMetadata.getAnnotationAttributes(EnableTo
DoSecurity.class.getName(), false));
Algorithm algorithm = attributes.getEnum("algorithm");
switch(algorithm){
case PBKDF2:
return new String[] {"com.apress.todo.security.Pbkdf2Encoder"};
case BCRYPT:
default:
return new String[] {"com.apress.todo.security.BCryptEncodexr"};

Listing 13-11 shows you that the auto-configuration is executed only if the
@EnableToDoSecurity annotation is declared. Spring Boot also tracks every class that
implements the ImportSelector interface, which hides all the boilerplate processing
annotations.

So, if the @EnableToDoSecurity annotation is found, then this class is executed
by calling the selectImports method that returns an array of Strings that are classes
that have to be configured; in this case, either the com.apress.todo.security.
Pbkdf2Encoder class (if you set the PBKDF2 algorithm as parameter) or the com.apress.
todo.security.BCryptEncoder class (if you set the BCRYPT algorithm as the parameter).

What is special about these classes? Let’s create the BCryptEncoder and
Pbkdf2Encoder classes (see Listing 13-12 and Listing 13-13).

469

CHAPTER 13 EXTENDING SPRING BOOT

Listing 13-12. com.apress.todo.security.BCryptEncoder.java
package com.apress.todo.security;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;

@Configuration
public class BCryptEncoder {

@Bean
public ToDoSecurity utils(){
return new ToDoSecurity(new BCryptPasswordEncoder(16));

}

Listing 13-13. com.apress.todo.security.Pbkdf2Encoder.java
package com.apress.todo.security;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.crypto.password.Pbkdf2PasswordEncoder;

@Configuration
public class Pbkdf2Encoder {

@Bean
public ToDoSecurity utils(){
return new ToDoSecurity(new Pbkdf2PasswordEncoder());

Both classes are declaring the ToDoSecurity bean. So, if you choose the PBKDF2
algorithm, then the ToDoSecurity bean is created with the Pbkdf2PasswordEncoder
instance; and if you choose the BCRYPT algorithm, the ToDoSecurity bean is created with
the BCryptPasswordEncoder(16) instance.

Listing 13-14 shows the ToDoSecurity class.

470

CHAPTER 13 EXTENDING SPRING BOOT
Listing 13-14. com.apress.todo.security.ToDoSecurity.java

package com.apress.todo.security;

import lombok.AllArgsConstructor;
import lombok.Data;
import org.springframework.security.crypto.password.PasswordEncoder;

@A11ArgsConstructor
@Data
public class ToDoSecurity {

private PasswordEncoder encoder;

As you can see, nothing special in this class.

ToDo REST API Service

Let’s prepare the ToDo REST API service. You can reuse the todo-rest project that uses
data-jpa and data-rest, which you did in other chapters. Let’s review it and see what
we need to do (see Listings 13-15, 13-16, and 13-17).

Listing 13-15. com.apress.todo.domain.ToDo.java
package com.apress.todo.domain;

import com.fasterxml.jackson.annotation.JsonFormat;

import com.fasterxml.jackson.databind.annotation.JsonDeserialize;
import com.fasterxml.jackson.datatype.jsr310.deser.
LocalDateTimeDeserializer;

import lombok.Data;

import lombok.NoArgsConstructor;

import org.hibernate.annotations.GenericGenerator;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.ld;

import javax.persistence.PrePersist;

471

CHAPTER 13 EXTENDING SPRING BOOT

import javax.persistence.PreUpdate;

import javax.validation.constraints.NotBlank;
import javax.validation.constraints.NotNull;
import java.time.localDateTime;

@Entity

@Data
@NoArgsConstructor
public class ToDo {

@NotNull

@Id

@GeneratedValue(generator = "system-uuid")
@GenericGenerator(name = "system-uuid", strategy = "uuid")
private String id;

@NotNull

@NotBlank

private String description;

@Column(insertable = true, updatable = false)
@JsonDeserialize(using = LocalDateTimeDeserializer.class)
@JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss")

private LocalDateTime created;

@JsonDeserialize(using = LocalDateTimeDeserializer.class)
@JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss")
private LocalDateTime modified;

private boolean completed;

public ToDo(String description){
this.description = description;

}

@PrePersist

void onCreate() {
this.setCreated(LocalDateTime.now());
this.setModified(LocalDateTime.now());

472

CHAPTER 13 EXTENDING SPRING BOOT

@PreUpdate
void onUpdate() {
this.setModified(LocalDateTime.now());

This ToDo class is nothing new; you already know about every annotation used here.
The only difference is that it is using the @ son* annotations only for the dates with a
specific format.

Listing 13-16. com.apress.todo.repository.ToDoRepository.java
package com.apress.todo.repository;

import com.apress.todo.domain.ToDo;
import org.springframework.data.repository.CrudRepository;

public interface ToDoRepository extends CrudRepository<ToDo,String> {

}

The same as before; nothing that you don’t know about this interface.

Listing 13-17. com.apress.todo.config.ToDoRestConfig.java
package com.apress.todo.config;

import com.apress.todo.domain.ToDo;

import org.springframework.context.annotation.Configuration;
import org.springframework.data.rest.core.config.
RepositoryRestConfiguration;

import org.springframework.data.rest.webmvc.config.
RepositoryRestConfigurerAdapter;

@Configuration
public class ToDoRestConfig extends RepositoryRestConfigurerAdapter {

@verride
public void configureRepositoryRestConfiguration(RepositoryRest
Configuration config) {

473

CHAPTER 13 EXTENDING SPRING BOOT

config.exposeldsFor(ToDo.class);

Listing 13-17 shows you a new class, the ToDoRestConfig that is extending
from the RespositoryRestConfigurerAdapter; this class can help configure
part of the RestController implementation from everything that is by
default configured by the JPA repositories auto-configuration. It overrides the
configureRepositoryRestConfiguration by exposing the IDs of the domain class.
When we worked with REST in other chapters, the IDs never showed upon request; but
with this overriding, we can make it happen. And we need this feature because we want
to get back the ID of the ToDo instance.

In application.properties, you should have the following.

JPA

spring.jpa.generate-ddl=true
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true

Again, nothing new.

Installing and Testing

Let’s prepare everything to run on a new custom starter. Let’s start by installing the todo-
client-spring-boot-starter. Open a terminal and go to your todo-client-starter
folder and execute the following command.

$ mvn clean install

This command installs your jar in the local .m2 directory, which is ready to be picked
up by another project that uses it.

Task Project

Now that you installed todo-client-spring-boot-starter, itis time to test it. You
are going to create a new project. You can create the project as usual. Go to the Spring
Initializr (https://start.spring.io) and set the fields with the following values.

474

https://start.spring.io

CHAPTER 13 EXTENDING SPRING BOOT

e Group: com.apress.task

o Artifact: task

e Name: task

o Package Name: com.apress.task

You can select either Maven or Gradle. Then click the Generate Project button. This
generates and downloads a ZIP file. You can uncompress it, and then import it into your
favorite IDE (see Figure 13-1).

eCce m S ® @ start.spring.io o (4] M & |

SPRING INITIALIZR

Generate a waenroec ¢ With 2w ¢ and Spring Boot zos :

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies

com.apress.task Web, Security, JPA, Actuator, Devtools...
Artifact Selected Dependencies

task
Name

task
Description

Demo project for Spring Boot

Package Name

com.apress.task

Packaging

Jar

ar

Java Version

8 v

Generate Project 2 + =

Too many options? Switch back to the simple version.

Figure 13-1. Spring Initializr

475

CHAPTER 13 EXTENDING SPRING BOOT

Next, you need to add todo-client-spring-boot-starter. If you are using Maven,
go to your pom. xml file and add the dependency.

<dependency>
<groupId>com.apress.todo</groupId>
<artifactId>todo-client-spring-boot-starter</artifactId>
<version>0.0.1-SNAPSHOT</version>

</dependency>

If you are using Gradle, add the dependency to your build. gradle file.
compile('com.apress.todo:todo-client-spring-boot-starter:0.0.1-SNAPSHOT")

That’s it. Now open the main class, in which there is the code shown in Listing 13-18.

Listing 13-18. com.apress.task.TaskApplication.java
package com.apress.task;

import com.apress.todo.annotation.EnableToDoSecurity;

import com.apress.todo.client.ToDoClient;

import com.apress.todo.domain.ToDo;

import com.apress.todo.security.ToDoSecurity;

import org.springframework.boot.ApplicationRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.WebApplicationType;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@EnableToDoSecurity
@SpringBootApplication
public class TaskApplication {

public static void main(String[] args) {
SpringApplication app = new SpringApplication(TaskApplication.class);
app.setWebApplicationType(WebApplicationType.NONE);
app.run(args);

}

476

@Bean

CHAPTER 13 EXTENDING SPRING BOOT

ApplicationRunner createToDos(ToDoClient client){

};
}

@®Bean

return args -> {

ToDo toDo = client.add(new ToDo("Read a Book"));
ToDo review = client.findById(toDo.getId());
System.out.println(review);
System.out.println(client.findAl1l());

ApplicationRunner secure(ToDoSecurity utils){

return args -> {

};

String text = "This text will be encrypted”;

String hash = utils.getEncoder().encode(text);
System.out.println(">>> ENCRYPT: " + hash);
System.out.println(">>> Verify: " + utils.getEncoder().
matches(text,hash));

There are two ApplicationRunner beans; each has a parameter. createToDos uses

the ToDoClient bean instance (if you don’t have the RestTemplateBuilder or Resource,
it will fail). It is using the methods you know (add, findById and findAll).
The method secure is using the ToDoSecurity bean instance, which is possible

thanks to @EnableToDoSecurity. If you remove it or comment it out, it tells you it can’t
find the ToDoSecurity bean.

Take a few minutes to analyze the code to see what’s going on.

Running the Task App

To run the app, first make sure the todo-rest app is up and running. It should run on

port 8080. Remember that you have already installed the todo-client-spring-boot-
starter with themvn clean install command.

477

CHAPTER 13 EXTENDING SPRING BOOT

So if you are running it, you see some responses, and the ToDo is saved in the ToDo
REST service. It also shows you the encrypted text.

If you are running the ToDo REST API in a different IP, host, port, or path, you
can change the defaults by using the todo.client.* properties in the application.
properties file.

ToDo Rest API
todo.client.host=http://some-new-server.com:9091
todo.client.path=/api/toDos

Remember that if you don’t override, it defaults to http://localhost:8080 and /toDos.
After running the Task app, you should see something similar to the following output.

INFO - [main] c.a.t.c.ToDoClientAutoConfiguration ¢ > Creating a
ToDo Client...
INFO - [main] o.s.j.e.a.AnnotationMBeanExporter : Registering beans

for JMX exposure on startup

INFO - [main] com.apress.task.TaskApplication : Started
TaskApplication in 1.047 seconds (JVM running for 1.853)
ToDo(id=8a8080a365f427c00165f42adee50000, description=Read a Book,
created=2018-09-19T17:29:34, modified=2018-09-19T17:29:34, completed=false)
[ToDo(id=8a8080a365f427c00165f42adee50000, description=Read a

Book, created=2018-09-19T17:29:34, modified=2018-09-19T17:29:34,
completed=false)]

»>> ENCRYPT: $2a$16$pVOI. ./twnLwN3GFiChdR.zRFfyCIZMEbwEXbAtRoIHqxeLB3gmUG
»»> Verify: true

Congratulations! You just have created your first custom Spring Boot starter and
@Enable feature!

Note Remember that you can get the book source code from the Apress website
or on GitHub at https://github.com/Apress/pro-spring-boot-2.

478

https://github.com/Apress/pro-spring-boot-2

CHAPTER 13 EXTENDING SPRING BOOT

Summary

This chapter showed you how to create a module for Spring Boot by using the auto-
configuration pattern. I showed you how to create your custom health monitor. As you
can see, it’s very simple to extend Spring Boot apps, so feel free to modify the code and
experiment with them.

We didn’t do much if any unit or integration testing. It would be good homework for
you to practice all the details that I showed you. I think it will help you understand how
Spring Boot works even better. Repeat and you will master!

479

APPENDIX A

Spring Boot CLI

This chapter discussed a Spring Boot tool that can help you create prototypes and
production-ready applications. This tool is part of the Spring Boot installation that you
performed in the first chapters. This is not a Maven or Gradle plugin or dependency.

I'm talking about the Spring Boot CLI (command-line interface). In the previous
chapters, you learned that you can get the CLI from the binary installation at http://
repo.spring.io/release/org/springframework/boot/spring-boot-cli/. O, if you
are using a Mac/Linux, you can use Homebrew (http://brew. sh/) with the following
command.

$ brew tap pivotal/tap
$ brew install springboot

If you are using Linux, you can use the SDKMAN tool (http://sdkman.io/) and
install it with the following command.

$ sdk install springboot

All the examples are in Java and Groovy. There is no real distinction between one
language and another in the sense of compile, run, or package. The only difference is
some extra parameters that pass to the command line. But don’t worry too much; you'll
see those in a moment.

Spring Boot CLI

When I first started to learn Spring Boot, which was around three years ago, it was the
alpha release, and the only available command was run. What else do you need, right?
It was amazing that with a few lines of code you could have a web application written in
Groovy up and running. It was simple and awesome.

481
© Felipe Gutierrez 2019

F. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5

https://doi.org/10.1007/978-1-4842-3676-5
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/
http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/
http://brew.sh/
http://sdkman.io/

APPENDIXA SPRING BOOT CLI

Since version 1.4, it has more options and an interactive shell that you'll see soon. To
see the CLI in detail, you need to consider some simple examples. Let’s start with the one
in Listing A-1, which shows the Groovy example from other chapters.

Listing A-1. app.groovy

@RestController
class WebApp{

@RequestMapping("/")
String greetings(){
"Spring Boot Rocks"

Listing A-1 shows the simplest Groovy web application you can have and that you
can run with Spring Boot. Now, let’s look at the same web application but in Java (see
Listing A-2).

Listing A-2. WebApp.java
package com.apress.spring;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
@SpringBootApplication
public class WebApp {
@RequestMapping("/")
public String greetings(){
return "Spring Boot Rocks in Java too!";

}

public static void main(String[] args) {
SpringApplication.run(WebApp.class, args);

482

APPENDIXA SPRING BOOT CLI

Listing A-2 shows the Java version of the simplest web application. As I mentioned,

Spring Boot enables you to choose Java or Groovy to create enterprise- and production-

ready applications with ease.

Let’s start using all the CLI commands.

The run Command

The run command allows you to run Java or Groovy Spring Boot applications. Its syntax

is as follows.

spring run [options] <files> [--] [args]

The available options are shown in Table A-1.

Table A-1. Spring Run Options

Option Description

--autoconfigure Adds the auto-configuration compiler transformation. Remembers the

[Boolean] auto-configuration features and how everything works by adding the
@EnableAutoConfiguration or the composed @SpringBootApplication
annotations. This is the same idea (default is true).

--classpath, Adds the classpath entries; it’s useful when you have third-party libraries. As a

-cp recommendation, you can create a 1ib/ folder in the root of your program and
add all the classes or JARs there.

--Nno-guess- Does not attempt to guess the dependencies. This is useful when you already

dependencies use the @Grab annotation in your application.

--Nno-guess- Does not attempt to guess the imports. This is useful when you have already

imports included some of the imports in your Groovy application. For example, in a Java
app you can use this option because you are importing the classes you need.
There is more about this in Chapter 3 (in the auto-configuration section).

-q, --quiet Quiets logging. In other words, it won’t print anything to the console.

-v, --verbose Logs everything. It is useful for seeing what’s going on, because it shows the code
introspection and what is added to the program. See Chapter 3 for more information.

--watch Sets a watch to the file(s) for changes. It is useful when you don’t want to stop

and run the app again.

483

APPENDIXA SPRING BOOT CLI
To run the Groovy application (shown in Listing A-1), you simply execute
$ spring run app.groovy

Executing this command has a web application up and running and listening to port
8080 by default, but you can override this by executing the following command.

$ spring run app.groovy -- --server.port=8888

This command runs the web application and it is listening in port 8888. Now, if you
want to add some third-party library and load the dependencies, you simply execute

$ spring run -cp lib/mylib.jar app.groovy
If you want to run the Java application (see Listing A-2), you just execute

$ spring run WebApp.java

Note You can stop your application by pressing Ctrl+C in your keyboard. If

you are running a Java application, it’s important to add the package keyword.
You don’t need to have a hierarchy or create any directories. If you don’t add a
package to Spring Boot scanning, it will be impossible to run your app because it
needs to scan all the available dependencies of Spring. It starts scanning all the
dependencies used and start from the root of every dependency, so be careful!

If you have several files, you can use the wildcard * to compile all of them. Just
execute this command:

$ spring run *.groovy

If, for some reason, you need to tweak the JVM and its options, you can execute the
following command.

$ JAVA OPTS=-Xmx2g spring run app.groovy

This command increases the memory heap up to 2GB for the app.groovy
application.

484

APPENDIXA SPRING BOOT CLI

The test Command

The test command runs a Spring Groovy script and Java tests. Its syntax is as follows.
spring test [options] files [--] [args]

The available options are shown in Table A-2.

Table A-2. Spring Test Options

Option Description

--autoconfigure Adds the auto-configuration compiler transformation (default is true).
[Boolean]

--classpath, Adds the classpath entries, which is useful when you have third-party

-cp libraries. As a recommendation, you can create a 1ib/ folder in the root of
your program and add all the classes or JARs there.

--no-guess- Does not attempt to guess the dependencies. This is useful when you already

dependencies use the @Grab annotation in your application.

--no-guess- Does not attempt to guess the imports. This is useful when you already

imports include some of the imports in your Groovy application. For example, in a

Java app you can use this option because you are importing the classes you
need. See more in Chapter 3 (in the auto-configuration section).

To run a test, you need a test, right? Listings A-3, A-4, and A-5 show examples using
the well-known JUnit and Spock frameworks.

Listing A-3. test.groovy
class MyTest{

@Test

void simple() {
String str= "JUnit works with Spring Boot"
assertEquals "JUnit works with Spring Boot",str

485

APPENDIXA SPRING BOOT CLI

Listing A-3 shows the simplest unit test. You don’t need to use any imports; Spring
Boot takes care of that. To run it, you execute

$ spring test test.groovy

Take a look at the Spock unit test shown in Listing A-4.

Listing A-4. spock.groovy

@Grab('org.spockframework:spock-core:1.0-groovy-2.4")
import spock.lang.Specification
import org.springframework.boot.test.OutputCapture

class SimpleSpockTest extends Specification {

@org.junit.Rule
OutputCapture capture = new OutputCapture()

def "get output and capture it"() {
when:
print 'Spring Boot works with Spock'

then:
capture.toString() == 'Spring Boot works with Spock'

Listing A-4 shows the use of the Spock Framework by extending the Specification
class and defining the methods. To use the Spock Framework it’s necessary to import
the necessary dependencies and to include those dependencies by adding the @Grab
annotation that includes the Spock dependency for Groovy. The intention of this section
is to show the usage of Spock. But if you are looking for more information about it, you
can go to http://spockframework.org/. All its documentation is found at http://
spockframework.github.io/spock/docs/1.0/index.html.

Listing A-4 also shows one of the new features of Spring Boot, which is the
OutputCapture class. It allows you to capture output from System.out and System.err.
To run this test, you execute the same instruction but change the name of the file.

$ spring test spock.groovy

486

http://spockframework.org/
http://spockframework.github.io/spock/docs/1.0/index.html
http://spockframework.github.io/spock/docs/1.0/index.html

APPENDIXA SPRING BOOT CLI

It’s important to know that Spring Boot won’t always figure out when you are using
third-party libraries, so you must use the @Grab annotation and the correct import.
Take a look at the unit test in Java, shown in Listing A-5.

Listing A-5. MyTest.java

import org.junit.Rule;
import org.junit.Test;
import org.springframework.boot.test.OutputCapture;

import static org.hamcrest.Matchers.*;
import static org.junit.Assert.*;

public class MyTest {

@Rule
public OutputCapture capture = new OutputCapture();

@Test

public void stringTest() throws Exception {
System.out.println("Spring Boot Test works in Java too!");
assertThat(capture.toString(), containsString("Spring Boot
Test works in Java too!"));

Listing A-5 shows a unit test written in Java. The assertThat statement belongs to the
org.junit.Assert class, which can be accessed as static. The containsString is a static
method from the org.hamcrest.Matchers class, and it matches the capture string. This
unit test also uses the OutputCapture class. To run it, you just execute this command:

$ spring test MyTest.java

487

APPENDIXA SPRING BOOT CLI

If you want to test the app . groovy web application (see Listing A-1), you can create
the code in Listing A-6.

Listing A-6. test.groovy
class SimpleWebTest {
@Test

void greetingsTest() {
assertEquals("Spring Boot Rocks", new WebApp().greetings())

To test this, just execute the following command.
$ spring test app.groovy test.groovy

This command uses the previous class—the WebApp (see Listing A-1)—and it calls
the greetings method to get the string back.

Although these examples are extremely simple, it’s important to see how easy it is
to create and run tests using the command-line interface. A special chapter includes a
more elaborated unit and integration test using all the power of Spring Boot.

The grab Command

The grab command downloads all the Spring Groovy scripts and Java dependencies to
the ./repository directory. Its syntax is as follows.

spring grab [options] files [--] [args]

The available options are shown in Table A-3.

488

APPENDIXA SPRING BOOT CLI

Table A-3. Grab Options

Option Description

--autoconfigure Adds the auto-configuration compiler transformation (default is true).
[Boolean]

--classpath, -cp Adds the classpath entries, which is useful when you have third-party
libraries. As a recommendation, you can create a 1ib/ folder in the root of
your program and add all the classes or JARs there.

--no-guess- Does not attempt to guess the dependencies. This is useful when you
dependencies already use the @Grab annotation in your application.

--no-guess- Does not attempt to guess the imports. This is useful when you already
imports include some of the imports in your Groovy application. For example, in a

Java app you can use this option because you are importing the classes
you need. For more information, see Chapter 3 (in the auto-configuration
section).

You can use any of the listings you've seen so far to execute the grab command. For
Listing A-4, you can execute

$ spring grab MyTest.java

If you check out the current directory, you see the repository subdirectory created
with all the dependencies. The grab command is useful when you want to execute a
Spring Boot application that doesn’t have an Internet connection and the libraries are
needed. The grab command is also used to prepare your application before you can
deploy it to the cloud. (You'll see this useful command in Chapter 13, “Spring Boot in the
Cloud.)

The jar Command

The jar command creates a self-contained executable JAR file from a Groovy or Java
script. Its syntax is as follows.

spring jar [options] <jar-name> <files>

489

APPENDIXA SPRING BOOT CLI

The available options are shown in Table A-4.

Table A-4. Jar Options

Option Description

--autoconfigure Adds the auto-configuration compiler transformation (default is true).
[Boolean]

--classpath, Adds the classpath entries, which is useful when you have third-party

-cp libraries. As a recommendation, you can create a 1ib/ folder in the root of
your program and add all the classes or JARs there.

--exclude A pattern to find the files and exclude them from the final JAR file.

--include A pattern to find the files and include them in the final JAR file.

--no-guess- Does not attempt to guess the dependencies. This is useful when you already

dependencies use the @Grab annotation in your application.

--no-guess- Does not attempt to guess the imports. This is useful when you already

imports include some of the imports in your Groovy application. For example, in a Java

app you can use this option because you are importing the classes you need.
For more information, see Chapter 3 (the auto-configuration section).

You can use Listing A-1 (app.groovy) and execute the following command.
$ spring jar app.jar app.groovy

Now you can check out your current directory and see that there are two files—one
named app.jar.original and another named app.jar. The only difference between the
files is that the app . jar.original is the one created by the dependency management
(Maven) to create the app. jar. It’s a fat JAR that can be executed with the following.

$ java -jar app.jar

By executing this command, you have a web application up and running. The jar
command enables application portability, because you can ship your application and
run it in any system that has Java installed, without worrying about an application
container. Remember that Spring Boot embeds the Tomcat application server in a Spring
Boot web application.

490

APPENDIXA SPRING BOOT CLI

The war Command

This is very similar to the previous command. The war command creates a self-
contained executable WAR file from a Groovy or Java script. Its syntax is as follows.

spring war [options] <war-name> <files>

The available options are shown in Table A-5.

Table A-5. War Options

Option Description

--autoconfigure Adds the auto-configuration compiler transformation (default is true).
[Boolean]

--classpath, Adds the classpath entries, which is useful when you have third-party
-cp libraries. As a recommendation, you can create a 1ib/ folder in the root of
your program and add all the classes or JARs there.

--exclude A pattern to find the files and exclude them from the final JAR file.
--include A pattern to find the files and include them in the final JAR file.

--no-guess- Does not attempt to guess the dependencies. This is useful when you already
dependencies use the @Grab annotation in your application.

--no-guess- Does not attempt to guess the imports. This is useful when you already
imports include some of the imports in your groovy application. For example, in a Java

app you can use this option because you are importing the classes you need.
For more information, see Chapter 3 (the auto-configuration section).

You can use Listing A-1 (app.groovy) to run the war command by executing the
following.

$ spring war app.war app.groovy

After executing this command, you have in your current directory the app.war.
original and the app.war files. You can run it with the following command.

$ java -jar app.war

491

APPENDIXA SPRING BOOT CLI

In the previous command I mentioned the word portability, right? So what would be

the case for a WAR file? Well, you can use the WAR file in existing application containers
like Pivotal tcServer, Tomcat, WebSphere, Jetty, etc.

Note You can use either command to create a portable and executable
application. The only difference is that when you use the war command, it creates
a “transportable” WAR, which means that you can run your application as a
standalone or you can deploy it to a J2EE-compliant container. You are going to see
a complete example in the following chapters.

The install Command

The install command is very similar to the grab command; the only difference

is that you need to specify the library you want to install (in a coordinate format
groupld:artifactId:version; the same as the @Grab annotation). It downloads it and

the dependencies in a 1ib directory. Its syntax is as follows.

spring install [options] <coordinates>

The available options are shown in Table A-6.

Table A-6. Install Options

Option Description

--autoconfigure Adds the auto-configuration compiler transformation (default is true).

[Boolean]

--classpath, Adds the classpath entries, which is useful when you have third-party

-cp libraries. As a recommendation, you can create a 1ib/ folder in the root of
your program and add all the classes or JARs there.

--Nno-guess- Does not attempt to guess the dependencies. This is useful when you already

dependencies use the @Grab annotation in your application.

--Nno-guess- Does not attempt to guess the imports. This is useful when you already

imports include some of the imports in your groovy application. For example, in a

Java app you can use this option because you are importing the classes you
need. For more information, see Chapter 3 (the auto-configuration section).

492

APPENDIXA SPRING BOOT CLI

Take for example Listing A-4 (spock.groovy). If you execute the following command.

$ spring install org.spockframework:spock-core:1.0-groovy-2.4

You have in the 1ib directory the Spock library and its dependencies.

Note If you are using the SDKMAN tool (http://sdkman.1io/), it downloads the
libraries in the $HOME/ . sdkman/candidates/springboot/1.3.X.RELEASE/

1ib directory.

The uninstall Command

The uninstall command uninstalls the dependencies from the 1ib directory. Its syntax

is as follows.

spring uninstall [options] <coordinates>

The available options are shown in Table A-7.

Table A-7. Uninstall Options

Option Description

--autoconfigure Adds the auto-configuration compiler transformation (default is true).

[Boolean]

--classpath, Adds the classpath entries, which is useful when you have third-party

-cp libraries. As a recommendation, you can create a 1ib/ folder in the root of
your program and add all the classes or JARs there.

--no-guess- Does not attempt to guess the dependencies. This is useful when you already

dependencies use the @Grab annotation in your application.

--Nno-guess- Does not attempt to guess the imports. This is useful when you already

imports include some of the imports in your groovy application. For example, in a Java

app you can use this option because you are importing the classes you need.
For more information, see Chapter 3 (the auto-configuration section).

493

http://sdkman.io/

APPENDIXA SPRING BOOT CLI

You can test this command by executing the following command.

$ spring uninstall org.spockframework:spock-core:1.0-groovy-2.4

It removes all the Spock dependencies from the 1ib directory.

The init Command

The init command helps you initialize a new project by using the Spring Initializr

(http://start.spring.io/). Whether or not you are using an IDE, this command helps

you get everything ready to start developing Spring Boot applications. Its syntax is as

follows.

spring init [options] [location]

The available options are shown in Table A-8.

Table A-8. Init Options

Option

Description

-a, --artifactId

-b, --boot-version

--build

-d, --dependencies

--description
-f, --force

--format

-g, --groupld

The project coordinate; if it's not provided, the default name is demo.

The Spring Boot version; if it’s not provided, it gets the latest, defined as
the parent-pom.

The build system to use; the possible values are maven or gradle. If
it’s not specified, the default value is maven.

A comma-separated list of dependency identifiers are included. For
example, -d=web or -d=web, jdbc,actuator

The project description.
Overwrites existing files.

A format of the generated content. Useful when you want to import
your projects into an IDE like STS. The possible values are build and
project. If it’s not provided, the default value is project.

The project coordinates defining the group ID. If it’s not provided, it
defaults to com.example.

494

(continued)

http://start.spring.io/

Table A-8. (continued)

APPENDIXA SPRING BOOT CLI

Option

Description

-j, --java-version

-1, --language

-n, --name

-p, --packaging

- -package-name

-t, --type

--target

-v, --version

-x, --extract

The language level. If it’s not provided, it defaults to 1. 8.

Specifies the programming language. The possible values are java and
groovy. If it’s not provided, it defaults to java.

The name of the application. If it’s not provided, it defaults to demo.

The project packaging. The values are jar, war, and zip. If it's not
provided, it generates a ZIP file.

The package name. If it’s not provided, it defaults to demo.

The project type. The values are maven-project, maven-build,
gradle-project, and gradle-build. If it’s not provided, it defaults
to maven-project.

The URL of the service to use. It defaults to https://start.spring.
io. This means that you can create your own reference service.

The project version. If it’s not provided, it defaults to 0.0.1-SNAPSHOT.

Extracts the content of the project created in the current directory if the
location is not specified.

You use this command very often (if you are not using an IDE such as the STS or

Intelli]), so you can get used to it with the following examples.

To create a default project, you just execute

$ spring init

It generates a demo. zip file. You can unzip it and take a look at the structure (a

Maven project structure), as shown in Figure A-1, but the most important part is the pom.

xml file. If you look at this file, you can see the minimal dependencies: spring-boot-
starter and spring-boot-starter-test.

495

https://start.spring.io
https://start.spring.io

APPENDIXA SPRING BOOT CLI

— mvnw
— mvnw.cmd
F— pom.xml

b sPrPC
— main
| F— java
| I L— com
[L— example
| | L— DemoApplication. java
I L— resources
| L— application.properties
L— test
L— java
L— com
L— example
L— DemoApplicationTests. java

1@ directories, 6 files

Figure A-1. The demo.zip contents

Figure A-1 shows the demo.zip structure. Take a look at the src folder, which
contains the main/java/com/example/DemoApplication. java file and of course its unit
test. Also you can see that it contains two additional files, mvnw (for UNIX) and mvnw.
cmd (for Windows). These commands allow you to run a Maven project without actually
having Maven installed on your system.

You can simply execute the following command.

$./mvnw spring-boot:run

This command downloads the Maven tool (in the .mvn subdirectory) and run it. If
you take a look at the DemoApplication.java class, you'll see that it’s not doing much.
It’s simply running the Spring Boot application. With all this you have a template that
you can use over and over. If you want to create a web application, the only thing you
need to do is add the spring-boot-starter-web dependency.

init Examples

This section includes more examples using the init command. The following command
creates a web application with JDBC Gradle project.

$ spring init -d=web,jdbc --build=gradle
496

APPENDIXA SPRING BOOT CLI

This command generates a demo. zip file, but with its contents using Gradle. It
includes the Gradle wrapper so you don’t have to install it.

If you want to generate only the pom.xml (for a Maven project) or build.gradle file
(for a Gradle project), just add --format=build and --build=[gradle|maven].

$ spring init -d=web,data-jpa,security --format=build --build=gradle

This command creates the build.gradle file with the web, JPA, and security
dependencies.

$ spring init -d=jdbc,amgqp --format=build

This command creates the pom. xml file. If you don’t add the --build parameter, it
defaults to Maven.

To create a project with the name, groupld and artifactld, you need to use the -name,
-g, and -a parameters respectively.

$ spring init -d=amqp -g=com.apress.spring -a=spring-boot-rabbitmq
-name=spring-boot-rabbitmq

This command creates a spring-boot-rabbitmq.zip file (Maven project) with the
groupld and artifactld specified.

By default, when the package name is not specified, it defaults to com.example. If you
want to add a package convention, you need to add the --package parameter.

$ spring init -d=web,thymeleaf,data-jpa,data-rest,security -g=com.apress.
spring -a=spring-boot-journal-oauth --package-name=com.apress.spring
-name=spring-boot-journal-oauth

It’s fine to have a ZIP file for portability, but you can uncompress directly into the
current directory. You simply add the -x parameter.

$ spring init -d=web,thymeleaf,data-jpa,data-
rest,security,actuator,h2,mysql -g=com.apress.spring -a=spring-boot-
journal-cloud --package-name=com.apress.spring -name=spring-boot-journal-
cloud -x

This command uncompresses the ZIP file on the fly and the contents are written to
the current directory.

497

APPENDIXA SPRING BOOT CLI

If you are curious and want to know more about the dependencies or other
parameter values, you can execute the following command.

$ spring init --list

You use the spring init command throughout the entire book, so take a moment
and review all its options.

An Alternative to the init Command

There will be times when you need just the pom.xml or build.gradle files, perhaps to
check out the dependencies and declarations or to look at the plugins declarations. You

execute the following command:
$ curl -s https://start.spring.io/pom.xml -d packaging=war -o pom.xml

Yes, you read it right! Remember that the init command calls the Spring Initializr
service at https://start.spring.io, so you can use the UNIX cURL command. This
command generates only the pom.xml file. And if you are curious again to see what else
you can do by using the UNIX cURL command, just execute the following.

$ curl start.spring.io

This command prints all the available options and some examples using cURL with
the Spring Initializr. You learned in previous chapters that, within the STS (Spring Tool
Suite) IDE, you can create a Spring Boot application by selecting Spring Starter Project.
This wizard connects to the Spring Initializr, so either you use an IDE or the command
line to get a Spring Boot project structure.

The shell Command

The shell command starts an embedded shell. Execute the following command.

$ spring shell

Spring Boot (vi.3.X.RELEASE)

Hit TAB to complete. Type 'help' and hit RETURN for help, and 'exit' to
quit.

$

498

https://start.spring.io

APPENDIXA SPRING BOOT CLI

Asyou can see from the output, you can type help to get more information about
the shell. Actually the spring shell is the previous command, but just executed in an
embedded shell. One of the benefits is that it has a TAB completion so you can get all the
possible suggestions for the options.

The help Command

The help command is your best friend. You can execute it as follows.

spring help
usage: spring [--help] [--version]
<command> [<args>]

Available commands are.

run [options] <files> [--] [args]
Run a spring groovy script

test [options] <files> [--] [args]
Run a spring groovy script test

grab
Download a spring groovy script's dependencies to ./repository

jar [options] <jar-name> <files>
Create a self-contained executable jar file from a Spring Groovy script

war [options] <war-name> <files>
Create a self-contained executable war file from a Spring Groovy script

install [options] <coordinates>
Install dependencies to the lib directory

uninstall [options] <coordinates>
Uninstall dependencies from the lib directory

init [options] [location]
Initialize a new project using Spring Initializr (start.spring.io)
shell
Start a nested shell
499

APPENDIXA SPRING BOOT CLI
Common options.

-d, --debug Verbose mode
Print additional status information for the command you are running

See 'spring help <command>' for more information on a specific command.

Asyou can see from this output, you can also execute the spring help <command>,
which is very handy because you get more information about the command ,and some
examples of how to use it. For example, if you want to know about the init command,
just execute the following.

$ spring help init

Remember, the spring help command is your best friend.

Summary

The chapter showed you how to use the Spring Boot Command Line Interface. It
explained all the different commands and their options.

You learned mentioned that one of the most important commands is the init
command and it is used in the entire book, either through a terminal in a command line
or by using an IDE such as STS or Intelli].

500

Index

A

Abstract syntax tree (AST), 46
/actuator endpoint, 325-326
Advance Message Queuing Protocol
(AMOP), 282
bindings, 283-284
default exchange, 284
direct exchange, 284
exchanges, 283
fanout exchange, 284
headers exchange, 284
queues, 283-284
topic exchange, 284
ApplicationRunner and
CommandLineRunner
application configuration, 71, 73
PropertyResolver interface, 72
@PropertySource
annotation, 71
configuration properties
application.properties/ YAML
file, 78
browser, 73
command-line arguments, 74
contents of, 80
location and name, 78
overriding, 73
profiles, 79
relaxed binding, 77

© Felipe Gutierrez 2019

properties prefix, 81
app class, 84
application.properties file, 81
build.gradle file, 81
myapp properties, 84
pom.xml file, 81
SpringBootConfigApplication.
java, 82-83
run method, 68
SpringBootSimpleApplication.java, 70

Asynchronous sequence

collectList, 184

doOnNext, 184

EmitterProcessor, 183
FluxExample class, 182

Flux<T>, 181

messaging-passing processor, 183
MonoExample class, 179-180
Mono<T>, 178

/autoconfig endpoint, 326-327
Auto-configuration

app.groovy, 45-46, 48
AutoConfigurationImportSelector
class, 50
CloudAutoConfiguration class, 52
debug parameter, 47
DemoApplication.java, 49
@EnableAutoConfiguration, 48, 50
getCandidateConfigurations method, 50
modification, 46-47

501

F. Gutierrez, Pro Spring Boot 2, https://doi.org/10.1007/978-1-4842-3676-5

https://doi.org/10.1007/978-1-4842-3676-5

INDEX

B server, 110
. Tomcat, 114
/beans endpoint, 327-328 ToDo app (see ToDo app)
Boot, 31
app.groovy, 33
application model C
browser, 37

CassandraHealthIndicator, 354

build.gradle file, 40, 41 Cloud computing, 433

components, 36
DemoApplication.java class, 41
features, 43

Maven pom.xml, 38
technology, 42

web controller, 41

web service, 37

CLI, 34
features of, 31

home page, 32

project webpage, 33

SimpleWebApp.java, 34

web-reactive modules, 31
Boot web applications, 87

MVC technology

auto-configuration, 88

error handling, 90

features of, 88

HttpMessageConverters, 89

JSON, 89

path matching and content
negotiation, 89

spring-web module, 87

template engine, 90

override, 110

502

Jetty server, 115

JSON date format, 112
JSON/XML content-type, 112
MVC, 114

application.properties file, 437
build.gradle file, 437
Cloud Foundry, 438
cleaning up, 453
command-line tool, 444
deployment, 445
log in (PWS/PAS/CLI), 444
PAS, 439
PWS, 441
service creation, 448
2.x,439

cloud-native architecture, 433-434

microservices, 436
pom.xml file, 437
twelve-factor applications, 434

Cloud Stream

application, 408
application.properties file, 410
application starters, 430
binder
Kafka, 409
RabbitMQ, 409
build.gradle file, 406
components of, 407
definition, 405
features of, 407
microservices, 429
models, 411
pom.xml file, 405

processor, 410
exchanges tab, 423
get messages, 426
output, 426
publish message, 425
queues, 424
RabbitMQ web management, 423
sink, 428
stream application, 422
ToDoProcessor class, 421
ToDoSender class, 427
programming, 409
Sink application, 411
source, 410
build.gradle file, 415
pom.xml file, 415
RabbitMQ, 415
stream application, 414
ToDoSource class, 414
Spring Initializr, 412-413
SubscribableChannel and
MessageChannel classes, 410
Command-line arguments (CLA), 74
Command-line interface
(CLI), 34, 444
app.groovy, 482
UNIX cURL command, 498
grab command, 488
help command, 499-500
init command, 494
build.gradle file, 497
demo.zip file, 495
JDBC Gradle project, 496
options and description, 494-495
Spring-boot-starter-web
dependency, 496
ZIP file, 497
install command, 492

INDEX

jar command, 489-490
MyTest.java, 487
run command, 483-484
SDKMAN tool, 481
shell command, 498
test command
JUnit and Spock frameworks, 485
option and description, 485
OutputCapture class, 486-487
SimpleWebTest class, 488
Spock unit test, 486
uninstall command, 493-494
war command, 491-492
WebApp.java, 482
/configprops endpoint, 328-329
Cross-origin resource sharing
(CORS), 341
Custom actuator endpoint, 343
ToDo app
ToDoRepository interface, 346
ToDoStatsEndpoint, 343, 345

D

Data definition language (DDL), 148
@DataJpaTest, 214
@DataMongoTest, 216
DataSourceHealthIndicator, 354
demo.zip structure, 496
DiskSpaceHealthIndicator, 354
Docker-compose.yml, 367

/dump endpoint, 329-330

E

ElasticsearchHealthIndicator, 354
@EnableAutoConfiguration
annotation, 50

503

INDEX

@Enable* feature, 467
algorithm enum, 468
BCryptEncoder and Pbkdf2Encoder
classes, 469-470
EnableToDoSecurity feature, 467
ToDoSecurity class, 470-471
ToDoSecurityConfiguration class, 468
@Enable<Technology> annotations, 50
EndpointHandlerMapping, 341
/env endpoint, 330-331
eXtensible Markup Language (XML)
configuration file, 394
graph panel, 393
todo-context.xml, 392
ToDolntegration class, 394

F

Features, Spring Boot, 54
application arguments
executable JAR, 68
SpringApplication.run, 66
ApplicationEvent events, 65
banner
ASCII art text, 60, 61
banner.txt, 61, 62
classpath location, 62
SpringBootSimple
Application.java, 58
components, 57
Maven/Gradle project, 54-55
SpringApplicationBuilder, 63
SpringApplication class, 57
SpringBootSimpleApplication.java, 56
terminal and execute, 55-56
File integration
application.properties, 403
integration flow, 401

504

list.txt file, 403

service activator method, 404
ToDoConverter class, 399
ToDoFilelntegration class, 400
ToDolntegration class, 403
ToDoMessageHandler class, 399
ToDoProperties class, 398

G

Grafana, 363, 367, 378
grafana.ini file, 368

H

HandlerInterceptor interface, 364
/health endpoint, 331-332, 353
indicators, 354-357
ToDo app, 358-362
code, 362
values, 353
HealthIndicator interface, 354
Hypermedia as the Engine of
Application State, HAL +JSON
(HATEOAS), 150

InfluxDBHealthIndicator, 354
/info endpoint, 333
Integration
annotations, 395
components, 384
definition, 384
developers or architects, 383
file (see File integration)
IntegrationFlow, 390
JavaConfig, 397

message
endpoints, 385
message channel, 385
spring-messaging module, 384
Spring Initializr, 386-387
ToDo class, 388
ToDoConfig class, 391
ToDolntegration class, 389
withPayload method, 392
XML (see eXtensible Markup

INDEX

ToDoProperties class, 251
ToDoSecurityConfig
class, 251-253, 255
Java Message Service (JMS)
ActiveMQ), 282
configuration, 274
application.properties file, 280
producer and consumer, 275-276
running, 280
ToDoConfig class, 277

Language (XML)) ToDoErrorHandler code, 279
ToDoProperties class, 279
ToDoValidator class, 278
J’ K definition, 270
JavaConfig, 26, 397 Pub/Sub pattern, 281
Java Database Connectivity (JDBC), 241 ToDo app, 270
directory app build.gradle file, 272

application.properties file, 248
cURL command, 249
data.sql file, 248

DirectorySecurityConfig class, 245

Person class, 242-244
PersonRepository interface, 244
Spring Initializr, 241-242
userDetailsService method, 246

JdbcTemplate class, 129

methods, 129

Spring Boot, 130

ToDo app, 131
application.properties file, 256
CommonRepository interface,

133-135

H2 console, 137-139
Person class, 250
schema.sql/data.sql files, 136
terminal window, 256
testing, 136

consumer class, 273-274
pom.xml file, 272
Spring Initializr, 270-271
ToDoProducer class, 272
Java Persistence API (JPA)
features, 139
Spring Boot, 140-141
ToDo app, 141
domain model, 143, 145
properties, 148-149
testing, 149
ToDoController class, 146-148
ToDoRepository interface, 142-143
@JdbcTest, 215
JmsHealthIndicator, 354
@]JsonTest annotation, 212

L

/loggers endpoint, 333

505

INDEX

MailHealthIndicator, 354
MappedInterceptor bean, 365
/mappings endpoint, 336-337
Map-reduce/lower-level

MongoHealthIndicator, 354
Monolithic vs. microservices, 436
Multiple data sources, 170

operations, 164

Messaging

definition, 269

JMS (see Java Message Service (JMS))
RabbitMQ (see RabbitMQ)

Redis (see Redis)

NamedParameterJdbcTemplate, 135
Neo4jHealthIndicator, 354

O

OAuth2 and ToDo app

WebSockets (see WebSockets)
MeterRegistry instance, 365
/metrics endpoint, 334-336
Micrometer, 363
Microservices, 436
Model-View-Controller (MVC), 87
MongoDB

application.properties file, 260

build.gradle file, 259

GitHub, 261
application.properties, 263
authorization process, 265-267
client id and secret keys, 263
new application, 262

embedded, 160-161

features, 158

installation, 159

Spring Boot, 159

ToDo app, 161
domain model class, 163-164
testing, 164

MongoDB reactive streams,

ToDo app, 196
browser, 196
build.gradle file, 198
command execution, 205
configuration, 204
domain class, 198
handler class, 200-202
pom.xml file, 198
ToDoConfig class, 202
ToDoRepository interface, 199
ToDoRouter class, 200

506

pom.xml file, 258

Spring Initializr, 257-258
ToDoRepository interface, 259
ToDoRepository.java, 260

PQ

Pivotal Application Service (PAS), 439
Pivotal Cloud Foundry, 438

Pivotal Web Services (PWS), 441
Prometheus, 363, 367
prometheus.yml file, 368

R

RabbitHealthIndicator, 354
RabbitMQ, 283, 415

AMQP (see Advance Message Queuing

Protocol (AMOP))
application.properties file, 292

bindings section, 418
build.gradle file, 421
configuration, 289
consumer class, 288
Consumer.java class, 289
exchanges tab, 416
get messages, 419-420
installation, 283
my-queue creation, 417
overview panel, 418-419
pom.xml file, 421
Producer.java class, 286-287
remote connection, 297
sender class, 292
ToDo app

Spring Initializr, 285-286
ToDoSender class, 295, 297
web console management, 293
web console Queues tab, 295

Reactive systems, 173

characteristics, 173
data MongoDB, 196
Manifesto, 173
message driven, 174
project reactor
processors, operators and timers, 175
programming paradigm, 175
RxJava and project reactor, 196
ToDo app
browser, 175
build.gradle file, 177
domain class, 178
Flux<T>, 181
initializr, 176
MonoExample class, 179
Mono<T>, 178
onComplete/onError code, 178
pom.xml, 176-177

INDEX

WebFlux (see WebFlux)
wrapper types, 196
Redis
configuration, 302
consumer, 301
features, 165
installation, 298
RedisTemplate class, 165
remote connection, 306
server up and running, 304-305
Spring Boot, 166
Spring Initializr, 298-299
ToDo app, 166
domain model class, 168-169
testing, 169
ToDoProducer.java class, 300
@RedisHash annotation, 169
RedisHealthIndicator, 354
REST
features, 150
HATEOAS, 150
NoSQL databases, 158
Spring Boot, 150
ToDo app, 151
running, 152-153
testing, 154-155
testing, HAL Browser, 156-158
@RestClientTest, 217
RowMapper interface, 129

S

Security
Boot use of, 220
definition, 219
features of, 219-220
JDBC (see Java Database Connectivity
(JDBC))

507

INDEX

Security (cont.)

OAuth2 (see OAuth2 and ToDo app)
ToDo app
application.properties, 223
authentication, 226-227
build.gradle file, 232
dependencies, 232
domain class, 222
Http basic authentication, 231
index.mustache page, 234
index page, 238-239
login page, 225-226
.mustache extension, 232
overriding, 227
sign in, 238
Spring Initializr, 220-221
spring.security.* properties, 227
SQL statements, 224
ToDoRepository interface, 223
ToDoSecurityConfig
class, 229, 235-236, 240
ToDoWebContfig class, 237
WebFlux, 257

/loggers endpoint, 333
management, 341
/mappings endpoint, 336-337
/metrics, 363
Docker, 366
endpoint, 334-336
ToDo app, 363, 369
securing, 342
/shutdown endpoint, 337, 339
ToDo app, 320
endpoints, 323-324
Spring Initializr, 321
ToDoRepository
interface, 321-323
/trace endpoint, 339-340
SpringApplicationBuilder class, 63
Spring Boot
JDBC, 130
JPA, 140-141
MongoDB, 159
Redis, 166
REST, 150
spring-boot-starter

/shutdown endpoint, 337, 339
SolrHealthIndicator, 354
Spring Actuator module, 319

pom.xml file, 456
structure, 455
todo-client-spring-boot-starter

/actuator endpoint, 325-326
/autoconfig endpoint, 326-327
/beans endpoint, 327

beans to run, 328
/configprops endpoint, 327-329
configuration, 342
CORS, 341
/dump endpoint, 329-330
endpoint ID, 340
/env endpoint, 330-331
//health endpoint, 331-332, 353
/info endpoint, 333

508

(see todo-client-spring-boot-
starter folder)
todo-client-starter folder, 456
Spring-boot-starter-actuator, 323
Spring data
data-driven frameworks, 128
features, 128
Spring Framework, 1
context, 3
history of, 1
principles of, 2
version 3, 5

web application (see Web application)

WebFlux module, 4
Spring Initializr, 321
Spring Tool Suite (STE), 498
SQL databases, 127-128

T

Template design pattern, 128
Testing
annotations, 208
ApplicationContext, 208
definition, 207
features of, 207
framework, 207
mocking beans, 211
MockMvec class, 210
slices, 212
@DataJpaTest, 214
@DataMongoTest, 216
@JdbcTest, 215
@JsonTest, 212
@RestClientTest, 217
@WebFluxTest, 214
@WebMvcTest, 213
source code, 210
spring-boot-starter-test
dependency, 209
web endpoints, 210
ToDo app, 90
browser, 91-92
client
browser, 116
domain model, 117
run and test, 123-124
TodoClientApplication
class, 123
ToDoErrorHandler, 118

INDEX

ToDoRestClient, 120-122
ToDoRestClientProperties, 119

CommonRepository interface, 133-135

controller
@Autowired, 102
@DeleteMapping, 102
@ExceptionHandler, 103
@GetMapping, 102
@PatchMapping, 102
@PathVariable, 103
@RequestBody, 103
@RequestMapping, 102
ResponseEntity<T> class, 103
@ResponseStatus, 103
@RestController, 102
ToDoController, 99-100, 102
@Valid, 103

domain model class, 93, 143, 145,

163-164, 168-169

H2 console, 137-139

MongoDB reactive streams, 196

properties, 148

repository
CommonRepository<T>, 95
ToDoRepository, 96

requirements, 90

run option, 104

schema.sql/data.sql file, 136

testing, 107, 136, 149, 164, 169
command execution, 107
command-line tool, 106
data (-d option), 109
deleteToDo method, 108
errors and errorMessage, 109
terminal command, 105

ToDoBuilder, 94

ToDoController class, 146-148

ToDoRepository interface, 142-143

509

INDEX

ToDo app (cont.)
validation
ToDoValidationError, 97
ToDoValidationErrorBuilder, 99
WebFlux
annotated controllers, 191-192
browser, 188
domain class, 189-190
functional endpoints, 193-195
Initializr, 189
ToDoHandler class, 194
ToDoRepository class, 190-191
todo-client-spring-boot-starter folder
pom.xml, 457
structure, 457
testing, 474
run app, 477
task project, 474

todo-client-spring-boot-autoconfigure

application.properties files, 464
auto-configuration, 462
helper classes, 464
pom.xml file, 459-462
spring.factories files, 462
structure, 459
ToDoClient classes, 464
ToDoClientProperties, 464
ToDo domain class, 466
ToDoMetricInterceptor class, 364
methods, 365
ToDo REST API service, 471
data-jpa and data-rest, 471-473
@]Json* annotations, 473
ToDoRestConfig, 474
/trace endpoint, 339-340
Twelve-factor applications, 434

510

U Vv

Undertow/Netty server, 115

W, XY, Z
Web application
app running, 23
classes, 17
ToDo domain class, 17
ToDoController class, 19
ToDo domain class, 18-19
ToDoRepository interface, 19
WEB-INF/views folder, 22
configuration, 9
components, 13-14
dispatcherServlet-servlet.xml
file, 10, 11, 13
logback.xml file, 16
persistence.xml file, 15

resources/META-INF/sql folder, 15

SQL table creation, 15
web.xml file, 9
creation, 4
dependencies, 5
Java config, 26
Maven, 4
ToDo project, 4
WebClient interface, 186
WebFlux
annotated controllers, 185
application security, 257
auto-configuration, 187
dependencies, 188
ToDo app, 188
features of, 185
functional points, 185

module, 4
WebClient, 186
@WebFluxTest, 214
@WebMvcTest, 213
WebSecurityConfigurerAdapter, 342
WebSockets
application.properties file, 314
build.gradle file, 309
configuration, 312
definition, 307

INDEX

event handler, 311

producer class, 310

running execution, 316

Sock]S and Stomp messages, 317

Spring Initializr, 307-308

ToDo and ToDoRepository
classes, 308

ToDoEventHandler.java class, 310

ToDoProperties class, 311

web client, 314

511

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Spring Framework 5
	A Little History
	Design Principles and Patterns
	Spring Framework 5
	A Simple Spring Web Application
	Using Maven for Creating a Project
	Adding Dependencies
	Spring Web Configuration
	Classes
	Running the App
	Using Java Config

	Summary

	Chapter 2: Introduction to Spring Boot
	Spring Boot
	Spring Boot to the Rescue
	Spring Boot CLI

	Spring Boot Application Model
	My First Spring Boot Application

	Why Spring Boot?
	Spring Boot Features

	Summary

	Chapter 3: Spring Boot Internals and Features
	Auto-Configuration
	Disable a Specific Auto-Configuration
	@EnableAutoConfiguration and @Enable<Technology> annotations

	Spring Boot Features
	SpringApplication Class
	Custom Banner
	SpringApplicationBuilder
	Application Arguments
	Accessing Arguments with an Executable JAR

	ApplicationRunner and CommandLineRunner
	Application Configuration
	Configuration Properties Examples
	Command-Line Arguments
	Relaxed Binding
	Changing Location and Name
	Profile Based

	Custom Properties Prefix

	Summary

	Chapter 4: Web Applications with Spring Boot
	Spring MVC
	Spring Boot MVC Auto-Configuration
	Spring Boot Web: ToDo App
	ToDo App
	Domain Model: ToDo
	Fluent API: ToDoBuilder
	Repository: CommonRepository<T>
	Repository: ToDoRepository
	Validation: ToDoValidationError
	Validation: ToDoValidationErrorBuilder
	Controller: ToDoController

	Running: ToDo App
	Testing: ToDo App

	Spring Boot Web: Overriding Defaults
	Server Overriding
	JSON Date Format
	Content-Type: JSON/XML
	Spring MVC: Overriding Defaults
	Using a Different Application Container
	Using Jetty Server

	Spring Boot Web: Client
	ToDo Client App
	Domain Model: ToDo
	Error Handler: ToDoErrorHandler
	Custom Properties: ToDoRestClientProperties
	Client: ToDoRestClient
	Running and Testing the Client

	Summary

	Chapter 5: Data Access with Spring Boot
	SQL Databases
	Spring Data
	Spring JDBC
	JDBC with Spring Boot
	ToDo App with JDBC
	Repository: ToDoRepository
	Database Initialization: schema.sql
	Running and Testing: ToDo App
	H2 Console

	Spring Data JPA
	Spring Data JPA with Spring Boot
	ToDo App with Spring Data JPA
	Repository: ToDoRepository
	Domain Model: ToDo
	Controller: ToDoController
	Spring Boot JPA Properties
	Running and Testing: ToDo App

	Spring Data REST
	Spring Data REST with Spring Boot
	ToDo App with Spring Data JPA and Spring Data REST
	Running: ToDo App
	Testing: ToDo App
	Testing with HAL Browser: ToDo App

	No SQL Databases
	Spring Data MongoDB
	Spring Data MongoDB with Spring Boot
	MongoDB Installation
	MongoDB Embedded

	ToDo App with Spring Data MongoDB
	Domain Model: ToDo
	Running and Testing: ToDo App

	ToDo App with Spring Data MongoDB REST

	Spring Data Redis
	Spring Data Redis with Spring Boot
	ToDo App with Spring Data Redis
	Domain Model: ToDo
	Running and Testing: ToDo App

	More Data Features with Spring Boot
	Multiple Data Sources

	Summary

	Chapter 6: WebFlux and Reactive Data with Spring Boot
	Reactive Systems
	The Reactive Manifesto

	Project Reactor
	ToDo App with Reactor
	Mono<T>, an asynchronous [0|1] result
	Flux<T>: An asynchronous Sequence of [0|N] Items

	WebFlux
	WebClient

	WebFlux and Spring Boot Auto-configuration
	Using WebFlux with Spring Boot
	ToDo App with WebFlux
	Using Annotated Controllers
	Using Functional Endpoints

	Reactive Data
	MongoDB Reactive Streams
	ToDo App with Reactive Data

	Summary

	Chapter 7: Testing with Spring Boot
	Spring Testing Framework
	Spring Boot Testing Framework
	Testing Web Endpoints
	Mocking Beans
	Spring Boot Testing Slices
	@JsonTest
	@WebMvcTest
	@WebFluxTest
	@DataJpaTest
	@JdbcTest
	@DataMongoTest
	@RestClientTest

	Summary

	Chapter 8: Security with Spring Boot
	Spring Security
	Security with Spring Boot
	ToDo App with Basic Security
	Overriding Simple Security
	Overriding the Default Login Page
	Custom Login Page

	Using Security with JDBC
	Directory App with JDBC Security
	Using the Directory App within the ToDo App

	WebFlux Security
	ToDo App with OAuth2
	Creating the ToDo App in GitHub

	Summary

	Chapter 9: Messaging with Spring Boot
	What Is Messaging?
	JMS with Spring Boot
	ToDo App with JMS
	ToDo Producer
	ToDo Consumer
	Configuring the ToDo App
	Running the ToDo App

	Using JMS Pub/Sub
	Remote ActiveMQ

	RabbitMQ with Spring Boot
	Installing RabbitMQ
	RabbitMQ/AMQP: Exchanges, Bindings, and Queues
	ToDo App with RabbitMQ
	ToDo Producer
	ToDo Consumer
	Configuring the ToDo App
	Running the ToDo App

	Remote RabbitMQ

	Redis Messaging with Spring Boot
	Installing Redis
	ToDo App with Redis
	ToDo Producer
	ToDo Consumer
	Configuring the ToDo App
	Running the ToDo App

	Remote Redis

	WebSockets with Spring Boot
	ToDo App with WebSockets
	ToDo Producer
	Configuring the ToDo App
	ToDo Web Client
	Running the ToDo App

	Summary

	Chapter 10: Spring Boot Actuator
	Spring Boot Actuator
	ToDo App with Actuator
	/actuator
	/actuator/conditions
	/actuator/beans
	/actuator/configprops
	/actuator/threaddump
	/actuator/env
	/actuator/health
	/actuator/info
	/actuator/loggers
	/actuator/loggers/{name}
	/actuator/metrics
	/actuator/mappings
	/actuator/shutdown
	/actuator/httptrace
	Changing the Endpoint ID
	Actuator CORS Support
	Changing the Management Endpoints Path
	Securing Endpoints
	Configuring Endpoints

	Implementing Custom Actuator Endpoints
	ToDo App with Custom Actuator Endpoints

	Spring Boot Actuator Health
	ToDo App with Custom HealthIndicator

	Spring Boot Actuator Metrics
	ToDo App with Micrometer: Prometheus and Grafana
	Prerequisites: Using Docker
	docker-compose.yml
	Running the ToDo App Metrics

	General Stats for Spring Boot with Grafana

	Summary

	Chapter 11: Spring Integration and Spring Cloud Stream with Spring Boot
	Spring Integration Primer
	Programming Spring Integration
	ToDo App with Spring Integration

	Using XML
	Using Annotations
	Using JavaConfig
	ToDo with File Integration

	Spring Cloud Stream
	Spring Cloud
	Spring Cloud Stream
	Spring Cloud Stream Concepts
	Spring Cloud Stream Programming
	ToDo App with Spring Cloud Stream
	Source
	Processor
	Sink

	Microservices
	ToDo App: A Complete Flow

	Spring Cloud Stream App Starters

	Summary

	Chapter 12: Spring Boot in the Cloud
	The Cloud and Cloud-Native Architecture
	Twelve-Factor Applications
	Microservices
	Preparing the ToDo App as a Microservice
	Pivotal Cloud Foundry
	PAS: Pivotal Application Service
	PAS Features
	Using PWS/PAS
	Cloud Foundry CLI: Command-Line Interface
	Log in to PWS/PAS Using the CLI Tool
	Deploying the ToDo App into PAS
	Creating Services
	Cleaning Up

	Summary

	Chapter 13: Extending Spring Boot
	Creating a spring-boot-starter
	todo-client-spring-boot-starter
	todo-client-spring-boot-autoconfigure
	spring.factories
	auto-configuration
	Helper Classes

	Creating an @Enable* Feature
	ToDo REST API Service
	Installing and Testing
	Task Project
	Running the Task App

	Summary

	Appendix A: Spring Boot CLI

	Spring Boot CLI
	The run Command
	The test Command
	The grab Command
	The jar Command
	The war Command
	The install Command
	The uninstall Command
	The init Command
	init Examples
	An Alternative to the init Command

	The shell Command
	The help Command

	Summary

	Index

