Know Vue.js

Learn to Build Single Page Applications
in Vue from Scratch

ApreSS®

http://www.allitebooks.org

Getting to Know Vue.js

Learn to Build Single Page
Applications in Vue from Scratch

Brett Nelson

Apress’

vww .allitebooks.cond

http://www.allitebooks.org

Getting to Know Vue.js

Brett Nelson
Eagan, Minnesota, USA

ISBN-13 (pbk): 978-1-4842-3780-9 ISBN-13 (electronic): 978-1-4842-3781-6
https://doi.org/10.1007/978-1-4842-3781-6

Library of Congress Control Number: 2018955705

Copyright © 2018 by Brett Nelson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jade Scard

Development Editor: James Markham

Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484237809. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-3781-6
http://www.allitebooks.org

For Danielle

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AUROFcciiemmssemnmssnnmsssssmsssssssansssssnsssssnsssssnssssannssssnnssssnnsnssnnssssnnnnsns xi
About the Technical REVIEWETcuscessssssnssssansssssnssssansssssnsssssnsssssnsssssnsssssnsssssanssss xiii
Chapter 1: Why VUE.JS?..uuuueeerrrrrmsmssssnssnnsssssssssssssssssssssssssssssssssnssssssssssssssssnnnnssssssssssnns 1
ThE ValUE OF VUELJS ..ovuereee ettt s s s s s s 1
Our FIrst VUE.JS INSLANCEcveueereecriresirc sttt e se s et st 2
DEVEIOPET TOOIS.......coeieir et bR s 5
BrowSer DV TOOIScccoveceecereere s e 6
BIOWSEISYINC ... ccueiuitiirese sttt s s re e e bbb e e s b e e s R b e e e e e ae e Re b e e e e nne 6
SUIMIMANY..... e e re e e e e e s R e e R e e e s e e s R e e s e e e e nae e nRa e nen e e nnnanes 8
Chapter 2: The BaSiCS....ccciuuumsmmnmmssssnnnmmsssssnnmmsssssnnssssssssnsssssssnssssssssnnnsssssnnnnsssssnnnnsssss 9
VUB OPEIONS .ttt e s R R p e 9
TR 9
TEMPIALE ... —————————————— 12
32T 1 [PSS 15

D7 TS 16
METNOUS. ... e 20
COMPUEEA PrOPeIIES...ccvevii it b e e s nne 22
Template BiNAINGcccuoceererernsernesinesese e e nr s 22

ES 1] 14 7R 27
Chapter 3: Conditional Rendering.......cccuseessrssssnnnssssssnnssessssnssssssssnnsssssssnssssssssnnnssnss 29
0T 10 S 29
V=if V=BISE V-BISE-if ... s 33

L | O 34
LT TR 36
LR T SR 38

v

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

LISTES rererrire et r e e E e R e e e R R e e e e R nan 42
BaASICS ...eueiriirire s e E e e e 42
Accessing Ohject Properties..... .o s s snes 47
Index and Parent Propertiesccovcvirerninsnienie s s s s s s s sss e s ssessssensesnens 48
Dealing With CRANGEcccorueereccrre st 50
01T OO SRS 53

E 1] 4= OO SS 55

Chapter 4: Computer Properties and Watchersccccvunummmmnssssnnnmmssssssnmsssssssnnnns 57

ComPULEA PrOPEITIEScoereereiirsire et b e 57

WALCREIS ... e p e n e e an e 62
NeW and Old VAIUES.......ccceverirrrererirsire s s sre st s s se s saesae s s saesnes 64
DB ettt e R R E e e r e e e e 65
10 T o = RS RS 66

1] 4= RS 68

Chapter 5: EVeNtScccuiiseeeeemmmmmmmmmsssssssssmsssnnnsssnssssnssnns 69

LY 111 SRS SRS 69

L1101 S OSSPSR 71
METNOUS.o ————————— 72
ININE METNOG.......ceeeee e nre s 73

MOITIEIS ...t e s e e e e R e R nnn 75
USING @ MOGITIEE ... e e s s e 76
Chain MOGITIEIScvecererercsir e e e s s s b e e s s a e e e nne s 80
INPUL e e e e ae s 81

SUIMIMANY ...t n e s Re e e e e e e e e Re e e e e n e e nRe e sa e nenan e nnnnnes 84

Chapter 6: Bindingscccourusssmmmmmssssnnnmmssssssnssssssssssessssssnssssssssssssssssnnssssssnnnsssssnnnnsssss 85

0] 11 PSSRSO 85
L1410 - ST SS 85
] 01 ST 85
Textarea EIBMENTS ..o e e 102

TABLE OF CONTENTS

£ T 103
MURIPIE SEIBCTS ..o e s 104
L0011 TS 106

£33 1T T 110
0] L= I 4T T 111
610 L0 0] T £ 112

L TS 116
RS0 111 1T S 125
Chapter 7: State Managementccounmmmmmsmsmsmsmsssssssssss s 127
Simple Data ODJECTS......cucvrerrree s ————— 127
0D s T (0] - R 130
LT P 132
INSEAIL....cee e ———————————————— 132
0701107 1O 134
31011117 OO S 147
Chapter 8: Using COmponentsccvcemmmmmmmmmmssmsssmmssmssssmssssssssssssssssssssssssssnsass 149
What IS @ COMPONENT? ... e s p e e e e 149
First COMPONENT.....coui e e st nae 149
(UL T DL - OSSOSO 151
Passing Data With PrOPScovcvrririnirserene s sessesse e sessessessessssessessesssssssessessesssssssesnens 153
EVENTS ... e 158
E3] 0] TP 162
RegISTration.........ccocciiiisirr e 163

£ 111 T o TS 165
Chapter 9: Reusable Code.........ccuummmsmsmsmsmsmsmsmsmsssmssssssssssssssss s 167
IVIXINS . c.ttitereer e e AR e E e e e e nne 167
Creating MiXiNS.......cccvcrirniiriere e e e s p e e s e e b p e e s 167
USING MIXINS ...eevieeirreeriee s e e b e e nnnna e nr s 168
USing MUItIPIE MIXINScccevieirrrererissesenesese e s sn s srs e sn s nsanis 169

vii

TABLE OF CONTENTS

CUSTOM DIFBCHIVESc.eveeereecrererere e ne e 171
Creating @ DIFECHIVEcc.ccc e ep s 171
USING the DIFECHIVEccoveeeecirere s e 173
PasSiNg @VAIUE ..o e e s 174
Passing an Object @S @ VAlUE..........couvrrerneninnscrn st sse s 176
USING MOGITIEIS....ccvecererece s e e e s s p e e e 178

Render FUNCHION.........ccoeecrrcseree e 180
Render versus TEMPIALE ... s e 180
(= UC=] = T T | 184

£ 0T 191

Chapter 10: Custom Functionalityccccccnmmmnsemmmmmsssnmmmmnssssnmmssssnmmssssssmssssn 193

[0 1T] LSOO 193
Creating @ PIUGIN ..o s 193
LT 1 0 11 OSSPSR 194
USING OPLIONSveueeieeeriee e r s e b e e nnnne e nr s 195
Registering a Global Mixin With @ PIUGIN........cccecriinncnnesens e 197
Registering Global Components with @ PIUGinccovvevvinnnsnnncsnesss e 199

FIBIS o 201
Creating and USing @ FIEIoov v ss s 202
Creating @ GIODAI FILEEccvcveririrrire s e s s sa s sne e 203
(081 UL T T N T (=T S 204
AFGUMEBNTS ... e e e e e e e e e ae s r e e e e e R s e e n e nannnas 205

£ 11134 7R 207

Chapter 11: TOOIING....cuusessssnsssansssansssnsssansssassssnsssansssassssnsssansssansssnssssnsssansssnsssansssans 209

Single File COMPONENLSccccviieiirinsrer e e s p e s 209
S] (1T L1 209
Syntax Highlightingcccorniineircscrr e se s e se s e 210

Command-Line INTErface ..o e 212
Prer@QUISITES ...cvueiieiicircre st b e 212
INSTAING VUG CLI ...t e e b e s 212

viil

TABLE OF CONTENTS

VUB CFBALEceeeeereecrercer e e se e e s e s re e ne e e e nan e nneneas 214

VUE SEIVEcoeieeeeecreris e s e se e e e e e b s e e e ne s nn e 216
PrOJECT STIUCIUIE ...ttt e 220

LT L3021 o SR 227

The CLI USEr INEITACEcceeerererrcccereris e se e 229
SUMIMANY ...t s b e e e e e R e e e e e Re R e e e e e Re e Re R e e e e e Re e R e e e e naenns 234
Chapter 12: USing ROULEIS......cccirusssnmnnmsssssnnnmsssssnnnssssssnnnssssssnnnssssssnnnsssssnnnsssssnnnnnss 235
DIY ROULEK ...v.eveceseesree e s e nenss e s 235
Setting Up the DIY ROULET ... 235
VUB-ROULET ...t s ne e e nne s 240
Setting Up VUB-ROULEcoveeereereserinesens e s sn s s nra s 240
PasSing Parameters.......c.cucvienieneiinne s 246
Navigating from JavaSCript.........cccverrnrrniesrnese s ss 253
REUIFECES ...vuerecsrscerrese s e e e p e ne e 254
AlIASES ..c.viuerrseerreserrsse s s E e e R R e e e e rnRe s 254

BTN 1o T= T E 201U O 255

£ 1§14 7O 259
11T - 261

ix

About the Author

Brett Nelson is a software developer who has been working
with Salesforce.com since early 2016. Brett is a consultant with
Just Some Apps, www . JustSomeApps . com. Prior to working in
the Salesforce-land, Brett spent four years working with the
.NET technology stack, focusing on web development with
MVC, Angular, TypeScript, and Aurelia.

Beyond the technology, Brett is passionate about
continuous improvement through learning, sharing with others,

and collaboration amongst the geek society.
You can read Brett’s ramblings at WIPDeveloper.com and
follow him on Twitter @BrettMN.

﻿https://www.JustSomeApps.com﻿

About the Technical Reviewer

Toby Jee is a software programmer currently located in Sydney, Australia. He loves
Linux and open source projects. He programs mainly in Java, JavaScript, TypeScript, and
Python. In his spare time, Toby enjoys walkabouts, reading, and playing guitar.

xiii

CHAPTER 1

Why Vue.js?

Getting started with a new JavaScript framework can be a difficult task to approach. To
help with this, we will take a look at the value that Vue.js brings to development and
create our first app with Vue.

The Value of Vue.js

Getting started creating a Single Page Application (SPA) can be a difficult task. There are

a lot of choices that have to be made up front with most frameworks. Some frameworks
make those choices for you when you decide to go with them. Others require you to make
those choices. Either way, those choices probably need to be decided at the beginning of a
project, since changing them later in the development process will incur a greater cost.

It’s a lot to process and decide, all before you do any “real” work that can you can
show to your boss/client/stakeholder that they will perceive as valuable. What'’s a
developer to do?

One option is to choose a preset way to build your SPA that someone else had some
luck with or go with what is recommended by the framework creators.

Another option to is to go with a framework that lets you start small and make
choices for your app as the need arises.

And you can do that with Vue.js.

Vue.js is called a progressive framework by its creators. This is because it allows you
to start building your app with minimal effort as the core Vue.js library focuses only on
the view layer. Over time as the requirements grow, you can adapt additional libraries for
functionality.

The idea of adding features to the app you are creating over time doesn’t limit the
use of more complex development tools. Need to add a router? No problem; use the
Vue-Router, a third-party option, or roll your own (see Chapter 11). Looking to manage
in memory state? You can use a Plain Old JavaScript Object, a store pattern, or the Vue.js
specific Vuex (see Chapter 6). By now you get the idea.

© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_1

CHAPTER 1 WHY VUE.JS?

This all probably makes Vue.js sound complicated, but it’s not.

In fact, one of the reasons that developers often say they choose Vue.js is because
of how easy it is to get started'?. With little overhead, a developer can get to work and
produce results without the added complexity of other popular frameworks. And this
ease of beginning doesn’t limit the complexity of the app you can build, as Vue.js can
scale in complexity with your project’s requirements.

Our First Vue.js Instance

One of the best parts of using Vue.js is that it requires little overhead to get started. Add a
script tag referencing the Content Delivery Network (CDN) for the library to your page
and you are ready to get going!

Let’s take a quick look at what it requires to get started.

We will start with a pretty empty HTML file, shown in Listing 1-1.

Listing 1-1. Empty HTML File

<html lang="en">

<head>

<title>Getting to Know Vue.js</title>
</head>

<body>

</body>
</html>

To take this empty HTML file to a working Vue.js app, we need to add three things:
¢ An HTML element where we “mount” our app
o A<script> reference to Vue.js on the CDN

e A<script> element in which we create our app

IState of Vue.js 2017 https://cdn2.hubspot.net/hubfs/1667658/State of vue/State%200f%20
Vue.js%20report’%202017%20by%20Monterail . pdf?t=15091065643878&utm_campaign=Vue.
js&utm_source=hs_automationutm medium=email&utm content=577263098 hsenc=p2ANqgtz-
9Kq23TU9inAkO5FNwcxKL65dVn9IRCGZ9P90UeA8NgbyVTc4mOTL-I4FoKetfBkihubdO1E1rs9zR8xzvR
NiBS031tGO& hsmi=57726309

2Adding Vue.js to Your Technology Stack https://www.monterail.com/services/vuejs-development

2

https://cdn2.hubspot.net/hubfs/1667658/State_of_vue/State%20of%20Vue.js%20report%202017%20by%20Monterail.pdf?t=1509106564387&utm_campaign=Vue.js&utm_source=hs_automation&utm_medium=email&utm_content=57726309&_hsenc=p2ANqtz-9Kq2JTU9inAkO5FNwcxKL65dVn9IRCqZ9P9OUeA8nqbyVTc4m0TL-I4FoKetfBkihubdO1E1rs9zR8xzvRNiBSo3ltGQ&_hsmi=57726309
https://cdn2.hubspot.net/hubfs/1667658/State_of_vue/State%20of%20Vue.js%20report%202017%20by%20Monterail.pdf?t=1509106564387&utm_campaign=Vue.js&utm_source=hs_automation&utm_medium=email&utm_content=57726309&_hsenc=p2ANqtz-9Kq2JTU9inAkO5FNwcxKL65dVn9IRCqZ9P9OUeA8nqbyVTc4m0TL-I4FoKetfBkihubdO1E1rs9zR8xzvRNiBSo3ltGQ&_hsmi=57726309
https://cdn2.hubspot.net/hubfs/1667658/State_of_vue/State%20of%20Vue.js%20report%202017%20by%20Monterail.pdf?t=1509106564387&utm_campaign=Vue.js&utm_source=hs_automation&utm_medium=email&utm_content=57726309&_hsenc=p2ANqtz-9Kq2JTU9inAkO5FNwcxKL65dVn9IRCqZ9P9OUeA8nqbyVTc4m0TL-I4FoKetfBkihubdO1E1rs9zR8xzvRNiBSo3ltGQ&_hsmi=57726309
https://cdn2.hubspot.net/hubfs/1667658/State_of_vue/State%20of%20Vue.js%20report%202017%20by%20Monterail.pdf?t=1509106564387&utm_campaign=Vue.js&utm_source=hs_automation&utm_medium=email&utm_content=57726309&_hsenc=p2ANqtz-9Kq2JTU9inAkO5FNwcxKL65dVn9IRCqZ9P9OUeA8nqbyVTc4m0TL-I4FoKetfBkihubdO1E1rs9zR8xzvRNiBSo3ltGQ&_hsmi=57726309
https://cdn2.hubspot.net/hubfs/1667658/State_of_vue/State%20of%20Vue.js%20report%202017%20by%20Monterail.pdf?t=1509106564387&utm_campaign=Vue.js&utm_source=hs_automation&utm_medium=email&utm_content=57726309&_hsenc=p2ANqtz-9Kq2JTU9inAkO5FNwcxKL65dVn9IRCqZ9P9OUeA8nqbyVTc4m0TL-I4FoKetfBkihubdO1E1rs9zR8xzvRNiBSo3ltGQ&_hsmi=57726309
https://www.monterail.com/services/vuejs-development

CHAPTER 1 WHY VUE.JS?

We will start with a place to mount the app. We will use a <div> with an id of app.
For the second one, we will use the development version of Vue.js at https://cdn.
jsdelivr.net/npm/vue/dist/vue.js. The final one will be a JavaScript <script>
element that we will use for all our JavaScript to get started.

We could add the Vue.js <script> reference before the mounting point, but it would
block the rest of the page from loading, making it seem slower to the user. The <script>
element that will contain our app needs to be after the mounting point so that the DOM
is ready for the app to load.

All this adds up to the contents of the <body> element shown in Listing 1-2.

Listing 1-2. The Structure of Our HTML Page

<!-- Div to Mount App -->
<div id="app">

</div>

<!-- Reference to Vue.js library -->
<script src="https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script>

<!-- Script Element for our first App -->
<script>

</script>

I've included comments in Listing 1-2 so it’s easier to identify the items we are
talking about.

That’s all the setup we need before we create our first app. The next step is to add
some template syntax to our app’s <div> to bind some data to it. For this first app,
we will use what is commonly called mustache syntax. It consists of two curly braces
surrounding the property name we want to inject the data from, such as in
{{ propertyName }}. This will make our app’s <div> look like Listing 1-3

Listing 1-3. The HTML Template for Our App

<!-- Div to Mount App -->
<div id="app">

{{ propertyName }}
</div>

https://cdn.jsdelivr.net/npm/vue/dist/vue.js
https://cdn.jsdelivr.net/npm/vue/dist/vue.js

CHAPTER 1 WHY VUE.JS?

Now we just need to create the app.

In the empty <script> element we created, we are going to add a new instance of
Vue.js, called new Vue(). Calling new on Vue without passing in an options object will
not get us off to a good start. Therefore, we should at least tell it where to mount the app
and give it a little data.

To tell our instance of Vue.js where to mount the options object, we passin a
property called el. The value for this will be the CSS selector. In our case, that is #app
since we gave our <div> an id of app.

Note If you want to know more about the el property of the Vue options, see
Chapter 2’s section on Vue options.

To give it some data, we will use the data property of the options object. The data
property will be an object that has a property of the same name as the property name
we used in our template binding. This means that our property name will be the very
original and thought-out propertyName. In this case, we will give it a string that we want
to show on the page.

Our <script> that we set aside for our app should now look like Listing 1-4.

Listing 1-4. Our First Vue App!

var app = new Vue({
el: '#app',
data: {
propertyName: 'Hello from Getting to Know Vue.js!'

};

Now when we look at our page in a web browser, we should see something like
Figure 1-1.

CHAPTER 1 WHY VUE.JS?

_ CEIDBEAT X

- = ¢ @ @ localhost:3000 g m vy =

Hello from Getting to Know Vue.js!

Figure 1-1. Our first Vue.js app in action

Congratulations, you made your first Vue.js app!
We'll be taking a closer look at what we did and how to use it as the starting point

later on.

Developer Tools

Before we get too far, I want to explain some tools that I mention later on.

CHAPTER 1 WHY VUE.JS?

Browser Dev Tools

Throughout the course of this book, we will periodically be using tools built into the web
browsers, commonly referred to as dev tools. While they can give us insight into what is
going on with our JavaScript application, we can get greater insight by using the Vue-
DevTools.

The Vue-DevTools come in two flavors—browser extensions for Chrome and Firefox
and a standalone Electron app.

Links to the most up-to-date versions can be found at https://github.com/vuejs/
vue-devtools.

Browsersync

In Figure 1-1, the address that the browser was viewing was http://localhost:3000/.
This means it was being served from a server at localhost port 3000. Since I didn’t
deploy the index.html to a remote server or build a custom app to view it, [was able
to use Browsersync for hosting the files locally. Unless otherwise noted, I will continue
to use Browsersync (https://www.browsersync.io/) for loading files during local
development.

To install Browsersync, Node.js and NPM are required. The good news is that
both are installed when you install Node.js. Node.js can be installed by following the
directions at https://nodejs.org/.

Once Node.js is installed, Browsersync can be installed for use anywhere on your
computer by typing the command in Listing 1-5 at the command prompt.

Listing 1-5. The Install Browsersync Command
npm install -g browser-sync

To use Browsersync after it is installed, navigate to the directory that you want to
serve files from in your command prompt and enter the command shown in Listing 1-6.

Listing 1-6. Starting Browsersync to Watch File Changes

browser-sync -w

https://github.com/vuejs/vue-devtools
https://github.com/vuejs/vue-devtools
https://www.browsersync.io/
https://nodejs.org/

CHAPTER 1 WHY VUE.JS?

The browser-sync portion of the command starts Browsersync. The -wis a flag that
causes it to watch for file changes and reload the browser when a change is detected.
This means we have to press refresh just a little less frequently.

When you run browser-sync -w at the command prompt, it should look somewhat
like Figure 1-2.

®0e yground — b yne -w — b ync — open « node just/local/bin/browser-sync -w — 62x25
= playground git:(master) x browser-sync -w
[Browsersync] Access URLs:
Local: http: //localhost 3002
External: http://192.168.29.200:3002
UI: http://localhost:3003
UI External: http://192.168.29.200:3003
[Browsersync] Serving files from: /Users/brett/Dropbox/wip-wri
tting/getting-to-know-vuejs/code/playground
[Browsersync] Watching files...

Figure 1-2. Using Browsersync on the command line

During this process, Browsersync should open your default browser to the address it
shows for “local” With Figure 1-2 that means Firefox opened to http://localhost:3002/
on my computer.

CHAPTER 1 WHY VUE.JS?

Summary

In this chapter, we looked at the value that Vue.js brings to developing a Single Page
Application. We also built our first Vue app and looked at some tools that are useful

when working with Vue.

CHAPTER 2

The Basics

Before we can get too far into understanding Vue, we need to cover a few things. We start
off by learning what options we have when creating an instance of Vue. After we have an
understanding of what we can provide Vue to make it suit our needs, we look at how we
can start binding it to HTML, with a look at the templating syntax.

Vue Options

Before we get too far, we should learn more about the options that are available when
creating a Vue instance. In Chapter 1, we created an instance by using the bare minimum
of options to get Vue to render the data and the el property on the page in order to
specify where the Vue instance should be and what data it would have access to.

Note Technically, we could create a Vue instance with just the el property, but it
couldn’t do much.

El

The el property we talked about allows us to specify where our Vue instance will mount
on the page. The value you provide can be a string that is a CSS selector (such as #app),
as shown in Listing 2-1, or an HTMLElement, as shown in Listing 2-2.

Listing 2-1. Mounting Vue with a CSS Selector

var app = new Vue({
el: '#app',
data: {

© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_2

CHAPTER 2 THE BASICS

propertyName: 'Hello from Getting to Know Vue.js! This was mounted
by passing in an CSS Selector'

}
};

Listing 2-2. Mounting Vue with an HTMLElement

var element = document.getElementById('app');
var app = new Vue({
el: element,
data: {
propertyName: 'Hello from Getting to Know Vue.js! This was mounted
by passing in an HTMLElement'

};

When Vue is mounted to the HTML element that is provided, it replaces it with the
Vue created DOM. The Vue DOM will contain the HTML that we provide as the template
or the contents produced from the render function we provide. More on the template
and render functions shortly.

If template and render are not provided, the HTML on the element that was
provided as the mounting point will be used as the template for Vue to render the
DOM. This is how we are able to inject our propertyName from the data into the HTML
that was rendered without a template. It’s not rendering the DOM created from our
HTML, it’s rendering the DOM created by Vue when it extracts the DOM we wrote and
uses that as the template.

This is how Listing 2-3 becomes Figure 2-1.

Listing 2-3. No Template Vue App
<!-- Div to Mount App -->
<div id="app">

{{ propertyName }}
</div>

<!-- Reference to Vue.js library -->
<script src="https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script>

10

CHAPTER 2 THE BASICS

<!-- Script Element for our App -->

<script>
var app = new Vue({
el: '#app',
data: {
propertyName: 'Hello from Getting to Know Vue.js!'
}
1);
</script>

_ ST x

C @ @ localhost:3000 o 9w Homyvy =

Hello from Getting to Know Vue.js!

Figure 2-1. Vue app rendered without a template

11

CHAPTER 2 THE BASICS

Template

All this talk about Vue using a template means we should probably cover how to pass a
template in as part of the options object. When you're creating a new Vue instance, one
of the options you can provide as a property is template.

The template string is used by Vue to generate the DOM it will be placing in the web
page in place of the element that was selected with the el option. It must have one root
element. This will replace anything that is inside the element that the instance of Vue
gets mounted to.

In Listing 2-4, the text inside <div id="app"> will be replaced with the contents of
our template and the data it uses. This results in Figure 2-2.

Listing 2-4. Vue App with a Template

<!-- Div to Mount App -->
<div id="app">
This will be replaced!
</div>

<!-- Reference to Vue.js library -->
<script src="https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script>

<!-- Script Element for our App -->
<script>
var app = new Vue({
el: '#app',
data: {
propertyName: 'Hello from Getting to Know Vue.js! Using a
template!’

1
template: '<div>{{ propertyName }}</div>'

};

</script>

12

CHAPTER 2 THE BASICS

_ CE =R *

c @ @ localhost:2000 - QT Bomyvy =

Hello from Getting to Know Vue.js! Using a template!

Figure 2-2. Vue app rendered with a template

It is also possible to use the template property to provide a CSS selector to target an
HTML element that has an ID. We do this by starting the template string with a hash tag
(#). This can be done with a <script> element if you give it a type of x-template and it
will not render on the page until Vue uses it as the template.

Note You could use the <template> element instead of the <script> element
to target a template by ID, but you should verify browser compatibility with your
target audience first.

13

CHAPTER 2 THE BASICS

One point to keep in mind is that the element you target to use as a template should
be placed before your app is declared. Listing 2-5 will render like Figure 2-3.

Listing 2-5. Vue App from a Template Using a querySelector

<!-- Script Element for our Template -->
<script id="myTemplate" type="x-template">
<div>
From Script Element Template: {{ propertyName }}
</div>
</script>

<!-- Script Element for our App -->
<script>
var app = new Vue({
el: '#app',
data: {
propertyName: 'Hello from Getting to Know Vue.js! Using a
template!
}J
template: '#myTemplate'

};

</script>

14

CHAPTER 2 THE BASICS

_ ST .

C @ (@ localhost:3000 v @ 1 Homy =

From Script Template: Hello from Getting to Know Vue,js! Using a template!

Figure 2-3. Vue app rendered with a template using querySelector

Render

Sometimes creating a component requires a more programmatic approach than
can be achieved with HTML or a string template. The render function is a way to
programmatically create templates in JavaScript. The render function takes priority over
templates and HTML templates.

Since this applies more to components and less to generic Vue understanding, the
render function is covered more in depth in Chapter 8, “Using Components”.

15

CHAPTER 2 THE BASICS

Data

We use the data property to tell our instance what shape our data will resemble. In
Listing 2-6, the data has one property named propertyName. If there is something we
want to be able to bind to in our Vue instance, we need to include it in the data before we
create our Vue instance.

Listing 2-6. Data Has One Property Named propertyName

data: {
propertyName: 'Hello from Getting to Know Vue.js!'

}

When a new instance of Vue is created, it adds all the properties of data to a reactive
system. The Vue reactive system monitors the properties of the data object for changes
and updates the view to “react” to those changes.

This means we cannot add new data to be monitored by Vue’s reactive system after
the application starts. If, at the time you create your Vue instance, you don’t know what
the values of your data properties will be, define them with the names and give them a
value of an empty string—", null, or undefined. Don’t use the empty object { }, as that
will render the stringified JSON of the empty object.

Say your HTML looked like Listing 2-7, with three data properties emptyObject,
emptyString and nullProperty, and with values of an empty object, empty string, and
null assigned accordingly in the app. In that case, the HTML would render like Figure 2-4.
Notice how the emptyObject has brackets.

Listing 2-7. HTML with emptyObject, emptyString, and nullProperty

<!-- Div to Mount App -->

<div id="app">
<p>emptyObject: {{ emptyObject }}</p>
<p>emptyString: {{ emptyString }}</p>
<p>nullProperty: {{ nullProperty }}</p>

</div>

<!-- Reference to Vue.js library -->
<script src="https://cdn.jsdelivr.net/npm/vue/dist/vue.js"></script>

16

<!-- Script Element for our App -->

<script>
var app = new Vue({
el: '#app',
data: {
emptyObject: {},
emptyString: ",
nullProperty: null
}
D;
</script>

CHAPTER 2 THE BASICS

_ ESLTIRLIEINTEL) .
wee

C @ @ localhost:3000
emptyObject: {}
emptyString:

nullProperty:

Fomv =

Figure 2-4. Rendering empty values

17

CHAPTER 2 THE BASICS

Names of the properties of the data object must not start with $ or _. Any properties
that start with $ or _ will not be added to the reactive system, as they might cause
conflicts with Vue’s internal properties and methods. Since they won’t be added to the
reactive system, they also can’t be accessed in the template.

Using a value that begins with either $ or _in the template will cause an error.
Listing 2-8 shows one property that starts with $ and one that starts with _. Trying to use
these values in the template causes a reference error at runtime (see Figure 2-5), since
Vue does not have references to these properties in the reactive system.

Listing 2-8. Trying to Use Data Properties That Start with $ or _

var app = new Vue({
el: '#app',
data: {
propertyName: 'Hello from Getting to Know Vue.js!',
_propertyName: 'This will not be added to the reactive system.',
$propertyName: 'This will not be added to the reactive system.'
b
template: “«<div>
<div>{{ propertyName }}</div>
<div>{{ _propertyName }}</div>
<div>{{ $propertyName }}</div>
</divy>”

1

18

CHAPTER 2 THE BASICS

£etiha B AR . =

[@ localhost:3000 0% v @ ﬂ @ my =

[® Inspec Cons Debuc Style Ec Perform Mem Netw Store vue (- B & 0O £ X

W Filter output Persist Logs

A » [Vue warn]: Error in render: "ReferenceError: _propertyName is vue.js:597:7
not defined"

(found in <Root>)

A » » ReferenceError: _propertyName is not defined vue.js:1743:5
Stack trace:
anonymous@https://cdn. jsdelivr.net/npm/vue/dist/vue.js line
18667 = Function:3:8@
renderMixin/Vue.prototype._render@https://cdn.jsdelivr.net
/npm/vue/dist/vue. js:4535:15
updateComponent@https://cdn. jsdelivr.net/npm/vue
/dist/vue.js:2788:18
get@https://cdn. jsdelivr.net/npm/vue/dist/vue.js:3140:13
Watcher@ghttps://cdn. jsdelivr.net/npm/vue/dist/vue.js:3129:7
mountComponent@https://cdn. jsdelivr.net/npm/vue
/dist/vue.js:2795:3
Vue.prototype. $mount@https://cdn.jsdelivr.net/npm/vue
/dist/vue.js:8527:10
Vue.prototype. $mount@https://cdn.jsdelivr.net/npm/vue
/dist/vue.js:10926:10
initMixin/Vue.prototype._init@https://cdn.jsdelivr.net/npm/vue
/dist/vue.js:4627:7
Vue@https://cdn. jsdelivr.net/npm/vue/dist/vue.js:4716:3
@http://localhost:3000/:22:19

® You are running Vue in development mode. vue.js:8553:7
Make sure to turn on production mode when deploying for
productiont

N

Figure 2-5. Reference error, as Vue cannot find data properties that start with $ or _

If you do include a property that starts with a $ or _, you can access it on your
instance of Vue from the $data property.

When an instance of Vue is created, the data object originally included is added to
the instance as a property with the name $data. So, if you assign your Vue instance to a
variable called app, you can access the original data object at app.$data.propertyName.
You will also be able to access it in methods using the this context instead of through a
saved reference to the this.$data.propertyName instance.

19

CHAPTER 2 THE BASICS

Methods

As with all things JavaScript, you will eventually need to perform an action when the user
interacts with the app. And while it’s possible to do some rudimentary expressions in an
event binding, anything more complex than adding two small numbers should probably
be in JavaScript so that it’s easier to maintain and understand. We can do that with
methods.

Using methods, we can create custom code that will be bound to our instance of Vue.
We can then access these methods from a reference to our Vue instance. When creating
methods for our Vue instance, we need to avoid using the arrow function ()=>{}, as it
will prevent us from being able to access the proper context of this.

In Listing 2-9 we have one method called userClickedAButton. In theory, we will
add an event handler to a button to call this at some point. For more information about
events and binding, see Chapters 5 and 6.

Listing 2-9. Method Declaration Example

var app = new Vue({
el: '#app',
methods: {
userClickedAButton: function () {
// Do Something Cool and Meaningful here!!!
console.log('Something Cool!");

}
};

With the method in Listing 2-9, you can bind to an action or event. With the method
in Listing 2-10, you can bind a method in the HTML template.

Listing 2-10. Binding a Method in the HTML

var app = new Vue({
el: '#app',
data: {
text: 'Getting to Know Vue.js'

1
template: “<div>{{ capitalizeText() }}</div>",

20

CHAPTER 2 THE BASICS

methods: {
capitalizeText: function () {
return this.text.toUpperCase();

}
1

Note To call a method from inside a method, we can use this to reference it,
similar to how we reference the data property of text in Listing 2-10.

Listing 2-10 lets you perform a text transformation and displays properly. Figure 2-6
shows the working results.

_ ST .

c @ @ localhost:3000 o 9 Fomyvy =

GETTING TO KNOW VUE.JS

Figure 2-6. Binding HTML to a method
21

CHAPTER 2 THE BASICS

Binding to a method isn’t the preferred way to perform transformations like these. If
you want to calculate a value to display the data you have access to in Vue, a computed
property is more appropriate.

Computed Properties

Computed properties look very similar to methods, with one major difference—the
results are cached. The values are updated only when the values that the computed
property is based on change. In Listing 2-10, every time the page is rendered, the method
is called to get the value. The computed property in Listing 2-11 achieves the same
results as when we used a method, but it doesn’t calculate the string on every render.

Listing 2-11. Computed Property

var app = new Vue({

el: "#app',
data: {

text: 'Getting to Know Vue.js'
})
template: “<div>{{ capitalizedText }}</div>",
computed: {

capitalizedText: function () {

return this.text.toUpperCase();

}
D

Template Binding

The basic template syntax for Vue is pretty straightforward. We use mustache syntax
to bind a property inside of HTML. Mustache syntax is the use of two curly braces
surrounding your property, such as {{propertyName}}.

22

CHAPTER 2 THE BASICS

In the binding, you can also execute a JavaScript expression. This means that you can
do some math, compare a property value, and display results based on the evaluation
with the ternary expression, do some math, compare the results, and display some text
depending on the results, or apply a method to the object you are binding. Listing 2-12
shows a few examples of adding numbers, performing comparisons, and displaying
results, then changing a string to uppercase. The results of this app can be seen in
Figure 2-7.

Listing 2-12. JavaScript Expressions in Bindings

var app = new Vue({
el: '#app',
data: {
yes: 'Yes it is!’,
no: 'No it is not!’',
falseValue: false

})
template: °
<div>
<div>{{ 1 + 1 }}</div>
<div>{{ falseValue === false ? yes : no }}</div>

<div>{{ 1 == 2 ? yes : no }}</div>

<div>{{ 1 + 1+ 1 > 2 ? yes : no }}</div>

<div>{{ 'Getting to Know Vue.js'.toUpperCase() }}</div>
</div>

N

};

23

CHAPTER 2 THE BASICS

_ ST x

[@ localhost:3000 0% w @ ﬂ @ myY =

2

Yes it is!

No it is not!

Yes it is!

GETTING TO KNOW VUEJS

Figure 2-7. JavaScript expressions results

The mustache syntax works great for binding properties that are meant to be text, but
it cannot be used to bind values to HTML element attributes. To bind to attributes, we
will learn about our first Vue directive: v-bind.

To use the v-bind directive, you prepend it to the element’s attribute that you want to
bind to a value. In the place of the text you would normally be assigning, you provide the
name of the property from your Vue instance.

In Listing 2-13, we use v-bind to assign a property to the name of the element. When
we inspect the resulting page in Figure 2-8, we can see the name in the HTML

24

CHAPTER 2 THE BASICS

Listing 2-13. Dynamically Assigning a Name to a <div>

var app = new Vue({

el: '#app',

data: {

myName: 'Cool Name'

1

template: °
<div>

<div v-bind:name="myName"></div>

</divy

N

};

» C @

@ localhost:3000 0% o O ﬂ @my =
[Insp Con:Debi StylePe (3" H &= B €& X
s Search HTML &
qhead>(ji</head>
<body> |
<script id="__ bs_script_ ">(9</script>

<script async= src="/browser-sync/browser—
sync—client.js?v=2.23.6"></script>
<div>
<div name="Cool Name'></div>
</div>
<!—Reference to Vue.js library——>
<script src="https://cdn.jsdelivr.net/npm/vue

html > body > script
Rules Computed Layout Animations Fonts
Filter Styles 1+ fr, s

No element selected.

Figure 2-8. Using v-bind to dynamically bind a value to the name of a <div>

25

CHAPTER 2 THE BASICS

Another directive that we can use to bind data to the template is v-html. With
v-html, the contents of the element that it is applied are replaced with the assigned
value and are treated as HTML. This can be used when your requirements call for adding
HTML that comes from a source outside your Vue app.

Caution Only render HTML that you and your organization trust on your website.
Never render HTML that users provide. Using untrusted HTML can lead to cross-
site script vulnerabilities.

In Listing 2-14, we have a data property named someHTML that is a string of an <h1>
element, which contains styles for the color and background-color of the element.
Since we want this to render in our app, we bind it with the v-html directive so that it
is treated as HTML and not as a string. For comparison, we will also try binding our
someHTML with the mustache syntax, so we can see how that renders in Figure 2-9.

Listing 2-14. Binding Raw HTML to an Element

var app = new Vue({
el: '#app',
data: {
someHTML: '<h1 style="color:#41b883; background-color:#35495e;">
Getting to Know Vue.js</h1>'
b
template: °
<div>
<div>{{ someHTML }}</div>
<div v-html="someHTML"></div>
</div>

N

};

26

CHAPTER 2 THE BASICS

_ ST *

[@ localhost:3000 0% w @ ﬂ @ myY =

<hl style="color:#41b883; background-color:#35495e;">Getting to Know Vue js</hl>

Figure 2-9. Binding raw HTML from a property to an element

As we can see, the braces-bound someHTML was treated as a string.

Summary

In this chapter, we covered some aspects of the Vue instance, including how the reactive
data system works, what the template is, and how Vue finds where it will be mounted in
the web page. We also covered the template syntax that is used with Vue.

CHAPTER 3

Conditional Rendering

Sometimes your app will need to be able to determine whether or not to show something
depending on user interactions. For instance, if we are creating a form that asks if users
own a car and the user says no, there is no reason to show them the question that asks
what color the car is.

Vue provides two directives to conditionally show content: v-if and v-show.

o With v-show, we can hide and show content using the CSS display
property.

o With v-if, the content is removed from the DOM. It can be used with
the v-else and v-else-if directives.

From a performance perspective, v-show has a higher initial render cost since it
is rendered to the DOM even if the conditions to show it are false. v-if will not be
rendered if the value is false. v-show does have less of a render cost when the value
changes since it’s already in the DOM and the CSS display property is the only change.
On the other hand, v-if has to be added to the DOM when the condition to render it
changes from false to true.

When you are trying to decide on using v-if or v-show, consider your use case.
If the directive is going to change often, use v-show. If it is intended to change only
occasionally or never after the first render, it’s better to use v-if.

Now let’s see how they work.

v-show

Using v-show is similar to using an HTML element attribute. The main difference is that
the value you assign is from your Vue instance or an expression that evaluates to true or
false. The expression can compare values from your Vue instance against values you set

in the assignment or to other values in your Vue instance.

29
© Brett Nelson 2018

B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_3

CHAPTER 3 CONDITIONAL RENDERING

When setting values for comparison, remember that the value you are assigning
to v-show or v-1if are not strings; they will be evaluated as JavaScript. v-show="show"
is looking for the value of show in your Vue instance, not for the string "show". To use a
string value in the expression, use single quotes ('my String') around it.

Listing 3-1 shows a few different examples of using v-show that can be seen in
Figure 3-1:

1. Using true values from our Vue instance without comparison to
show the content.

2. Using false values from our Vue instance without comparison to
hide the content.

3. Comparing the value from our Vue instance with a string to show
the content.

4. Comparing the value from our Vue instance with a string to hide
the content.

5. Comparing a value from our Vue instance with a second value
from our Vue instance to show the content.

6. Comparing the results of a little math to show the content.

7. Comparing the results of a little math to hide the content.

Listing 3-1. Using v-show to Show and Hide Elements Based on Expression
Evaluations

var app = new Vue({

el: '#app',

data: {
yes: true,
no: false,
maybe: 0,
show: 'yes',
dontShow: 'no',
yeshord: 'yes'

1

30

CHAPTER 3 CONDITIONAL RENDERING

template: °
<div>
<h1>
1: Yes
</h1>
<h1>
2: No
</h1>
<h1>
3: <span v-show="show == 'yes
</h1>
<h1>
4: <span v-show="dontShow == 'yes
</h1>
<h1>
5: Yes!
</h1>
<h1>
6: Yes!
</h1>
<h1>
7: No :(
</h1>
</div>

~

>Yes!

>No :(

D

31

CHAPTER 3 CONDITIONAL RENDERING

_ ST .

C @ (@ localhost:3000 v @ Homy =

1: Yes
2:
3: Yes!

5: Yes!
6: Yes!
7:

Figure 3-1. Using v-show to show and hide elements based on expression
evaluations

With the way that v-show works, we can inspect the element and still see the content
with its CSS display property set to none, as shown in Figure 3-2.

32

CHAPTER 3 CONDITIONAL RENDERING

m ST . _

> C @ @ localhost:3000 e @ 1 Fomvy =
1: Yes [® Insp Con:Debi Style Pe (3" H & B €& X
2. + Search HTML &
: <!—=—U1V TO MOUNT App—>
<div>
. !
3: Yes! <h1l>(=)</hl>
4: <h1l>(9)</hl>
: <h1>()</hl>
5: Yes! R
6: Yes! No :(
’) </h1>
7. <hl>()</hl>
<hl>(=)</hl>
<hl>(~</hl>
html > body > div > h1 » span
Rules Computed Layout Animations Fonts
Filter Styles + M. cls
element { inline

display: none;

}

Figure 3-2. Inspecting the hidden v-show element

v-if v-else v-else-if

The other way to selectively render content is with v-if. Using v-if can range from
the same use case as v-show, to the more complex with the use of v-else, to the most
complex with v-else-if.

33

CHAPTER 3 CONDITIONAL RENDERING
v-if
Let’s look at using v-if and see how it renders to the DOM.
In Listing 3-2, we are going to show Yes after 1: if the value of yes is

true and not show No after 2: when the value of no is false. You can see
in Figure 3-3 how everything looks on the page when it’s all evaluated.

Listing 3-2. Using v-if to Conditionally Render Elements

var app = new Vue({

el: '#app',
data: {
yes: true,
no: false
}J
template: °
<div>
<h1>
1: Yes
</h1>
<h1>
2: No
</h1>
</div>
D;

34

CHAPTER 3 CONDITIONAL RENDERING

_ EOLTIRLIEINTEL) .

C @ (@ localhost:3000 v @ 1 Homy =

1: Yes
2:

Figure 3-3. The results of using v-if to conditionally render elements

Since the contents of v-if are added to the DOM only if it evaluates to true, any
false evaluations should not be visible in the inspector. Let’s inspect the element that
contains 2: and see if it is hiding a No (see Figure 3-4).

35

CHAPTER 3 CONDITIONAL RENDERING

_ ST x

c @ @ localhost:3000 - O 1y Fomv =
1: Yes [® Insp Con:Debi Style Pe (3" H & B €& X
2. + Search HTML &
* SYNC—CL1ENT.]JS5fV=L£.£3.07></5CTI1pT=
<!--Div to Mount App-—>
<div>
<hl>
1:
Yes
</h1>
<hl>
2:
</hl>
</div>

html > body > div > h1
Rules Computed Layout Animations Fonts
Filter Styles + M. cls

No element selected.

Figure 3-4. Inspecting the contents to see where the “hidden” element is shows no
content

As we can see, No is not there.

v-else

Like all good if statements, v-if allows us to use an else, in this case v-else. With
v-else, we can provide an option to display when v-if evaluates to false. v-else must
follow av-if or a v-else-if for it to work.

36

CHAPTER 3 CONDITIONAL RENDERING

In Listing 3-3, we evaluate the value of no, which we set to false, and display
the contents of the v-else in a <h1>Show!</h1> header. You can see the results in
Figure 3-5. The inspected element shows that the <h1>Don't Show</h1> header is
not present.

Listing 3-3. Using v-else to Conditionally Render Elements When v-if Evaluates
to false

var app = new Vue({
el: '#app',
data: {
no: false
})
template: °
<div>
<h1 v-if="no">Don't Show</h1>
<h1 v-else>Show!</h1>
</div>

~

};

37

CHAPTER 3 CONDITIONAL RENDERING

Getting to Know Vue.js B -+
c @ @ localhost:3000 v O W0 Fomv =
Show! [Insp Con:Debi StylePe (- H &&= B € X
+ Search HTML &
<script async="" src="/browser-sync/browser-

sync—client.js?v=2.23.6"></script>

<!-—-Div to Mount App-—>

<div>

</div>

<!——Reference to Vue.js library-—>

<script src="https://cdn.jsdelivr.net/npm/vue
/dist/vue.js"></script>

<!--Script reference for our App-—>

<script src="/app.js"></script>

< fhndus

html > body > div > h1

Rules Computed Layout Animations Fonts
Filter Styles + . .cls
element { inline
¥

Figure 3-5. Inspecting the use of v-else to conditionally render elements when v-if
evaluates to false

v-else-if

Sometimes you need to be able to selectively render one of many options. Perhaps in
your app, for example, users must pick an account type and you have three or more
account types. Or maybe you want to show results in a form based on a drop-down
selection and there are more than three options in the drop-down menu. For that, we
can use v-else-if. With v-else-if, we can chain if statements together, similar to
using if else statements in JavaScript.

38

CHAPTER 3 CONDITIONAL RENDERING

In our example, we have two sets of v-if—v-else-if and v-else—to look at. The
first one shows the contents of the v-else-if element <h2>Else If</h2>.The second
shows the contents of the v-else element <h2>Else</h2>. See Listing 3-4. You can see
the results in Figure 3-6.

Listing 3-4. Using v-else-if

var app = new Vue({
el: '#app',
data: {
yes: true,
no: false
})
template: °
<div>
<div>
<h1>Show v-else-if</h1>
<h2 v-if="no">If</h2>
<h2 v-else-if="yes">Else If</h2>
<h2 v-else>Else</h2>
</div>
<divy
<h1>Show v-else</h1>
<h2 v-if="no">If</h2>
<h2 v-else-if="no">Else If</h2>
<h2 v-else>Else</h2>
</div>
</div>

~

};

39

CHAPTER 3 CONDITIONAL RENDERING

SRR .

C @ (@ localhost:3000 v @ 1 Homyvy =

. Connected to BrowserSync
Show v-else-if ==
Else If

Show v-else

Else

Figure 3-6. Using v-else-ifin action

With the v-if group of directives, it is possible to group elements together so that
you can show and hide them with one action instead of using v-if each time. To do this,
wrap the elements to be shown and hidden in a <template> element. The <template>
element will not be rendered if the v-if evaluates to true, but all the child elements will.

In Listing 3-5, we have two <template> elements—one to hide its contents and one
to show it. The results can be seen in Figure 3-7.

Listing 3-5. Grouping v-if Elements

var app = new Vue({

el: "#app',
data: {
yes: true,
no: false

40

CHAPTER 3 CONDITIONAL RENDERING

}
template: °
<div>
<template v-if="no">
<h1>Don't show this</h1>
<h2>It's a secret</h2>
</template>
<template v-if="yes">
<h1>Show this</h1>
<h2>We like to share</h2>
</template>
</div>
};
J g Getting to Know Yue.js x
c @ @ localhost:3000 w O ﬂ @my =
Show this
We like to share

Figure 3-7. Grouping v-if elements results
41

CHAPTER 3 CONDITIONAL RENDERING

Lists

Often developers must deal with groups of the same item, usually to display them on
aweb page. Although it can be fun to copy and paste the same snippet of code, Vue
provides a directive to handle displaying array items, called v-for.

Tip Don’t actually copy and paste the same snippet of code; it’s not fun.

Basics

With v-for, we can iterate (go over each item) through the items of an array and use
each object to display content. In its simplest form, v-for can be used to display each
item in an array. We can see how this is done in Listing 3-6.

Listing 3-6. Displaying Each Item in an Array with v-for

var app = new Vue({

el: '#app',
data: {
items: ['first', "two', '3']
}J
template: °

<li v-for="item in items">
{{item}}
</1i>

Ds

42

CHAPTER 3 CONDITIONAL RENDERING

If you are familiar with the JavaScript for..in loop, this should look similar, as the
v-for directive follows a similar setup. The itemis the object that is used for each
iteration and items is the collection that we are going through, or iterating through.

The element that v-for is placed on will be repeated for each item in the collection.
In Listing 3-6, we make a new <11i> and display the whole item. For this simple example,
this is fine since each item is a string. For more complicated items, we need to use dot
notation to display or use the properties of each item.

In case you are wondering, Listing 3-6 will display like Figure 3-8.

_ EITIRLIEINTEL) .

C @ () localhost:3000 LA~ A o » =

« first
* two
3

Figure 3-8. v-for displaying an array of strings

43

CHAPTER 3 CONDITIONAL RENDERING

As the objects in your collection get more complicated, it is recommended that
you use the :key attribute. The :key attribute is used by Vue to track the identity of the
elements that have been rendered and update the DOM correctly.

Listing 3-7 shows a collection of books and uses the ID of each book as the key.

Listing 3-7. Using the :key Attribute with v-for

var app = new Vue({
el: '#app',
data: {
books: [

{
title: 'Entertaining Kids Book',
price: 4.99,
id: o,
genres: ['kids', 'fiction']

}’

{
title: 'Teen Drama',
price: 5.99,
id: 1,
genres: ['teen', 'fiction']

b

{
title: 'Boring Facts’,
price: 6.99,
id: 2,
genres: ['adult', 'non-fiction']

b

{
title: 'Overly Complex Story',
price: 7.99,
id: 3,
genres: ['adult', 'science fiction', 'fiction']

b

44

CHAPTER 3 CONDITIONAL RENDERING

title: 'Facts for Teens',
price: 3.99,
id: 4,
genres: ['teen', 'non-fiction']
}
]

1
template: °

<1i v-for="book in books" :key="book.id">

{{ book }}

</1i>

1

Since our template still binds the items directly, similar to Listing 3-6, we will see
the JSON object output for each item in the books array (see Figure 3-9). However, we
shouldn’t see any differences caused by the addition of the :key attribute.

45

CHAPTER 3 CONDITIONAL RENDERING

_ ST INTEL) x

< e @ @ localhost:3002 RIS o » =

"title": "Entertaining Kids Book", "price": 4.99, "id": 0, "genres": ["kids", "fiction”] }
"title": "Teen Drama”, "price": 5.99, "id": 1, "genres": | "teen", "fiction” | }
"title": "Boring Facts", "price": 6.99, "id": 2, "genres": ["adult", "non-fiction"] }

"title": "Overly Complex Story", "price": 7.99, "id": 3, "genres": ["adult”, "fiction"] }
"title": "Facts for Teens", "price”: 3.99, "id": 4, "genres™ ["teen”, "non-fiction"] }

o, o,

Figure 3-9. Using :key with v-for

Caution It is possible to use v-for without using :key, but this should be
done only if you are not going to alter the array index. If you are not using :key,
you should avoid adding or removing items from the array except at the end or
when sorting the array. Vue may not track and update all child elements that are
repeated properly.

46

CHAPTER 3 CONDITIONAL RENDERING

Accessing Object Properties

Let’s clean up our display of books by rendering each value with some useful markup
rather than dumping our JSON into an <11i>.Listing 3-8 uses the same data that we
used in Listing 3-7, so I will only show the template since that is where we are making

changes.

Listing 3-8. Binding to Properties of an Item in v-for

template: °

<1li v-for="book in books" :key="book.id">
<p>Id: {{ book.id }}<p>
<p>Title: {{ book.title }}</p>
<p>Genres:
{{genre}} </p>
</1i>

Here you can see that we are using dot notation to access the properties of each
object. The more interesting part is that we also have a sub v-for for the genre of each
book.

Note Since genres is a simple object, | left off the : key attribute since we will
not be using it to track the state of sub-components.

Looking at the results in Figure 3-10 makes me think we could help our genres list a
little by adding some commas so it’s easier to tell the genres apart.

47

CHAPTER 3 CONDITIONAL RENDERING

_ EOLTIBLEINTEL) .

C @ (@ localhost:3002 LA~ A o » =

« Id: 0
Title: Entertaining Kids Book
Genres: kids fiction
« Id: 1
Title: Teen Drama
Genres: teen fiction
o Id: 2
Title: Boring Facts
Genres: adult non-fiction
« Id: 3
Title: Overly Complex Story
Genres: adult science fiction fiction
o Id: 4
Title: Facts for Teens

(Genres: teen non-fiction

Figure 3-10. Accessing object properties in v-for and using a v-for inside a v-for

Index and Parent Properties

To conditionally render a comma after each genre, we will do a couple of things. We need
to get the index of the current item. Thankfully, Vue provides us with the option to add a
second parameter to v-for that gives us the index. To access this second parameter, we
use parentheses to wrap our object and the index. So, v-for="book in books" becomes
v-for="(book, index) in books" and we now know where we are in the array.

The other thing we need to know is the length of the array. We could count the
items (five in this case) and use v-if to render a comma as long as the index is less than
the length minus 1 (four in this case). This would work, but it’s a simple example and
sometimes (okay, most times) we will not know how long an array is going to be when
we are writing the code. It’s better to get the length of the array directly from the length
parameter.

48

CHAPTER 3 CONDITIONAL RENDERING

We can do this since we have access to all the properties of all the parent objects
of our current row. In this case, from the v-for of the genres, we can access the books.
genres array. Since we can access the array directly, we can use the length property of a
JavaScript array to get the length.

This might be easier to see than read about. Listing 3-9 shows our updated use of
v-for with the index property and the use of v-if to conditionally include a comma if
the index is less than the length of the genres array minus 1.

Listing 3-9. Using v-for Index and Accessing Parent Properties

{{genre}}<span v-if="index < book.genres.length -1">,

You can see that this cleans up the listing of genres so it’s easier to read, as shown in

Figure 3-11.
C @ (@ localhost:3002 LA~ A o » =
o Id: 0

Title: Entertaining Kids Book
Genres: kids, fiction
« Id: 1
Title: Teen Drama
Genres: teen, fiction
o Id: 2
Title: Boring Facts
Genres: adult, non-fiction
« Id: 3
Title: Overly Complex Story
Genres: adult, science fiction, fiction
o Id: 4
Title: Facts for Teens

(GGenres: teen, non-fiction

Figure 3-11. Using index and parent properties in v-for
49

CHAPTER 3 CONDITIONAL RENDERING

Dealing with Change

Vue wraps observers around the following array mutation methods:

push
pop
shift
unshift
splice
sort
reverse

This means that as long as you are changing your array through these methods, Vue
will be able to detect the changes. If you are using a method that does not mutate, or
change, the original array, Vue will not detect that. The methods that do not change the
original array are filter, concat, and slice. To get Vue to observe these changes to the
array, replace the original array with the results.

For example, if we had a method that filtered an array called teenFilter, we would
need it to reassign the results of the filter to the books array to see those changes in the
app. See Listing 3-10.

Listing 3-10. Replacing the Original Array with Results of the Array Method That
Returns a New Array

methods: {
teenFilter: function() {
this.books = this.books.filter(book => {

return (
book.genres.findIndex(genre => {
return genre === 'teen';
}) >=0
)s
D;

}
1

50

CHAPTER 3 CONDITIONAL RENDERING

If you open the developer console in your web browser, you can call this method on your
Vue instance with app.teenFilter() to see the results. They are shown in Figure 3-12.

_ ST INTEL) .

Cc @ (@ localhost:3002 O IR Ol - o » =

[® Insp: Con: Deb: Style Perf Mem Netv S - BE3-E B @ O & X

o Id: 1
W ¥ Filter output Persist Logs
Title: Teen Drama @ You are running Vue in development mode. vue, js:8553:7
Make sure to turn on production mode when deploying
Genres: teen, fiction for production.
See more tips at https://vuejs.org/guide
deployment . html
« Id: 4 /deploym :
¥» app.teenFilter()
Title: Facts for Teens € undefined

Genres: teen, non-fiction

Figure 3-12. Filtered array displayed with v-for

When dealing with change and arrays, there are two cases that require special
attention.

Vue cannot detect when an item is replaced in an array using the index of the item,
and when the array is resized by assigning a new value to the length property. To get
around these limitations, you can replace items in an array using Vue. set, like in
Listing 3-11, or using the JavaScript splice method, like in Listing 3-12.

51

CHAPTER 3 CONDITIONAL RENDERING

Listing 3-11. Using Vue.set to Replace an Item in an Array

set: function() {

var indexToReplace = 0;

var newBook = {
title: 'Newer Entertaining Kids Book',
price: 4.99,
id: o,
genres: ['kids', 'fiction']

b

Vue.set(this.books, indexToReplace, newBook);

1

Listing 3-12. Using splice to Replace an Item in an Array

splice: function() {
var indexToReplace = 0;
var newBook = {
title: 'New Entertaining Kids Book',
price: 4.99,

id: o,
genres: ['kids', 'fiction']
};
this.books.splice(indexToReplace, 1, newBook);

}

To resize an array, you can use the JavaScript splice method as well, as shown in
Listing 3-13.

Listing 3-13. Using splice to Resize an Array

resize: function() {
// Vue can not detect
this.books.length = 1;
// Use splice to resize an array, Vue can detect
this.books.splice(0);

1

52

CHAPTER 3 CONDITIONAL RENDERING

Objects

It is also possible to use v-for to go through the properties of an object. Since JavaScript
engines behave differently, there is no guarantee about the order of the properties in
different browsers.

The main difference in using v-for with an object instead of an array is that, with
an object, when you use parentheses to access the value and the index, it accepts three
parameters: value, key, and index. The value and index represent the same things as
the array. The key represents the property name.

Listing 3-14 shows a single book object we will use to look at the properties. One
of the properties is a function. In Figure 3-13, you can see that the function will be
displayed in the HTML as it is written and not as the result of the method.

Listing 3-14. Using v-for with an Object

var app = new Vue({
el: '#app',
data: {
book: {
title: 'Overly Complex Story',
price: 7.99,
id: 3,
genres: ['adult', 'science fiction', 'fiction'],
action: function() {
return 'I did an action';

}
}
})
template: °

<1i v-for="(prop, key, index) in book">
{{index}}) {{key}}: {{prop}}
</1i>

D;

53

CHAPTER 3 CONDITIONAL RENDERING

_ ST x

C o @ localhost:3000 LA+ = Ho » =
« 0) title: Overly Complex Story
» 1) price: 7.99
« 2)id: 3

« 3) genres: ["adult", "science fiction", "fiction"]
« 4) action: function() { return 'I did an action'; }

Figure 3-13. Using v-for with an object

If we want to display the results of the action function, we have to check for the type
of each prop and invoke only the functions of our object. Listing 3-15 shows how we can
use v-if with typeof on a <p> to achieve this; Figure 3-14 shows how it looks.

Listing 3-15. Checking Property Type in a v-for Loop

<p v-if="typeof prop == 'function'">{{prop()}}</p>

54

CHAPTER 3 CONDITIONAL RENDERING

_ EOLTIRLEINTEL) x

C o @ localhost:3000 A i Ho » =
« 0) title: Overly Complex Story
» 1) price: 7.99

« 2)id: 3
« 3) genres: ["adult", "science fiction", "fiction"]
« 4) action: function() { return 'I did an action'; }

I did an action

Figure 3-14. Calling a function of the object in v-for

We used v-if to invoke the function since v-show only hides the element with the
CSS display property. If we used v-show, each prop would be invoked like it was a
function and we would have a few unhandled errors.

Summary

In this chapter, we covered conditional rendering and the differences between v-show
and v-if. We also covered rendering lists with the v-for directive and discussed how
v-for can be used with arrays and objects.

55

CHAPTER 4

Computer Properties
and Watchers

Using methods on your Vue instance to get formatted data is great, but it comes with the
heavy toll of running every time the view is updated or re-rendered. We can avoid paying
this performance toll by using computed properties. Sometimes we also need to be able
to perform background, or asynchronous, tasks when the user interacts with the page,
but we don’t want to block the user from interacting. Vue provides us the option of using
watches in these cases.

In this chapter, we will learn about computer properties and watchers and how to
use them in Vue.

Computed Properties

Computed properties work similar to methods in Vue. The main difference is that
the results are stored for later use, or cached, until one of the computed property’s
reactive dependencies change. The reactive dependencies were created by Vue when
the instance was created with the new keyword. See Chapter 2, “The Basics,” for more
information about how Vue handles data changes.

To show the difference in behavior between methods and computed properties,
Listing 4-1 uses four properties—three book titles formatted differently and a forth
property of the publisher. These four properties will be combined to display the same
text on the screen—“Getting to Know Vue.js by Apress”.

In our template, we will display the text first by using the template syntax to format
the message. Second, we will use a method to format the text, and last, we will use a
computed property. The method and computed property both create a console.log
when they are executed so we can see how often each runs.

57
© Brett Nelson 2018

B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_4

CHAPTER 4 COMPUTER PROPERTIES AND WATCHERS

Listing 4-1. Comparing Template Syntax, Methods, and Computed Properties
When Formatting Text

var app = new Vue({
el: '#app',
data: {
bookNameForTemplate: 'Getting to Know Vue.js',
bookNameForMethod: 'Getting to Know Vue.js',
bookNameForComputed: 'Getting to Know Vue.js',
publisher: 'Apress'
}s
methods: {
getTitleBlurb: function() {
console.log('Called: getTitleBlurb');
return ~${this.bookNameForMethod} by ${this.publisher}";

}

1
computed: {

titleBlurb: function() {

console.log('Called: titleBlurb');

return ~${this.bookNameForComputed} by ${this.publisher}";
}

}s
template: °

<div>
<h3>Template based:</h3>
<h4>{{bookNameForTemplate}} by {{publisher}}</h4>

<h3>Method based:</h3>
<h4>{{getTitleBlurb()}}</h4>

<h3>Computed Property based:</h3>
<h4>{{titleBlurb}}</h4>

};

58

CHAPTER 4 COMPUTER PROPERTIES AND WATCHERS

In Figure 4-1, we can see that all three ways render the same result. Looking at the
developer console reveals that the method getTitleBlurb and the computed property
titleBlurb each ran once.

_ EIETIRLIEINTEL) x

c @ ® localhost:3000 @ T B o » =
[® Insp: Con: Debt Style Perfe (- F B & O & X
Template based:
T ¢ Filter output Persist Log
Getting to Know Vue.js by Apress
§ B AP [rrors [Warnings | Logs [info | Debug JRSSSNIRGCIIERTEEE
Method based: Called: getTitleBlurb app.js:11:7
Called: titleBlurb app.js:17:7
Getting to Know Vue.js by Apress © You are running Vue in development vue.js:8553:7
mode.
R Make sure to turn on production mode
Computed Property based. when deploying for production.
See more tips at https://vuejs.org
Getting to Know Vue.js by Apress /guide/deployment.html
>

Figure 4-1. Three ways to render the same result

59

CHAPTER 4 COMPUTER PROPERTIES AND WATCHERS

But what if the view had to re-render?

Let’s add three <input>s and bind each one to a different bookName with v-model.
The update to the template will add the lines in Listing 4-2 to our template near the
bottom.

Listing 4-2. Changing the Properties and Re-Rendering

<label>Template:
<input type="text" v-model="bookNameForTemplate" /></label>

<label>Method:
<input type="text" v-model="bookNameForMethod" /></label>

<label>Computed:
<input type="text" v-model="bookNameForComputed" /></label>

Note v-model can be used to bind data to an input. For more information on
v-model, see Chapter 6, “Bindings”.

Now when we reload the page, we should see three text boxes at the bottom. If we
change the values, we will see that Called: getTitleBlurb islogged to the developer
console any time any of the values change. We only see Called: titleBlurbin the
console when we update the input bound to bookNameForComputed.

Take a look at Figure 4-2 to see the results of adding “ too” to the book titles.

60

CHAPTER 4 COMPUTER PROPERTIES AND WATCHERS

_ ST INTEL) x

C @ @© localhost:3000 @ B o » =
Template based: [& Insp: Con: Debi Style Perfe (-5 B & B & X
Getting to Know Vue.js too by Apress '@' ? Filter output Persist Log
Method based: CSS XHR Requests
Getting to Know Vue,js too by Apress Called: getTitleBlurb app.js:11:7

Called: titleBlurb app.js:17:7
Computed Property based: . .) J
©® You are running Vue in development vue.js:8553:7
Getting to Know Vue.js too by Apress mode.
Make sure to turn on production mode
Template: Getting to Know Vuejs too when dED].OYlng for pl’OdUCt ion.
Method: Getting to Know Vue.js too See more tips at https://vuejs.org
Computed: | Getting to Krow Vue.js too /guide/deployment.html
Called: getTitleBlurb © app.js:11:7
Called: titleBlurb app.js:17:7
Called: getTitleBlurb app.js:11:7
Called: titleBlurb app.js:17:7
Called: getTitleBlurb app.js:11:7
Called: titleBlurb app.js:17:7
Called: getTitleBlurb app.js:11:7
Called: titleBlurb app.js:17:7

Figure 4-2. Updating the data

We can see that Called: getTitleBlurb was called 12 times, once for each

character entered. Called: titleBlurb waslogged four times since the computed

property only changed when its dependent property was updated.

In our simple example, this don’t seem like it would be that big of an issue, but what

if you had to call the server for each of those changes? The difference would add up

quickly.

How many times did formatting with the template get called? Every time.

61

CHAPTER 4 COMPUTER PROPERTIES AND WATCHERS

Watchers

Creating composite or formatted properties that get updated when the based data
changes with computed properties is nice. Occasionally you need to take action when
data changes. Rather than tie a call to the server into a computed property, a watch can
help you decouple your user input from more expensive tasks.

Listing 4-3 uses the Axios library, https://github.com/axios/axios, to call the Star
Wars API, https://swapi.co/, to get a list of star ships when the user enters text into
a search box. We won’t be monitoring changes applied to the input, but we will use a
watch to call the API and get a result when the data behind the input changes. For the
results, we will display the name of each ship returned.

Listing 4-3. Using a Watch to Monitor Changes

var app = new Vue({
el: '#app',
data: {
searchText: ",
results: []
}s
methods: {
search: function() {
axios
.get("https://swapi.co/api/starships/?search=${this.searchText}")
.then(response => {
this.results = response.data;
D;
}

b
watch: {

searchText: function(newSearchText, oldSearchText) {
this.search();

}

1
template: °

<div>
<label>Search:
62

https://github.com/axios/axios
https://swapi.co/

CHAPTER 4 COMPUTER PROPERTIES AND WATCHERS
<input type="text" v-model="searchText" /></label>

<h5>Results: <small>{{results.count}}</small></h5>

<li v-for="result in results.results">
{{result.name}}
</1i>

</div>

~

1

If we run this and type in the search box, we will experience a slight delay and then
results will start to display in a list. If we enter x, we should see something like Figure 4-3.

_ ST INTEL) .

C @ (@ localhost:3000 LA~ A o » =

Search: x
Resulis: 4

« T-70 X-wing fighter
« Executor

« X-wing

« TIE Advanced x1

Figure 4-3. Waltch in action
63

CHAPTER 4 COMPUTER PROPERTIES AND WATCHERS

New and Old Values

When a watch is invoked, it is passed the new value and the old value. We didn’t do
anything with them at this time, but you could perform checks to verify that you want to
take action on the new value.

For instance, we could not call the APT if the new value was the same as a previous
value. In Listing 4-4, we store the results in a history property so we can access the
previous searches again without making a second call.

Listing 4-4. Using the New Value Provided When a Watch Is Called

data: {
searchText: ",
results: [],
history: {}
})
methods: {
search: function() {
axios
.get("https://swapi.co/api/starships/?search=${this.searchText}")
.then(response => {
this.results = response.data;
this.history[this.searchText] = this.results;
D;
}

b
watch: {

searchText: function(newSearchText, oldSearchText) {
if (this.history[newSearchText]) {
this.results = this.history[newSearchText];
} else {
this.search();
}
}
})

Asyou can see, if the newSearchText is a property on our history object, we get the
value we have stored; otherwise, we make the call to the API.
64

CHAPTER 4 COMPUTER PROPERTIES AND WATCHERS

Deep

Some objects are more complex than a search string but still require a watch. We can use
the deep property to watch the nested properties of an object. To set deep to true, we will
set our watch to an object with two properties: handler is the function that gets called
when the watch is triggered and deep is set to true so we can monitor changes in the
object.

In Listing 4-5, we can see how a deep watch is set up. Any time a change happens

to the book, the watch will call the handler and we will see Book Changed logged to the
developer console, as shown in Figure 4-4.

Listing 4-5. Watching for Changes on Nested Properties

var app = new Vue({
el: '#app',
data: {
book: {
title: 'Getting to Know Vue.js',
publisher: 'Apress',

year: 2018
}
})
watch: {
book: {
handler: function(newBook, oldBook) {
console.log('Book Changed');
b
deep: true
}
})
template: °
<divy
<label>Search:

<input type="text" v-model="book.title" /></label>

<1i v-for="(value, prop) in book">

65

CHAPTER 4 COMPUTER PROPERTIES AND WATCHERS

{{prop}}: {{value}}

</1i>

</div>
IOk
C @ @ Iocalhost:3000 sow | e @ 7 B o » =
Search: Getting to Know Vue.js tee G Insp Con: Deb: Stylt E E E éé:; Q @ %
« title: Getting to Know Vue js too
« publisher: Apress i i
: Vear. 2018 W ¢ Filter output Persist Lg

{ Errors | Warnings | Logs | info | Debug JEICSSNRGIRILE

O You are running Vue in development vue.js:8553;
mode.
Make sure to turn on production mode
when deploying for production.
See more tips at https://vuejs.org
/guide/deployment.html

Book Changed © app.js:13:

Figure 4-4. Using a deep watch to monitor object property changes

Immediate

The other option you can use with a watch is immediate. With immediate set to true, Vue
will call the watch when your Vue instance loads with the current value. This way, you
can be sure it fires at least once.

66

CHAPTER 4 COMPUTER PROPERTIES AND WATCHERS

Listing 4-6 shows how to use the immediate property with a watch. Figure 4-5 shows
its results.

Listing 4-6. Setting immediate to true on a Watch

watch: {
book: {
handler: function(newBook, oldBook) {
console.log('Book Changed');

1
immediate: true
}s
[@ localhost:3000 a0% “w @Y B " @ » =
» title: Getting to K Vuejs
- e Couing 1o Know Vueys [® Insp: Con: Debt Style BB Q0 & X
» year: 2018
W 7 Filter output Persist Ld
[Errors | Warnings | Logs | info | Debug JECSSIIPGLINEIEE
O You are running Vue in development vue.js:8553;
mode.

Make sure to turn on production mode
when deploying for production.

See more tips at https://vuejs.org
/guide/deployment.html

Book Changed app.js:13}

o

Figure 4-5. The waltch fires even if no change is made to the object

67

CHAPTER 4 COMPUTER PROPERTIES AND WATCHERS

Summary

In this chapter we covered computed properties and watchers. With computed
properties, we can format responses and access them like data values, but they are
cached so we don’t have to recalculate them every time we use them. Watches provide
us with a way to respond to values that change in an asynchronous manner.

68

CHAPTER 5

Events

Being able to display lists of items and reuse portions of our markup is great for
displaying things, but sometimes we want the user to do something and that is where
events come in. In this chapter, we will learn about using listeners to wait for events, event
handlers to take action when an event is called, and modifiers, which we can apply to

events.

Listeners

Setting up event listeners in Vue is pretty straightforward. On the element from which
you want to listen to events, add an attribute of v-on:eventName="handleEvent", where
eventName is the name of the event you are interested in and handleEvent is how you
want to handle the event.

So if we wanted to listen to the click event on an <h1> element that would change a
value between true and false, we would add v-on:click="value = !value". It would
look something like Listing 5-1. In the browser, it would look like Figure 5-1 before we
click anything and Figure 5-2 after we click the word “Toggle”.

Listing 5-1. Using v-on To Listen To Click Events

var app = new Vue({
el: '#app',
data: {
show: true
})
template: °
<div>
<h1 v-on:click="show = !show">
Toggle

69
© Brett Nelson 2018

B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_5

CHAPTER5 EVENTS

</h1>
<p v-show="show">
Hide and show this message by clicking the word "Toggle"

</p>
</div>
;s
c @ @ localhost:3000 CE B A < i’ @ » =
Toggle

Hide and show this message by clicking the word "Toggle”

Figure 5-1. Our v-on:click event before clicking Toggle

70

CHAPTER5 EVENTS

_ CEDBLATENTAE x

e o @ localhost:3000 RS o » =

Toggle

Figure 5-2. Our v-on:click event after clicking Toggle

This is done to bind to any event, so with native HTML elements you can change
the click to dblclick or pointerenter and still get the event to fire and show or hide the
message.

Your question might be, “What else can I do when an event fires besides show a
simple expression?”. I'm glad you asked because that brings us to event handlers.

Handlers

Event handlers are used to handle events when they are raised. We use a handler method
since trying to accomplish much more than a variable assignment in the expression

would get cumbersome.

71

CHAPTER5 EVENTS

Methods

To move our logic for handling the click event from Listing 5-1 to a method, we need to
create a method in our Vue instance. Let’s call it toggle. In our toggle method, we will
do the same thing we were doing with the expression handler—change the value of show
between true and false. To use our new method, we use the name of toggle as the
value that we assign to v-on:click. Listing 5-2 shows the complete toggling app.

Listing 5-2. Using a Method to Handle the Click Event

var app = new Vue({
el: '#app',
data: {
show: true
}J
methods: {
toggle: function() {
this.show = !this.show;

}
}J
template: °
<div>
<h1 v-on:click="toggle">
Toggle
</h1>
<p v-show="show">
Hide and show this message by clicking the word "Toggle"
</p>
</div>
1);

72

CHAPTER5 EVENTS

Inline Method

Perhaps you want to create a more versatile method by allowing it to take a parameter as
opposed to inverting a Boolean value. That is possible as well. In Listing 5-3, we have two
<h1> elements: one that displays Show and uses an inline handler to call setShow with the
value of true, and one that displays Hide and uses an inline handler to call setShow with
the value of false. With a new method that accepts a value and assigns it to show, we can
show or hide the message. We cannot toggle in the same manner, by clicking the same
word repeatedly, since hide always sets show to false and show always sets show to true.

Listing 5-3. Using Inline Handlers to Pass a Value to a Method

var app = new Vue({
el: '#app',
data: {
show: true
b
methods: {
setShow: function(newValue) {
this.show = newValue;

}

1
template: °

<div>

<h1 v-on:click="setShow(true)">
Show

</h1>

<h1 v-on:click="setShow(false)">
Hide

</h1>
<p v-show="show">

Hide and show this message by clicking "Hide" or "Show"

</p>

</div>

~

};

73

CHAPTER5 EVENTS

One added thing you can do with an inline handler is pass the DOM event into
the method using the $event variable. In the method handler, you can then access
properties and methods of the event. In Listing 5-4, we pass the event to our handler and
log the type to the developer console. You can see in Figure 5-3 that clicking on the Show
and Hide <h1>s causes click events in the developer console.

Listing 5-4. Passing DOM Event with Inline Event Handler

var app = new Vue({
el: "#app',
data: {
show: true
})
methods: {
setShow: function(newValue, event) {
if (event) {
console.log(event.type);
}
this.show = newValue;
}

1
template: °

<div>

<h1 v-on:click="setShow(true, $event)">
Show

</h1>

<h1 v-on:click="setShow(false, $event)">
Hide

</h1>
<p v-show="show">

Hide and show this message by clicking "Hide" or "Show"

</p>

</div>

~

};

74

CHAPTER5 EVENTS

_ EOLTIRLEINTEL) x

c @ ® localhost:3000 @ T B o » =
@ Insp: Con: Debi Style Perfc Men Net (3~ B & O & X
Show
'@[? Filter output Persist Logs
Hide [Errors | Warnings] Logs | nfo | Debug JRCCIE RN
Hide and show this message by clicking "Hide" © You are running Vue in development mode. vue.js:8553:7
or "Show" Make sure to turn on production mode when

deploying for production.
See more tips at https://vuejs.org/guide
/deployment.html

click app.js:9:9

Figure 5-3. Logging the event type to the developer console

Modifiers

Event modifiers allow us to declaratively change an event’s behavior. Declaratively
means when we want to modify the behavior of an event, we declare it in the markup. We
are not assigning the modification from somewhere in the JavaScript. This allows us to
see the modifications where we register the event handlers in the markup and leave the
handler methods to be just the parts of code needed to handle the event.

To apply a modifier, we use dot notation on the event name. If we were binding to a
click event and wanted to add the capture modifier, our v-on would look something like
v-on:click.capture="methodName".

75

CHAPTER5 EVENTS

Some of the event modifiers that Vue provides are:

o stop: Calls event.stopPropagation() and stops further propagation
of the current event.

o prevent: Calls event.preventDefault() and tells the user agent to
not handle the event with its default handler.

o capture: Adds the event listener in capture mode. Using capture
mode for the event will allow our handler to be called before the
target of the event will get to handle it.

o self: Calls the handler only if the event starts on the element we
register the handler on. This saves us the extra work of checking the
event.target to limit our handler to only events that start on the
element we register the event with.

e once: Calls the handler only once without us having to remove the
handler from the element when we handle the event.

o passive: Sets the event handler option of passive to true, meaning
that the handler will not call event.preventDefault() and if it does,
the browser should ignore it. Passive event handlers were introduced
to help browsers provide a more consistent look with events while
scrolling.

Using a Modifier

Let’s look at how this works, but before we do, let’s see how a click event propagates
through some <div>s. We will have four <div>s: two inner <div>s with “Inner One” and
“Inner B” text will be inside a <div> that has “Middle” text, and a fourth <div> with the
text “Outer”. Each <div> will have a click handler that pushes the <div>’s text onto an
array of messages.

We will display the messages with v-for after our collection of <div>s and add a
button to clear the messages at the bottom of the page. Looking at Listing 5-5 will give
you a better understanding.

76

Listing 5-5. Event Propagations Setup

var app = new Vue({

el: '#app',
data: {

messages: []
})
template: °

<div>

<div v-on:click="messages.push('Outer')">
<h4>0uter</h4>

CHAPTER5 EVENTS

<div v-on:click="messages.push('Middle")">

<h4>Middle</h4>

<div v-on:click="messages.push('Inner One')">

<h4>Inner One</h4>
</div>

<div v-on:click="messages.push('Inner B')">

<h4>Inner B</h4>

</div>
</div>
</div>
<p>
Last clicked:

<li v-for="message in messages">
{{message}}
</1i>

</p>
<input type="button" v-on:click="messages
</div>

~

};

This will look like Figure 5-4 in the browser.

[]" value="Clear" />

77

CHAPTER5 EVENTS

_ ESTIRLIEINTEL) .

c @ @ localhost:3000 CE B A = i’ ® » =
Quter
Middle
Inner One
Inner B
Last clicked:

Clear

Figure 5-4. Event propagations setup in the browser

This isn’t too exciting yet, but let’s take a look at the order in which the events are
called. Figure 5-5 shows what happens when we click on the words “Inner B”.

78

CHAPTER5 EVENTS

_ ESLTIRLZINTEL) x

C @ (@ localhost:3000 LA~ A o » =

Quter

Middle

Inner One

Inner B

Last clicked:
1. Inner B

2. Middle
3. Outer

Clear

Figure 5-5. Click event handled as it travels up the DOM tree

Clicking on “Inner B” causes the event to be handled by “Inner B’ “Middle’; and then
“Outer”. If we click on “Middle’, we will see only “Middle” and “Outer”.

If we wanted to stop propagation when “Inner One” is clicked and not have the other
events fire, we would use the stop modifier. You can see how to apply the stop modifier
in Listing 5-6.

Listing 5-6. Using the Stop Modifier

<div v-on:click.stop="messages.push('Inner One')">
<h4>Inner One</h4>
</div>

79

CHAPTER5 EVENTS

Now when we click on “Inner One’, only “Inner One” will be added to our messages
array for display. Figure 5-6 shows the results.

_ ST INTEL) x

C @ (@ localhost:3000 LA~ A o » =

Quter

Middle

Inner One

Inner B

Last clicked:

1. Inner One

Clear

Figure 5-6. Using the stop modifier to prevent event propagation

Chain Modifiers

It is also possible to chain modifiers. If we add capture and once to our middle <div>
and click on “Inner B” twice, we will see “Middle” happen first on the first click but not
happen on the second click. Listing 5-7 shows the code, and Figure 5-7 shows the results.

Listing 5-7. Chaining Modifiers

<div v-on:click.once.capture="messages.push('Middle"')">

80

CHAPTER5 EVENTS

_ ST INTEL) x

C @ (@ localhost:3000 LA~ A o » =

Quter

Middle

Inner One

Inner B

Last clicked:
1. Middle
2. Inner B
3. Outer
4. Inner B

5. Outer

Clear

Figure 5-7. Clicking twice on Inner B without chain modifiers on Middle

Input

There are modifiers for inputs as well by adding one of the following to a key event:

Enter: The Enter or Return key

Tab: The Tab key

Delete: The delete or backspace key
Esc: The Escape key

Space: The spacebar

Up: The up arrow key

81

CHAPTER5 EVENTS

e Down: The down arrow key
e Left: The left arrow key
e Right: The right arrow key

In Listing 5-8, we use the Enter key modifier on a keyup event to call the Star Wars
API, https://swapi.co/, to get alist of star ships with the Axios library, as shown at
https://github.com/axios/axios.

Listing 5-8. Using Key Event Modifiers

var app = new Vue({
el: '#app',
data: {
searchText: ",
results: []
})
methods: {
search: function() {
axios
.get("https://swapi.co/api/starships/?search=${this.searchText}")
.then(response => {
this.results = response.data;

1);
}
}s
template: °
<div>
<label>Search:
<input
type="text"
v-model="searchText"
v-on:keyup.enter.esc="search" />
</label>

<h5>Results: <small>{{results.count}}</small></h5>

82

https://swapi.co/
https://github.com/axios/axios

CHAPTER5 EVENTS

<li v-for="result in results.results">
{{result.name}}
</1i>

</div>

~

1

Now when we want to perform a search, we need to press Enter when we are in the

searchText input. In Figure 5-8, you can see that we make only one call to the API for the
search.

_ ESLTIRLIEINTEL) .

c @ ® localhost:3000 @ T B o » =
Search: x- [% Insp: Con: Debi Style Perfc Men BB B &0 &8 X
Results: 2 D HTML csS US
« T-70 X-wing fighter Il Wl XHR Fonts Images Persist Logs Disable cache
« X-wing Media WS Other
Filter URLs &
St... Me... File Do... Ca... Ty... Tr... Size
® 200 GET /api/starshi.. @ SW.. xhr json 1KB 122 KB

@ One request 1.22 KB / 1 KB transferred Finish: 0 ms
W ¢ Filter output Persist Logs

 Errors | Warnings | Logs | Info | Debug IEeECIIPCIIIEEC RS

ML I L LA UL LRI VL e Y YU

/deployment.html

Figure 5-8. Using Key modifiers with the keyup event

83

CHAPTER5 EVENTS

Key event modifiers can be chained as well. In Listing 5-9 you can see how to add the
Escape key modifier, so search can be triggered with either the Enter key or the Escape
key.

Listing 5-9. Chaining Input Event Modifiers

<input
type="text"
v-model="searchText"
v-on:keyup.enter.esc="search" />

Summary

This chapter was all about events! We learned how to listen for an event with v-on and
how to handle events with inline expressions, handler methods, and inline methods calls
as well as how to modify the behavior of e vents with modifiers

84

CHAPTER 6

Bindings

One of the main reasons to use a framework like Vue is that it makes responding to user
input easier. One of the places user input is common is in forms. We also like to update
the look of this when users make an input/select an option, changing styles and classes
to let the user know something happened.

In this chapter, we will learn about binding data to form input along with binding to
inline styles and classes.

Forms

Getting user input out of a form and into a variable we can manage is one of the main
advantages of using a framework like Vue. Vue provides us with the v-model directive to
bind data to our inputs.

v-model

With v-model, we will have two-way data binding from the backing data variable to
the UL With two-way data binding if the user makes a change to the data model via a
method, we will see the UI display the update. If we make a change in the UI, the data
model will be updated.

An important thing to understand is that Vue will not use the value or checked or
selected attributes of the elements. The data model created when the Vue instance is
initialized is the ultimate source of truth for Vue.

Note The backing data is the data stored in the Vue instance data property.

85
© Brett Nelson 2018

B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_6

CHAPTER6 BINDINGS

Inputs

For the following <input/> examples, the data model will look like Listing 6-1 with
inputs that contain a property for each example ahead.

Listing 6-1. The Input Example Data Model

data: {
inputs: {
text: ",
numberAsString: 0,
numberAsNumber: 0,
date: ",
password: ",
checkbox: false,
checkboxes: [],
radios: ",
radiosPreset: 'rollout',
radiosDynamic: ",
radiosDynamicOptions: [
{
label: 'Blue’,

value: 'Light'

b
{
label: 'Red’,
value: 'Dark’
}
])
file: ",
select: ",
multiselect: []

1

Each example will also have an output, so we can see what the model contains as we
interact with the <input/>.

86

CHAPTER6 BINDINGS

Text

Almost all forms are going to need a text input of some sort. To bind our data to the text
input, we add v-model="inputs.text" as an attribute. Our input should look like
Listing 6-2 with its accompanying model display. You can see how this looks in the
browser in Figure 6-1.

Listing 6-2. Text Input Data Binding

<h4>Text</h4>
<input type="text" v-model="inputs.text" />
<p>

Text: {{inputs.text}}
</p>

Cc @ @ localhost:3000 L I+ S v e » =

Inputs
Text

Getting 10 Know Vue.s

Text: Getting to Know Vue js

Figure 6-1. Text input data binding in the browser
87

CHAPTER6 BINDINGS

Number

Number <input/> binds the same way as text with v-model="inputs.numberAsString".
It also doesn’t convert the value of our input to a number, so the data model will contain
a string. We can convert the number in a method or we can use the .number modifier. To
bind with the modifier, we add the following as an attribute v-model.number="inputs.
numberAsNumber". To see the type of number contained in the data model, we add an
output that shows the typeof the value we are looking at.

Listing 6-3 shows two inputs with two outputs each. The outputs are the value and
the typeof for the value of each input. You can see in Figure 6-2 when we enter 4 into
both inputs that the type of numberAsString is string and the type of numberAsNumber is
number.

Listing 6-3. Binding to Number Inputs with Types Displayed

<h4>Number as String</h4>

<input type="number" v-model="inputs.numberAsString" />

<p>
Number: {{inputs.numberAsString}}

</p>

<p>
Typeof numberAsString: {{typeof inputs.
numberAsString}}

</p>

<h4>Number as Number</h4>
<input type="number" v-model.number="inputs.numberAsNumber" />
<p>
Number: {{inputs.numberAsNumber}}
</p>
<p>
Typeof numberAsNumber: {{typeof inputs.
numberAsNumber}}
</p>

88

CHAPTER6 BINDINGS

_ ST INTEL) .

c @ @ localhost:3000 CE - B A o v "@ » =

Inputs

Number as String

4

Number: 4

Typeof numberAsString: string
Number as Number

4

Number: 4

Typeof number AsNumber: number

Figure 6-2. Binding to number inputs with types displayed in the browser

Date

The Date <input/>slooka little different in each browser, but the results should be
similar, which is a string that is YYYY-MM-DD. When we look at the value of inputs.
date bound with v-model="inputs.date" on a date <input/>, we should see the
selected date in that format.

89

CHAPTER6 BINDINGS

Listing 6-4 shows how to bind to the date input and Figure 6-3 shows how it looks in
the browser.

Listing 6-4. Using v-model with an Input Type Date

<h4>Date</h4>
<input type="date" v-model="inputs.date" />
<p>

Date: {{inputs.date}}
</p>

_ ST x

c @ @ localhost:3000 CE - B R o v "@ » =

Inputs
Date

05/21/19803

Date: 1980-05-21

Figure 6-3. Using v-model with an input type date with its output in the
browser

90

CHAPTER6 BINDINGS

Password

Passwords bind the same as a text <input/> does. The only difference is that you can’t
see what is being typed. Listing 6-5 shows v-model with a password type <input/>
and Figure 6-4 shows it in the browser if we type "Getting to Know Vue.js" inthe
<input/>.

Listing 6-5. Using v-model with a Password Input

<h4>Password</h4>
<input type="password" v-model="inputs.password" />
<p>

Password: {{inputs.password}}
</p>

c @ @ localhost:3000 RO+ v » =

Inputs
Password

Password: Getting to Know Vue.js

Figure 6-4. Using v-model with a password input displayed in the browser

91

CHAPTER6 BINDINGS

Caution If you are going to collect user passwords, do not send them in an
unsecure manner over the Internet.

Check Boxes

A check box is the epitome of yes or no, true or false... okay, it’s really just true or false.
What form would be complete without a check box? Using v-model with a check box is
the same as using the other <input v-model="inputs.checkbox" />.

Listing 6-6 shows how it’s set up and Figure 6-5 shows the results of checking the
check box.

Listing 6-6. Using v-model with a Check Box

<h4>Checkbox</h4>
<input type="checkbox" v-model="inputs.checkbox" value="myCheckBox"
id="myCheckBox" />
<label for="myCheckBox">My Check Box</label>
<p>
Checkbox: {{inputs.checkbox}}
</p>

92

CHAPTER6 BINDINGS

_ ST INTEL) x

c @ @ localhost:3000 .- Q% B v » =

Inputs
Checkbox

My Check Box

Checkbox: true

Figure 6-5. Using v-model with a check box in the browser

Groups of Check Boxes

What could be better than one check box? A group of check boxes! With Vue we can bind
more than one check box to the same data property. If we have the data property as an
array, Vue will push the value of the check box onto the array as it is selected.

In Listing 6-7 we use the checkboxes property that we initialized as an array in
Listing 6-1. In Figure 6-6, we will select the check boxes for Miny and Enny and we
should see them output in the order they are selected.

93

CHAPTER6 BINDINGS

Listing 6-7. Using v-model with Multiple Check Boxes

<h4>Checkboxes</h4>

<input v-model="inputs.checkboxes" type="checkbox" value="eeny" id="eeny" />
<label for="eeny">Enny</label>

<input v-model="inputs.checkboxes" type="checkbox" value="meeny" id="meeny" />
<label for="meeny">Meenny</label>

<input v-model="inputs.checkboxes" type="checkbox" value="miny" id="miny" />
<label for="miny">Miny</label>

<input v-model="inputs.checkboxes" type="checkbox" value="mo" id="mo" />
<label for="mo">Mo</label>

<p>
Checkboxes: {{inputs.checkboxes}}
</p>
C @ @ localhost:3000 - Q% B v » =
Inputs
Checkboxes

Enny = Meenny @ Miny Mo
Checkboxes: ["miny”, "eeny" |

Figure 6-6. Using v-model with multiple check boxes with Miny and Enny checked
94

CHAPTER6 BINDINGS

Radio Buttons

Radio buttons allow you to present the users with a selection of options similar to a
group of check boxes, but the user can choose only one. Each radio button will be bound
via the v-model to the same backing data property using v-model="inputs.radios" as
the binding attribute.

Listing 6-8 shows four radio buttons and displays the value of the selected one
beneath. You can see the results of selecting Go Joe! in Figure 6-7.

Listing 6-8. Using v-model with Radio Buttons

<h4>Radios</h4>
<input v-model="inputs.radios" type="radio" value="rollout" id="rollout" />
<label for="rollout">Autobots, transform and roll out!</label>

<input v-model="inputs.radios" type="radio" value="decepticons-retreat"
id="retreat" />
<label for="retreat">Decepticons, retreat!</label>

<input v-model="inputs.radios" type="radio" value="go-joe" id="go-joe" />
<label for="go-joe">Go Joe!</label>

<input v-model="inputs.radios" type="radio" value="cobra-retreat"
id="cobraretreat" />
<label for="cobraretreat">Cobra retreat. RETREAT!</label>
<p>
Radios: {{inputs.radios}}
</p>

95

CHAPTER6 BINDINGS

_ ESETRLIEINTEL) x

C @ @ localhost:3000 sow | e @ Ty B v » =

Inputs

Radios
Autobots, transform and roll out!
Decepticons, retreat!

© Go Joe!
Cobra retreat. RETREAT!

Radios: go-joe

Figure 6-7. Using v-model with radio buttons, with Go Joe! selected in the browser

Preset Radio Buttons

We can also set a preset value for the user by setting the value of the backing property to
the same value as one of the radio buttons. Listing 6-9 is essentially the same as

Listing 6-8, but we use the radiosPreset property as the backing property that contains
rollout as the value. When we load the page in Figure 6-8, Autobots, transform and roll
out! will be selected for us.

Listing 6-9. Setting a Preset Value for Radio Buttons

<h4>Radios Preset</h4>

<input v-model="inputs.radiosPreset" type="radio" value="rollout"
id="rollout" />

<label for="rollout">Autobots, transform and roll out!</label>

96

CHAPTER6 BINDINGS

<input v-model="inputs.radiosPreset" type="radio" value="decepticons-
retreat" id="retreat" />
<label for="retreat">Decepticons, retreat!</label>

<input v-model="inputs.radiosPreset" type="radio" value="go-joe" id="go-joe" />
<label for="go-joe">Go Joe!</label>

<input v-model="inputs.radiosPreset" type="radio" value="cobra-retreat"
id="cobraretreat" />
<label for="cobraretreat">Cobra retreat. RETREAT!</label>
<p>
Radios: {{inputs.radiosPreset}}

</p>

C @ @ localhost:3000 sow | e @ Ty B v » =
Inputs
Radios Preset

© Autobots, transform and roll out!
Decepticons, retreat!
Go Joe!
Cobra retreat. RETREAT!

Radios: rollout

Figure 6-8. Preset radio buttons upon first page load
97

CHAPTER6 BINDINGS

Radio Buttons: Dynamic Options

Creating radio buttons from a list of options may be required as the options could come
from the server. In Listing 6-10, we will use v-for to create a radio button for each option
in the radiosDynamicOptions array.

Listing 6-10. Creating Radio Buttons Dynamically

<h4>Radios Dynamic Options</h4>
<template v-for="(option, index) in inputs.radiosDynamicOptions">

<input v-model="inputs.radiosDynamic" type="radio"
v-bind:value="option.value" v-bind:id="option.value" />
<label v-bind:for="option.value">{{option.label}}</label>
<br v-if="index < inputs.radiosDynamicOptions.length">

</template>

<p>
Radios: {{inputs.radiosDynamic}}
</p>

98

CHAPTER6 BINDINGS

_ ESTIRLIEINTEL) .

C @ @ localhost:3000 v Q% B v » =

Inputs

Radios Dynamic Options

Blue
© Red

Radios: Dark

Figure 6-9. Radio buttons created dynamically

File

With file inputs, you cannot use v-model. To access the selected value, the change event
will have to be used with v-on. Listing 6-11 shows how we use the event file <input/>’s
change event to get the filename.

99

CHAPTER6 BINDINGS

Listing 6-11. Using the Change Event for File Input

var app = new Vue({
el: '#app',
data: {
fileName:
}J
methods: {
fileChanged: function(event) {
console.log(event);

this.fileName = event.target.files[0].name;

}

})
template: °
<h4>File</h4>
<!-- <input type="file" v-model="inputs.file" /> -->
<input type="file" v-on:change="fileChanged($event)" />
<p>
File: {{fileName}}
</p>

~

};

Figure 6-10 shows the results of using our File input app after selecting a file called
cover.png.

100

CHAPTER6 BINDINGS

_ EILTIRLOEINTEL) .

c @ @ localhost:3000 . Q% B v » =

File
Browse.. cover.png

File: cover.png

Figure 6-10. Using the change event on a file input

Hidden

Since we are using Vue and make the browser perform a full-page post to the server for
form submission, this would mean that the users would have to wait for our app to load
again. We won’t use hidden fields in this case. Any values we want to send can be added
to our post to the server in JavaScript.

101

CHAPTER6 BINDINGS

Textarea Elements

The <textarea> elements allow us to collect more verbose responses from the users.
Using v-model with a <textarea> is straightforward, as you can see in Listing 6-12.
We apply the white-space: pre-line; style to our output element to preserve the
whitespace. In Figure 6-11, we can see that each word displays on a new line in our
output. We type “Getting to Know Vue.js” and press Enter between each line.

Listing 6-12. Using v-model with a textarea

<h4>Text</h4>
<textarea v-model="text" cols="50" style="height: 200px;"></textarea>
<p style="white-space: pre-line;">

{{text}}
</p>

_ ESETIRLIEINTEL) x

C @ @ localhost:3000 v Q% B v » =

Text

Getting
to

Getting
o
Know
Vue.js

Figure 6-11. Using v-model with a textarea in the browser
102

CHAPTER6 BINDINGS

Select

With a <select>, we bind to it and get the value that’s selected. Listing 6-13 shows how
to use v-model with a <select>, including having a recommended disabled options first.
Providing a disabled first option helps the iOS not register a change event when the page
loads and the first option becomes selected.

Listing 6-13. Using v-model with a select

<h4>Select</h4>

<select v-model="select">
<option disabled value=

</option>
<option value="startrek">Star Trek</option>
<option value="starwars">Star Wars</option>

>Select your Show

<option value="firefly">Firefly</option>

<option value="drwho">Dr. Who</option>
</select>
<p>

Selected: {{select}}
</p>

103

CHAPTER6 BINDINGS

_ EIETIRLIEINTEL) x

C @ @ localhost:3000 . Q% B v » =

Select

Firefly

Selected: firefly

Figure 6-12. Using v-model with a select and an option selected

Multiple Selects

Multiple selects behave similarly to using multiple check boxes with the same backing
property. The selected values get added as an array. Listing 6-14 uses multiselect with
v-model and Figure 6-13 shows the results of selecting the second and fourth options.

Listing 6-14. Using v-model with a Multiselect

<h4>Multi-Select</h4>

<select v-model="multiSelect" multiple>
<option value="startrek">Star Trek</option>
<option value="starwars">Star Wars</option>
<option value="firefly">Firefly</option>

104

CHAPTER6 BINDINGS

<option value="drwho">Dr. Who</option>
</select>
<p>

Multi-Selected: {{multiSelect}}
</p>

c @ @ localhost:3000 - Q% B v » =
Multi-Select
Star Trek

Flmrli

Multi-Selected: | "starwars", "drwho" |

Figure 6-13. Using v-model with a select and two options selected

105

CHAPTER6 BINDINGS

Modifiers

Vue provides us with three modifiers to use with inputs:

o .lazy: Uses the change event instead of the input event to update the
data model.

e .number: Tries to cast the value to a number when assigning it to the
data model.

o .trim: Removes the whitespace when assigning to the data model.

Lazy

With the .1azy modifier, the model updates when the change event occurs. To see this in
action, you can use Listing 6-15 and view it in the browser. The output will display like in
Figure 6-14 after you leave the input box.

Listing 6-15. Using the .lazy Modifier

<h4>Lazy</h4>
<input v-model.lazy="lazy" type="text" />
<p>
Lazy: {{lazy}}
</p>

106

CHAPTER6 BINDINGS

SRR .

Cc @ @ localhost:3000 - Q% B v » =

Getting to Know Vue.js

Lazy: Getting to Know Vue.js

Figure 6-14. Using the .lazy modifier to change the model after the input loses
focus and fires a change event

Number

The number modifier casts the value of the input to a number and we can use it on
<input/>s with the type of number. In Listing 6-16, we use .number to cast our text input
to a number. In Figure 6-15 you can see the output and the results of using typeof on our
data backing fields.

107

CHAPTER6 BINDINGS

Listing 6-16. Using .number Modifier on a Text Field

<h4>Number</h4>
<input v-model.number="number" type="text" />
<p>
Number: {{number}}
</p>
<p>

Type of Number: {{typeof number}}
</p>

| Coving o Know Vuels .

Cc @ @ localhost:3000 . Q% B v » =

Number: 8

Type of Number: number

Figure 6-15. Using the .number modifier on a text field with the output of the
value and the typeof when the number 8 is entered

108

CHAPTER 6 BINDINGS
Trim

The .trim modifier is used to remove the whitespace from the beginning and end of the
value before updating the data model. Listing 6-17 show this effect by surrounding the
output with quotes so we can see how much whitespace is at the beginning and end of
the value. We also have an input with output that does not apply the trim modifier, so we
can see how that behaves.

In Figure 6-16, we enter " Vue.js. " (that’s five spaces before and five after Vue.js) into
both inputs. In the No Trim input, you can see the space between Vue.js and the quotation
marks. There is no space in the Trim output.

Listing 6-17. Using the .trim Modifier

<h4>No Trim</h4>
<input v-model="noTrim" type="text" />

<p>

No Trim: "{{noTrim}}"
</p>
<h4>Trim</h4>
<input v-model.trim="trim" type="text" />
<p>

Trim: "{{trim}}"
</p>

109

CHAPTER6 BINDINGS

_ EILTIRLEINTEL) x

C @ @ localhost:3000 v Q% B v » =

No Trim

Vuejs.
No Trim: " Vuejs. "
Trim

Vueds. |

Trim: "Vue.js."

Figure 6-16. Using the .trim modifier by entering “ Vue.js. “ into both inputs

Styling

Providing users feedback about their actions usually takes on the form of changing the
way things look on the page. The user enters invalid data in a form field, so something
turns red. The user selects a drop-down menu and the menu drops down. Some of
this could be accomplished with v-show and v-if, but it would feel abrupt. Using CSS
properties and classes can provide a way to use animation and generally provide more
options besides hiding and showing an element.

110

CHAPTER6 BINDINGS

We look at applying CSS style properties and classes. If you would like to learn
more about CSS, I recommend CSS Mastery, 3rd ed. Edition, by Andy Budd and Emil
Bjorklund.

Inline Styles

Binding to inline styles allow us to directly assign values to CSS properties. We use
syntax similar to binding to other attributes, as discussed in Chapter 2, but we use

a JavaScript object we define in the expression. The property names can either be
camel case or kebab case. If you use kebab case, you will need to use quotes. The
value we assign each property will be the value assigned to the CSS property we used
as the property name.

In Listing 6-18, we use the camel case name of fontSize to specify that we are setting
the font size. For its value, we use a property from our Vue instance and append px to it,
since we want to use pixels.

In Figure 6-17, you can see that entering 35 into the input sets the font size on our
<p>.

Listing 6-18. Binding CSS Styles with an Inline Object

<h4>Dynamic Font Size</h4>

<input type="number" v-model.number="fontSize" />

<p v-bind:style="{fontSize: fontSize + 'px'}">
Getting to Know Vue.js

</p>

111

CHAPTER6 BINDINGS

_ ST INTEL) x

c @ @ localhost:3000 . Q% B v » =

Dynamic Font Size

35

Getting to Know Vue js

Figure 6-17. Binding CSS styles with an inline object and setting the font size
to 35

Style Objects

Rather than defining the object we want to use for a style in the expression, we can
define it as a data property. This way we can assign the whole object. We don’t have to
worry about defining our object as a string, as we can get proper syntax highlighting in
the JavaScript editor.

In Listing 6-19, we bind the input to the same backing data property, fontsize, but
we will add a watch to it so when it changes we can set the value of fontSize on our
fontSizeObject. We will bind fontSizeObject to our style property.

112

CHAPTER 6

Figure 6-18 shows the results with the input set to 25.

Listing 6-19. Using an Object to Set Styles

var app = new Vue({
el: '#app',
data: {
fontSize: 0,
fontSizeObject: { fontSize: 'opx' }

})

watch: {
fontSize: function() {

this.fontSizeObject.fontSize = this.fontSize + 'px';

}

})

template: °

<div>
<h4>Dynamic Font Size with an object</h4>
<input type="number" v-model.number="fontSize" />
<p v-bind:style="fontSizeObject">

Getting to Know Vue.js

</p>

</div>

1;

BINDINGS

113

CHAPTER6 BINDINGS

_ EIETRLIEINTEL) .

C @ @ localhost:3000 v Q% B v » =

Dynamic Font Size with an object
28

Getting to Know Vue.js

Figure 6-18. Using an object to set styles with the input value set to 25

The other thing you can do with the style object is use an array to bind more than
one.

We will add the following property to our data model: fontColorObject: { color:
‘red" }. We will add it to our style property with fontSizeObject, as in an array.
Listing 6-20 shows the whole app and Figure 6-19 shows it with the font size set to 40.

114

CHAPTER 6

Listing 6-20. Binding an Array of Objects to the Style Property

var app = new Vue({
el: '#app',
data: {
fontSize: o,
fontSizeObject: { fontSize: 'opx' },
fontColorObject: { color: 'red' }
})
watch: {
fontSize: function() {
this.fontSizeObject.fontSize = this.fontSize + 'px';

}

1
template: °

<div>
<h4>Dynamic Font Size with an object</h4>
<input type="number" v-model.number="fontSize" />
<p v-bind:style="[fontSizeObject, fontColorObject]">
Getting to Know Vue.js
</p>
</div>

~

};

BINDINGS

115

CHAPTER6 BINDINGS

_ ST INTEL) .

C @ @ localhost:3000 v Q% B v » =

Dynamic Font Size with an object

ad

Getting to Know Vue js

Figure 6-19. Binding an array of objects to the style property with the font size set
to 40

Classes

Binding styles can make for a lot of hand-crafted work and makes it more difficult to
reuse the look you have achieved. Thankfully we can also bind CSS classes.

To bind a CSS class, we use the v-bind:class directive on the element we want the
class to be applied to. We provide it an object in the expression that has the name of the
CSS class we want applied as property names and the condition that evaluates to true
or false as the value. If we wanted to always apply a class, we could check if true equals
true, as shown in Listing 6-21.

116

CHAPTER6 BINDINGS

One Class
Listing 6-21. Binding a CSS Class

v-bind:class="{ cssClass : true == true }"

Note The CSS class name can be in camel case or in kebab case. To use kebab
case, you need to use quotation marks around the property name.

Listing 6-22 shows the CSS class, error, as defined in the head of our HTML. It turns
the color red and adds a red solid border when applied to an element.

Listing 6-22. CSS error Class

<style>
.error {
color: red;
border: red 3px solid;
}
</style>

In Listing 6-23, we have our Vue app defined with two data properties, input and
inputError, and a watch on input to set the value of inputError, depending on if the
value of input is a number. Figure 6-20 shows the results of entering “word” into the

input.

Listing 6-23. Binding a CSS Class to Evaluate a Data Property

var app = new Vue({
el: '#app',
data: {
input: ",
inputError: null

}s

117

CHAPTER6 BINDINGS

watch: {
input: function() {

var results = parseInt(this.input);

if (isNaN(results)) {
this.inputError = true;

} else {
this.inputError = false;
}
}
})
template: °
<div>
<h4>0ne CSS Class Bound</h4>
<input
type="text"
v-model="input"
v-bind:class="{ error :
</div>
IOk

118

inputError }" />

CHAPTER6 BINDINGS

SEITRLIERTEL *

C @ @ localhost:2000 - QW B » =

Please Enter an Integer

Figure 6-20. Entering “word” into our input

Multiple Classes

We can also use the object syntax to bind multiple CSS classes to an element by adding
two or more properties with evaluation conditions of when to apply them.

Listing 6-24 shows our new CSS class, no-error. We will apply this when the input
error is true.

Listing 6-24. No-error CSS Class

.no-error {
color: green;
border: green 3px solid;

119

CHAPTER6 BINDINGS

Listing 6-25 shows how to apply one of two CSS classes depending on whether
inputError is true. In Figure 6-21, we see that entering 5 into the input makes the
border and color of the input green.

Listing 6-25. Binding Two CSS Classes to the Same Element

<h4>Two Classes Bound</h4>
<input type="text" v-model="input"

v-bind:class="{ error : inputError, 'no-error' : inputError ==
false }" />
Cc @ @ localhost:3000 Q% B » =
Two Classes Bound
E— 1

Figure 6-21. Entering a valid input applies the no-error CSS class

120

CHAPTER6 BINDINGS

Multiple Classes with Arrays

We can also apply multiple CSS classes with an array. Listing 6-26 shows our .active
class. Listing 6-27 shows the Vue app with two properties, with the values being the
names of our CSS .error and .active classes. Figure 6-22 shows our oversized input with
an error.

Listing 6-26. Our .active CSS Class

.active {
font-size: 1.5em;

}

Listing 6-27. Binding Multiple CSS Classes with an Array

var app = new Vue({
el: '#app',
data: {
activeClass: 'active',
errorClass: 'error'
})
template: °
<div>
<h4>CSS Classes in an Array</h4>
<input
type="text"
v-model="1input"
v-bind:class="[activeClass, errorClass]" />

</div>

~

D

121

CHAPTER6 BINDINGS

_ R x

C @ @ localhost:2000 -~ QW B » =

CSS Classes in an Array

Figure 6-22. Two CSS classes applied with an array

You can also use the object expression syntax to dynamically apply a class in an
array. Listing 6-28 shows how to accomplish this. One thing to note is that we are
applying the “error” class name as a string, not a reference, to the data property that
holds the same value.

Listing 6-28. Dynamically Applying a CSS Class as Part of an Array

<input
type="text"
v-model="1input"
v-bind:class="[{ 'error' : inputError }, activeClass]" />

122

CHAPTER6 BINDINGS

Computed Classes

Declaring the logic on which CSS class to apply in the markup can get a little verbose.
It makes things a little more difficult to read. We can get around that issue by using a
computed property to create the object we bind to the class attribute.

To bind to a computed property, we provide the attribute the name
v-bind:class="appliedCss". The real magic happens in our Vue instance.

In Listing 6-29, we have a computed property that always applies the active class
and conditionally applies the error and no-error class depending on the value of
inputError. If we enter “word” into our input, you can see the error class is applied in
Figure 6-23. If we enter “4’) the no-error class is applied, as shown in Figure 6-24.

Listing 6-29. Using a Computed Property to Apply CSS Classes

var app = new Vue({

el: '#app',
data: {
input: ",
inputError: null
}s
watch: {
input: function() {
var results = parseInt(this.input);
if (isNaN(results)) {
this.inputError = true;
} else {
this.inputError = false;
}
}
})
computed: {
appliedCss: function() {
return {

active: true,
error: this.inputError,
'no-error': this.inputError === false

123

CHAPTER6 BINDINGS

};
}

1
template: °

<div>

<h4>Using Computed Properties for CSS classes</h4>

<input type="text" v-model="input" v-bind:class="appliedCss" />
</div>

~

D

_ ST x

[@ localhost:3000 0% v @Y B » =

Using Computed Properties for CSS classes

word

Figure 6-23. Applying a computed property as a CSS class with “word” as the
input

124

CHAPTER6 BINDINGS

_ ESETIRLIEINTEL) x

[@ localhost:3000 0% v @Y B » =

Using Computed Properties for CSS classes

4

Figure 6-24. Applying a computed property as a CSS class with “4” as the
input

Summary

In this chapter, we learned about binding to inputs, styles, and CSS classes. With Vue
handling the many different forms of inputs, getting the value the user enters requires
v-model. Vue provides many options for binding CSS styles and classes, which allow us
to bind with inline syntax, to an object, to an array, and even use computed properties.

125

CHAPTER 7

State Management

Every application has some data to manage in the form of values to keep track of related
to the user’s choices or the information that is being displayed. To further complicate
things, we could be using the same data across multiple instances of Vue. Handling this
is called state management. We will take a look at three ways to manage state with Vue:
a simple data object, a do-it-yourself data store, and a state management library called
Vuex.

Simple Data Objects

The most basic way to manage and share data is with a simple JavaScript object that has
some properties with values. This object is then passed into multiple Vue instances to
share access to the same values.

Listing 7-1 shows an example of this rudimentary sharing of data.

Listing 7-1. Basic Data Sharing

var sharedData = {
value: 1

b

var appl = new Vue({
el: '"#app1',
data: {
shared: sharedData,
private: {}

1

127
© Brett Nelson 2018

B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_7

CHAPTER 7 STATE MANAGEMENT

template: °
<h1>App 1 Shared Value: {{shared.value}}</h1>

~

};

var app2 = new Vue({
el: '#app2',
data: {
shared: sharedData,
private: {}
})
methods: {
increase: function() {
this.$data.shared.value++;
})
decrease: function() {
sharedData.value--;

}

1
template: °

<div>
<h1>App 2 Shared Value: {{shared.value}}</h1>
<button v-on:click="increase">+</button>
<button v-on:click="decrease">-</button>
</div>

~

};

You can see we have a separate JavaScript object that has one property, value. This
object is then used as the data property for two different Vue instances, app1 and app2.

In app2, we have two buttons to change the values of the sharedData object through
an increase and decrease method. In the increase method, we use the Vue instances
reference to the original data object that was stored when the instance was created with
through this.$data. In the decrease method, we directly manipulate the JavaScript
object that was used as the value for the data property.

128

CHAPTER 7 STATE MANAGEMENT

In Figure 7-1, you can see that clicking the + button three times results in the values
of both Vue instances being updated.

_ ST .

« C @ @ localhost:3000 90% | e &% = » =

App 1 Shared Value: 4
App 2 Shared Value: 4

Figure 7-1. Basic data sharing updating two Vue instances

This looks like a working solution. However, the thing is, as your application
gets more complex, it will get more and more difficult to verify that the shared data

is being changed properly, since every Vue instance it is shared with can change it
directly.

129

CHAPTER 7 STATE MANAGEMENT

DIY Data Store

An alternative to the simple data object would be creating your own; let’s call it a DIY
(Do It Yourself) data store. We use a JavaScript object to hold the data we want to be able
to share like the simple data object, but we add methods to change/update that data
rather than change it directly. This allows us to better understand when and how the
data is being changed.

In Listing 7-2, we added a few things to our shared data object. We now have a
property called devMode to indicate if we want additional things logged to the console.
The values we are sharing now reside in a state property. In our Vue instances, it’s the
state property that we use for our shared attribute of the data. And we have methods to
alter the value(s) of our state: increaseValue, decreaseValue, and setValue.

Listing 7-2. DIY Data Store

var sharedData = {
devMode: true,
state: {
value: 1
})
increaseValue() {
if (this.devMode) {
console.log("'increaseValue() called');

}

this.state.value++;

1

decreaseValue() {
if (this.devMode) {
console.log('decreaseValue() called');

}

this.state.value--;

b
setValue(newValue) {

if (this.devMode) {
console.log('setValue() called with newValue: ', newValue);

}

130

CHAPTER 7 STATE MANAGEMENT

this.state.value = newValue;

}
b

In the methods to alter the state, we check if devMode is true. If it is, we log a message
to the console. We would want to set this to false or remove the devMode property
before deploying it to production. Once it’s in production, we would be able to turn dev
mode on using the browser dev tools console and setting sharedData.devMode = true
manually.

To update the data in sharedData, we call the method off of the sharedData
object that corresponds to the action we want to take. Want to increase the value?

Call sharedData.increaseValue().Want to set the value to 1? Call sharedData.
setValue(1). You can see this in Listing 7-3.

Listing 7-3. Consuming a DIY Data Store

var appl = new Vue({

el: '#appl',

data: {
shared: sharedData.state,
private: {}

})

template: °

<h1>App 1 Shared Value: {{shared.value}}</h1>

~

};

var app2 = new Vue({

el: '#app2',

data: {
shared: sharedData.state,
private: {}

})

methods: {
increase: function() {

sharedData.increaseValue();

1

131

CHAPTER 7 STATE MANAGEMENT

decrease: function() {
sharedData.decreaseValue();

})

reset: function() {
sharedData.setValue(1);

}

})
template: °
<div>
<h1>App 2 Shared Value: {{shared.value}}</h1>
<button v-on:click="increase'>+</button>
<button v-on:click="decrease'>-</button>
<button v-on:click="reset'>reset</button>
</div>

~

};

You can see that instead of changing the data in our Vue instance, we are using the
increase, decrease, and reset methods to call the methods on the sharedData.

This makes things a little more manageable as we have one place where all the data
changes occur.

Vuex

Having learned about the DIY data store, you are probably wonder what other options
could be needed for managing state. Vuex is a library maintained by the Vue team that
provides state management along with some additional treats or features. The official
Vue dev tool plugin enables Vuex to perform time travel debugging along with importing
and exporting the state. Vuex is designed to act as the application state for all Vue
components of your application.

Install

Before we can start to use Vuex, we need to install it.

132

CHAPTER 7 STATE MANAGEMENT

CDN or Self Hosted

If you are not using a module system to manage dependencies, you can reference Vuex
from the CDN (content delivery network) or download a copy to host on the same server
as your app. Use the address https://unpkg.com/vuex for the latest version.

When using it as a CDN, I recommend using a versioned reference. This is so nothing
unexpectedly changes while it’s in production by adding the version number at the end
or the URL. If you want to use version 3.0.1, the URL would be https://unpkg.com/
vuex@3.0.1.

When you add the <script> element to reference Vuex, add it after the Vue <script>
and Vuex will self-register for use.

Note If you need to add Vuex before Vue to your page you can still register it for
use with Vue.use(Vuex) ;.

NPM and Yarn

If you are using NPM or Yarn to manage your apps dependencies it can be installed by
the package of the same name: vuex. So, for NPM it would be npm install vuex -save
and for Yarn it would be yarn add vuex. Then in the code it will have to be imported
from the module system, like in Listing 7-4, before you tell Vue to use it.

Listing 7-4. Importing Vuex for Use

import Vue from 'vue';
import Vuex from 'vuex';

Vue.use(Vuex);

Promise

Vuex does require that the browser supports promises. If you plan on supporting
browsers that don’t have an implementation of promises, you'll need a polyfill.

133

https://unpkg.com/vuex
https://unpkg.com/vuex@3.0.1
https://unpkg.com/vuex@3.0.1

CHAPTER 7 STATE MANAGEMENT

One promise library that works with Vuex is es6-promise. It can be referenced or
downloaded from a CDN at https://cdn. jsdelivr.net/npm/es6-promise@4/dist/
es6-promise.auto. js. It can also be installed with NPM using npm install esé6-
promise -save or with Yarn, using yarn add es6-promise. Be sure to include an import
statement for the polyfill where you are using Vuex import 'es6-promise/auto’;.

Note Vuex solves some of the more complicated problems, so to demonstrate
it better, we need a more complicated example. We will be using the Star Wars
API, https://swapi.co/,to get a list of star ships and then load the pilots of a
selected ship with the Axios library at https://github.com/axios/axios.

Options

With everything set up for use, we can get on with configuring our instance of Vuex. To
do that, we should probably have an understanding of what properties we pass in when
creating a new instance of Vuex.

State

The state property is similar to the state property we used in our DIY data store. It
contains all the data we are sharing with Vuex. Since our Vue apps will only have a single
Vuex instance, the state is a single JavaScript object that contains the state for the entire
app. Listing 7-5 shows a basic store.

Listing 7-5. State Setup

state: {
ship: {},
ships: { count: 0, results: [] },
pilots: []

}J

134

https://cdn.jsdelivr.net/npm/es6-promise@4/dist/es6-promise.auto.js
https://cdn.jsdelivr.net/npm/es6-promise@4/dist/es6-promise.auto.js
https://swapi.co/
https://github.com/axios/axios

CHAPTER 7 STATE MANAGEMENT

Getters

Getters offer a way to consolidate results that is based on the data in the store. One way
to think of a getter is as a computed property that is exposed through the store, thereby
allowing it to be reused in multiple Vue components. In the vein of computed properties,
the results of most getters are cached.

A getter function receives two parameters: state and getters. The state function
is used to access the values of the store. The getters function can be used to combine
results of other getters, thereby allowing us to build more complicated results in smaller
portions.

Listing 7-6 shows a getter that returns a filtered array of ships that have a starship
class of Starfighter. We then have a second getter that returns the number of
Starfighters in our current list.

Listing 7-6. Two Getters, One That Returns a List of Only Starfighter and One
That Returns the Number of Starfighters

onlyStarFighters: function(state) {
return state.ships.results.filter(function(ship) {
return ship.starship class === 'Starfighter’;
D;

1
onlyStarFightersCount: function(state, getters) {

return getters.onlyStarFighters.length;
}s

A getter can return the results of some logic, like a formatted string, a new number, or
a function. When a function is returned, it can be used to pass in a value, such as an ID to
search for from the store or some other value to get the results of the getter.

Listing 7-7 shows a getter that returns a function. That function accepts the url
parameter and then returns the ship with that url.

135

CHAPTER 7 STATE MANAGEMENT

Listing 7-7. A Getter Returning a Function That Accepts a Parameter to Evaluate
the Result

setShip: function(state) {
return function(url) {
return state.ships.results.find(function(ship) {
return ship.url === url;

};
};
}

Note Getters that return a function are evaluated every time they are accessed.

Mutations

The only way to change the value of the store is through a mutation. A mutation consists
of a string type and a handler function. One way to think of the type is that it’s like the
name for the handler. The handler is a function that accepts at least one parameter,
state, and can have a second parameter called payload. If multiple values need to be
passed to the mutation, we can use an object.

Since every mutation is logged to track changes, all mutations must be synchronous.
If a mutation needs to perform an action that is asynchronous due to using a callback or
promise, the logic should probably be moved to an action. More on actions next.

Listing 7-8 has four mutations—setShips sets the ships property of state, setShip
sets the ship of state, clearPilots replaces the contents of the pilots property of state
with an empty array, and addPilot adds a pilot to the pilots property of state.

Listing 7-8. Mutation Examples

mutations: {
setShips: function(state, payload) {
state.ships = payload.newShips;
}J
setShip: function(state, payload) {
state.ship = payload.newShip;

136

CHAPTER 7 STATE MANAGEMENT

1

clearPilots: function(state) {
state.pilots = [];

}J

addPilot: function(state, payload) {
state.pilots.push(payload.newPilot);

}
}s

To invoke, or call, a mutation, we call commit on the store object. When we call
commit, we can pass it the type, or name, of the mutation to call and a payload, or we
can pass it an object that has a property named type. The rest of the object will be the
payload. We can see both ways of calling commit in Listing 7-9.

We can call this on the store object that is stored as a JavaScript object or we can call
it from our Vue instances reference to the store that was passed in when we created our
instance.

Listing 7-9 shows how to call commit on the store using the global JavaScript store
variable, the reference from the Vue instance, along with passing a payload. It also shows
how to pass an object that specifies the type.

Listing 7-9. Calling commit

search: function(event) {
store.dispatch('search', { searchText: event.target.value });

1

viewShip: function(url) {
this.$store.dispatch({ type: 'setShip', url: url });

}

137

CHAPTER 7 STATE MANAGEMENT

Actions

Sometimes we need to perform a task that is not synchronous, so a mutation won't
work. That’s where actions come in. An action can be asynchronous. Any task that might
require a callback or a wait period such as calling a server should be an action.

When the asynchronous task is done, we will be able to call commit with the results.
This will preserve the transaction history of our Vuex and still allow us all those fun calls
to servers.

Actions follow the same format as mutations with a string type, or name, and a
handler function. The handler function accepts two parameters: context and payload.
The context parameter contains the same properties and methods as the store does in a
mutation, allowing us to access the state and commit mutations.

To call, or invoke, an action, we follow the same format as when committing a
mutation, except we call dispatch on the store.

Listing 7-10 shows three actions: search to search for ships, setShip to set the
current ship, and getPilots to get the pilots once the ship is set. In the setPilots
action, we also use the dispatch method to call getPilots.

Listing 7-10. Action Examples

actions: {
search: function(context, payload) {
axios
.get("https://swapi.co/api/starships/?search=${payload.searchText}")
.then(response => {
context.commit('setShips', { newShips: response.data });

};

}s
setShip: function(context, payload) {

context.commit('clearPilots');
context.commit('setShip', {
newShip: context.getters.setShip(payload.url)

};

138

CHAPTER 7 STATE MANAGEMENT

context.dispatch('getPilots', { urls: context.state.ship.pilots });
}J
getPilots: function(context, payload) {
payload.urls.forEach(function(url) {
axios.get(url).then(response => {
context.commit('addPilot', { newPilot: response.data });
D;
D;

“ ST x _

> C @ @ localhost:3000 o O W ®@ » =

Appl
Search:

« Executor

« Sentinel-class landing craft

« Death Star

« Millennium Falcon

+ TIE Advanced x1

« Slave 1

» Imperial shuttle

« EF76 Nebulon-B escort frigate
» Calamari Cruiser

« A-wing

App2
Search: a

Results: 33
Starfighters Count: 2

« Executor view

» Sentinel-class landing craft view

« Death Star view

« Millennium Falcon view

« TIE Advanced x1 view

o Slave 1 view

« Imperial shuttle view

« EF76 Nebulon-B escort frigate view
« Calamari Cruiser view

Figure 7-2. Two Vue instances sharing data

139

CHAPTER 7 STATE MANAGEMENT

“ ST . _

Cc @ @ localhost:3000 e @ ® » =
Search: a

Resulis: 33
Starfighters Count: 2
« Executor view
« Sentinel-class landing craft view
o Death Star view
« Millennium Falcon view
o TIE Advanced x1 view
» Slave | view
« Imperial shuttle view
» EF76 Nebulon-B escort frigate view
« Calamari Cruiser view
» A-wing view

Current Ship

Name: Millennium Falcon
Manufacturer: Corellian Engineering Corporation
Class: Light freighter
Crew Size: 4
Pilots
+ Name: Lando Calrissian
» Name: Chewbacca
« Name: Han Solo

« Name: Nien Nunb

Figure 7-3. Results of actions and mutations

If we run the code we have so far, we can see the data being shared across two Vue
instances in Figure 7-2. In Figure 7-3, after selecting the Millennium Falcon, we can
see the lists of pilots below the ship details as the results of the actions and mutations
performing their tasks. Watching it “live,” you can see each pilot added as the HTTP call
to the server returns the results for each one. Unfortunately it’s difficult to show that part
here.

Modules

After a few releases, any small app can start to get larger in scale. Managing larger data
stores can become a bit of a challenge. To help us deal with this, Vuex allows us to
declare a store in modules. Each module is like a mini-Vuex declaration with its own
state, getters, mutations, and actions.

140

CHAPTER 7 STATE MANAGEMENT

These modules allow us to break up our data store into manageable chucks the same
way we would split up any larger programming issue into smaller, more manageable
portions.

Basics

Using our example app that allows us to access ships and pilots from the Star Wars AP],
we can break our existing Vuex definition into two modules: ships and pilots.

Listing 7-11 shows our shipsModule with the state, getters, mutations, and actions
that apply only to the ships. Listing 7-12 shows our pilotsModule with the state, getters,
mutations, and actions that apply only to the pilots.

Listing 7-11. Ships Module Definition

var shipsModule = {
state: {
ship: {},
ships: { count: 0, results: [] }
})
getters: {
onlyStarFighters: function(state) {
return state.ships.results.filter(function(ship) {
return ship.starship _class === 'Starfighter’;

1)s
}s
onlyStarFightersCount: function(state, getters) {

return getters.onlyStarFighters.length;
})
setShip: function(state) {
return function(url) {
return state.ships.results.find(function(ship) {
return ship.url === url;
IOk
1
}
})

mutations: {

141

CHAPTER 7 STATE MANAGEMENT

setShips: function(state, payload) {
state.ships = payload.newShips;

})

setShip: function(state, payload) {
state.ship = payload.newShip;

}
1

actions: {
search: function(context, payload) {
axios
.get("https://swapi.co/api/starships/?search=${payload.
searchText}")
.then(response => {
context.commit('setShips', { newShips: response.data });

1);

}s
setShip: function(context, payload) {

context.commit('clearPilots"');
context.commit('setShip', {
newShip: context.getters.setShip(payload.url)
D;
context.dispatch('getPilots', { urls: context.state.ship.pilots });
}
}
};

Listing 7-12. Pilots Module Definition

var pilotsModule = {
state: {
pilots: []
})
getters: {},
mutations: {
clearPilots: function(state) {

state.pilots = [];

142

CHAPTER 7 STATE MANAGEMENT

}s
addPilot: function(state, payload) {

state.pilots.push(payload.newPilot);
}
1

actions: {
getPilots: function(context, payload) {
payload.urls.forEach(function(url) {
axios.get(url).then(response => {
context.commit('addPilot', { newPilot: response.data });
D;
D;
}
}
};

Looking at these module definitions, you might notice that they don’t use Vuex at
this point. They are plain JavaScript objects. To use these module definitions, we create
a new Vuex store using the module’s options. In the modules property we define each
module with a property name and assign the definition as the value.

Listing 7-13 shows our new Vuex store using shipsModule and pilotsModule.

Listing 7-13. Using Module Definitions

var store = new Vuex.Store({
modules: {
ships: shipsModule,
pilots: pilotsModule

}
};

For the most part, this will make our app work the same as before we started using
modules. The only change we have to make is where we reference the state in our
computed properties.

Outside the module to access our state from shipsModule, we will now need to use
this.$store.state.ships to get access to the ships state and use this.$store.state.
pilots to access the pilots state.

143

CHAPTER 7 STATE MANAGEMENT

Note Inside the module we still use the state to access the current state
properties, as seen in Listings 7-11 and 7-12.

Listing 7-14 shows an update to our app2 computed properties, which access the
ships and pilots states.

Listing 7-14. Accessing Module State

computed: {
currentShip: function() {
return this.$store.state.ships.ship;
}s
ships: function() {
return this.$store.state.ships.ships.results;
}s
shipCount: function() {
return this.$store.state.ships.ships.count;
1
starfightersCount: function() {
return this.$store.getters.onlyStarFightersCount;
}s
pilots: function() {
return this.$store.state..pilots;

}
1

After updating our computed properties, everything will work the same as before we
broke things out into modules.

Accessing RootState

In your actions and getters, you may need to access the main state of your data store to
get information from a different module. This is possible through a third parameter that
is passed in to both actions and getters called rootState.

144

CHAPTER 7 STATE MANAGEMENT

In Listing 7-15, we use the rootState in a getter that returns a list of strings that say
the current pilots name followed by “the pilot of” and the ship name by accessing the
ship names through the rootState.

Listing 7-15. Using rootState to Access a Second Module State

pilotsWithShipName: function(state, getters, rootState) {
return state.pilots.map(function(pilot) {
return “${pilot.name} the pilot of ${rootState.ships.ship.name}";
D;
}

Namespace

Since the modules we created, ships and pilots, didn’t have much in the way
of overlapping names of getters, actions, and mutations, I didn’t feel the need to
namespace the modules. At some point, you may need to specify which specific modules
should handle an action, getter, or mutations.

To namespace a module, add namespaced: true as one of its properties and
you're done... almost. Now to access the mutations from outside the module,
you call commit('moduleName/mutationName'). To access an action, we call
dispatch('moduleName/actionName'). And to access a getter, we have to use
getters['moduleName/getterName"]. Notice we are using the bracket notation to access
the getter since JavaScript dot notation will not let us use the / special character.

Inside the module, we can use either the namespace method to access the
mutations, actions, and getters or we can call them without the namespacing.

Listing 7-16 shows adding the namespaced: true property to our pilotsModule.

Listing 7-16. Namespaced Module

var pilotsModule = {
namespaced: true,
//everything else stays the same

}

Listing 7-17 shows how we access the clearPilots mutations and the getPilots
action from the shipsModule now that the pilotsModule is using a namespace.

145

CHAPTER 7 STATE MANAGEMENT

Listing 7-17. Accessing a Namespaced Module

setShip: function(context, payload) {

context.commit('pilots/clearPilots');

context.commit('setShip', {

newShip: context.getters.setShip(payload.url)

D;

context.dispatch('pilots/getPilots', { urls: context.state.ship.pilots
1;
}

We can also decide to make an action globally available by registering it as such. To
register an action as global, we change the definition of the action from a function to an
object with two properties: root and handler. The handler property will be the function
that we used to have assigned to the action. The root property will be set to true.

Listing 7-18 shows the getPilots action set as a global action.

Listing 7-18. Registering a Global Action

getPilots: {
root: true,
handler: function(context, payload) {
payload.urls.forEach(function(url) {
axios.get(url).then(response => {
context.commit('addPilot', { newPilot: response.data });
D;
D;
}
}

With a namespace module, our getters get a forth parameter, called rootGetters. We
can use rootGetters to access getters from other modules, similar to the way we used

our rootState parameter.
Listing 7-19 shows the pilotsModule getter for pilotsWithShipName using the
rootGetter to get all the ships for a pilot.

146

CHAPTER 7 STATE MANAGEMENT

Listing 7-19. Using rootGetters to Access Getters in Different Modules

pilotsWithShipName: function(state, getters, rootState, rootGetters) {
return state.pilots.map(function(pilot) {
return ~${
pilot.name
} flies ${rootGetters.getShipsWithPilotId(pilot.url).length} number of
the current ships™;
}s
}

Summary

In this chapter, we learned three ways we can manage the state of our application.

A simple data object has some drawbacks in that there is no central way to maintain
consistency of changes or to track where the changes are occurring. A DIY data store
starts to add specific ways to manage changes to the data, thereby allowing for some
support for tracking changes. Vuex offers a more robust method for tracking changes,
including change history, but becomes a little more verbose when you’re connecting it
within your app.

147

CHAPTER 8

Using Components

It’s not usually a good idea to get all your apps into one JavaScript file. With Vue we can
use components to create reusable portions of our app and make it easier to maintain.
In this chapter, we will learn how to create and use a custom Vue component, share data

with components, use events, and use slots.

What Is a Component?

You might be wondering what a component is and why you should care. Both those
questions are good things to figure out.

A component in the sense that we are going to be exploring is a custom element
that we can define and reuse. We will define our components as little instances of Vue,
but instead of calling new Vue for a full instance of Vue, we have to register them where
needed. So, each component will have its version of most things that a Vue instance has
except for an el property.

Most Vue applications end up being a collection of Vue components working
together to display data and react to the user’s interactions.

First Component

To make our fist component, we will use Vue.component to register the component.
Think of registering the component as telling Vue about it so it will be available for use.
We will pass in two parameters to register our component—a name for the component
and a JavaScript object that contains all the options for it.

149
© Brett Nelson 2018

B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_8

CHAPTER 8 USING COMPONENTS

The name for the component can be either kebab case, using hyphens to separate
words and all lowercase like kebab-case, or PascalCase, using capital letters and no
spaces to identify new words, like PascalCase. If we use kebab case, we will be able to
use our component as a custom element by using its name as the element, like <our-
custom-component>. If we use PascalCase, we will be able to use our component with the
PascalCase version of the name, <OurCustomComponent>, or the kebab case version of the
name, <our-custom-component>. Since using PascalCase is not valid HTML syntax, we
cannot use it in a DOM template.

In Listing 8-1 we create our first component. It has the name OurHeader and creates
an <h1> element that says App Header.

Listing 8-1. Creating Our First Custom Component

Vue.component('OurHeader', {
template: °
<h1>App Header</h1>

~

}s

In Listing 8-2, we add it to our app using both the kebab case and PascalCase
methods.

Listing 8-2. Using Our First Custom Component
<our-header></our-header>
<OurHeader></OurHeader>

When we load our app, we should see two copies of our headers, as shown in
Figure 8-1.

150

CHAPTER 8 USING COMPONENTS

S e .

C @ (@ localhost:3000 LA~ A o » =

App Header
App Header

Figure 8-1. Our first component in use

Using Data

We might not want to have everything defined in markup; in our first component,
we might feel it’s important to move the text to the data of our component. Since a
component is an instance of Vue, we can specify data that it contains.

The big point to note is that with components, data is defined as a function that
returns an object instead of as an object. This is so that each instance of the component
will have its own copy of the data, isolating it from the changes in instances of the
component.

Listing 8-3 shows our second component, where we define the data as a function
that returns an object. We also have a click event handler that reverses text.

151

CHAPTER 8 USING COMPONENTS

Listing 8-3. Defining Component Data

Vue.component('OurSecondHeader", {
data: function() {
return {
text: 'App Header 2'
};
}s
template: °
<h1 v-on:click="text = text.split(").reverse().join(")">{{text}}</h1>

~

1

If we add two OurSecondHeaders and click on the first one, we should see only the
text of the first instance of OurSecondHeader reverse its text, as shown in Figure 8-2.

_ ST x

C @ (@ localhost:3000 LA~ A o » =

2 redaeH ppA
App Header 2

Figure 8-2. Showing components isolated
152

CHAPTER 8 USING COMPONENTS

Passing Data with Props

Having a component that contains its own data is great, but most likely it would be nicer
to pass data to the component from the parent component, so we could reuse it. With
props, we can specify values that can be passed to the component.

Listing 8-4 shows how to declare a prop on a component using the props option
and assign it an array of strings for the names of props to use. In this case, our array will
have only one prop, text. We will use the value of text to set the text of our <h1> in the
template.

Listing 8-4. Defining Props

Vue.component('OurThirdHeader', {
props: ['text'],
template: °
<ha>{{text}}</h1>

~

};

Now when we use our component, we can pass in the text to display in our
component. Listing 8-5 shows a static assignment to the text prop. Static in this case
means that the value is a literal string that is declared in the markup.

Listing 8-5. Assigning a Value to Our Text Prop
<OurThirdHeader text="App Header 3" />

This will display the results shown in Figure 8-3.

153

CHAPTER 8 USING COMPONENTS

_ ESLTIBLIEINTEL) x

C @ (@ localhost:23002 LA~ A o » =

App Header 3

Figure 8-3. Using props to pass values

Rather than pass a static value to the text prop, we can bind to a value in the parent
component. Listing 8-6 shows how to bind the value of appLabel from the parent
component to the text prop with v-bind.

Listing 8-6. Binding Data to the text Prop

var app = new Vue({
el: '#app',
data: {
appLabel: 'App

}s

154

CHAPTER 8 USING COMPONENTS

template: °
<div>
<OurThirdHeader v-bind:text="applLabel" />
</div>
1);

Props also allows us to specify types and default values, determine whether they are
required, and use validators. At a minimum, it is a good idea to specify a type. This can
be done by assigning an object instead of an array to the props property. Each property
of this object will be the name of a prop and the value will be the type that it supports.

Listing 8-7 shows how to specify a type for our text prop.

Listing 8-7. Specifying a Type for a Prop

Vue.component ('OurFourthHeader", {
props: {
text: String
})
template: °
<ha>{{text}}</h1>

~

};

This will behave the same as when we didn’t specify a type, but if we bind it to a
value that is not a string, it will log an error to the developer console in the browser. This
is helpful when developing components to remind the developer using the component
what value types are expected.

Acceptable types to use when specifying the props type are the standard JavaScript
object types:

o String

¢ Number

¢ Boolean
e Array
e Object

155

CHAPTER 8 USING COMPONENTS

Figure 8-4 shows the results of binding the number 0 to OurFourthHeader’s text
prop.

c o @® localhost:3000 (U IR+ Al ﬁl ® » =

0 [# Insp: Con: Debi Style Perfor Men Netv Stor: Vue B3 H @& B £ X
W § Filter output

CSS XHR Requests

Persist Logs

® You are running Vue in development mode. vue.js:8553:7
Make sure to turn on production mode when deploying for
production.
See more tips at https://vuejs.org/guide/deployment.html

A) [Vue warn]: Invalid prop: type check failed for prop vue.js:597:7

"text". Expected String, got Number.
found in

-——> <OurFourthHeader=>
<Root>

Figure 8-4. Console error for binding the wrong value type to a prop

To use the other options with a prop, we have to change it so that instead of a type,
we specify an object as its value. We then can use the property names of this object to
specify the type, default value, required or not, and the validator.

Listing 8-8 shows our text prop with a type of String, a default of App Header 5,
required set to false, and a validator that checks in the text for the word app.

156

CHAPTER 8 USING COMPONENTS
Listing 8-8. Specifying a props type, default, required, and validator

Vue.component ('OurFifthHeader', {
props: {
text: {
type: String,
default: 'App Header 5',
required: false,
validator: function(value) {
return value.tolLowerCase().indexOf('app') > -1;
}

}

}s
template: °

<h1>{{text}}</h1>

~

};

Now we can use our component with or without specifying the text prop, as shown
in Listing 8-9. We also will get an error in the console if the text does not contain the
word app.

Listing 8-9. Using the Default Value for the text Prop and Binding to the text Prop

<OurFifthHeader />
<OurFifthHeader v-bind:text="applLabel"/>

Viewing this in the browser results in two different headers, as shown in Figure 8-5.

157

CHAPTER 8 USING COMPONENTS

“ ST INTEL) . _

(@ localhost:3000 120% wee * »

App Header 5
App

Figure 8-5. Using the default text prop value or assigning a value from the parent
component

Events

With props we can send data from a parent component to a child component. But how
do we send data to the parent component from the child?

With events!

Using events, we can “listen” on the element’s declaration in the parent to determine
when a change occurs and react to it. To send the event, we use the $emit method from
the child component. It takes two values: the name of the event and a value to pass. To
receive the event, we use v-on:event-name.

158

CHAPTER 8 USING COMPONENTS

In Listing 8-10, we have a custom component named SearchBox that emits the input
event when the Enter or Escape key is pressed. It passes the target value of the keypress
event so that the parent component can react to the value entered in the input box.

Listing 8-10. Emitting an Event with a Value

Vue.component('SearchBox', {
template: °
<div>
<label>Search:</label>
<input type="text"
v-on:keyup.enter.esc="$emit('input', $event.target.value)" />
</div>

~

};

In the parent component, we will use v-on:input to assign a handler for when the

event is fired.
Listing 8-11 shows our parent component using the SearchBox custom component
and adding the event handler for an input event.

Listing 8-11. Listening for an Event in the Parent Component
<SearchBox v-on:input="search" />

Figure 8-6 shows the SearchBox in use.

159

CHAPTER 8 USING COMPONENTS

SRR .

C @ (@ localhost:3000 LA~ A o » =

Ship Search

Search:

« Death Star view

o Y-wing view

« Imperial shuttle view

« EF76 Nebulon-B escort frigate view
 Calamari Cruiser view

+ B-wing view

» Republic Cruiser view

« Naboo fighter view

» Naboo Royal Starship view

« J-type diplomatic barge view

Figure 8-6. Using events from components in action

Using an input event might not seem that impressive since it is a native event in
HTML, but what if we want to have more specific events so we can fine-tune things?

Custom events is the answer!

Just like the input event, we can create a new custom event by specifying the name of
our custom event when we use $emit. In Listing 8-12, we have a custom component that
is used to list a ship called ShipListItem. When its button is clicked, it emits a
ship-selected event.

160

CHAPTER 8 USING COMPONENTS
Listing 8-12. Emitting a Custom Event

Vue.component('ShipListItem', {
props: {
ship: {
type: Object
}

b
template: °

{{ship.name}} <button v-on:click="$emit('ship-selected’,
ship.url)">view</button>

</1i>

~

};

On the parent component, we listen for this event with v-on:ship-selected. In
Listing 8-13 we can see how, when the ship-selected event is emitted, the parent
component uses a method called viewShip to handle the event.

Listing 8-13. Handling Custom Events

<ShipListItem
v-for="ship in ships"
v-bind:key="ship.url"
v-bind:ship="ship"
v-on:ship-selected="viewShip" />

Figure 8-7 shows the results of our custom event being fired after the view button
when the Imperial shuttle is selected.

161

CHAPTER 8 USING COMPONENTS

_ ST x

C @ (@ localhost:3000 LA~ A o »

Ship Search

Search: b
« Death Star view
o Y-wing view
« Imperial shuttle view
« EF76 Nebulon-B escort frigate view
 Calamari Cruiser view
+ B-wing view
» Republic Cruiser view
« Naboo fighter view
» Naboo Royal Starship view
« J-type diplomatic barge view

Current Ship
Name: Imperial shuttle
Manufacturer: Sienar Fleet Systems
Class: Armed government transport
Crew Size: 6
Pilots

« Name: Luke Skywalker

+ Name: Chewbacca

« Name: Han Solo

Figure 8-7. Custom event in action

Slots

So far, we haven’t made a component that can wrap other content, but it’s possible.
To allow our components to wrap other content, we need to declare a <slot> in our
component. Listing 8-14 shows the CurrentShip component with a <slot></slot> to
display content.

Listing 8-14. Component with a Slot

Vue.component('CurrentShip', {
computed: {
ship: function() {
return this.$store.state.ship;

162

CHAPTER 8 USING COMPONENTS

1
template: °
<div v-show="ship.name">
<h2>Current Ship</h2>
<ShipStat label="Name" v-bind:value="ship.name" />
<ShipStat label="Manufacturer" v-bind:value="ship.manufacturer" />
<ShipStat label="Class" v-bind:value="ship.starship class" />
<ShipStat label="Crew Size" v-bind:value="ship.crew" />
<slot></slot>
</div>
D;

To display content in the <slot>, we wrap the content with the beginning and ending
tags of our custom element. In Listing 8-15, we wrap the PilotList custom element
inside the CurrentShip custom element.

Listing 8-15. Wrapping Content with a Custom Element

<CurrentShip>
<Pilotlist />
</CurrentShip>

Registration

The components we have made up until now have been registered with Vue using Vue.
component. This makes them all global components, available for all Vue instances
created after they are registered. This is great for a simple demonstration, but if you are
using a tool like Webpack, it might lead to code being bundled and sent to users that isn’t
needed.

Note Webpack is a JavaScript module bundler. For more information about
Webpack, visit https://webpack.js.org/.

163

https://webpack.js.org/

CHAPTER 8 USING COMPONENTS

To prevent unnecessary code bundling, we can use local registration. To use local
registration, we define our component as an object, as shown in Listing 8-16.

Listing 8-16. Define a Custom Component for Local Registration

var AppHeader = {
props: {
text: {
type: String,
default: 'App Header'
}

1
template: °

<h1>{{text}}</h1>

};

Note Order matters. If you have a component that requires a component as a
dependency, be sure to define the dependency first.

To use this AppHeader component, we need to register it with the instance of Vue we
plan on using it with in the component’s property. Listing 8-17 shows how to register our
AppHeader in a Vue app.

Listing 8-17. Registering a Component Locally

var app = new Vue({
el: '#app',
components: {
AppHeader: AppHeader
})
data: {
appLabel: 'Ship Search'

1

164

CHAPTER 8 USING COMPONENTS

template: °
<div>

<AppHeader />

</divy

D

Summary

In this chapter, we learned all about components, including creating them, defining the
data as a function, defining and passing props, emitting and handling events, using slots,
and understanding the difference between global and local registration.

165

CHAPTER 9

Reusable Code

Components are great for reusing an entire custom element, but we can’t use just a
portion of the component. To share functionality among multiple components, we have
to use mixins. Custom directives will allow us to build out functionality that we can apply
to standard HTML components and custom Vue.js components. The render function
will give us more control over how our template is built, giving us the ability to use logic
in JavaScript to build our templates.

Mixins allow us to create “base” components with common functionality that we want
to share with multiple components. This can be useful for implementing a standard

method that is shared, ensuring an event or action is taken during a lifecycle event, or
setting default values for the data to help other components.

Creating Mixins

To create a mixin, we need to declare an options object that has implementations for the
options we want to share. So, if we are going to share data, our mixin will implement a
data property. This goes for the rest of the options that we want to share.

In Listing 9-1, we create a simple mixin that contains a data property of text set to
default, alifecycle hook to call its log method when created, a log method, and a template.

Listing 9-1. A Simple Mixin

var baseMixin = {
data: function() {
return { text: 'default' };

b

167
© Brett Nelson 2018

B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_9

CHAPTER9 REUSABLE CODE

created: function() {
this.log("My text when Created: ${this.text}");
})
methods: {
log: function(...params) {
console.log(...params);

}
})
template: °
<div>
<h1>{{text}}</h1>
</div>

~

};

It almost looks like we are defining a Vue app or component with our mixin and in a
way we are, but not the entire intended app just the portions to share.

Using Mixins

With our mixin defined, we will need to register it for use with our component. We
register our mixin with the component by providing an option property named mixin
that has an array as the value with our mixins in the array. Listing 9-2 shows using the
mixin from Listing 9-1.

Listing 9-2. Using a Mixin

var componentOne = {
mixins: [baseMixin]

}s

If we use componentOne in an app, it will show our <h1> with the word default, as
shown in Figure 9-1.

168

CHAPTER9 REUSABLE CODE

_ ST INTEL) x

C @ (@ localhost:3000 LA~ A o » =

default

Figure 9-1. Using our baseMixin with a component

Using Multiple Mixins

You're probably thinking, “that’s great and all, but what if I want to share feature set A
with one set of components and feature set B with a second set of components with little
overlap?” Well, the answer is to use multiple mixins.

We can use multiple mixins with the same component. By default, they will be
applied in the order they are listed in the array. So element 0 is applied first, element 1 is
applied second and might change some of the options from the first mixin, and so forth.

Listing 9-3 has a second mixin that sets the value of our data’s text property. We
then use this is Listing 9-4 to create componentTwo with two mixins. When we look at
it in the browser, as shown in Figure 9-2, we see that the value of text is provided by
secondBaseMixin, but nothing else has changed.

169

CHAPTER9 REUSABLE CODE

Listing 9-3. Second Mixin

var secondBaseMixin = {
data: function() {
return { text: 'default from secondBaseMixin' };

}
};
Listing 9-4. Using Multiple Mixins

var componentTwo = {
mixins: [baseMixin, secondBaseMixin]

};

C @ (@ localhost:3000 LA~ A o » =

default from secondBaseMixin

Figure 9-2. The results of using multiple mixins

170

CHAPTER9 REUSABLE CODE

Custom Directives

We have been using out-of-the-box directives as soon as we used our first v-if, v-show,
or v-model. Custom directives allow us to apply DOM changes to plain HTML elements.
similar to the directives that came with Vue.

Creating a Directive

To create a custom directive, we register it with Vue. To register it, we call Vue.directive
before our Vue instance is created so that it will be available for use when our app is
running.

The first parameter we will pass Vue.directive is the name of our directive. This
name, prefixed with v-, is what we will use in the HTML to apply the directive to an
element. The second parameter will be an object with properties to define the action to
take during one or more of the following hooks:

e bind: Thisis called once when the directive is bound to the element.

o inserted: Thisis called when the element is inserted into the parent
node.

o update: This is called after the element has been updated but the
child elements may not have been updated yet.

o componentUpdated: This is called after the element and the child
elements have been updated.

e unbind: Thisis called when the directive is removed.

Note It is also possible to pass in a function instead of an object as the second
parameter. This function will be called for the bind and update hooks.

The hooks will be defined as a function with access to the following parameters:

e el: Thisis the element the directive is bound to, thereby allowing us

to change its properties.

o binding: This is an object that exposes the following values through
its properties.

171

CHAPTER9 REUSABLE CODE

¢« name: The name of the directive minus the v-.

e value: If a value or object is passed to the directive, this is where
it can be accessed.

o oldValue: This is only available with update and
componentUpdated and contains the previous value.

e expression: This is the expression used in the binding as a
string.

o arg: This would be the arguments passed to the directive. An
example of an argument is click in the name of the event used
with v-oninv-on:click="".

e modifiers: These are objects containing any modifiers. An
example of a modifier is . once in the event modifiers used with

v-oninv-on:click.once="".
e vnode: This is the virtual node created by Vue.

o o0ldVnode: This is only available with update and componentUpdated

and contains the previous vnode.

With that in mind, we will create a sample directive that floats the element it is
applied to using the inserted hook. Listing 9-5 has a directive called floatRight that sets
the element’s style.float to right.

Listing 9-5. Creating a Sample Directive

Vue.directive('floatRight', {
inserted: function(el) {
el.style.float = 'right';
}
s

172

CHAPTER9 REUSABLE CODE

Using the Directive

To use our directive, we will add v-float-right or v-floatRight as an attribute to an

element. In Listing 9-6, we apply it to two s.

Listing 9-6. Using Our Custom Directive

var app = new Vue({

el: '#app',
template: °
<div>

<h1>Floating Directive</h1>

Floated Right

Floated Right too

</div>

N

D

Since this is the entire app we currently have, you can see that we don’t need to add
the directive to the app since it was registered with Vue before the app was created. In
Figure 9-3, you can see that our spans have been floated to the right.

173

CHAPTER9 REUSABLE CODE

“ ST INTEL) x _

(i) localhost:3000 120% ses w » | =

Floating Directive

Floated Right too Floated Right

Figure 9-3. Our custom directive in action

Passing a Value

Since we can now float an element, we may decide it would be a good idea to give it
some space away from the right side of the screen. Since we don’t know how much space
each situation will call for, we can pass a number to our directive as a value. In Listing 9-7,
we pass 200 as a value to our custom component.

Listing 9-7. Passing a Value to a Custom Component

var app = new Vue({

el: '#app',
template: °
<div>

174

CHAPTER9 REUSABLE CODE

<h1>Floating Directive</h1>

Floated Right

</div>

N

D

To use this value, we need to make some changes to our directive. First, we need to
access the binding parameter, then we check if the value is set, and if it is set, we set the
value of el.style.marginRight to that many pixels. Listing 9-8 shows the update.

Listing 9-8. Using a Passed Value in a Custom Directive

Vue.directive('floatRight', {
inserted: function(el, binding) {
el.style.float = 'right’;
if (binding.value) {
el.style.marginRight = “${binding.value}px’;
}
}
1;

These changes will result in our floated span being a little bit away from the right
edge of the screen, as shown in Figure 9-4.

175

CHAPTER9 REUSABLE CODE

_ ESLTIRLZINTEL) x

C @ @ localhost:3000 &% = » =

Floating Directive

Floated Right

Figure 9-4. Using passed values in a custom directive

Passing an Object as a Value

We can also pass an object instead of a single value. In Listing 9-9, we pass an inline
object literal in the first float, and then we pass an object bound to the Vue instance.

Listing 9-9. Passing Objects as Values to a Custom Directive

var app = new Vue({
el: '#app',
data: {
floatLeft: { direction: 'left', offset: 40 }

1
template: °

176

CHAPTER9 REUSABLE CODE

<div>
<h1>Floating Directive</h1>

First Floated Right

Second Floated Left

</div>

N

1

To use the objects we are passing, we have to update our custom directive again. In
Listing 9-10, we assign the value of direction to the el.style.float and then we check if

there is an offset. If there is one, we use it to set the margin again.

Listing 9-10. Using Objects as Passed Values in a Custom Directive

Vue.directive('float', {
inserted: function(el, binding) {
el.style.float = binding.value.direction;
if (binding.value.offset) {

if (binding.value.direction === 'right') {
el.style.marginRight = “${binding.value.offset}px’;
} else {
el.style.marginLeft = “${binding.value.offset}px’;
}
}
}
D;

This will allow us to use the same directive for floating both ways. We can see the

results in Figure 9-5.

177

CHAPTER9 REUSABLE CODE

_ ST INTEL) .

C @ @ localhost:3000 &% = » =

Floating Directive

Second Floated Left First Floated Right

Figure 9-5. Using objects to pass values to custom directives

Using Modifiers

We can also use modifiers to change the behavior of our custom directive. In
Listing 9-11, we use modifiers to specify the direction of the float.

Listing 9-11. Using a Modifier with Custom Directives

var app = new Vue({
el: '#app',
data: {
floatlLeft: 40

1

178

CHAPTER9 REUSABLE CODE

template: °
<div>
<h1>Floating Directive</h1>

First Floated Right

Second Floated Left

</div>

~

};

In Listing 9-12, we have the implementation of custom directive, which checks if the

modifier contains the value right and assigns float and margins accordingly.

Listing 9-12. Using Modifiers in a Custom Directive

Vue.directive('float', {
inserted: function(el, binding) {
if (binding.modifiers.right) {
el.style.float = 'right';
} else {
el.style.float = 'left’;
}
if (binding.value) {
if (binding.modifiers.right) {
el.style.marginRight = “${binding.value}px;
} else {
el.style.marginLeft = ~${binding.value}px;
}
}
}
Ds

The results of these changes can be seen in Figure 9-6.

179

CHAPTER9 REUSABLE CODE

_ ST .

C @ @ localhost:3000 &% = » =

Floating Directive

Second Floated Left First Floated Right

Figure 9-6. Using modifiers with a custom directive

Render Function

The render function of a Vue component gives us the full power of JavaScript to build
our templates. This makes it easier to perform more concise logic than would be possible
in an HTML template.

Render versus Template

We are going to look at creating a component that has three props: content, element,
and background. The content will be a string that we use as the body of the component.
The element will be the tag of the HTML element we want to create: h1, h2, or p. And the
background will be the color we want the background of the component to be.

180

CHAPTER9 REUSABLE CODE

In Listing 9-13, we see one version of the component, templateSample. We will have
to wrap everything in a and use v-1if to select our proper element. In Listing 9-14,
we see the second component, renderSample. We will use the render function to build
our component based on the properties.

Listing 9-13. Component Using Template Syntax to Select an Element Type

let templateSample = {
props: {
content: String,
element: String,
background: String
})
template: °

<h1 v-if="element == 'h1'"
v-bind:style="{backgroundColor: background}">
{{this.content}}
</h1>
<h2 v-else-if="element == 'h2""
v-bind:style="{backgroundColor: background}">
{{this.content}}
</h2>
<p v-else-if="element == 'p'"
v-bind:style="{backgroundColor: background}">
{{this.content}}
</p>

};

Listing 9-14. Component Using the render Function to Select an Element Type

let renderSample = {
render: function(createElement) {
return createElement(
this.element,

181

CHAPTER9 REUSABLE CODE

{ style: { backgroundColor: this.background } },
this.content
)s
}J
props: {
content: String,
element: String,
background: String

}
};

In Listing 9-15, we can see our app that can use both components in the same

manner.

Listing 9-15. Using the Sample Components

var app = new Vue({
el: '#app',
components: { renderSample, templateSample },
template: °
<div>
<h1>Template Render</h1>
<div>
<templateSample
content="Render Me!"
element="h2"
background="red"
/>
<templateSample
content="Render Me Too!"
element="h1"
background="1ightblue"
/>
<templateSample
content="Hide Me!"

182

CHAPTER9 REUSABLE CODE

element="p"
background="black"
/>
</div>

<h1>Sample Render</h1>

<div>

<renderSample
content="Render Me!"
element="h2"
background="red"

/>

<renderSample
content="Render Me Too!"
element="h1"
background="1ightblue"

/>

<renderSample
content="Hide Me!"
element="p"
background="black"

/>

</div>

</div>

~

1

Since both components use the same props, the results of using the same values
should be very similar. The main difference will be the templateSample, which has a
span wrapping the content so that the template has a single root element.

In Figure 9-7, we can see that the HTML created by our templateSample does have

the extra elements.

183

CHAPTER9 REUSABLE CODE

_ ST x

C @ (@ localhost:3000

Template Render

=

- @ N B Bo® » =
Insp: Con: Debt Style Perfc Menm Netv Stor. V- - B B €& B € X

Search HTML &

<hl>Template Render</hl>

<div>
' =span=
;] <h2 style="background-color: red;">Render Me!</h2>
Render Me Too! | ;
4
— <hl style="background-color: lightblue;">Render Me Too!</hl>
i </span=
'
Sample W i <p style="background-color: black;">Hide Me!</p>

I </div>
L] <hl=5ample Render</hl>
1 <div>
Render Me Too! | <h2 style="background-color: red;">Render Me!</h2>
i : <hl style="background-color: lightblue;">Render Me Too!</hl>
' <p style="background-color: black;"=Hide Me!</p>
| </div>
! </div>
<!——Reference to Vue.js library--»
! html > body > div > div > span > h2
Rules Computed Layout Animations Fonts
' Filter Styles + B, s
| element { inline
' ' background-color: @ red;

Figure 9-7. Comparing the results of the templateSample and renderSample

components

In these sample components, you can see that using the render function could save

a lot of duplicate markup and accomplish the same tasks as with the HTML template.

createElement

The render function of a component gets passed one property, the createElement

method. The createElement method can be used to create virtual nodes, or vhodes for

short. Vue uses the vnodes to construct a “virtual DOM” out of all the components of

an app.

CHAPTER9 REUSABLE CODE

Parameter One

To create elements with createElement we can pass it up to three parameters. The first
parameter can be the HTML tag of the element to be created, the component options
that create a Vue component, or a function that returns one of the previous results.

In Listing 9-16, we use createElement and provide it with a p to generate a <p> tag.
The second parameter in this example is the default slot, so any child elements or text
will be wrapped by our element.

Listing 9-16. Using the render Function to Create a p Element

let tagElement = {
render: function(createElement) {
return createElement('p', this.$slots.default);

}
};

In Listing 9-17, we use createElement with a Vue options object to create an
element that has a prop to pass in the content. The content is then passed to the data
object for the options object that is used to render the component.

Listing 9-17. Using the render Function to Create an Element with a Vue Options
Object

let optionsElement = {
props: {
content: String
})
render: function(createElement) {
let data = { contentToRender: this.content };
return createElement({
data: function() {
return data;
b
template: '<p>{{contentToRender}}</p>"
1
}
}s

185

CHAPTER9 REUSABLE CODE

In Listing 9-18, we can see that both components are used in a similar manner and in

Figure 9-8 we see that the results are the same.

Listing 9-18. Using a Component Created from a Tag and a Component Created
from an Options Object

var app = new Vue({

el: '#app',
components: { tagElement, optionsElement },
template: °
<div>
<h1>Template Render</h1>
<div>

<tagElement>Paragraph 1</tagElement>
<optionsElement content="Paragraph 2"></optionsElement>
</div>

</div>

N

1

186

CHAPTER9 REUSABLE CODE

c @ (@ localhost:3000 w Q% B Bo® » =
[@ Insp Con: Debi Style Perfc Mem Netv Stor. V- BB B © B & X
Template Render | Y =
Paragraph 1 bt~
g script id="_bs_script_">@</script>

src="/browser- sync!brouscr sync-client,js?v=2.23.6"

<!=-Div to Mount App-—=
<div>
<hl>Template Render</hl>
<dive>
<p>Paragraph 1</p=>
<p>Paragraph 2</p=>
</div=>
</div>
<!--Reference to Vue.js library--=
S src="https://cdn, jsdelivr.net/npm/vue/dist/vue. Js“»a script>
="https://unpkg.com/axios/dist/axios.min, js"></
<l——Scr1pt reference for our npp—->
<script src="/app.js"=</script>
</body>
</html>

<5¢

html > body > script
Rules Computed Layout Animations Fonts
Filter Styles + B, s

No element selected.

Figure 9-8. Rendering tagElement and the optionsElement in the browser

Parameter Two

The second parameter represents the data attributes of the element to be created and is
optional. Properties that can be set with this object are as follows:

o class: Uses the same syntax as when using v-bind:classina
template.

o style: Uses the same syntax as when using v-bind:styleina
template.

e attrs: An object that contains property names of attributes to bind
with the values provided for each property.

e props: Props to bind on the component.

187

CHAPTER9 REUSABLE CODE

e domProps: DOM properties to bind on the element.

e on: An object that lists event handlers with the event as the property
name and the value as the handler.

e nativeOn: Used on components only to listen for native events
instead of events generated through the use of the Vue instance
$emit.

e directives: An array of custom directives to apply.

e scopedSlots: An object of the slots for a component with the
property names as the name of the slots and the value as a function
to define the content.

e slot: If this component is the child of a component this specifies the
name of the slot to render in.

In Listing 9-19 we use the class, style, attrs, domProps, and on to add the class
ourClass, set the color and background color, add a data attribute, set the inner text
of the element, and add a handler for click events for the element we create with our
component. We can see the results in Figure 9-9 after clicking the element once.

Listing 9-19. Using the Data Attributes Object with the render Function

let dataElement = {
methods: {
handleClick: function() {
console.log('data element clicked');

}
}s

render: function(createElement) {
return createElement('p', {

class: {
ourClass: true

},

style: {

color: '#34495E',
backgroundColor: '#41B883"

b

188

CHAPTER9 REUSABLE CODE

attrs: {
'data-secret': "shh don't tell"
b
domProps: {
innerText: 'Getting To Know Vue.js'
b
on: {
click: this.handleClick
}
1)
}
}s

C @ @ localhost:3000 120% e &% = » =

Getting To Know Vuejs | @ Insp Con: Debi Style Perfi Men Netv BB H &8 € x

+ Search HTML £
<SLTLPL dsylne= STL= fUTUWSEI =3YIIL/ UTUWSET =5YIIL=
client.js?v=2.23.6"></script>
<!—Div to Mount App—>
<div>

<p class="ourClass" data-secret="shh don't tell"
style="color: rgb(52, 73, 94); background-color: rgb(65,
184, 131);">Getting To Know Vue.js</p>
</div>
</div>
<!—Reference to Vue.js library-—>

html > bedy > div > div

Rules Computed Layout Animations Fonts
W 7 Filter output Persist Logs
m CSS XHR Requests
©® You are running Vue in development mode. vue.js:8553:7

Make sure to turn on production mode when
deploying for production.

See more tips at https://vuejs.org/quide
/deployment.html

data element clicked app.js:4:7

Figure 9-9. Rendering a component that uses the data attributes object with the
render function

189

CHAPTER9 REUSABLE CODE

Parameter Three

The third parameter represents any children vnodes and is optional. It can be a string
only if the child element is text or an array of vnodes.

In Listing 9-20, we create a component that accepts a prop called 1istItems, which
is an array. In the render function, we use the map function of the array to go through
the items and create new elements for each item in the array. This effectively returns a
new array of vnodes as the third parameter.

Note The null in the second parameter in Listing 9-20 is not required. | used
it in this example so that the position would be maintained when referencing the
third parameter.

We can see in Figure 9-10 the results of this 1istElement when it is passed an array
that contains 1, Two, and C.

Listing 9-20. Creating Children vnodes in the render Function

let listElement = {
props: {
listItems: Array
b
render: function(createElement) {
return createElement(
'ul',
null,
this.listItems.map(item => createElement('1li', item))
)5
}
b

190

CHAPTER9 REUSABLE CODE

“ ool & Bies.¥ge. # _

> C @ localhost:3000 v @ T Be® » =
Pttt Tssnisnssssmes=====- [Inspi Cons Debu Style Perfc Men Netv Storr v (B B © B & X
: 'éwu L+ Search HTML P
"""""""""""""""""""""""" 17 <!DOCTYPE html=>
m ! <html lang="en"=>
i b <head>(=)</head>
| <body>
<script id="__bs_script__"=(</script>

' src="/browser-sync/browser-sync-client, js?v=2,23,6"

<!--Div to Mount App-—>
i <div>
H v =gdiv>
= = A |
: <lixl
Two</1i>
<li=C

</div>
</div>
<!——Reference to Vue.js library-->
<5 sre="https://cdn. jsdelivr, net/npm/vue/dist/vue,js"></¢
<SCrij sre="https://unpkq.com/axios/dist/axios.min,js"></scr
html > body > div > div > ul

Rules Computed Layout Animations Fonts
Filter Styles + fr, i
element { inline

}

Figure 9-10. Rendering our listElement in the browser

Summary

In this chapter, we learned how to use mixins to create functionality that can be shared
with components that are based on the mixin. We also learned about creating custom
directives, which allow us to add functionality to standard HTML elements and to our
own components. We finished by learning how we can write less code using the render
function than if we build the template with markup.

191

CHAPTER 10

Custom Functionality

Plugins offer a way to extend the global functionality of Vue by creating default behavior,
adding global components, or generally creating values throughout your Vue app. Filters
allow us to create reusable text transformation that we can apply to our templates. Let’s
take a look at how to create and use these features in Vue.

Plugins

Plugins allow us to expand Vue to meet our needs in a manner that we can share with
other Vue apps without sharing our entire app.

Creating a Plugin

To create a plugin, make a JavaScript object that exposes an install function. The
install function accepts two parameters: Vue and options. The Vue parameter is the
global Vue that will be used to create our app.

We can add to the prototype of Vue and all instances created after install is called
and they will gain access to the plugin. In Listing 10-1, we create a plugin that adds an
object to Vue’s prototype named $_customPlugin.

Note It is recommended that you prefix any private properties with $ _and add
the name of the plugin to scope the properties. This is to prevent conflicts with
anything that developers using your plugins use.

193
© Brett Nelson 2018

B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_10

CHAPTER 10 CUSTOM FUNCTIONALITY
Listing 10-1. Creating a Small Plugin

let customPlugin = {
install: function(Vue, options) {
Vue.prototype.$ customPlugin = {
name: 'Getting to Know Vue.js'
};
}
}s

Using a Plugin

Before we can use our plugin, we have to install it with Vue. To install our plugin, we call
Vue.use(customPlugin) before we create our app. In Listing 10-2, we install our plugin
before creating our Vue app. We can also see how we have access to the $_customPlugin
of this in our app. This results in the browser displaying the results in Figure 10-1.

Listing 10-2. Installing a Plugin and Accessing its Properties
Vue.use(customPlugin);

var app = new Vue({

el: '#app',
template: °
<div>
<h1>
{{this.$_customPlugin.name}}
</h1>
</div>
}s

194

CHAPTER 10 CUSTOM FUNCTIONALITY

“ ESETIRLIEINTEL) x _

@ localhost:3000 v @ B® » =

Getting to Know Vue.js

Figure 10-1. Our first plugin in action

Using Options

We can also pass in options when installing our plugin. To pass in options, we include a
second parameter when calling Vue.use, an option object. We can see this in Listing 10-3,
where we use an options object that has two properties when calling Vue. use.

Listing 10-3. Passing an Options Object to a Plugin

Vue.use(customPlugin, {
title: 'Getting to Know Vue.js',
subTitle: 'Now with Options'

D

195

CHAPTER 10 CUSTOM FUNCTIONALITY

In our plugin, we can use the second parameter to access the options object. In
Listing 10-4, we use the options to populate our plugin’s title and subtitle.

Listing 10-4. Using the Options Passed to a Plugin

let customPlugin = {
install: function(Vue, options) {
Vue.prototype.$ customPlugin = {
title: options.title,
subtitle: options.subtitle
};
}
};

Now in our app we can access our plugins title and subtitle properties to get the
values we passed in. Listing 10-5 uses the same syntax as when we accessed the property
in Listing 10-2. We can see how this looks in the browser in Figure 10-2.

Listing 10-5. Using Properties from the Plugin After They Were Passed In

var app = new Vue({
el: '#app',
template: °
<div>
<h1>
{{this.$_customPlugin.title}}
<small>
{{this.$_customPlugin.subtitle }}
</small>
</h1>
</div>

N

}s

196

CHAPTER 10 CUSTOM FUNCTIONALITY

_ ST INTEL) x

C @ (@ localhost:3000 LA~ A Bo® » =

Getting to Know Vue.js Now with Options

Figure 10-2. Using our plugin with options

Registering a Global Mixin with a Plugin

We can also add functionality to all instances of Vue created after we register our plugin
by registering a global mixin. In Listing 10-6, we create a plugin that registers a global
mixin to add a console log statement with the time when a Vue instance is created,
mounted, and updated. We can see this output in our developer console in Figure 10-3.

197

CHAPTER 10 CUSTOM FUNCTIONALITY

Listing 10-6. Using a Plugin to Register a Global Mixin

var loglifecyle = {
created() {
console.log(Created at ${new Date().tolLocaleTimeString()});
})
mounted() {
console.log(Mounted at ${new Date().tolLocaleTimeString()});
})
updated() {
console.log(Updated at ${new Date().toLocaleTimeString()});

}
};

let customPlugin = {
install: function(Vue, options) {
Vue.mixin(loglLifecyle);
}
};

Vue.use(customPlugin);

var app = new Vue({
el: '#app',
template: °
<div>
<h1>
Getting to Know Vue.js
</h1>
</div>

};

198

CHAPTER 10 CUSTOM FUNCTIONALITY

c @ (@ localhost:3000 @0 B B® » =

. . [@ Insp: Con: Deb Style Perfc Men Netv Stor Vue (- B & B & X
Getting to Know Vue.js :
W S Filter output

| Errors | Warnings | Logs | Info | Debug JEEESBCIIEEE TR

® You are running Vue in development mode.

Make sure to turn on production mode when deploying for
production.

See more tips at https://vuejs.org/guide
/deployment, html

Created at 10:30:24 PM
Mounted at 10:30:24 PM

Persist Logs

vue.js:8553:7

app.js:3:5
app.js:6:5

Figure 10-3. Our global mixin that logs when a Vue instance is created and
mounted

Registering Global Components with a Plugin

We can also share components with a plugin by registering components globally.

In Listing 10-7, we create a component, register it with our plugin globally, and use it
in our app. The results can be seen in Figure 10-4.

199

CHAPTER 10 CUSTOM FUNCTIONALITY

Listing 10-7. Registering a Global Component and Using it with a Plugin

var sampleComponent = {
template: °
<h1>
Getting to Know Vue.js
</h1>

};

let customPlugin = {
install: function(Vue, options) {
Vue.component ('sampleComponent', sampleComponent);

}
};

Vue.use(customPlugin);

var app = new Vue({

el: '#app',
template: °
<div>

<sampleComponent />
</div>

~

};

200

CHAPTER 10 CUSTOM FUNCTIONALITY

_ ST .

C @ (@ localhost:3000 LA~ A o » =

Getting to Know Vue.js

Figure 10-4. Using our global component from a plugin

Filters

Filters allow us to create reusable text transformations that can be used in our templates
where we bind using the mustache syntax {{ value }} or when we bind a value using
v-bind:.

201

CHAPTER 10 CUSTOM FUNCTIONALITY

Creating and Using a Filter

We create a filter as a function that takes a value, does something with that value, and
then returns the results. In Listing 10-7, we create a filter that’s registered with our app
via the filters property, named lowerCase. The function for lowercase takes a value.

If the value is false (false, null, undefined, 0, NaN, ", or "") it returns an empty string;
otherwise, we call toString on the value, so we know that we are dealing with text before
calling toLowerCase and returning the results.

Listing 10-7. Creating a Filter That Converts Text to Lowercase

var app = new Vue({

el: '#app',
data: {
title: 'Getting to Know Vue.js'
})
filters: {

lowercase: function(value) {
if (!value) {
return “;

}
let text = value.toString();

return text.tolLowerCase();

}
1
template: °
<div>
<h1>{{ title | lowercase }}</h1>
<input
type="text"
v-bind:placeholder="title | lowercase" />
</div>
1);

202

CHAPTER 10 CUSTOM FUNCTIONALITY

In Listing 10-7, we also see that to apply a filter in the mustache template binding,
we use a single pipe (|) after the value in the <h1>. For the <input> we use a single pipe
following the value with the v-bind: syntax. This all ends up looking like Figure 10-5
when viewed in the browser.

“ SOV S _
? C

¥ @ @ localhost:3000 o @ @ »

getting to know vue.js

getting to know vue.js

Figure 10-5. Using our filter to transform our text to all lowercase

Creating a Global Filter

To create a filter that is available for use in all Vue instances without defining it on each,
we can register it using the global method before creating our app.

To register a filter globally, we call Vue.filter, passing in the name and the
implementation as parameters. Listing 10-8 shows a global filter named reverse. Its
implementation reverses the text of a string.

203

CHAPTER 10 CUSTOM FUNCTIONALITY
Listing 10-8. Registering a Global Filter

Vue.filter('reverse', function(value) {
if (!value) {

return °;

}
let text = value.toString();

return text
.split(")
.reverse()
Join(");

1

Chaining Filters

Since filters accept the current expression results starting with the original value, we
can change filters. With our global reverse filter, we can add it to our previous lowercase
filter, like we see in Listing 10-9. The results of the lowercase reversed text are shown in

Figure 10-6.

Listing 10-9. Chaining Filters

<div>
<h1>{{ title |
lowercase |
reverse }(</hi>
<input
type="text"
v-bind:placeholder="title |
lowercase |
reverse" />
</div>

204

CHAPTER 10 CUSTOM FUNCTIONALITY

“ ST x _

@ localhost:3000 o @ o @ »

sj.euv wonk ot gnitteg

t gnitteg

Figure 10-6. Viewing our chained filters in a browser

Arguments

Since filters are JavaScript functions, we can pass additional parameters to use in the
filters implementation.

To pass additional arguments to the filter, we add the parameters in parentheses,
separated by commas following the filter name. These parameters will be available in the
filters implementation in order, following the original value that is passed to the filter.

Listing 10-10 shows a filter named skiplLetters, which accepts a second parameter
called place. We use place to skip letters. Figure 10-7 shows the results of skipping every
two places for <h1> and every three places for <input>.

205

CHAPTER 10 CUSTOM FUNCTIONALITY

Listing 10-10. Passing Parameters to a Filter

var app = new Vue({

el: '#app',
data: {
title: 'Getting to Know Vue.js'
})
filters: {

skipLetters: function(value, place) {
if (!value) {

return °;

}
let text = value.toString();

return text

.split(")
.filter((letter, index) => {
return (index + 1) % place !== 0;
1)
.join(");
}

}J

template: °

<div>

<h1><small>Original:</small> {{ title }}</h1>

<h1><small>Skip every Two:</small> {{ title |
skipLetters(2) }}</h1>

<label>Skip every 4:
<input
type="text"
v-bind:placeholder="title |
skipLetters(3)" />
</label>
</div>

N

})s
206

CHAPTER 10 CUSTOM FUNCTIONALITY

“ ST LRI x _

@ localhost:3000 e @ 1

Original: Getting to Know Vue.js

Skip every Two: Gtigt nwVej

Skip every 4: Getig o no Ve.s

Figure 10-7. Using parameters to get different results from the same filter

Summary

In this chapter, we learned about creating a plugin to develop global functionality that
can be used in more than one Vue project. We also learned about creating filters to
alter the content of text when bound with mustache syntax or when using v-bind: in a
template.

207

CHAPTER 11

Tooling

Tooling support and build tools can greatly improve the development experience in any
workflow and that is as true with Vue as well. In this chapter, we will learn about single
file components and the Vue command-line interface.

Single File Components

Single File Components, or SFCs, allow us to build Vue components in a single file with
separate sections for the template, the JavaScript, and the styles. This allows us to take
advantage of syntax highlighting and code suggestions for the language that is specified
for a particular section.

SEC use the . vue file extension.

To use SFCs, we need a build tool in order to incorporate a build tool like Browserify
or Webpack. The next main section, “Command-Line Interface,” covers how to use the
command-line interface to serve a Vue app that uses SFCs.

SFC Structure

The three sections of an SFC are as follows:

o Template: This section allows us to create the template for our
component and get full syntax support for the markup.

o Script: This section contains our JavaScript and lets us use module
syntax.

o Style: This section contains our CSS styles.

Listing 11-1 is an example of a SFC that contains the template for an <h1> that’s used
to display the displayText property.

209
© Brett Nelson 2018

B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_11

CHAPTER 11 TOOLING

Listing 11-1. Example Single File Component

<template>
<h1>
Title: {{ displayText }}
</h1>
</template>

<script>
export default {
data() {
return {
displayText: 'Getting to Know Vue.js'
}s
}
b5

</script>

<style scoped>
hi {
color: blue;

}
</style>

You may have noticed the scoped property on the <style> element. By using SFC
and CSS preprocessors, we will be able to scope our styles to the component. This won’t
prevent us from using styles that are global, but it will allow us to target specific elements
in our component regardless of where it is located in the DOM tree.

Syntax Highlighting

One of the advantages of SFC is the ability of tools, like our editor, to understand the
content in each section. So, the <template> entry is highlighted and gets suggestions like
it's HTML. The <script> is highlighted and gets suggestions like it’s JavaScript. And the
<style> looks like a stylesheet. Figure 11-1 shows how Listing 11-1 looks in Visual Studio
code.

210

CHAPTER 11 TOOLING

Title.vue — getting-to-know-vuejs

Title.vue x

Title: {{ displayText }}

export default {
data() A
return {

displayText: 'Getting to Know

le scoped:

color: Oblue;

Tt

I master* Ln21,Col9 Spaces:2 UTF-8 LF Vue Prettiernv' Formating:v @ A

Figure 11-1. Our Vue single file component in an editor

Since I am using Visual Studio code, https://code.visualstudio.com/,Iam
also using an extension to add Vue-related functionality called the Vue VS Code
Extension Pack, which you can get at https://marketplace.visualstudio.com/
items?itemName=sdras.vue-vscode-extensionpack.

211

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=sdras.vue-vscode-extensionpack
https://marketplace.visualstudio.com/items?itemName=sdras.vue-vscode-extensionpack

CHAPTER 11 TOOLING

Command-Line Interface

Now that we have an understanding of SFCs, we will take some time to figure out how
to get them into a format so they can be used by a web browser. The Vue command-line
interfaces, Vue CLI, allows us to use SFCs along with some other features that help with
development.

With the Vue CLI, we will be able to generate projects with vue create, prototypes
with vue serve, and builds for production with vue build.

Note Vue CLI version 3 Release Candidate 3 was the latest release at the time of
writing.

Prerequisites

To use the Vue CLI, you need some familiarity with the Node Package Manager (NPM).
NPM is installed when Node.js is installed; directions can be found at https://www.
npmjs.com/get-npm.

Once Node.js and NPM are installed, we will be able to install the Vue CLI.

Note If you prefer Yarn, https://yarnpkg. com, it can also be used to install
the Vue CLI.

Installing Vue CLI

To install the Vue CLI, you need to open a terminal, or command prompt if you prefer,
and enter npm install -g @vue/cli.Once that completes, you should see something
similar to Figure 11-2 on a Mac or Linux machine or something like Figure 11-3 in

Windows.

212

https://www.npmjs.com/get-npm
https://www.npmjs.com/get-npm
https://yarnpkg.com

CHAPTER 11 TOOLING

<» Example_01 git:(master) x npm install -g @vue/cli
/usr/local/bin/vue -> /usr/local/lib/node_modules/@vue/cli/bin
/vue.js

> fsevents@Pl.2.4 install /usr/local/lib/node_modules/@vue/cli/
node_modules/fsevents
> node install

[fsevents] Success: "/usr/local/lib/node_modules/@vue/cli/node
_modules/fsevents/lib/binding/Release/node-v57-darwin—-xé64/fse.
node" already installed

Pass —-update-binary to reinstall or —-build-from-source to re
compile

> nodemon@l1.17.5 postinstall /usr/local/lib/node_modules/@®vue/
cli/node_modules/nodemon
> node bin/postinstall || exit ©

+ @vue/cli@3.0.0-1rc.3
added 680 packages from 471 contributors in 23.44s
= Example_01 git:(master) x

Figure 11-2. Installing Vue CLI on Mac/Linux

213

CHAPTER 11 TOOLING

Bl Command Prompt - [w] X

C:\>npm install -g @vue/cli
C:\Users\bmn13\AppData‘\Roaming\npmivue -> C:\Users\bmn13\AppData\Roaming\npm\node_modules\@vuei\cli\bin\vue.js

nodemon@1.17.5 postinstall C:\Users\bmni3\AppData\Roaming\npm\node_modules\@vue\cli\node_modules‘\nodemon
I node bin/postinstall || exit @
» https://opencollective.com/nodemon/donate
pm Eq;; SKIPPING OPTIOMAL DEPENDENCY: fsevents@l.2.4 (node_modules\@vue\cli\node_modules\fsevents):
L WHARN SKIPPING OPTIONAL DEPENDENCY: Unsupported platform for fsevents@l.2.4: wanted {"os":"darwin”,"arch”:"any|

'} (current: {“os":"win32","arch™:"x64"})

[+ @vue/clig3.0.0-rc.3
ladded 612 packages from 457 contributors in 38.671s

C:\>

Figure 11-3. Installing Vue CLI on Windows

Now you should be ready to create a project.

Vue Create

With the Vue CLI installed, we can create a project from the command line by entering
vue create project-name, where project-name is the name we want to give our
project. This will start the process of creating our app.

For our example app, let’s use the name getting-to-know-vue, as shown in
Listing 11-2.

Listing 11-2. Creating a Vue App with the Vue CLI

vue create getting-to-know-vue

The first thing you might notice in Figure 11-4 is that we are given a choice on using
the default project or manually choosing our options. For now, let’s use the default
options.

214

CHAPTER 11 TOOLING

Vue CLI v3.0.6-rc.3

? Please pick a preset:

> default (babel, eslint)
Manually select features

Figure 11-4. Selecting our configuration options

Once we make the selection, we should see some action in the terminal while the
project is being created. It will eventually stop with something similar to Figure 11-5.

215

CHAPTER 11 TOOLING

setting up Git hooks

done

added 1485 packages from 758 contributors and audited 11949 pa

ckages in 33.251s
found © vulnerabilities

% Invoking generators...

W Installing additional dependencies...

added 1 package from 1 contributor and audited 11953 packages
in 10.337s

found © vulnerabilities

& Running completion hooks...

& Successfully created project getting-to-know-vue.
= Get started with the following commands:

$ cd getting-to-know-vue
$ npm run serve

- Example_01 git:(master) x |

Figure 11-5. Successfully created a Vue app with the Vue CLI

Vue Serve

Now that the app is ready, we can follow the directions by going into the project with cd
getting-to-know-vue and using the command npm run serve to see what we have to
start with. The npm run serve command was created by the CLI when our project was
created to use Vue-CLI-Service as a local developer server.

216

CHAPTER 11 TOOLING

Running the npm run serve command from the directory created with vue create
should result in the terminal looking like Figure 11-6.

 DONE Compiled successfully in 1968ms o 17:56:44

App running at:
- Local: http://localhost:8086/
- Network: http://192.168.29.200:8080/

Note that the development build is not optimized.
To create a production build, run npm run build.

Figure 11-6. Running the npm run serve command

Now we can open the browser to http://localhost:8080/ or
http://192.168.29.200:8080/ from a different computer on the same network to see
what we have to start with.

217

CHAPTER 11 TOOLING

Figure 11-7 shows the starting app in a desktop browser and Figure 11-8 shows it on
a separate mobile device.

_ Wileeon o novivie 7

5 C 0 @ localhost:5080 R o » =

Welcome to Your Vue.js App

For guide and recipes on how to configure / customize this project,
check out the vue-cli documentation.

Installed CLI Plugins

babel eslint

Essential Links

(;f]i_'__,_)_(.___&_- Forum Community Chat Twitter
Ecosystem
vue-router wvuex vue-devtools vue-lcader awesome-vue

Figure 11-7. The first look at our new Vue app on a desktop

218

wil T-Mobile Wi-Fi ¥

<

.04 PM

— 192.168.29.200:8080

App

this project,

Installed CLI Plugins

babel eslint

Essential Links

o+

+ 06% (=4

c 9

Welcome to Your Vue.js

For guide and recipes on how to configure / customize

check out the vue-cli documentation.

)

CHAPTER 11

Figure 11-8. The first look at our new Vue app on a mobile device

Before we make it our own, let’s see what we have to start with.

TOOLING

219

CHAPTER 11 TOOLING

Project Structure

Figure 11-9 shows the structure created by the Vue CLI.

getting-to-know-vuejs
EXPLORER
4 OPEN EDITORS
4 GETTING-TO-KNOW-VUEJS

4 [getting-to-know-vue

TERMINAL soe 1: node

inspect [options] [pa
serve [options] [entr
build [options] [entr
ui [options]

init [options] <templ

> @ Chapter_12

v Bm innecad)
b OUTLINE ¢ Starting GUI...
'ﬁ' #® Ready on http://localh
RUNNING TASKS

Pmaster* ©Q0AO0 Prettier Formatting:v @ A

Figure 11-9. The project structure created by the Vue CLI

Project Root

The project root folder contains the node_modules, public, and src directories.

e node_modules contains all the dependencies downloaded from NPM
when the project was created.

e public contains any items we want to expose for our app as if from
the root URL, like favicon.ico and index.html.

e src contains our Vue app. We will look at this more in a moment.

220

CHAPTER 11 TOOLING

Other items in the project’s root folder are .gitignore, babel.config.js, package-
lock. json, and package. json.

.gitignore is used to specify what Git should not track if you are
using that as a source control.

babel.config. js is the config for Babel, https://babeljs.io/, which
is a JavaScript transpiler. This makes it possible to use JavaScript
features that have not yet been implemented in all browsers.

package-lock. jsonis used by NPM to track the specific versions
of each dependency used so that future installs will use the same
versions.

package.json is used to track our project’s configurations,
dependencies, and NPM scripts.

The src Folder

The src folder is where we will spend most of our time working since it's where we will

keep the source of our Vue app before it is transpiled, or preprocessed, to be served to
the browser. Figure 11-10 shows the expanded src directory.

221

https://babeljs.io/

CHAPTER 11 TOOLING

getting-to-know-vuejs
EXPLORER
4 OPEN EDITORS
4 GETTING-TO-KNOW-VUEJS

TERMINAL soe 1: node

inspect [options] [pa
serve [options] [entr
build [options] [entr
ui [options]

init [options] <templ

> @ Chapter_12

> BB unused

Run v

L T Y R R V" R

b OUTLINE s¢ Starting GUI.

® Ready on http://localh
» RUNNING TASKS

Pmaster* @040 Formatting: v @ A

Figure 11-10. The src directory structure

We can see that we have a directory for assets, components, our App.Vue, and a
main.js file.

o The assets directory contains asset references and components. The
build process will provide these assets.

o The components folder is where we keep our components.
e App.Vue is the main file for our app.

e main.jsis the starting point that mounts the app.

222

CHAPTER 11 TOOLING

App.vue

The App.vue is the main container for our app. If we have anything that we want to apply
to the entire app, we should do that here. Let’s take a look at what we start with.

Listing 11-3 shows the App.vue we are starting with. It includes the three sections of
the SFC: <template>, <script>, and <style>.

Listing 11-3. App.vue Before We Start Making Changes

<template>
<div id="app">

<HelloWorld msg="Welcome to Your Vue.js App"/>
</div>
</template>

<script>
import HelloWorld from './components/HelloWorld.vue';

export default {
name: ‘app',
components: {
HelloWorld

}
}s

</script>

<style>

#app {
font-family: 'Avenir', Helvetica, Arial, sans-serif;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
text-align: center;
color: #2c3e50;
margin-top: 60px;

}

</style>

223

CHAPTER 11 TOOLING

In <template>, we can see that it’s creating a <div> with an id of app along with using
the logo from the asset’s directory and using the custom component <HelloWorld> to
display a message. The logo has an URL of . /assets/logo.png but after the app is built
and served by the browser, it will be served from an URL specified by the Vue CLI build.

The <script> element uses the Common]S import command to access the
HelloWorld custom component before adding to the app via the Vue options object.

The <style> element targets the #app that was specified in <template> to apply
styles with CSS.

Title.vue

The HelloWorld custom component is a little busy, so let’s delete it and remove its
import from the App.vue. That way, we can use the Title.vue SFC we looked at in
Listing 11-1. Figure 11-11 shows the Title.vue component in the editor.

Title.vue — geting-to-know-vues

V Titlevue X

Title: {{ displayText }}

data I: ' B |
return {
displayText: 'Getting to Know Vue.js'

style scoped
hl {
color: Oblue;

Ln21,Col9 Spaces:2 UTF-8 LF Vue Prettier Formatting: v Q A

Figure 11-11. The Title.vue component
224

CHAPTER 11 TOOLING

To use of this component, we need to import it to our App.vue with an import
statement and add it to the components of the app in the <script> section. We will then
have to use it in our <template> if we want it to show up, so let’s add it after the logo.
Listing 11-4 shows the complete App.Vue with updates.

Listing 11-4. Using Our Title.vue Custom Component in the App.vue File

<template>
<div id="app">

<Title/>
</div>
</template>

<script>
import Title from './components/Title.vue';

export default {
name: ‘app’,
components: {
Title

}
};

</script>

<style>

#app {
font-family: 'Avenir', Helvetica, Arial, sans-serif;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
text-align: center;
color: #2c3e50;
margin-top: 60px;

}

</style>

225

CHAPTER 11 TOOLING

Rebuild and Serve

Before you save the App . vue file, you might want to bring the terminal back up where
youran vue serve. When you save App.vue, the terminal should flash Compiling...
briefly along with some updates about what step is currently being performed. Since our
app is so small at this point, you may not see more than a flash of the screen updating
when you press the same in your editor. Figure 11-12 shows the Compiling screen.

I compiling... 22:45:48

Figure 11-12. Recompiling our app when a change occurs

226

CHAPTER 11 TOOLING

Since our app has been rebuilt, we should see it update in the browser, similar to
Figure 11-13.

_ \/ GRS e .

<« c @ @ localhost:8080 CE B s o ﬂ ® » =

Title: Getting to Know Vue.js

Figure 11-13. Updating the app using the Title.vue component

Vue Build

With all we have done so far with the Vue CLI, we have been working in dev mode. If we
want to build for production, we will run the vue build command. To run vue build,
we use the npm run build command. Once the build completes, we should get a
summary of the results, similar to Figure 11-14.

227

CHAPTER 11 TOOLING

getting-to-know-vue — brett@Bretts-MBP — _.g-to-know-vue — -zsh — 62x25

- Compiled successfully in 5339ms 23:03:42
File Size Gzip
ped
dist/js/chunk-vendors.493d0141.]s 74.14 kb 26.8
! Icj?st/’js/app.dfae:[_@%.js 2.43 kb 1.17
kgist/css/app.f4d@1213.css 0.19 kb 0.17
kb

Images and other types of assets omitted.

PBONEN Build complete. The dist directory is ready to be deplo
yved.

< getting-to-know-vue git:(master) x [j

Figure 11-14. Summary results after building our Vue app

In our project directory we should now have a new directory called dist. Indist
we should have three directories—css, img, and js—for the app’s styles, images, and
JavaScript, respectively. You will also see index.html and the favicon.ico from the
public directory of our src.

Now that we have our dist directory, we can put it on our public server and share
our wonderful minimized app with the world.

228

CHAPTER 11 TOOLING

The CLI User Interface

With Vue CLI version 3, a UI has been added, so we can do the same tasks we do from
the command line using a web interface. To start the UI, enter vue ui on the command
line. A web browser should open, as shown in Figure 11-15.

€ c @ localhost:8000/project/select - @ 0% B ﬂ ® » =

Vue Project Manager @

= Projects Create [Import

A Noproject open Il /Users/brett/Dropbox/wip-writling/getting-to-know-visejs/codes/Chapter_11/Section_02/Example_01/gelling-to-know-wwe B i 3 a B £

Figure 11-15. The Vue CLI UI on first load

229

CHAPTER 11 TOOLING

Since we already have a project, we can add it using the Import menu on the top of
the screen. This menu lets us browse to our project, as shown in Figure 11-16.

&« S C @ @ localhost:8000/project/select - @ 0% B ﬂ ® » =

Vue Project Manager @

= Projects Create B Import

o~ B Users brett Dropbox wip-writting getting-to-know-vuejs code Chapter 11 Section 02 B # le. C | (=

BB getting-to-know-vue ¥

fe]
Q

A Moprojectopen I8 /Users/brett/Dropbox/wip-writting/getting-to-know-vuejs/code/Chapter_11/Section_02/Example 01 = (] - 3

Figure 11-16. Browsing to an existing Vue project

Once we get to the project’s root folder, the Import This Folder button will change to
a darker green, which means we can start looking at the project in the UL

230

CHAPTER 11 TOOLING

The first screen, shown Figure 11-17, will show the plugins installed in the project.

£ > & @ @ localhost:8000/plugins o @

Project plugins Add vue-router Add vuex

| ¥ Installed plugins

& @vue/cli-service
E 3.00rc3] 13.0.0-rc.3 % Official @ Installed [More Info

ByeeL @vue/cli-plugin-babel
3.0.0-rc.3 latest 3.0.0-rc.3 ¥ Official @& Installed rv & More Info

@vue/cli-plugin-eslint
e 3.0.0-rc.3 latest 3.0.0-rc.3 % Official @ Installed i f & More Info

L. I /Users/brett/ Dropbox/wip-writting/getting-to-know-vuejs/code/Chapter_11/Section_02/Example_01/getting-to-know-vue =]] & 5 o

Figure 11-17. Displaying the current project’s plugins

231

CHAPTER 11 TOOLING

At the top of the plugins screen, you can choose to add plugins like the Vue Router
and Vuex plugins. Or you can search for a plugin using the + Add plugin button, which
leads to the plugin search screen shown in Figure 11-18.

<> ¢ @ @ localhost:8000/plugins/add v @ B o » =
Add a p|l.|giﬂ Add vue-router Add vuex
| 5 Q, search 3 configuration Files changed

2 Q, | ®

c.3

@vue/cli-plugin-babel 3.0.0
babel plugin for vue-cli ¥ Official £ 119K @ vuejs & More Info

@vue/cli-plugin-eslint 3.0.0-rc.3
eslint plugin for vue-cli ¥ Official ® 98.1K @vuejs & More Info

@vue/cli-plugin-unit-jest 3.0.0-rc.3
unit-jest plugin for vue-cli % Official ¥ 38.6K @ vuejs [& More Info

@vue/cli-plugin-pwa 2.0.0-rc.3
pwa plugin for vue-cli ¥ Official # 25.9K @vuejs [More Info

BAEL
vue-cli-plugin-apollo 0.13.9
vue-cli 3 plugin to add Apollo and GraphQL #* 38.8K @ Akryum [More Info

2 3 4 > H

X Cancel Search by g algolia

L. Il /Users/bretl/Dropbox/wip-writting/getting-to-know-vuejs/code/Chapter_11/Section_02/Example_01/getling-to-know-vue (=] (] & B¢ 5

Figure 11-18. Plugin search screen

232

CHAPTER 11 TOOLING

On the left side of the screen, we can choose to look at the project configuration with
the Gear icon. In Figure 11-19, we can view the options for the Vue CLI.

> ¢ @ @ localhost:8000/configuration/vue-cli - @Y B ﬂ ® » =

Project configuration

Configure your Vue project

s . Vue CLI General settings

'8 Base URL
ESLint configuration The b
E Error checking & Code quality deployed

JRL your application will be
at, for example '/my-app/". Use

an empty string (") so that all assets are 4
linked using relative paths

2 More Info

Qutput directory

The directory where the production build dist

files will be generated [More Info

Assets directory

A directory to nest generated static
assets (js, css, img, fonts) under.
[2 Mare Info

Enable runtime compiler
This will allow you to use the template option in Vue components, but will @
incur around an extra 10kb payload for your app. [2 More Info

Enable Production Source Maps
Disabling this can speed up production builds if you don't need source maps ®

far neaductinn B Mara Infa

= o Cancel changes More info Z C Refresh

L. I /Users/brett/ Dropbox/wip-writting/getting-to-know-vuejs/code/Chapter_11/Section_02/Example_01/getting-to-know-vue (=]] & B 5

Figure 11-19. Looking through the configuration options for the Vue CLI

The third option on the left menu is the project tasks. We can see that these are the
build-type tasks that we ran from the command line in Figure 11-20. We can now run
them from the UL

233

CHAPTER 11 TOOLING

€ > C @ localhost:8000/tasks/%2FUsers%2Fbrett%2FDropbox%2Fw o @ = @ » =

Project tasks

n & serve E serve Compiles and hot-reloads for development

Compiles and hot-reloads f

E m n bl L o b &

build

Compiles and minifies for p = Output EEDEELLLEIGEE (O Analyzer

lint

Lints and fixes files 25 Dashboard 0 Openapp Parsed ¥~ @
- inspect

N) '
@) Inspect the resolved webpa

Idle 0 0

0.0kB 0.0kB

(Parsed) (Parsed)

0.0kB 0%

L. I /Users/brett/ Dropbox/wip-writting/getting-to-know-vuejs/code/Chapter_11/Section_02/Example_01/getting-to-know-vue (=]] & o3 5

Figure 11-20. Project tasks display

Summary

In this chapter we learned about single file components (SFCs) and the Vue CLI. These
two tools work together to create a more seamless development environment with

access to more advanced techniques like transpiling and preprocessors.

234

CHAPTER 12

Using Routers

Being able to quickly change the look and layout of a page without doing a full-page
refresh is awesome, but users like to have links that take them directly to content as
well. After all, what good is a nice web app if you can’t share a link to the content? This
chapter looks at a few different ways to implement routing with Vue.

DIY Router

First up in our list of router options is the famous do-it-yourself (DIY) router. With the
DIY router, you don’t get any features to start with since you are creating it yourself. What
you do get is possibly the lightest router option. If you don’t need anything more than to
change between pages, this may be your best option.

Setting Up the DIY Router

To get started with a DIY router, we will need some components. Listing 12-1 shows
three components:

e fourOhFour: When a route isn’t found
e main: For our default path
e contactUs: For our Contact Us page

The main and contactUs components are added to a routes object that has the path
for each component as the name and the components as the values. The fourOhFour
component will be used when the path isn’t found in our routes object.

235
© Brett Nelson 2018

B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6_12

CHAPTER 12 USING ROUTERS

Listing 12-1. Setting Up Our DIY Router Components

const fourOhFour = {
data: function() {
return {
url: window.location.hash
15
})
template: °
<div>
<p>Sorry, URL not found : {{url}} </p>
<p>_ (V) /7</p>

</div>
};
const main = {
template: °
<p>Welcome to Getting to Know Vue.js</p>
};

const contactUs = {
template: °
<p>Contact Us @ Getting to Know Vue.js</p>

~

};

const routes = {
"#/': main,
"#/contact-us': contactUs

};

In our app, we will add the routes to the data object with a value for the currentPath
that we set to the window. location.hash. We also have a method that sets the value
of currentPath to the hash of the target from the event and a computed property
that returns the currentView from the routes based on the current path or on our
fourOhFour component.

236

CHAPTER 12 USING ROUTERS

We can see this set up—along with the template that uses the Vue is directive to
dynamically set the component based on the currentView—in Listing 12-2.

Listing 12-2. Our DIY Router App

var app = new Vue({

el: '#app',

data: {
currentPath: window.location.hash,
routes: routes

})

methods: {
navigate: function($event) {

this.currentPath = $event.target.hash;

}

b
computed: {

currentView: function() {
return this.routes[this.currentPath] || fourOhFour;

}

b
template: °

<divy

<a href="#/"
v-on:click="navigate">
Main

</1i>

<a href="#/contact-us"
v-on:click="navigate">
Contact Us

</1i>

237

CHAPTER 12 USING ROUTERS

<div v-bind:is="currentView">
</div>

</div>

~

1

If we look at our app in the browser, we will see Figure 12-1 when we first navigate to
the app. Figure 12-2 shows the Contact Us page. Finally, Figure 12-3 shows the result if

we enter the wrong URL.

_ ST INTEL) .

[[@ localhost:3000/#/ - @0 B ﬂ @ » =

« Main

« Contact Us

Welcome to Getting to Know Vue,js

Figure 12-1. Our DIY router displaying the main page

238

CHAPTER 12 USING ROUTERS

_ EILTIRLOEINTEL) .

[[@ localhost:3000/#fcontact-us - @y B ﬂ @ » =

« Main

+ Contact Us

Contact Us @ Getting to Know Yue,js

Figure 12-2. Our DIY router displaying the Contact Us page

239

CHAPTER 12 USING ROUTERS

_ ST INTEL) .

« c @ @ localhost:3000/#/something-else - @y B ﬂ @ » =

« Main

. !‘!!]J!y !-i ! [;
Sorry, URL not found : #/something-else

VIS

Figure 12-3. Our DIY router displaying the 404 page

Vue-Router

The Vue-Router is the official router of Vue. It integrates with Vue, thus allowing it
to work more seamlessly with Vue. It has some nice features, such as nested routes,
modular configuration, route parameters, query string parameters, and wildcard
support, to name a few.

Setting Up Vue-Router

Vue-Router can be added to your project through NPV, if you are using a package
manager, with the npm install vue-router command. Otherwise, you can add a
reference to the CDN, as shown in Listing 12-3.

240

CHAPTER 12 USING ROUTERS
Listing 12-3. Referencing a CDN to Use Vue-Router
<script src="https://unpkg.com/vue-router/dist/vue-router.js"></script>

If you are using a module system, you will need to import Vue-Router into your app
and call Vue.use on it, as shown in Listing 12-4.

Listing 12-4. Getting Vue-Router Ready Using a JavaScript Module System

import Vue from 'vue';
import Router from 'vue-router';

Vue.use(Router);

Note The Vue.use(Router); command that we use here gets Vue ready to
use the Vue-Router plugin. Later, we will configure a Vue-Router instance with
routes that we will pass into our Vue instance, when we create it in Listing 12-6.

We use similar components that we defined for our DIY router in Listing 12-1, with
the only big difference being that the fourOhFour component now uses the $router
object to get the current path, as shown in Listing 12-5.

Listing 12-5. Our Updated FourOhFour Component Using the $router Object to
Get the Current Path

const FourOhFour = {
computed: {
url: function() {
return this.$router.currentRoute.path;

}

b
template: °

<div>
<p>Sorry, URL not found : {{url}} </p>
<p> \\ (V) /</p>

</div>

~

}s
241

CHAPTER 12 USING ROUTERS

The $router object is passed to the components from the parent Vue instance,
which in our case is the app.

With Vue-Router added to our project and our component adjusted to use the
$router, we need to create an array of routes before we can use them. Each route can
have name, path, and should have a component. The component can be one that was
defined previously or a Vue options object.

Our routes will look like Listing 12-6.

Listing 12-6. Creating Our Routes Array

const routes = [
{
path: '/',
name: 'main’,
component: Main
})
{

path: '/contact-us',
name: 'contact-us',
component: ContactUs

}J

{
path: '/*',
name: 'notFound',
component: FourOhFour

}
15

If you are wondering about the last router that has the path of /*, that is our wildcard
path and will show our FourOhFour component.

To create our router, we will call new VueRouter and pass in the routes. The routes
can be passed in using JavaScript object destructuring or passed as objects that have a
property named routes that is our array. Listing 12-7 shows both methods.

242

CHAPTER 12 USING ROUTERS

Listing 12-7. Creating Our Router

// Using JavaScript object destructuring

let router = new VueRouter({ routes });

// Using a JavaScript object with a parameter named 'routes’
let router = new VueRouter({ routes: routes });

Now all that’s left is to use the router in our app and to add the <router-view>
component to our app template. The <router-view> component was included in our
project when we added the Vue-Router and is the same place where the router will insert
the component for the current path.

Listing 12-8 shows our app adding the router and using the <router-view>. It also
includes two <router-1links>. The <router-1links> were also included with the Vue-
Router and can be used to navigate to new routes.

Listing 12-8. Our App Using the Vue-Router

var app = new Vue({
router,
el: '#app',
template: °
<div id="app">
<div id="nav">
<router-link
to="/">
Home
</router-link> |
<router-link
to="/contact-us">
Contact Us
</router-link>
</div>
<router-view/>
</div>

~

};

243

CHAPTER 12 USING ROUTERS

When we first load our app, we should now see Figure 12-4. Figure 12-5 shows what
it looks like now when we click on the Contact Us link. Figure 12-6 shows what happens
if we go to any other URL.

_ EILTIRLIEINTEL) .

[[@ localhost:3000/#/ - @0 B ﬂ ® » =

Home | Contact Us

Welcome to Getting to Know Vue,js

Figure 12-4. Our Vue-Router main page

244

CHAPTER 12 USING ROUTERS

&« ¢ o (© localhost:3000/#/contact-us - @ B ﬁl ® » =

Home | Contact Us

Contact Us @ Getting to Know Vue,js

Figure 12-5. Our Vue-Router Contact Us page

245

CHAPTER 12 USING ROUTERS

_ ESTIRLEINTEL) .

« c @ @ localhost:3000/#fcontact-you - @y B ﬂ @ » =

Home | Contact Us
Sorry, URL not found : feontact-you

VS

Figure 12-6. Our Vue-Router 404 page

Passing Parameters

One thing the Vue-Router can help us handle is pass parameters.

Route Parameters

We can define router parameters in the path for a route by starting a URL segment with a
colon (:). Listing 12-9 shows a route for a profile. For the most part, it looks like the other
routes we've had, with the main difference being that the path has two segments and

the second segment starts with a colon. In case you are wondering, we will look at the
component shortly.

246

CHAPTER 12 USING ROUTERS

Listing 12-9. Setting Up a Route to Accept a Parameter Named userName

{
path: '/profile/:userName',
name: 'profile’,
component: Profile

1

Now we need to create a link to this new path. To do that, we will add a new <router-
link> in our app thats to attribute is set to /profile/Getting to Know Vue.js. This
URL matches the path we defined in our router, with /profile/ as the base for the path
and Getting to Know Vue.js as the parameter named userName. Listing 12-10 shows
the complete <router-link>.

Listing 12-10. Router Link Passing a Parameter

<router-link
to="/profile/Getting to Know Vue.js">
Profile
</router-link>

Now that we have a route defined with a parameter and a link that will take us there,
we should take a look at the component that will handle this path.

Listing 12-11 shows our Profile component. The main thing to look at here is that
we use the $route property to access the parameters. Since we are in the template, we
don’t have to use this. However, if we wanted to access the parameters in the JavaScript
for the Profile component, we can do so by using this.$route. The $route objectis a
reference to the current active route.

Note We can also access a reference to the router that we passed into our Vue
app from our components with this.$router.

Listing 12-11. Profile Component Using $route to Access the username
Parameter

const Profile = {
template: °
<p>
247

CHAPTER 12 USING ROUTERS

User Name:
{{ $route.params.userName }}

</p>

b

When we navigate to our profile page with <router-1ink>, we should see something
like Figure 12-7.

_ ST INTEL) x

« c @ @ localhost:3000/#/profile/Getting to Know Vue.js - @ W% B ﬂ @ » =
Home | Contact Us | Profile

User Name: Getting to Know Vue,js

Figure 12-7. Viewing our profile

248

CHAPTER 12 USING ROUTERS

Passing Parameter Objects

It is possible to pass an object using the <router-1ink> to attribute with v-bind. In
Listing 12-12, we use v-bind to navigate to the route named profile and pass the
parameter named user. The user parameter has the name and email properties.

Listing 12-12. Using v-bind to Pass an Object to a Path

<router-link
v-bind:to="{
name : 'profile’,
params: { user: {
name: 'Getting to Know Vue.js',
email : 'gettingToKnowVuejs@Apress.com'

}
}
">
Profile
</router-link>

If we adjust our router to have user as the parameter and our Profile component to
access the name and email from the user parameter, as shown in Listing 12-13, we can
navigate to the profile page and see the results in Figure 12-8.

Listing 12-13. Accessing an Object Passed as a Route Parameter in a Component

const Profile = {
template: °

<div>
<h3>User</h3>
<p>

Name:
{{ $route.params.user.name }}

</p>

249

CHAPTER 12 USING ROUTERS

<p>
Email:
{{ $route.params.user.email }}

</p>
</div>

};

“ ESLTIBLIZINTEL) x _

@ localhost:3000/#/profile/[object Object] o O
Home | Contact Us | Profile
User
Name: Getting to Know Vue js

Email: gettingToKnow Vuejs @ A press.com

Figure 12-8. Using an object as a route parameter

250

CHAPTER 12 USING ROUTERS

You might have noticed in the URL that it now says /profile/[object object] and
that doesn’t look so good. We can change the route path so we don’t pass the user object
as a URL parameter by passing it to a property of the component.

Listing 12-14 is an update to our route for the profile. We remove the URL parameter
and add a property name called props with a value of true. Using the props options with
avalue of true will pass any parameters we pass to the components properties. So now
we just need to add a prop named user to our Profile component.

Listing 12-14. Using Props in the Route to Populate a Component’s Properties

{
path: '/profile/',
name: 'profile’,
component: Profile,
props: true

}J

Next, we need to handle the props that are passed by the router. In Listing 12-15, we
add a prop named user of type Object. In the template, we use this to access the name
and email. These changes should result in our view looking like Figure 12-9 when we
navigate to the profile page.

Listing 12-15. Using Props in Our Profile Component

const Profile = {
props: {
user: Object
})
template: °
<div>
<h3>User</h3>
<p>
Name:
{{ user.name }}

</p>

251

CHAPTER 12 USING ROUTERS

<p>
Email:
{{ user.email }}

</p>
</div>
}s
€« e @ ® localhest:3000/#/profile R o » =

Home | Contact Us | Profile
User
Name: Getting to Know Vue js

Email: gettingToKnow Vuejs@ A press.com

Figure 12-9. Using the user property that was passed to the Profile component to
get the name and email

252

CHAPTER 12 USING ROUTERS

Navigating from JavaScript

We can use the router instance to push a new navigation event onto the stack. In
Listing 12-16, we push the contact-us path onto the router.

Listing 12-16. Pushing a New Route Onto the Router

goToContactUs: function() {
this.$router.push('contact-us');

}

This is the same as pushing an object with a property named path defined as
contact-us, as shown in Listing 12-17.

Listing 12-17. Pushing an Object that Defines the Path Onto the Router

goToContactUs: function() {
this.$router.push({ path: 'contact-us' });

b

We can also navigate by passing an object that defines the name of the path we want
to go to. Listing 12-18 shows the process of pushing a named path to the router.

Listing 12-18. Pushing a Router Object that Defines the Name of the Route

goToContactUs: function() {
this.$router.push({ name: 'contact-us' });

b

We can also push a new route with parameters. Listing 12-19 navigates to the profile
page by passing the same values we used with the <router-1link> previously.

Listing 12-19. Passing Parameters While Navigating in JavaScript

goToContactUs3: function() {
this.$router.push({
name: 'profile’,
params: {
user: {

253

CHAPTER 12 USING ROUTERS

name: 'Getting to Know Vue.js',
email: 'gettingToKnowVuejs@Apress.com'

}
}
1
}

Redirects

We can also define redirects in our router. Redirects allow us to move users to new
content or updated URLs if we change the paths.

To define a redirect, we add a new route. It contains the path property, which is
defined as the route we want to redirect, and a redirect property, which is the new
target URL. Listing 12-20 shows a redirect of /home to /.

Listing 12-20. Adding a Redirect Route

{
path: '/home’,

redirect: '/'

}s

Aliases

Similar to redirects, aliases take the URL path to a different target, but instead of moving
the user to a new URL, they keep users on the same path they navigated to and show the
components from the defined route.

In Listing 12-21 we add an alias to our main route definition. Figure 12-10 shows our
Main component when we now navigate to the /main URL path.

Listing 12-21. Adding an Alias to Our Main Route

{
path: '/',
name: 'main’,
alias: '/main',
component: Main

b
254

CHAPTER 12 USING ROUTERS

_ ST INTEL) x

[[@ localhost:3000/#/main - @Y B ﬂ @ » =
Home | Contact Us | Profile

Welcome to Getting to Know Vue,js

Go to Contact Us

Figure 12-10. Viewing the main component with the main alias

The Page.js Router

The official Vue-Router isn’t the only router out there. We can set up our Vue app to work
with Page. js as well.

Page.js is a lightweight client-side router based on the router pattern used with
Express. This pattern might be more comfortable for some.

To use the Page. js router, we will use the same components from Listing 12-1. Our
app will be a little different, as we won’t be doing any work in the app to handle the route
and we will have the currentView be a data property instead of a computed property.
This way, we can set it from outside the app.

255

CHAPTER 12 USING ROUTERS

Listing 12-22 shows our new app, all set up.

Listing 12-22. Setting Our App Up to Work with Page.js

var app = new Vue({
el: '#app',
data: {
currentView: { template: '<p>Please Wait...</p>' }
})
template: °
<divy

<1li>

Main

</1i>

Contact Us

</1i>

<div v-bind:is="currentView">
</div>
</div>

~

};

You can see that we are setting the value of currentView to a Vue options object that
has a template that says <p>Please wait..</p> This will be replaced once the router
loads the current path.

We need to include a reference to the Page. js library. So we should add the
reference to the CDN from Listing 12-23 to our HTML page.

256

CHAPTER 12 USING ROUTERS
Listing 12-23. Adding the Page.js Reference

<script src="https://cdn.rawgit.com/visionmedia/page.js/master/page.js">
</script>

All that’s left now is to set up Page. js to work with Vue.

After the Vue app is created in our app. js, let’s set up our routes.

Each route will take the path the route is for and the function to perform when
the route happens. We are setting these routes up after the Vue app so we can use the
reference to the app and set currentView.

For each route we will set the currentView to the component that we want to use.
Listing 12-24 shows our complete route, all set up and calling page() to get things
working.

Listing 12-24. Setting Up the Page.js Routes

page('/", function() {
app.currentView = main;

D;

page('/contact-us', function() {
app.currentView = contactUs;

D;

page('*"', function() {
app.currentView = fourOhFour;

D;

page();

This will give us enough routing that, when we load the page in the browser, we
should see Figure 12-11 on the first page load. Likewise, Figure 12-12 shows what we see
when we select the Contact Us link.

257

CHAPTER 12 USING ROUTERS

Getting to Know Vue.js

&« C @ (@ localhost:3000

« Main

+ Contact Us

Welcome to Getting to Know Vue,js

Figure 12-11. First page load with Page.js

258

CHAPTER 12 USING ROUTERS

SEITIRLIERTEL *

&« c @ @ localhost:3000/contact-us - @ W B ﬂ ® » =

« Main

« Contact Us

Contact Us @ Getting to Know Vue,js

Figure 12-12. Navigating to the Contact Us page with Page.js

Summary

In this chapter we learned about routers. Creating your own router can be an option if
you are looking for something that is lightweight and you don’t mind doing all the work
yourself. Vue-Router provides us with a full-feature approach to routing with options

to pass data via URL parameters or directly to component props. We also saw that it’s
possible to use routers provided by other open source projects with Vue.

259

Index

A B C

Binding data, 85 Command-line interface (CLI), 212

forms creation, 214
check boxes, 92 prerequisites, 212
date, 89 project structure

dynamic options
(radio buttons), 98
file inputs, 99
groups of check boxes, 93
hidden, 101
inputs, 85
number, 88
password, 91
preset radio buttons, 96
radio buttons, 95

© Brett Nelson 2018
B. Nelson, Getting to Know Vue.js, https://doi.org/10.1007/978-1-4842-3781-6

App.vue, 223
creation, 220
rebuild and serve, 226
root folder, 220
src folder, 221
Title.vue, 224
Vue build, 227

serve
desktop option, 218
mobile device, 219

text, 87 npm command, 216-217
v-model, 85 user interface

modifiers configuration options, 233
inputs, 106 current project’s plugins, 231
lazy, 106 project manager, 230
number, 107 search screen, 232
trim, 109 tasks display, 234

multiple selects, 104 web browser, 229

select, 103 Vue installation, 212

styling (see Styling data) Component

textarea elements, 102 data, 151

Browsersync, 6-7 events, 158

261

https://doi.org/10.1007/978-1-4842-3781-6

INDEX

Component (cont.)

first component, 149

meaning, 149
passing data with props

binding data, 154

browser results, 157

definition, 153

error message, 156

JavaScript object types, 155

props type, default, required and
validator, 157

results, 153, 156

text Prop and binding text, 157

type specification, 155

registration, 163
slots, 162

Computed properties, 57
data updates, 61
formatting text, 58
getTitleBlurb method, 59
methods, 57
properties and re-rendering, 60
result, 59

Conditional rendering, 29
directives, 29
lists (see Lists)
v-else, 36
v-else-if, 38
v-if, 34
v-if v-else v-else-if, 33

v-show (see v-show)

D

Dev tools, 6
Do-it-yourself (DIY) router, 235
components, 235

contact us page, 239
contactUs components, 235

262

currentView, 237

data store, 130

fourOhFour component, 235
final result page, 240

main page, 238

E

el properties
CSS selector, 9
HTMLElement, 10
No Template, 10
Vue app, 11
Events
handlers, 71
inline method, 73
methods, 72
listeners
Toggle word, 71
v-0on, 69
modifiers (see also Modifiers)
results, 80

F

Filters
arguments, 205
chaining option, 204
creation and use of, 202
global filter creation, 203
mustache syntax, 201-202

GH

getTitleBlurb method, 60

LJ,K

Inline method, 73

L

Listeners, 69-71
Lists
accessing object properties, 47
basics
key attribute, 44-45
v-for, 42-43
dealing with change
app.teenFilter(), 51
array, 50
array mutation methods, 50
JavaScript splice method, 52
splice-replace, 52
v-for, 51
Vue.set, 52
index and parent properties, 48
objects, 53
action function, 54
calling a function, 55
v-for, 53-54

M
Mixins
baseMixin, 169
creation, 167, 171
directives
modifiers, 178
passing an object, 176
passing a value, 174
use of, 173
multiple mixins, 169
render function (see Render function)
use of, 168
Modifiers
chain modifiers, 80
DOM tree, 79
event propagations setup, 77, 80

input, 81
propagations setup, 78
stop modifier, 79

use of, 75-76

Vue properties, 76

N, O

Node Package Manager (NPM), 212

PQ

Page.js routers
contact us page, 259
open page, 258
page(), 257
reference, 257
set up, 255-256
Plugins
creation, 193
pass an options object, 195
registering a global mixin, 197
share components, 199
use of, 194

R

Render function
createElement, 184
parameter one, 185
parameter two, 187
tagElement and the
optionsElement, 187
third parameter, 190
render vs. template
render function-element
type, 180-181
sample components, 182

INDEX

263

INDEX

Render function (cont.)
templateSample and renderSample
components, 184
template syntax-element type, 181
Routers
aliases, 254
DIY (see Do-it-yourself (DIY) router)
JavaScript, 253
navigation event, 253
Page.js, 255
contact us page, 259
open page, 258
page() function, 257
reference, 257
set up, 256
passing parameters, 246
objects, 249
profile page, 251
route, 246
redirects, 254
set up
array creation, 242
contact us page, 245
FourOhFour component, 241
JavaScript module system, 241
<router-view> component, 243
main page, 244
methods, 242
reference, 240
result page, 246
$router object, 242
Vue-Router, 240

S

Single file components (SFC)
advantages of, 210
structure, 209

264

syntax highlighting, 210
.vue file extension, 209
Single page application (SPA), 1
State management, 127
data objects, 127
DIY data store, 130
sharing, 127
Vuex, 132
actions, 138
CDN/Self Hosted, 133
getters, 135
modules, 140
mutations, 136
NPM and Yarn, 133
options, 134
promise, 133
state, 134
Styling data, 110
classes, 116
arrays, 121
computed classes, 123
CSS error class, 117
multiple classes, 119
one class, 117
inline styles, 111
objects, 112

T, U

Textarea elements, 102

\'

v-else, 36

v-else-if, 38

v-for, 49

v-if, 34

v-if v-else v-else-if, 33

v-show
expression evaluations, 30-32
hidden v-show element, 33
overview, 29
Vue.js
computed properties, 22
data
emptyObject, emptyString,
and nullProperty, 16
$or_, 18
propertyName, 16
reference error, 19
rendering empty
values, 17
EL 9
features, 1
instance
empty HTML file, 2
HTML template, 3
structure of, 3
web browser, 4
methods
binding, 20
declaration, 20
HTML binding, 21
progressive framework, 1
render, 15
SPA, 1
template
querySelector, 14-15
source code, 12
template string, 12
window, 13

INDEX

template binding
assign a property, 24
binding raw HTML, 26-27
JavaScript expressions, 23
mustache syntax, 22
results of JavaScript expressions, 24
v-bind, 25

Vuex

actions, 138

CDN/Self Hosted, 133

getters, 135

modules
accessing module state, 144
basics, 141
definition, 141, 143
namespace, 145
pilots module definition, 142
RootState, 144

mutations, 136

NPM and Yarn, 132-133

options, 134

promise, 133

state, 134

W XY Z

Watchers

composite/formatted properties, 62
deep, 65

immediate, 66

new and old Values, 64

results, 63

watch-monitor changes, 62

265

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Why Vue.js?
	The Value of Vue.js
	Our First Vue.js Instance
	Developer Tools
	Browser Dev Tools
	Browsersync

	Summary

	Chapter 2: The Basics
	Vue Options
	El
	Template
	Render
	Data
	Methods
	Computed Properties

	Template Binding
	Summary

	Chapter 3: Conditional Rendering
	v-show
	v-if v-else v-else-if
	v-if
	v-else
	v-else-if

	Lists
	Basics
	Accessing Object Properties
	Index and Parent Properties
	Dealing with Change
	Objects

	Summary

	Chapter 4: Computer Properties and Watchers
	Computed Properties
	Watchers
	New and Old Values
	Deep
	Immediate

	Summary

	Chapter 5: Events
	Listeners
	Handlers
	Methods
	Inline Method

	Modifiers
	Using a Modifier
	Chain Modifiers
	Input

	Summary

	Chapter 6: Bindings
	Forms
	v-model
	Inputs
	Text
	Number
	Date
	Password
	Check Boxes
	Groups of Check Boxes
	Radio Buttons
	Preset Radio Buttons
	Radio Buttons: Dynamic Options
	File
	Hidden

	Textarea Elements
	Select
	Multiple Selects
	Modifiers
	Lazy
	Number
	Trim

	Styling
	Inline Styles
	Style Objects
	Classes
	One Class
	Multiple Classes
	Multiple Classes with Arrays
	Computed Classes

	Summary

	Chapter 7: State Management
	Simple Data Objects
	DIY Data Store
	Vuex
	Install
	CDN or Self Hosted
	NPM and Yarn
	Promise

	Options
	State
	Getters
	Mutations
	Actions
	Modules
	Basics
	Accessing RootState
	Namespace

	Summary

	Chapter 8: Using Components
	What Is a Component?
	First Component
	Using Data
	Passing Data with Props
	Events
	Slots
	Registration
	Summary

	Chapter 9: Reusable Code
	Mixins
	Creating Mixins
	Using Mixins
	Using Multiple Mixins

	Custom Directives
	Creating a Directive
	Using the Directive
	Passing a Value
	Passing an Object as a Value
	Using Modifiers

	Render Function
	Render versus Template
	createElement
	Parameter One
	Parameter Two
	Parameter Three

	Summary

	Chapter 10: Custom Functionality
	Plugins
	Creating a Plugin
	Using a Plugin
	Using Options
	Registering a Global Mixin with a Plugin
	Registering Global Components with a Plugin

	Filters
	Creating and Using a Filter
	Creating a Global Filter
	Chaining Filters
	Arguments

	Summary

	Chapter 11: Tooling
	Single File Components
	SFC Structure
	Syntax Highlighting

	Command-Line Interface
	Prerequisites
	Installing Vue CLI
	Vue Create
	Vue Serve
	Project Structure
	Project Root
	The src Folder
	App.vue
	Title.vue
	Rebuild and Serve

	Vue Build
	The CLI User Interface

	Summary

	Chapter 12: Using Routers
	DIY Router
	Setting Up the DIY Router

	Vue-Router
	Setting Up Vue-Router
	Passing Parameters
	Route Parameters
	Passing Parameter Objects

	Navigating from JavaScript
	Redirects
	Aliases

	The Page.js Router
	Summary

	Index

