THE EXPERT’S VOICE® IN JAVA™ TECHNOLOGY

Mastering the Java™ Persistence API

Create robust, data-driven applications with
this definitive guide to the new JPA 2

Mike Keith and Merrick Schincariol

Foreword by Linda DeMichiel, JPA Specification Lead

Apress’

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro JPA 2: Mastering the Java™
Persistence API

Dear Reader,

It’s hard to believe that over 3 years have gone by since the initial 1.0 release of
the Java™ Persistence API. In that time we have seen it go from fledgling API
to mainstream persistence standard. Along the way, many of you cut your JPA
teeth using the first edition of this book, and we're happy we were there to help!

JPA 2.0 includes a host of new features, such as additional object-relational
mappings, more object modeling flexibility, typed queries, and a brand-new
criteria API, to name a few. With so much to talk about, we were excited to
update the book and explain all the new features, but we also included some
hints and tips to help you use the API in practice.

If you already have experience with JPA 1.0 then you should benefit from
the version tips that point out when a feature was added in 2.0. These tips
were also designed to help users who are writing to a JPA 1.0 implementation,
and are not yet able to make use of the 2.0 features.

Those of you that are new to JPA can rest assured that you were not for-

ATHTS i gotten. We have remained true to our original intent to take someone from
Pro EJB™ 5: Java™ having no JPA knowledge all the way to being an advanced JPA’er. You should
Persistence AP/ be able to quickly learn in the first two chapters what you need to know to get

started. (Veteran JPA programmers might want to start at Chapter 3!) Finally,
we want to thank you for making the previous edition of this book such a suc-
cess. We are pleased that it has become the primary resource for JPA develop-
ers, and hope that you will find this edition equally valuable.

Mike Keith, JPA 2.0 Expert Group Member, and Merrick Schincariol

Companion eBook
R

Beginning

Java EE 6 piattorm
win GlassFish 3

"z
14 “ l%
eBookshop

RELATED TITLES

See last page for details
on $10 eBook version

Apress:

www.apress.com ISBN 978-1-4302-1956-9
54999

US $49.99

Shelve in

Java Programming

User level: 9781430121956
Intermediate

Pro JPA 2

Mike Keith and
Merrick Schnicariol

Apress®

Pro JPA 2
Copyright © 2009 by Mike Keith and Merrick Schincariol

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-1956-9
ISBN-13 (electronic): 978-1-4302-1957-6
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning

Lead Editor: Steve Anglin, Tom Welsh

Technical Reviewer: Jim Farley

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,
Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank
Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Mary Tobin

Copy Editor: Nancy Sixsmith

Compositor: MacPS, LLC

Indexer: BIM Indexers and e-Services

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-
sbm.com, or visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to
answer questions pertaining to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

To the memory of my father, who selflessly offered all that he had, and to my wife Darleen who has
devoted her life to helping children.—Mike

To Anthony, whose boundless creativity continues to inspire me. To Evan, whose boisterous enthusiasm
motivates me to take on new challenges. To Kate, who proves that size is no object when you have the
right attitude. I love you all. —Merrick

Contents at a Glance

Contents at @ GIANCEccvcsnimmmsmsmmsmsms s ———— iv
Contentscccuvimmmsmsmms s ————————————— v
1 XX
About the AUhOrcccnimmminnnn s ————— Xxi
About the Technical ReVIEWET.......ccucusssmsasmssmsssnnns Xxii
Acknowledgments.........cccuvsmmsmmmmnmmssmmssmmnsns s ——————— XXxiii
o Xiv
Chapter 1: Introductioncccccmnsmmmmnesmmnsssmmmssmmmsssmssssss s sssassssassnnes 1
Chapter 2: Getting Started............coscmnsmmsnmmsnmmsemmnmmesmsmmssmasa—————— 17
Chapter 3: Enterprise Applicationsc.ccccinnnsemmmmmsssssnmmnssssssmmssssssssssssssssessssans 33
Chapter 4: Object-Relational Mappingccccusssemnmmmssssnnsmnsssssnnmssssssssssssssssssssssnns 69
Chapter 5: Collection Mappingccccsruusssmnnmmssssnnnmsssssnsnssssssnsnssssssnnssssssannnsssssnns 107
Chapter 6: Entity Managercccuunmemmmmmmmmmmsssssssssssmmmssssssssssssssssssssssssssssssssssnss 131
Chapter 7: USINg QUEIIS....ccuueurssansssassssnsssansssansssnsssassssansssnsssansssansssnsssansssanssnnsss 179
Chapter 8: Query LANQUAQEcuurusssmmmmessssnsnssssssnsnssssssnsnssssssnssssssssnsnsssssnnnnssssnnns 207
Chapter 9: Criteria APlcocmmsmmnmmismmmms s ———————— 239
Chapter 10: Advanced Object-Relational Mapping.......ccccusseemnmsssssnnnsssssssnnsssssnns 273
Chapter 11: Advanced TOPICS....ccuussmsmrmssssnsnssssssnnnssssssnsnssssssnnnssssssnnnsssssnnnnssssnnns 315
Chapter 12: XML Mapping Filescccccccmmmrmmmsssssssssnmmmmmsssssssssssssssssssssssssssssssssnas 37
Chapter 13: Packaging and Deployment............ccccnnemmnmmnsssnnnmnsssssssnsssssssssssssnns 407
Chapter 14: Testingcccucsmvsmmimmsmmmmmisnmismssms s ———— 429
Chapter 15: Migrationcccummmmmmmmmmmmsms s ———— 457
INA@X 1oiiiiissnnnnnnnnnnnnssssssssnnsnnnnnmesssssssssnnnnnnnnssssssssnnnnnnnnnnssssssssnnnnnnnnnssssssssnnnnnnnnnnnss 481

Contents

Contents at @ GIANCEccuscemssemmssmnmssnmssanmssnnssnmssasssssnsssnsssassssnsssansssansssnsssnnnsans iv
Contentscccuvvemmsmsmmn s ———————————=———_—— v

Foreword NN NN NN NN NN NN NNNNENENENEEEE x_x

About the AUtROFccccisemmismsmssnsssss s an s an s s an s a s nnnn s nnnnnnnns XXi
About the Technical ReVIEWET.........ccccsssessssmssssnsssasssssssssnsssasssssssssnsssansssassssnnnsans XXil
Acknowledgments........cuccusurmsmmsmsmsssmsssmmsssssssssssssssssssns s s s s s sns s s san s nnnnnnnns xxiii

Preface AN NN NN NN NN NNNNNNENENEEEEEE XXiV

Chapter 1: Introductioncccvcmnsmmmenmnmmmsmmesmsmsssassa s ————————— 1
Object-Relational Mappingccccoeeeeererenesese e sse e ssssse s sssssssssssssnssnssnssnsnnes 2
The Impedance MISMALCH............cooieirinieser e e e nnnr s 3
Class RePreSeNtationcoccerreeneneneci et 3
RelAtiONSHINS ..covvveeeeerirnecrirrse e e e p e e n e n R 5
INNEITANCE ... s e e e R e e R e e s R p e r e e 7
Java Support for PErsiStENCE.........ccvvvierrerree s e e e s s s e saesneenes 9
Proprietary SOIULIONS.......ccociirir s e sa e sa e s e s a e s a e e s r e sa e a e saenne 9
0] 2 9
Enterprise JavaBeans ... e e 10
Java Data ODJECTS ..o s 10
Why Another Standard? ... ————— 11
The Java PersiStENCE APL..........ccovereeiierrsere s ses s sse s sssssnnens 12
History of the SPeCIfiCAtioN.........cccecererrrrerr vt r e s e e e sa e e ae e sasae e e na e e ns 12
EJB 3.0 @NU JPA 1.0 ..ottt sttt se e s s s et st sttt sttt s sssssssssssssssasssssssssssssasssasssssssssssass 12

JPA 2.0 e e s 13

B 1410 I 13
OVEBIVIBW ..vceeessseesesss e sssss e sesss e e e s s s s g s s s e s e Rt e e s Re e e E e R e e e R e R e Re e e e R e se e s eeasn e nrnrnnnnnnnes 13
POJO PEISISIBNCE.c.ceeiuecererercire et se st se s a e se e p e e s 13
NONINTIUSIVENESSecvrereiereresese e b bbb nens 14
ODJECT QUETIES......ceeeeercrrsserrs s s s ae s e s r e e a e e s ae e s e e e n e e s aenn s e nr e e ns 14

CONTENTS

MODIlE ENLITIES ...veeeeeerccer e n e s nn s 14
Simple CoNfiQUIAtION.........cccoriererrcrerrererere s s ree s re s re s rae e ae e s e sa e e saesesaesasaesas e sae e saeenannanaens 15
Integration and TeSTADIlILYccocecriernir s —————— 15

31 3] 1 N 15
Chapter 2: Getting Started............ccccnnsmmnsmmsnmmsmmnmmesmensssssssssssassannes 17
ENtity OVEIVIBW ...t 17
PerSiStADIlIYoeeeeeeirieienrirsescsrr s e r e nen e nen 17
HHBNTITY oo 18
TranSaCtIONALITY........cceeeererrrerrr s e s r s p e R e e r e nenrnnan 18
GIANUIANTEY v.veverrreeeeesssesessssssesesssss e sesssss e e s ss s e e s s sss e e s ssa e e essaa e e s sse e e s esase e s nbase e s nsesn e s nsnsnsnnnes 18
Entity Metadata...........ccco i 19
L1 10 = L4 PSSR 19
XIVIL ottt b bbb b b s bR b AR R R R R R AR e R e R R e R SRR R e R e R e R e R e R e R e R e ReReReReReReReReReReReReReReReRerennnn 19
Configuration DY EXCEPLIONccviiicricrn sttt s sn s n s s sr st sne s 19
Creating an ENtity.......cccevcererererrrerere s ses s e e s e sn e sassn s e saesnssnesnssnenns 20
oL (T2 T T 1T SRS 22
Obtaining an Entity MANAJET.........cccreeriernirrsirs s s e st sss s s e s s s sns s 23
PersiSting an ENBILYcccvcceercereiircrircrtrseree et re s seres e sss e sae e ssesas e saesesaesasaesas e sassesaesasassesassasaesassenes 24
FINAING @N ENTILYc.covieiecirnecrine e nns 24
ReMOVING AN ENILYcocceircrcen s sa et sa e a e s a e 25

L1 oo F LT T TN =] 7 26
TPANSACTIONS ...ceieceeeeecccre et e e e e e e e s R e e s R e e e e sa s e e e sR s e e e e e ns 26
0T T TSR 27
Putting [t All TOGELNETcccevererererer ettt sn e nns 28
(2T = Vo T 1 AL oSSR 30
PersiSteNCE UNit.......ccoieieeirinecsisess s se s s s s sss e se s se s s sssssssnssansnsnnes 30
PErsiSteNCe AICRIVEcccovierccirire st nenp e e e A
SUMMANY....eitectccreresre s e e se e e se s e sessessesaesaesaesaesresaesaenaesaessessennenressensesensnnnsnnsnnnnns 32
Chapter 3: Enterprise Applicationsccccccumnnsmmnmmmsssssnsmmssssssssssssssssssssssssssssssnns 33
Application Component MOEIScccecrrerririeeriirie e snessessesaees 33
SESSION BEANS.......ceccirci s ————————— 34
Stateless SESSION BEANS........ccccvieererneere s s n s s e s re e nn e e 35
Defining a Stateless SESSION BEAN ..o 35
LifeCYCle CalIDACKScvueererereiririse st ss s e sa e s s e st stsss s s se s ss e sesssssensnnns 37
Remote BUSINESS INTEITACEScvererererererererene e ss s 38

CONTENTS

Stateful SESSION BEANS ... s 39
Defining a Stateful SESSION BEaAN.........cccou i 39
LifeCYCIE CalIDACKSeveerrrrseesrsrseesssssseessssssssessssssssesessssssessssssssssessssssssesssssssssnssssssssssnssssssnsnes 40

SingIeton SESSION BEANS..........ccccoii e 42
Defining a Singleton SesSion Bean ... s sse e s saesaenees 42
LifeCYCIE CalIDACKSeveererrseesrsrnseesessssesesssssss s ssssssesessssssessssssssssessssssssssssssssssnssssssssssnssssssnsnes 43
SiNGIELON CONCUITENCYeeveirieercrir s ere st ss s r e e st b s e e s s s b e e b e ae st et s b e e sne e snennnnnas 43

MessSage-Driven BeanS........c.cucvrcnrinmssnssss s s 45

Defining @ MeSSage-Driven BEaN..........c.cocucceerernenmrennnesesessssesesesss s sesessssssssessssssssesssssssssssssssssssens 45
SBIVIBES ...t ———————————————— 46
Dependency Management ... sies e sne s s sne s s sne s 47

DependenCy LOOKUP......ccuoceercrereree et se s s s s s s 47

DependencCy INJECTION.. ... ————————————— 49
Fieltd INJECTION......cvieceerrrceerr e e s r e r s e e s ae e e sas e npsr e ne e rn e nnn s 49
SEHEI INJECTION.... ettt 50

Declaring DEPENUENCIEScicevverierieriirrirsirse sttt s e e s a e e e e e e e e e e e na s 51
Referencing a PersiStence CONTEXL..........cov v 51
Referencing a Persistence UNit............cccvvinnnnnnss s 52
Referencing Enterprise JAVaBeaNScocvveververererererseressereeseseressessssesassessessssessssessssessesassesassees 52
Referencing SErver RESOUICES...........vurerererereresererese e e e se e e e e e e e e e e e e e e e s e s s s s sasssssssssssens 53

Transaction Management ... ———— 53

TranSaACtiON REVIEW.........cccceerriecsrrise s s se s s s s s s s s se s s sssnsssss e sesssssssnsnsssnsnnes 54

Enterprise Transactions in JAVA..........css s 54
Transaction DEMArCatioNc.cccveerierrienssr e sr e r e e sn e nn e 55
Container-Managed TranSaCtioNS..........covrerererererenesese s 56
Bean-Managed TranSaCtions ... 58

Using Java EE COMPONENTScccceverereereereenseseessesssssssassssssssssssssasssssssssssssssssssssssssnnns 60

Using a Stateless SeSSIioN BEaN...........ccvvrrrneirrssssss s 60

Using a Stateful SesSion Bean ... 60

Using a Singleton SESSION BEANcccvvevrierrrerenirererseressersesessesessesessessesesssssssessssessssessssassesassessssenes 62

Using @ MeSSage-Driven BEaN...........cccvrrererersenesessseese s seseses e ses s sesssssssssssssssssssssssssssssssnns 62

Adding the Entity MAnAQET.........ccvcvirininininnnense s s e s s s s e s ss e ss s e s s s e ssessesssssssssnnns 63

Putting It All TOGETNEN ..o s 64

Defining the COMPONENT ... e 64

Defining the USer INTEIfaCecccccvecriernsers s 66

Lo T 6 Vo 4 To I L PP 66

vii

CONTENTS

SUMMANY....eeeieeeetrerre e a e n e e r e e s a e e ae e e ae e s aenn e e e ae e e e 67
Chapter 4: Object-Relational Mappingccccusseemmmssssssnmmsssssssnmssssssssssssssssssssssnns 69
Persistence ANNOALIONScccveerrerrensessesses s s sr e snssnssessnnnnns 69
Accessing Entity Statecccvvvvrinininirrrr s 70
FIBIA ACCESSueirierrerrerrsesss s s s s s s s e s a s e a e sae e s e s R e e e Re e e Re e e e e e e e Re e s Rn e e ne e e e ns 70
PrOPEITY ACCESS ...eeuriiitiiesirstr e see st sttt e s e e s s e s s e e e s a e s e e s e s e s e e s e s e e e e s Re e R e e Re e R e e R e e ReeRe e Re e R e e Re e e e e s e e e nennes n
IMIXEO ACCESS ...c.vvucueereruceressseese s s e e e et se s s e e s s e e s eae e e s A e ae e e s A e Re e sE s R e Re e sE e R e Re e se s R e R e as e ensnann e nnas n
Mapping 10 @ TADIEc.ceecercrcrr e 73
MapPINg SIMPIE TYPES....cccvverrerrerrerrirserserses st se s e se e se e s e s e s e s s s sassnssassassnnns 74
COlUMN MAPPINGS .e.veuerreirerrrseersse st s s ses st e e s e s se e e e s s e e e b e e R e e e Re e R e e R e e e Re e e Re e e Re b e e nee e ne 75

I 7 I) (0] 1113 o OSSR 76

LI T o To B 00 T C PSSP 77
ENUMEIAEA TYPES ...ceieieccirerece et et s nnnn s 78
TEMPOTAL TYPES. . e titriritrririts sttt se e e s e e e e e e e e b e b e e e se e e e e e seesaeseeseensena e s e e e e e s enennnen 80
TranSIeNt STALE. ..o iR rnnn 80
Mapping the Primary KeY........cccvcrvrinsrsersissessss s sss e s e s s snsssssnnnnnns 81
Overriding the Primary Key COIUMNccoverrrererererereressersesersesesesessessesesssssssessssessesssssssssessssesassees 81
PriMArY KEY TYPES ...ueiueireririirist sttt sttt n e st st sa st sp s s e p et nn e e ne b e nn e e 81
Identifier GENEration ... s 82
Automatic Id GENEratioN...........cv v s 82

Id Generation USING @ TADIEcoe it 83

Id Generation Using a Database SEQUENCEccecevuerererererrrere s s eres e raesesseses e sassesassesaesessenes 85

Id Generation Using Database Identitycccoviverrnnsencnnniescsrsesese e 86
RelationNShiPsccoceiceiiriririr s n e n e nnnn 87
RelationShiP CONCEPLSceceeerererereeerererererseree st raeseseres e sas e sse e saeses e sassesassesassassesassessesesassesasnessesseneres 87
210] TR 87
DIreCHIONALITYcoveeeccercerr e e n s 87

L0 1011 88

L0 11T 1 TR 89
MaPPINGS OVEIVIEW........coerererererereeserererseressessesersesessesssersssssssssssessssessssessesssssssssesssessessssssssssssssesssnees 90
Single-Valued ASSOCIALIONS..........cccccire e 90
Many-t0-0ne MapPINGS ...c.ccvcerieriirierieri s e e e e e e et e sa e nn e nnenn 90
USING JOIN COIUMNSveviecererrseese s s s s e s e ss s e e s s s s sss s e s s ssssesssssssssssssssssnsssssassnsnnns 91
0NE-t0-0N€ MAPPINGS...ccciierrrierriire st p s r e e e s e e b e e p e nn e e 93
Bidirectional One-t0-0ne Mappings. ..o sss e ssessesssssssssssssassas 94
Collection-Valued ASSOCIALIONS..........orurererererererrsr s s 95

viii

CONTENTS

0ne-10-Many MaPPINGSccoererreerereresearresssesssessssssesessssesesssssssssessssssssssssssssssssssssssssssssssssssasssanns 95
Many-t0-Many MapPINgScocceererereamrereee e se s se s e sesas e sr e sesas s e e r e s snnas 97

USING JOIN TADIESeeeeerererererere e se e ssssessssnnnens 99
Unidirectional Collection MappPings.........cooueerererseeseressssssesesssssesesssssessssssssesssssssssssssssssssssssssesens 100

Lazy RelationShips ... s 101
Embedded ODJECTS ... 102
1T 1] 1P SRS SR S SS 106
Chapter 5: Collection Mappingccccsuumssnsnmmssssnsnmsssssnsnssssssnssssssssnnsssssssnnnssssnnns 107
Relationships and Element COllECtiONS...........c.ccveeererenserresensessssese s sse e ses e ssssennens 107
Using Different ColleCtion TYPEScccceeerereerere e sse e see e sne s s e s s e 110
SEtS OF COIECTIONS ...ceerreerccre e e a e s e s se e e r e s 111
3 111
Ordering By Entity or Element AttrbUte ..o 111
Persistently Ordered LiStS........ucuuiesenernsesesesrssesesssssssessssssssessssssssessssssssssssssssssssssssssssssssssssssnns 112

1T 114
KEYS NG VAIUBS......coceriiiririr ittt sttt sa st sa e st s sa e st s a e e b s b e s b e b s e s aesaesassnesnennens 115
KEYING BY BASIC TYPEB...ucueruererererererersesereressessserssssssessssessssessssesssssssessssessessssesssssssssessssesssssssssaes 115
Keying by Entity AtribULe.......cco - 118
Keying by EMbeddable TYPE ..ot ses s s s sss s ssesaessessesassaesnesanns 119
KEYING DY ENEILY ...t se s se s 123
UNLYPEA MAPS ...ttt st p e et s r e e Re e nnis 124

RUIES TOF MAPS ...vecceiesieeeriss e s s s s s se s se s se s ne s nn s snssnnenns 125
DUPHCALESeceeeceeerere s e 126
NUITVAIUBS ...ttt sr s s s s s s n e g s n e n e e ae e s e nn s e p e e nennnnas 128

5T ES O T (o 128
SUMMANY.....ciiiiiirirei s a s a e e e e 129
Chapter 6: Entity Managercccuunmemmmmmmmmmmsssssssssssmmmssssssssssssssssssssssssssssssssssnss 131
PersiSteNCe CONTEXLScceeererrrrereresserrese s sse e srs s nr s sns e nns e sneennens 131
Entity ManAGEIS.......cccoricirineir s 132
Container-Managed Entity MAnagerscccvvririninininnensesssssesse s sssssssssssssssssssssssssassassassens 132
TranSaCtioN-SCOPEM.......c.eurerererrrrrr s 132
(5] 10 L o TP 133
Application-Managed Entity MANAQELS.........cccveererrerrrerenersererserssersesesesessessssesssssssessssessssesssssssesassens 136
Transaction Managementccovvevenniesnsessesssese s s sss s 138
JTA Transaction Management ... s s 138
Transaction-Scoped Persistence CONTEXLSccvcvrreenerenissessssnssess s s s sessssssssessssnns 139

CONTENTS

Extended Persistence CONTEXLS..........covrerererererenenesesire e se e e se e e sesese e s e e sesssssesens 140
Application-Managed Persistence CONtEXLSc.ccoovvierrienninnsnesses s snsnens 144
Resource-Local TranSACHIONS.ccuvveeererserress s e e e sr s s sss s sss s ssssssssesssnnns 147
Transaction Rollback and Entity STAte ... 149
Choosing an Entity Managerccoccoeeeeeresencsesse e sse e ssssse s sssssssssssssnssnsssssnnnes 149
Entity Manager OPerationscccvvvververrensessessessessesses s sessessessessessessessssssssassssssssanses 150
Persisting an ENtityccccoiieiincsinc st s 150
FINAING @N ENLIY ..o s a e s s s s s e e e e n e 151
RemOoVINg an ENIYcccccoeeeiieinernecse s 152
CasCading OPErationscoveceeeereriercrereresese et se s e e e s e e sesaene e e sn e nrnnns 153
CASCAUE PEISISTucueereiricerrssssesesr s sesess s se s se s s s s e s as s sr s e e s se e s se e s ae e s e nrsnnsnnnnnes 154

L0 E T Lo Lo T 3101 155
Clearing the Persistence CONEXL.........cccviicrirniniescr e 156
Synchronization with the Databaseccccvernierernicsns s 156
Detachment and Mergingcccvcvvrrrsnsnsessrses s s 158
DEtaChMENL..... o —————————————— 159
Merging Detached ENttiesS........ccoceereriecrerersesrrenssesese s se s sssnns 160
Working with Detached ENtities..........c.cvvriinnnn s 164
Planning for DEtaChMEeNt ... sn s e 166
Avoiding DEtaChMENt...........covriiirrrr s 168

1 0TI £ 1 (=T 172
SUMMANY.....oiricei et s a e s ae e e R e e R nn e e Re e e e nn e e nnis 177
[F: 7oL Gl TR T I LT —— | |)
Java Persistence Query Language.........cccueeeeeeereeesssssssssssssssssssesssssssssssssssssssssssnsssssnnns 179
GEttiNg STAMEd ... ————————————— 180
FIRErING RESUIS ...ttt 180
Projecting RESUISccviiieirir it a e s r e s s s s a e s a e s e se e sa e nn e e 181
JOINS BEIWEEN ENHHIES......c.ccccce s 181
AQOregate QUETIESccccieeererirerrs et s e s e s b et s b e e e ae e s s b et e ee e e e e ne e enennnnens 182
QUETY PAraMETEIScccevieicerrsrseesrsss e sess s s s s e s s s s e st sesa e nene s e e s nnns 182
DEfiniNg QUETIESccerereirereeresee s 183
Dynamic QUery Definition.........ccucvvririnininsirr e e e 183
Named Query Definitionoucceceiniescirnnesr e e 185
Parameter TYPEScoccvrieirereire s 187
EXecuting QUENIEScccvierirncirnr s 188

Working With QUErY RESUIS.......coeruieererrnses s s s s e s sss e ss s s ss s s sessssssssssssssssssssssssnes 190

CONTENTS

UNEYPEA RESUILS ... s s s 191
Optimizing Read-0nly QUEKTEScoceeeererece st ses e sr s sns e 191
SPECIAI RESUIT TYPES...cereererireeererererererssseraesessesessersssessesessessssessesessessssssassessssesssssssesassessssesssneres 192
QUETY PAGING....currieerurirerecsisiresess e sese s s e s s ss e st se st s st et se s s s e e s snsnsens 193
Queries and Uncommitted Changes.......c..ccvreerrseressesssssessssessssessssessssssssssssessssessssessssssssssssssssnsssessnnes 195
QUETY TIMEOULS ...vueceerrsreseerrsss e s s s s s s s s s se s s e e e a Rt ne R e e e e p e e e e nnns 198
Bulk Update and Deletecccvrenirncninncirse s 199
Using Bulk Update and Delete.........cccvvrvririnininininsenie s s s s e se s s e s s s s s s sssssssssssssens 199
Bulk Delete and RelationShips ... 201
QUETY HINES ..ottt 202
Query Best PractiCes........ouuuererererenessnnnsssnsnssesesese s ss s sssnsenes 203
NAMEA QUETIESecerererererisesere s 203
REPOI QUETIESeeeeereerreir s es s s n e e ne s s e a e e ae e s ae s n e e r e e nennnnas 204
VENAON HINS.....ccviecccersccseesss e sr s e e s e as e e g e e p e nnnpnnn s 204
Stateless SESSION BEANS........cco it 204
Bulk Update and Delete..........ccovrrciesercsrnessssesssss s s s e s ssssesssssssssnsssssssssnssnnnes 205
Provider DIffErBINCEScieeerererererrisi s 205
SUMMANY.....ciiiiiirirei s a s a e e e e 205
Chapter 8: Query LANgUAQEcuurusssmmnmessssnssssssssnsnssssssnsnssssssnssssssssnssssssssnnnssssnnns 207
INEFOAUCHION......ceeceece e r e nn e enennnens 207
TEIMINOIOGY ...ecrieeeeriereire e e e bR e s e e e e e Re e e Re e e e R e e ne e ene e nnea 208
Example Data MOGEl ... sseses s s ss s sss s s sss s ssssesasssssssssssssssssssssnnes 208
e L0 o] LAY o o] [T LT o] ST T 209
SIECT QUETIEScueeiicirerei it 211
SELECT ClIAUSE ...uerereueeersssesessssssssessssssssesssnsssssasssssssassssnsssssassnsnsns 212
Path EXPIESSIONS......cotieiueeereruecesesse et se e s se s se s se s se s se s s s e e s b e se st sesns s e e 212
Entities and ODJECTSccvcceiierrirrcsrerr s e 213
COMDINING EXPrESSIONS......ccervruieererrseesessssesesesesssssssssssssssesssnens 214
CONSLIUCTOr EXPIESSIONScviuiucuerererceseseseeesessesesesssee e e e e e s sss s e e sss s e s sss s s sssssnsnnens 215
Inheritance and POIYMOIPRISMcoeoireererrrc vt re s sae e sae e s sa s e e e nnen 215
FROM ClAUSE........cererereresesesesessssssssssssssssssssssssssssssssss s s 216
Identification VariabIes ... 216

] 3PP 216

L 1 0T 223
INPUL PArAMETEISceieercerrcrir e s a s n e s ae s n e nnnnis 223

BaSiC EXPreSSION FOMM.......ccuvurererererereseresesesesesesesesesesesesesesesssnns 223

[Es.

CONTENTS

BETWEEN EXPIESSIONSccvrvrerererereresesesesesesesesesesesesesesesesesesesssesesesesssesssssssssssssssssssssssssssssssssssssssnns 224

LIKE EXPIESSIONSctrerucueeresuecesessseesessseesssssssessssssssesssssssssssssssssssssssnsssssssssssssssssssnssssesssnssnnns 224
SUDQUETIES c.vvieeerrrrs s e s e e e a e e R s n e peae e e nnn s 225

IN EXPIESSIONSvivieiererereresesesesesesesesesesesesese e e e e e e e e e e e e e se e e e e e sesesesesesesesbsbsbsesbsbsb s b s b sbspsnnnas 226
COlIECtION EXPrESSIONSucuereruiucirirrseestsss et srs et s e e e ss e e e e s se e se et se e e sessenssennns 227
EXISTS EXPIESSIONS....coviriueererssseesessssssessssssssessnssssssssnsssssssssssssssssnnns 228

ANY, ALL, and SOME EXPreSSIONSccecerveriersersersersessessessessessessesssssessssssssssssssssssesssssessessesssssessenas 228
SCAlAr EXPrESSIONS......ceticeerirresssessssessssesss e sse s se e s ss e sssrsse s s s s s e e se e s e s s e R e e e Re e s ae e e Re e nnenrenens 228
)] 1 229
FUNCLION EXPrESSIONS ...t e 230

CASE EXPIESSIONScvrvrererererererereresesesesesesesessns 231
ORDER BY ClAUSEovvvrerereseresenssssssssssssssssssssssssssssssss s s ssanas 233
Aggregate QUENIESccecerverrersersersessis s sn s sn s sn s r e nn s nn s nnennnnas 233
AQOregate FUNCHONScccvveeercrer et re s ereserse e sae e sesas e saesesas e saesassesas e sassesassasaesassesssnssassessssansens 235
N T 235
COUNT ...ttt e s e e s e s se e se s e s e s e s e s e s e s e s e s e s e s e e R e s nEnEnEnEnEnEnEnEnEnEnEnEnEnEnEnsnEnEnsnsnsnsnsnsas 235

1LY SRRSO 235

IVIIN .ottt b bbb bR R R R e R e R e R e R R e R e R e R e R e R e R e R e R e R e R e R e ReReReReReRe R R e R e RnEnEnEnEnEnran 235

SUM. ... e e e e e e nE e e nEnE e nEnE e e nE e e e e e e e nees 235
GROUP BY ClAUSE.....ccrvreeeererrneeseresseesesssssssssessessssssssssssssssssssssssssssssssssesssssssessssssssessasssssssassssssssans 236
HAVING CIAUSEvevererereresesesenssassssssssssssssssssssssssssssssasas 236
UPAate QUENIESoveveeeececerereresesss e sesssss s sesss s ss e s sssssssssssssssnsnsnens 237
Delete QUETIES......ccviereiereise s sr s sr s s as s sn s snnnnnens 237
SUMMANY....eciiiiiiriiee s a s sa e e 238
Chapter 9: Criteria APl ... ssasssssssasss 289
OVBIVIBW ...ttt s s s s s sae s a e n e s n e sa e a e sa e n e a e sa e sn e s e nn e nn e nn e nn e e e e e e e nnennnnns 239
THE CHItEHIA AP ...ttt 240
Parameterized TYPESovvceeerereerereseene s sss e s e s e s s e e r e e e nnns 241
DYNAMIC QUEKTESecueeereecere e e e se s st s e e e R e R e e e e s R e e e nrnnns 241
Building Criteria APl QUEKIEScvvuereeererereresssssssssesesssnens 244
Creating @ QUErY DEfiNItiONcccovreecrernecrrrrsse e nnns 244
BASIC SITUCIUIE ..ot n e s ae s n s r e nennnnas 246
Criteria Objects and MUtaDIlity.........cccceerrerrverrrerr e sa e e re e e e sa e sae e nnen 246
Query Roots and Path EXPreSSIONSccccceererrncnese s ss s s snsnns 247
QUETY ROOTS......corierrersesesesssse s s e s ss s s s s s a s s s s s e s p s n e e e ne e s ae e s n e e nnennnnas 247

Path EXPreSSIONS.ccvrvrerererereresesesese e se s p b 248

CONTENTS

THE SELECT CIAUSEcervrerererereresesesesesesese e e e e e e e e e s sess e s s s s s s s s s s s ss s sssssssssssssssssssssssssnnas 249
Selecting Single EXPreSSIONS ... s 249
Selecting MUItipIe EXPreSSIONScccceerererrereererererserersersssessssessessssessssessssesssssssessssessssessessssensssenes 250
USING AlIBSES. . evrererereresesesesesesese e e e se e e e e e e e e e e e e e e e e e e b sese s e se e sE s b sesE s e s e sE s b sEsEsEsE s b sEsbsbsbnrnrnnis 251

THEe FROM ClAUSEcoveereeereressesssssssssssessssessssssssssssesssssssssesssssssssssssssssssssnsssssssssssssessenssssnsssssssssssnnens 251
INNEr AN QULEE JOINS......ceiereireeerrsssseess s seess s sr e e s sr s e s sss e s se e e sssss e e sesssssnennns 252
L 6] 0 L] 1 OO 253

THE WHERE ClAUSE.......cccueeeerineeresisesese e sss et sssse e s s s sssss s se s ssssssesessssssssessssssesssssssssssssssssenes 254

BUIIAING EXPrESSIONS.....cecceeererecrerrseise s ese e s ses s e sss s sss s s s s s sss s ssss s e sessasssssnsnns 254
PrEUICALESceeeeeeece ettt a e n e 257
L) TP 258
Parameters........coiiiniiii i —————————— 258
SUDGUETIES c.vuerreerrersessssesss s e s s sss s s s se e s s s s e s ae e s ae e s g s s e e e Re e s e e s e e e R e e s Rnnrnnennnnens 258
N EXPIESSIONS ...vviueueersssseesssssseessssssssessssssssessssssssessssss e s sessssessssssssesssssssenssssnsenssssssenssssssssnsnsns 261
CASE EXPIESSIONScereiucucuerereecesessseesesss e e s se s s s se s s se s s e s s as e e e s ae e b s e s se et sasnsnsnnas 262
FUNCHION EXPrESSIONSc.cieericresirrsssssesese s s s s sn s e s s e sne e s e srs e sasnsnsnnnnes 264

The ORDER BY CIAUSEcoururererererereresesesesesesesesesesesesesesesssesssns 264

The GROUP BY and HAVING CIAUSEScccvererererererereresesesesssssessasans 265

Strongly Typed Query Definitions..........ccovceercrennicriesnerr e 265

The Metamodel AP ... ————— 265

Strongly TYPEA API OVEIVIEWcceveriririerie st s s s s se s sttt st s s sassns s s 267

The Canonical Metamodel...........ccvverrrnnseserss e sn s s 268
Using the Canonical Metamodel ..o 269
Generating the Canonical Metamodel ... sesees 270

Choosing the Right TYpe Of QUEIY.......ccceereirerrirreirrrs e 271

SUMMANY.....ciiiiiirirei s a s a e e e e 271
Chapter 10: Advanced Object-Relational Mapping.......ccccusseeenesssssnnssssssssnssssssnns 273
Table and Column NAMEScccveeerreresnernsese e sss s s sns e s sessens 273
Complex Embedded ODJECTScccoeeerererrececre e sn e 275
Advanced Embedded MapPingS.......cccccererereererrererserersersesessesessessssessssssessssessssssssssssessssesssssssssassesassens 275
Overriding Embedded RelationSNiPSocceerernescrernescse s ssssns 276
Compound Primary KeYS......ccceeererereressessessessessesssnses 278
IO ClASS...eririueeerrrseese s sse e s e e s e s s e e s s R e e e R e e e e s R e Re e e R e Re e R R e Re R A e R e e e E R e e e Enrans 278
EMDEAded Id ClaSs........cccieerereere et a s 280
Derived 1dentifiers.........crin s ————————— 281
Basic Rules for Derived Identifiers...........oornnsns s 282

CONTENTS

Shared PriMary KBYccovcecnmririseirinssesesessseses s sss s ss s s s e sssssssessssssssssssssssssnns 283
Multiple Mapped ARFDULES......coc v sa e e sa e sa e saenes 284
USiNG EMBDEAUEAIAccveeeeerrneererrsescss e s e e ss s e sssss e ss s sa s sn s s s e sssss e ssssssssssnsans 286
Advanced Mapping EIEMENtS..........ccocrvrvrinrnienserss e 288
Read-0nly MapPings.....coccucrirririerieniensesses st sr ettt sa e bbb e e e e e e e sa e sa e e e snennenaenes 288
00 110 =11 289
Advanced RelationShips.........c.cormnrenn s 289
USING JOIN TADIESceiecrreerrerrssssrs e sr s r e re e e s r e s pn e r e nennnnis 290
AVOIdING JOIN TADIESceererererere et b bbb bbb bbb pspspsrsnnnas 291
Compound Join COIUMNS ..o ——————————— 292
Orphan REMOVAL.......ccuvieerrrrnesesessssesesssssesesssss s sess s sss e s ssss s ss s ssssssessssessssssssssssssssssssnsssssssassnsnsnsans 294
Mapping Relationship STAteccvveeceirrccirrr e 295
MUIEIDIE TADIES.....ccreiiiirririirire st 297
10 LT gL 300
Class HIBrArCRIEScouveceeerccere ettt e e n e 300
MaPPEU SUPEICIASSES......ceveeruerererererseserseresserssersssessesesesssessssessssssssssssessesessessssssssssssssessenessensnses 301
Transient Classes in the HIErarchy ... 303
Abstract and Concrete CIASSES ... 303
INNEFtANCE MOTEIScovevceerrrreere e a e p e e p e ne e r e rnnns 304
SiNGIE-TADIE STFALEQYcceeeerrrrreerrriresere s ne s 304
01T B (- (-1 | 307
Table-per-Concrete-Class Strategyccocvvrrrerererierrrererseresereressersesessesesessssessesessesassessssessenens 309
Lo I Lo L] U T 3
1T 1] 12 SRS 313
Chapter 11: Advanced TOPICS....uuuuusesmressssnssssssssnsnssssssnssssssssnsnssssssnsssssssnnnnssssnnns 315
SQL QUETIES ..cuvrueuererueererueeressesessssesesassesessssesesssssessssssessssssessssssessssssesssssesssssessssssenees 315
Native QUEries VErsuS JDBC.........ccoucieiienrnsesnssessssssse s s sessnsensssnnes 316
Defining and Executing SAL QUETIES.......covureeererrseerereseesesess s sessssesesssssssssssssssssssssssssssssssnssssssens 318
SQL ReSult Set MaPPINg.....c.cceverierrierisierress st st se st s e st s e r et re e e e s pe e 320
MapPINgG FOTEIgN KBYScoueeiriererererrirerererersersssersssersesssessssessssessesssssssssessssesssssssssssssssssesssnsssssssaes 321
Multiple ReSult MAPPINGSccoceererrieirereseeesesesesesessssesesessssesssessssssessssssssssssssssssssssssssssssnsssens 321
Mapping ColUMN AlIASES.....c.cvververieririerierrese sttt se e e s sr e e e snennennens 321
Mapping Scalar ReSUIt COIUMNSccccruerererererererenesesereressesesessesessesessessssesassssassesssssssessssesees 322
Mapping COmMPOUNG KBYSccvirriirniresinesisesss s s s seses e sss e s ssessssessssessssssnssesessssessssenes 324
MappPing INNEITANCEccccvirirr e sa e s a e sa e sa e sa e s aesneneens 325
Parameter BiNAiNgooovvrrrnnnrcisssssss s 326

CONTENTS

LifecycCle CallDACKSccovverrenererensersessssessssesssssssessessssssssssssssssssssssssssssssesssnsssssssnssnes 326
LIfECYCIE EVENES ...ttt e 326
PrePersist and POSIPEISIST.........cccviiecreiiccsi e seens 326
PreRemove and POSTREMOVE ... 327
PreUpdate and PoSTUPAALeccocvviininininsrn et sn e 327
0L 0 T 327
Callback MELNOUS.......cov et 327
ENterprise CONTEXLS.......cccvveerrierssrre e s r s s r e s r e nenn s 329
ENTItY LISTENEIS ..o s 329
Attaching Entity Listeners 10 ENtities ... 329
Default Entity LISTENEIS......ccoviccierrrneserrnsssess s sess s e sssssssssssssssssssssssssssssssssssennns 331
Inheritance and LifecyCle EVENTS ... 331
Inheriting Callback MEtROMScccvecreriecrrr e e sr s e 331
INheriting ENtity LISTENEIScccveereeirererererreresrereeseraesesesessessssessesessesasessssessssesassassessssessenssssnsnaes 332
Lifecycle Event INVOCALION OFdEr........ ..ot 332
Validation ... ———————————— 335
USING CONSIFAINTScoceieieiececece e 336
INVOKING ValIAALION ..ottt 337
Validation GIOUDS ...covvrveeererrsseesensssssesesessssesesssss e e s sss e sssss s s ss s e e s sss e sesss e sesss e e sessssassssssnsasenes 338
Creating New CONSIIAINTS ..o 340
Constraint ANNOLAtIONS........cccvieerrrreserrrr e e e p et sr s e nas 340
Constraint ImMplementation CIASSEScuouerererrnseseressssssessssssssessssssssesssssssssssssssssessssssssssssssssssssssas KL
Validation N JPA ...t e e 342
Enabling Validation ..o e se s sn s e s sas s nnnnas 343
Setting Lifecycle Validation GrOUDSccccorrererersnenmnrnrnsesisesesssesessssssessssssssessssssssssessssssssessssssssens 343
0] TR T =T oSSR 344
ENtity OPEIatioNnS.......ccceoerierercrerireerereseresesseressesss e sae e sae e ssese s e sas e sas e sas s saenessesassesassesassassesssnessensnaes 344
BN ACCESS o euitreetre s rir st res st st a s e s e s e e e e e R e e e AR e R e Re e e e e e e Re e nnn 345
Refreshing Entity State ..o s 345
01 o SR 348
OPLIMISTIC LOCKING ...cuvvreecererineeriris s ses s e s sss e s ss s se s sessssassssssnsns 348

L1 £ (0] 21T o TSSOSO 349
Advanced Optimistic LOCKING MOUEScccceeeruererrererserenerserersersssersssesessssessssessssssessssesssssssssssaens 350
Recovering from Optimistic FailUres...........ccocoriecnnrc e 355
PeSSIMISHIC LOCKING ...ccvcceierrrcrrssirrssessessse s sessssesss s ssessssess s e sss s ssssesssssssesssssssssessssssssssssssssnssssnssssnsnns 358
Pessimistic LOCKING MOTES..........coverererererererere e se e e e e e e se e s s e ss s sssssssssssnns 358
PESSIMISTIC SCOPEc.eieiuicere et sesn s 360

CONTENTS

xvi

PeSSIMIStC TIMEOULScceviererererere et 360
Recovering From PessimistiC FaIlUrES..........ccovienrinicicn e 361

072 T 11 T TS 361
Sorting THroUQN the LAYEIS......c.vcceeeirenecreriseese s e s see s ss s ss s ssssssssssssssssssssnsnnns 361
SHAred CACKE. ... e 363
Static Configuration of the CaACKE ..o s 365
Dynamic Cache Management ... sn s snnan 366
ULIlItY ClaSSES.....ceruiueermreirsseesssseiss s s s s s 368
PerSIiSTENCEULILcceee et s 368
PersiStenCeUNItULIL. ... 368
SUMMANY.....ciieieirereerere s ss e as e as e as e sasn e sanannn s 369
Chapter 12: XML Mapping Filescccucmmsmmmsmmmsssmmssmssssssssssssssssssssssssssssssssssnsns 371
The Metadata Puzze............ccoiiinnirrr s 372
The MapPing File ..o sn e s sn s sne s nne 373
Disabling ANNOTALIONScveieiereierirr e 373
xml-mapping-metadata-complete.........ccocvirinininini i —————— 374
Metadata-ComPIEte.......ccvcceicrrre e r s 374
Persistence Unit DEfaUlLs...........ccco i 375
SCREIMA ... e R e e E e n s 376
CALAIOG ..t —————————————— 376
delimited-identifiers.......o s 376

T 111 377

Lo o2 L0 LR 4T £ P 377
BNELY-lISTENEIS ... ——————————————— 378
Mapping File DEFAUILSccocveceereererreresirerereresseree e rae e se e s e sa s e sae e saesesaesassesaesesaesesaesassesassessssessenenaes 378

[0 T 62T T OO 379
SCREIMA ... R e E e s 379
CALAIOG ...t ——————————————— 380
T 1 1 380
QUErieS ANA GENEIALOLScccvveererrsesererrsesesr s e srs e s s e e e s s e s n s s R e e e ae e e nsa e e nrnnns 381
SEOUENCE-FENEBIALON......cueueueeseueeeeee e ne et ne e e e e e e 381
1ADIE-GBNEIALONe e e n e nn s 382
NAMEA-QUETY ... eeeeeeteee st s st s st s st s e st e s e e e e s e a e e e e e e e e e e e e nanans 382
NAMEA-NALIVE-QUETYeeeeereieccere e eese s sr e ss s e a s se e e s as e s ne e b s s ne et sesnenssnnas 383
SQI-reSUt-SEt-MAPPING ..cccerierieriirier e e e e e e e e e saesaesaesae e e an 384
Managed Classes and MappPingscccvreerrrersssesmsessssssesesessssesesessssessssssssssssssssssssssssssssssssessssssssens 385

CONTENTS

ATIFIDULES ..o 385

LI 0] O 386
1dentifier MAPPINGScoeeerererrererrereserererreresserseseraesessesessessesesassessesassesassessesessesessesassessssesasnensensnaes 387
SIMPIE MAPPINGS ...vrveeeerrrreirerrnesese e s e ss s s s asss e e ssss s e ssse s e ssssnsssessssnsnaes 389
Relationship and Collection Mappingscccvvrrrininininnsensensessessesse s ssessessssssssssssssasssssanns 391
Embedded Object MapPiNgSccccvveereerererererereressereeereseseres e sas e sassessesessessssesassssassessessssessssenaes 398
INheritance MaPPINGSccccvrnirrre et se e e e e p e e nennnns 401
LIfECYCIE EVENTS ..ot n s s p s s s sr e n s 404
ENTit LISTENEISeee ettt sttt 404
SUMMANY.....ciiiiiirirei s a s a e e e e 406
Chapter 13: Packaging and Deployment...........cccccnnemmnmmnsssnnnmnssssssnssssssssssssssnns 407
Configuring PersiStence UNItS.........cccveverererenessen e sss s ssssss s ssssssssssssssssessanses 407
Persistence Unit NAME.........c.ccovrrceiesinesrssesssesss s se s s e sssessssesnssessssssssssssssssssnssennes 408
TrANSACTION TYPB..cvrerreerererererererseraesereses e rseersesesaesessesae e ssesesasrasaessesesaenesaesesaesassesasnessenerassssesansens 408
PErSiStENCE PrOVILENceeeeercee ettt 408
DALA SOUICEcvrereecerire et e b s e b s e d e E b s R e e b e b e et E R e e nn e 409
MAPPING FIlBS.....e i s s s sas g e e e e pa e e e nnans 410
MANAQEU CIASSESc.crerurcererereere e e s e e e e e s se et sesn et nrnnns 41
LOCAI ClASSES ..cuvrrrueuerrresseseeresssseessssssssessssssssesssssesesssssssesssessssessssssssssssssssenssssssenssssssensasssenssnens 41
Classes in Mapping FileSccovrrenerrrnneeneressesese s e s e ssssssessssssssesssssssssssssssssssens 412
EXPICItY LISTEA ClaSSES...eueerrererererersererserersersssersssessesessessssessssesssssssessssessessssesssssssssessssesssnesssnssses 412
Additional JARS 0f Managed ClaSSES.......cuouuereresesesersssssessassses 413
Shared CaChe MOGE ...t e 413
Validation MOGEccoeceieircercrr e s n s r e s nennnnennnnen 414
Adding Vendor PIrOPEITESccoceerreerrrensesersesssesesessssesese s ssssssssssesessassaes 414
Building and Deployingccucverrerrersirsessersessesses s ses s e sessesses s snssnssessssssssnnses 415
Deployment CIasSPathcccccovvcrrrererrc s r s e sae e e s sa e sae e ae e sa e sa e e ae e naen 415
PaCKAGING OPLIONS ...c.covrercererineere st s s s s e s e p et ne s e e e nnns 416
EUB JAR.......ooeeeeeeeeeeesesesesesesessses s e ese s se e ss e e s s s s e s e e e s e e s £ e e e e e R e R R R e R e R R e R e R e R e R e R e R e R e R nEeEnEnrnrnren 416

WED AFCRIVEvevieeecrresseee e s e e e s a s rsr s e a s e e s e e s g e e R e e e ne e nnnnans 418
PersiStenCe ArCRIVE ...t 419
Persistence UNIt SCOPE ..ottt et e et 420

L0 TN 10 L (=TT - 420
Configuring the Persistence UNit ... snnes 421
TrANSACHON TYPC...uiiiririersir st a e e e e e e e e e e e e e e e e e e s e e e e e e e e s 421

DA SOUICE ...ttt b e bbb bbb e e e bbb bbb bbb bR nrnrnnas 421

L (0117101 OO 422

xvii

CONTENTS

Listing the ENHIHIEScveiereierirrrrn s 422
Specifying Properties at RUNTIME ..o 423
3L (=T 08 T 0 1 423

SChemMa GENEIALION..........cccvceeereiererere e sr e sr s nr e nnn e nnas 423
UNIQUE CONSITAINES.....cciuicerrinecriss et s e e a e e e se e b e rnnns 424
NUIE CONSTFAINTS......uuceeeirseerrrrseese e s r s s e s e s a e p s a s e e r e nnn e 425
StriNG-Based COIUMINS ...ttt sesnn s n s 425
Floating PoiNt COIUMNS ..ot s e e s s n bbb et p e 426
Defining the COIUMN........c.oe e 426

SUMMANY.....ciiiiiirin e sa e sa s sa s 427

(T 00 Tl I T (] 429

Testing Enterprise APPliCAtioNSccocevververienienrer s 429
011110) S SRSS 430
Testing QULSIAE the SEIVE........cccviecerrirr e nnnp s 431
TESE FrAMEWOIKSc.coeieceeeieeiee ettt n s 432

UNit TESHINGceccereicririri e 433
TESHING ENLIHIES 1.vvvceceeriescerrssse s sr s e sr s e as s p s g p e nnpnnn s 433
Testing Entities in COMPONENTSccvieieiiniieieieni s 434
The Entity Manager in Unit TESTScccvviinininini s s e s e s e s e s e s e s e s s ssessesssssesssnns 436

Integration TESHNG......ccocvvririrr e ———————— 439
Using the Entity Manager ...t ns s ss et s sns s snnes 439

Test Setup and TEArHOWNccvviererersesese e sr s s e r s s a s nnnr s e nnns 441

Switching Configurations for TESHNG.........covvererrnsesrrrr e s 442

Minimizing Database CONNECLIONS...........ccoverrnrernsessesssesss e s s sns e snnnes 444
Components and PErSISIENCEcccviuevereriesesessesese s s e ss s e ss s s sesssss s s s ssssssesssns 445

Transaction Management ... ———————————— 445

Container-Managed Entity MAnAQEISccoevrrererrereererierersensssessssessssesessssesssssssssssssssssessssssssssnses 450

0L TE] T o PP 452

Using an Embedded EJB Container for Integration Testingccccoceevvrnvnnncnsesnscnesnesenennene 453

3Ty = 1 455
SUMMANY.....eiierreeirerrr e sa s r s s a e ea s s ae e e ea e e e ae e e e e Re e e aennnnnas 455
Chapter 15: Migrationccccccemmnsssssssmmmmmmmmssssssssmmessssssssssssssse s ssssssssnnes 457

Migrating from CMP Entity BEanScccvvvververnerrerserressesserserses s ses e s s e sssssssasses 457
ScoPiNg the CRAIIBNGEccceererecerrrreere s e sn e e 458
Entity BEAN CONVEISIONccveerrerrseressse s s s s e s s e sss e sss e sss s s e ssssessssesnssssssssssssssnssssnssssnsnns 459

Converting the BuSiNeSS INTEITACEcccvveereresieesrsrnssesssrss s sese s sssessssssssessssssssenens 459

xviii

CONTENTS

Converting the HOMe INTEITACEouvererererererer e 463
Migrating from JDBC............ccocriririrrrrrr s e 467
Migrating from Other ORM SOIULIONSccccevververiererrer e 468
Leveraging Design Patterns ... sse e sas e 469

Transfer ODJECT ... e nnnnea 469
Fine-Grained TranSfer ODJECTScuueerrrnesesrrrseess s se s sss s sss e sssss s s s ssssssenens 469
Coarse-Grained Transfer ODJECES ... 471

SESSION FAGAARcceccececcct et e 472

Data ACCESS ODJECT.......cvrererererererr s 474

BUSINESS ODJECT ...ttt s 478

Fast LANE REAUETcccvvceerrcresmrrenessessssessssessssessssssssssssessssessssessssesssssssssssssssssssssssssssssssssssssssnsssssnnes 479

LT 1A T eT0] o PP 479

SUMMENY ... re e sre e se e s e s e re s e s r e s s e sre s e s e s s e saenaenaennesaennesaennenre e e nnennnnnnnns 480
INUEX ceeeerssrssssssnsssssssssssssssssssnssssssssssssssnssnssssssssssssnnnnnssssssssssssnnnnnnsnsssssnsnsnnnnnnnnnnns 481
Xix

Foreword

When the Java Persistence API was first released as part of Enterprise JavaBeans 3.0 in 2006, it was
quickly received as one of the most exciting technologies of Java EE 5. Like EJB 3.0, of which it was a part,
JPA 1.0 was focused on both function and ease of use, leveraging Java language annotations and sensible
defaulting to provide convenient configuration.

JPA 1.0, however, was not just a much-needed replacement for the heavy-weight entity “bean”
components of earlier EJB releases, although that was its initial reason for existence. As a more general-
purpose object-relational mapping facility, it was quickly recognized as such, and was expanded at the
request of the community to support use in Java SE environments as well as in the other Java EE
container types. As a “specification within a specification”, it had thus already outgrown its parent by the
time it was released.

Aside from its query language, there is very little in the core functionality of JPA that reveals its
origins as part of the EJB 3.0 work. The true origins of JPA, of course, lie in the world of object-relational
mapping products and projects, such as TopLink (now well past its tenth anniversary), Hibernate, and
JDO, many of whose lead architects—such as Mike Keith—were among the prime contributors to JPA.

However, JPA 1.0 represented only one facet of the work (and workload) of the EJB 3.0 expert group,
and, while it covered the core functionality needed for O/R mapping, it was not nearly as complete an
API as many of the products and projects which provided its first implementations.

The task of JPA 2.0 has been to solidify the standard, to expand its scope, and thus to provide
developers with greater portability for both simple and sophisticated applications. Like JPA 1.0, it has
been driven by experience from technology already in the field and steered by the requests from
members of the community.

The JPA 2.0 specification and APIs have more than doubled in size with this release. This reflects
additions to support many modeling constructs natural to Java developers, expansion of the
standardized mapping options, an object-based criteria query API, a metamodel API, support for
automatic validation, support for pessimistic locking, and much more.

In this book, Mike Keith and Merrick Schincariol present a comprehensive guide to the Java
Persistence API. As authors, they bring a depth of experience in O/R mapping technology that is rarely
equaled, as well as—in Mike’s case—years of experience in shaping JPA itself.

This book covers all aspects of the Java Persistence API. It is both thorough and accessible, and both
entertaining and exacting. It not only introduces the reader to all aspects of the API and discusses how to
use its constructs most effectively, it also explains what goes on under the covers and how to avoid
portability pitfalls when working with different vendor implementations. Throughout the book, the
authors provide carefully detailed explanations of the workings of object-relational mapping so that the
reader is left not only with a knowledge of the features of Java Persistence but also with a deeper
understanding of how it works. I hope you will enjoy it as much as I have.

Linda DeMichiel

Specification Lead, Java Persistence 2.0
Sun Microsystems

Santa Clara, California

About the Author

Mike Keith was the co-specification lead for JPA 1.0 and an active member of the
JPA 2.0 expert group. He sits on a number of other Java Community Process expert
groups, including JSR 316, the Java EE 6 platform specification, and the Enterprise
Expert Group (EEG) in the OSGi Alliance. He holds a Masters degree in Computer
Science from Carleton University and has 20 years experience in persistence and
distributed systems research and practice. He has written papers and articles on JPA
and spoken at numerous conferences around the world. He is employed as an
architect at Oracle in Ottawa, Canada, and lives with his wife Darleen, their four kids,
and his wife’s dog.

Merrick Schincariol is a consulting engineer at Oracle, specializing in middleware
technologies. He has a Bachelor of Science degree in computer science from
Lakehead University and has more than a decade of experience in enterprise
software development. He spent some time consulting in the pre-Java enterprise and
business intelligence fields before moving on to write Java and J2EE applications. His
experience with large-scale systems and data warehouse design gave him a mature
and practiced perspective on enterprise software, which later propelled him
into doing EJB container implementation work. He was a lead engineer for Oracle’s
EJB 3.0 offering.

xxii

About the Technical Reviewer

Jim Farley is a technology strategist, architect, manager and author. He currently
serves as a Director of Technology for Pearson Education, driving the development
of new educational service platforms.

Jim is also a lecturer in the computer science department of the Harvard Extension
School, and writes and speaks frequently on enterprise technology and other
strategic topics. He is the author of Practical JBoss Seam Projects (Apress), co-author

of Java Enterprise in a Nutshell (O’Reilly), and author of Java Distributed Computing
(O’Reilly).

Acknowledgments

Mike Keith

I would like to thank all of the friends and colleagues who offered to help in any way they could. You all
know who you are! Linda DeMichiel and Lance Andersen were very helpful going through the chapters
and finding bugs when it wasn’t necessarily convenient for them to be doing so. Jim Farley provided
great technical reviewing, and Tom Welsh always managed to have helpful suggestions in each and every
chapter. Richard Dal Porto and Mary Tobin were firm in trying to keep us to a schedule, but
understanding when the laws of physics couldn’t be broken. Michael O’Brien spent many long nights
translating our chapterware into running code, and probably got more than he bargained for! Thanks to
Doug Clarke and Shaun Smith for spreading the word that a JPA book was available, and to Dennis
Leung for offering his full support of my writing this book. Lastly, I thank my kids, Cierra, Ariana, Jeremy
and Emma, some of whom had to wait for a paragraph to be done before getting help with their
homework, and Darleen, who always did her best to take up the slack when her slacker couldn’t keep up.

Merrick Schincariol

I want to thank my wife, Natalie, and my children, Anthony, Evan and Kate for enduring through yet
another one of my little projects. It was far more than we bargained for, and their constant love and
support kept me going through it all. Mike was once again a fantastic partner for this project and
deserves special mention for his tireless efforts at the end. From Apress I'd like to thank Tom Welsh and
Mary Tobin for their efforts and valuable advice. Jim Farley provided insightful technical review and
Michael O'Brien proved to be exceptionally thorough in vetting our examples. At Oracle I'd like to thank
Rob Campbell and Dennis Leung for supporting efforts like this and the entire Ottawa middleware team
for taking such an interest in this work.

xxiii

XXiv

Preface

I can’t believe it has been three years since we published the first ever book on JPA 1.0, Pro EJB 3: Java
Persistence API. We received so many great remarks and compliments that before saying anything else
we would first like to thank all of you who communicated your comments to us. Your feedback on the
book was overwhelming, and we have been truly humbled by the response. We created this second
edition in the hopes that just as many will benefit from this one, too.

We have chosen to rename the book for the obvious reason that JPA is no longer a child of EJB, and
because JPA is all grown up and deserves its own title. However, it was not without some hesitation that
we did so. We didn’'t want people to think that this book was only about JPA 2.0, or that someone
couldn’t pick it up and learn JPA from it. We have indeed tried to keep that aspect of it intact, and still
believe it to be a perfectly suitable book from which a novice can learn JPA. For those of you that are
more experienced, or that bought and read the last book, we have tried to maintain all of the material
from the first edition. We did reorganize it a little, however, to better align with the two new chapters and
additional feature discussions merged into the other chapters.

One of the goals of the last edition was to keep the book as short and concise as we could make it,
but no shorter. We tried very hard to size it so that we could say as much as we felt was worth saying, but
still ensure the book would comfortably fit in your carrying bag for reading on the bus or train. However,
to be able to keep as much of the material from the first edition as we could, but add two more chapters
and many more features, seemed like a tall order indeed. The annotation reference became a casualty of
that quest, since we couldn’t justify using the page space for something that you could just as easily find
online. We're hoping that our bus and train readers, or any others that may be reading in offline mode,
won't curse us later for removing it.

The JPA 1.0 specification took a long time to complete, but JPA 2.0 took even longer. We are not sure
if it was because in the first round we left out the features that were the hardest to standardize, or if it
was because we just didn’t work as efficiently in the second round. Whatever the reason, it was a long
road, but we have finally arrived with a specification that fills in many of the gaps that 1.0 left open. Now
comes the fun part, when people can start using it. We have enjoyed the challenge of deciding how best
to present JPA 2.0 to you and hope that you will also find enjoyment using it.

This Book Is For You

This book is for developers, architects, coders and dreamers. It is for instructors and teachers,
researchers and prototypers. It is for anyone who wants to use persistence in the enterprise, on their
desktop or anywhere the Java platform runs and supports applications. We do not assume that you have
experience with persistence products, although we do assume that you have some experience with Java,
as well as some exposure (although not necessarily any experience) to the Java EE or J2EE platform.

A persistence API that reads and stores objects in a database requires some basic amount of
database and SQL knowledge, although it does not need to be extensive. JDBC experience would also be
an asset, but is not strictly required.

Overall, if you have a couple of years experience in software development then you should be in fine
shape to read this book and understand the topics that are discussed.

PREFACE

Code Examples

We have attempted to show code examples whenever possible because it is usually easier to illustrate
something through a code example than to spend two paragraphs explaining it. Of course, the
paragraphs will still be there, but the code will hopefully make it clearer.

The code examples tend not to be complete because we don’t want to clutter the demonstrative
code up with extraneous implementation details. You will often see comments with ellipses in them,
meaning we are leaving pieces out that we feel are unimportant to the issue. We have also tried to keep
the examples as short as possible so as to conserve valuable page real estate.

We used the Employee model in the first edition. Its simplicity and universality seemed to position it
as the right model for beginners and advanced users alike. For this reason (and because we didn’t see
any point in creating a whole new model just because the other one might have been a little dry) we have
carried the Employee model over to this edition. We didn’t get any complaints about it in the first
edition, so either it did its job, or it just put people to sleep and they were too dozy to complain.

The state fields in the examples are all defined to have private access, even though this is not
required by the specification. This was not a serious thing for us. It mostly resulted from the state fields
in one or two examples having been made private, and the rest of the examples ending up getting
changed for the sake of consistency.

We have been very careful to ensure that the book is agnostic with respect to the standard code
examples, but having said that, there are some cases when we required vendor-specific names or
features to explain vendor-specific behavior. Naturally, we used the Reference Implementations (RI) of
the Java EE 6 application server and the Java Persistence API. The Java EE 6 RI is called “Glassfish” and is
a fully featured open sourced application server that can be used under the Common Development and
Distribution License (CDDL). The RI for the Java Persistence API is called “EclipseLink”, and is an open
source and freely available Eclipse project derived from the commercially successful Oracle TopLink
product code base. Glassfish and EclipseLink can be downloaded together from java.net.

The examples are available for download from the Apress web site at . We recommend downloading
them and taking a look around to see how things work. Looking at and modifying examples is how you
are going to figure out that JPA 2.0 has gone even further toward complete modeling.

Contacting Us

We can be contacted at michael.keith@oracle.com and merrick.schincariol@oracle.com

mailto:keith@oracle.com
mailto:schincariol@oracle.com

CHAPTER 1

Introduction

Enterprise applications are defined by their need to collect, transform, and report on vast amounts of
information. And, of course, that information has to be kept somewhere. Storing and retrieving data is
a multibillion dollar business, evidenced in part by the growth of the database market as well as the
emergence of off-site secure data storage and retrieval facilities. Despite all the available
technologies for data management, application designers still spend much of their time trying to
efficiently move their data to and from storage.

Many ways of persisting data have come and gone over the years, and no concept has had more
staying power than the relational database. It turns out that the vast majority of the world’s corporate
data is now stored in relational databases. They are the starting point for every enterprise application
and often have a lifespan that continues long after the application has faded away.

Understanding relational data is key to successful enterprise development. Developing
applications to work well with database systems is a commonly acknowledged hurdle of software
development. A good deal of Java’s success can be attributed to its widespread adoption for building
enterprise database systems. From consumer web sites to automated gateways, Java applications are
at the heart of enterprise application development.

Despite the success the Java platform has had in working with database systems, for a long time it
suffered from the same problem that has plagued other object-oriented programming languages.
Moving data back and forth between a database system and the object model of a Java application was
alot harder than it needed to be. Java developers either wrote lots of code to convert row and column
data into objects, or found themselves tied to proprietary frameworks that tried to hide the database
from them.

Fortunately, a standard solution, the Java Persistence API JPA), was introduced into the platform
to bridge the gap between object-oriented domain models and relational database systems.

In this book we will introduce the Java Persistence API and explore everything that it has to offer
developers. One of its strengths is that it can be slotted into whichever layer, tier, or framework an
application needs it to be in. Whether you are building client-server applications to collect form data
in a Swing application or building a web site using the latest application framework, JPA can help you
to provide persistence more effectively.

To set the stage for JPA, this chapter first takes a step back to show where we’ve been and what
problems we are trying to solve. From there we will look at the history of the specification and give you
a high-level view of what it has to offer.

CHAPTER 1 1 INTRODUCTION

Object-Relational Mapping

“The domain model has a class. The database has a table. They look pretty similar. It should be simple
to convert one to the other automatically.” This is a thought we’ve probably all had at one point or
another while writing yet another Data Access Object (DAO) to convert Java Database Connectivity
(JDBQC) result sets into something object-oriented. The domain model looks similar enough to the
relational model of the database that it seems to cry out for a way to make the two models talk to each
other.

The technique of bridging the gap between the object model and the relational model is known as
object-relational mapping, often referred to as O-R mapping or simply ORM. The term comes from the
idea that we are in some way mapping the concepts from one model onto another, with the goal of
introducing a mediator to manage the automatic transformation of one to the other.

Before going into the specifics of object-relational mapping, let’s define a brief manifesto of what
the ideal solution should be:

e Objects, not tables. Applications should be written in terms of the domain model,
not bound to the relational model. It must be possible to operate on and query
against the domain model without having to express it in the relational language
of tables, columns, and foreign keys.

e Convenience, not ignorance. Mapping tools should be used only by someone
familiar withrelational technology. O-R mapping is not meant to save
developers from understanding mapping problems or to hide them altogether. It
is meant for those who have an understanding of the issues and know what they
need, but who don’t want to have to write thousands of lines of code to deal with
a problem that has already been solved.

e Unobtrusive, not transparent. It is unreasonable to expect that persistence be
transparent because an application always needs to have control of the objects
thatitis persisting and be aware of the entity life cycle. The persistence solution
should not intrude on the domain model, however, and domain classes must not
be required to extend classes or implement interfaces in order to be persistable.

e Legacy data, new objects. It is far more likely that an application will target an
existing relational database schema than create a new one. Support for legacy
schemas is one of the most relevant use cases that will arise, and it is quite
possible that such databases will outlive every one of us.

¢ Enough, but not too much. Enterprise developers have problems to solve, and
they need features sufficient to solve those problems. What they don’tlike is
being forced to eat a heavyweight persistence model that introduces large
overhead because it is solving problems that many do not even agree are
problems.

e Local, but mobile. A persistent representation of data does not need to be
modeled as a full-fledged remote object. Distribution is something that exists as
part of the application, not part of the persistence layer. The entities that contain
the persistent state, however, must be able to travel to whichever layer needs
them.

CHAPTER 1 1 INTRODUCTION

This would appear to be a somewhat demanding set of requirements, but it is one born of both
practical experience and necessity. Enterprise applications have very specific persistence needs, and
this shopping list of items is a fairly specific representation of the experience of the enterprise
community.

The Impedance Mismatch

Advocates of object-relational mapping often describe the difference between the object model and
the relational model as the impedance mismatch between the two. This is an apt description because
the challenge of mapping one to the other lies not in the similarities between the two, butin the
concepts in each for which there is no logical equivalent in the other.

In the following sections, we will present some basic object-oriented domain models and a
variety of relational models to persist the same set of data. As youwill see, the challenge in object-
relational mapping is not so much the complexity of a single mapping but that there are so many
possible mappings. The goal is not to explain how to get from one point to the other but to understand
the roads that may have to be taken to arrive at an intended destination.

Class Representation

Let’s begin this discussion with a simple class. Figure 1-1 shows an Employee class with four attributes:
employee id, employee name, date they started, and current salary.

Employee
id: int
name: String

startDate: Date
salary: long

Figure 1-1. The Employee class

Now consider the relational model shown in Figure 1-2. The ideal representation of this class in
the database corresponds to scenario (A). Eachfieldin the class maps directly to a column in the table.
The employee number becomes the primary key. With the exception of some slight naming
differences, this is a straightforward mapping.

CHAPTER 1 1 INTRODUCTION

(R) (B) (€)
EMP EMP EMP
PK |ID PK | ID PK | ID
NAME NAME NAME
START_DATE START_DAY START_DATE
SALARY START_MONTH
START_YEAR
SALARY
EMP_SAL
PKFK1 | ID
SALARY

Figure 1-2. Three scenarios for storing employee data

In scenario (B), we see that the start date of the employee is actually stored as three separate
columns, one each for the day, month, and year. Recall that the class used a Date object to represent this
value. Because database schemas are much harder to change, should the class be forced to adopt the
same storage strategy in order to remain consistent with the relational model? Also consider the
inverse of the problem, in which the class had used three fields, and the table used a single date
column. Even a single field becomes complex to map when the database and object model differ in
representation.

Salary information is considered commercially sensitive, so it may be unwise to place the salary
value directly in the EMP table, which may be used for a number of purposes. In scenario (C), the EMP
table has been split so that the salary information is stored in a separate EMP_SAL table. This allows the
database administrator to restrict SELECT access on salary information to those users who genuinely
require it. With such a mapping, even a single store operation for the Employee class now requires
inserts or updates to two different tables.

Clearly, even storing the data from a single class in a database can be a challenging exercise. We
concern ourselves with these scenarios because real database schemas in production systems were
never designed with object models in mind. The rule of thumb in enterprise applications is that the
needs of the database trump the wants of the application. In fact, there are usually many applications,
some object-oriented and some based on Structured Query Language (SQL), which retrieve from and
store data into a single database. The dependency of multiple applications on the same database
means that changing the database would affect every one of the applications, clearly an undesirable
and potentially expensive option. It’s up to the object model to adapt and find ways to work with the
database schema without letting the physical design overpower the logical application model.

CHAPTER 1 1 INTRODUCTION

Relationships

Objects rarely existin isolation. Just like relationships in a database, domain classes depend on and
associate themselves with other domain classes. Consider the Employee class introduced in Figure 1-1.
There are many domain concepts we could associate with an employee, but for now let’s introduce the
Address domain class, for which an Employee may have at most one instance. We say in this case that
Employee has a one-to-one relationship with Address, represented in the Unified Modeling Language
(UML) model by the 0. .1 notation. Figure 1-3 demonstrates this relationship.

Employee Address
id: int street: String
name: String city: String
startDate: Date 0..1 | state: String
salary: long zip: String

Figure 1-3. The Employee and Address relationship

We discussed different scenarios for representing the Employee state in the previous section, and
likewise there are several approaches to representing a relationship in a database schema. Figure 1-4
demonstrates three different scenarios for a one-to-one relationship between an employee and an
address.

The building block for relationships in the database is the foreign key. Each scenario involves
foreign key relationships between the various tables, butin order for there to be a foreign key
relationship, the target table must have a primary key. And so before we even get to associate
employees and addresses with each other we have a problem. The domain class Address does not have
an identifier, yet the table that it would be stored in must have one if it is to be part of relationships. We
could construct a primary key out of all of the columns in the ADDRESS table, but this is considered bad
practice. Therefore the ID column is introduced and the object relational mapping will have to adapt in
some way.

CHAPTER 1 1 INTRODUCTION

(A)
EMP ADDRES
PK |ID PK |ID
NAME HO--------- OH STREET
START_DATE cITY
SALARY STATE
FK1 | ADDRESS_ID ZP
(B)
ADDRESS
EMP o [0
w2 STREET
NAME FO--------- oH ey
START_DATE STATE
SALARY ZIP
FK1 | EMP_ID
(©)
ADDRESS
EVP EMP_ADDRESS
PK | ID PK | ID
= PKFK1 | ADDRESS_ID
NAME H OH pkrk2 |empip [TO— ngET
START_DATE o
SALARY ST

Figure 1-4. Three scenarios for relating employee and address data

Scenario (A) of Figure 1-4 shows the ideal mapping of this relationship. The EMP table has a foreign
key to the ADDRESS table stored in the ADDRESS_ID column. If the domain class holds onto an instance of
the Address class, the primary key value for the address can be set during store operations.

Andyet consider scenario (B), whichis only slightly different yet suddenly much more complex. In
our domain model, Address did not hold onto the Employee instance that owned it, and yet the employee
primary key must be stored in the ADDRESS table. The object-relational mapping must either account for
this mismatch between domain class and table or a reference back to the employee will have to be
added for every address.

To make matters worse, scenario (C) introduces a join table to relate the EMP and ADDRESS tables.
Instead of storing the foreign keys directly in one of the domain tables, the join table instead holds
onto the pair of keys. Every database operation involving the two tables must now traverse the join
table and keep it consistent. We could introduce an EmployeeAddress association class into our domain
model to compensate, but that defeats the logical representation we are trying to achieve.

CHAPTER 1 1 INTRODUCTION

Relationships present a challenge in any object-relational mapping solution. In this introduction
we covered only one-to-one relationships, and yet we have been faced with the need for primary keys
notin the object model and the possibility of having to introduce extra relationships into the model or
even association classes to compensate for the database schema.

Inheritance

A defining element of an object-oriented domain model is the opportunity to introduce generalized
relationships between like classes. Inheritance is the natural way to express these relationships and
allows for polymorphism in the application. Let’s revisit the Employee class shown in Figure 1-1 and
imagine a company that needs to distinguish between full-time and part-time employees. Part-time
employees work for an hourly rate, while full-time employees are assigned a salary. This is a good
opportunity for inheritance, moving wage information to the PartTimeEmployee and FullTimeEmployee
subclasses. Figure 1-5 shows this arrangement.

Employee
id: int
name: String
startDate: Date

&

PartTimeEmployee FullTimeEmployee

hourlyRate: float salary: long

Figure 1-5. Inheritance relationships between full-time and part-time employees

Inheritance presents a genuine problem for object-relational mapping. We are no longer dealing
with a situation in which there is a natural mapping from a class to a table. Consider the relational
models shown in Figure 1-6. Once again we demonstrate three different strategies for persisting the
same set of data.

CHAPTER 1 1 INTRODUCTION

(A)

FULL_TIME_EMP PART_TIME_EMP

PK | ID PK | ID

NAME NAME

START_DATE START_DATE

SALARY RATE
(B)
EMP

PK | ID
NAME
START_DATE
SALARY
RATE
TYPE
(©)
EMP
FULL_TIME_EMP Pk 11D PART_TIME_EMP
PK,FK1 | ID HO—H NAVIE H——OH PKFK1 | ID
SALARY START_DATE RATE

TYPE

Figure 1-6. Inheritance strategies in a relational model

Arguably the easiest solution for someone mapping an inheritance structure to a database would
be to put all of the data necessary for each class (including parent classes) into separate tables. This
strategy is demonstrated by scenario (A) in Figure 1-6. Note that there is no relationship between the
tables (i.e., each table is independent of the others). This means that queries against these tables are
now much more complicated if the user needs to operate on both full-time and part-time employees in
a single step.

An efficient but denormalized alternative is to place all the data required for every class in the
model in a single table. That makes it very easy to query, but note the structure of the table shown in
scenario (B) of Figure 1-6. There is a new column, TYPE, which does not exist in any part of the domain
model. The TYPE column indicates whether or not the employee is part-time or full-time. This
information must now be interpreted by an object-relational mapping solution to know what kind of
domain class to instantiate for any given row in the table.

Scenario (C) takes this one step further, this time normalizing the data into separate tables for
full-time and part-time employees. Unlike scenario (A), however, these tables are related by a
common EMP table that stores all of the data common to both employee types. It might seem like
overkill for a single column of extra data, but a real schema with many columns specific to each type of
employee would likely use this type of table structure. It presents the data in a logical form and also
simplifies querying by allowing the tables to be joined together. Unfortunately, what works well for

CHAPTER 1 1 INTRODUCTION

the database does not necessarily work well for an object model mapped to such a schema. Even
without associations to other classes, the object-relational mapping of the domain class must now take
joins between multiple tables into account.

When you start to consider abstract superclasses or parent classes that are not persistent,
inheritance rapidly becomes a complexissue in object-relational mapping. Not only is there a
challenge with storage of the class data but the complex table relationships are also difficult to query
efficiently.

Java Support for Persistence

From the early days of the Java platform, programming interfaces have existed to provide gateways
into the database and to abstract away many of the domain-specific persistence requirements of
business applications. In the next few sections we will discuss current and past Java persistence
solutions and their role in enterprise applications.

Proprietary Solutions

It may come as a surprise to learn that object-relational mapping solutions have been around for a
long time;longer even than the Java language itself. Products such as Oracle TopLink got their start in
the Smalltalk world before making the switch to Java. A great irony in the history of Java persistence
solutions is that one of the firstimplementations of entity beans was actually demonstrated by adding
an additional entity bean layer over TopLink mapped objects.

The two most popular proprietary persistence APIs were TopLink in the commercial space and
Hibernate™ in the open source community. Commercial products like TopLink were available in the
earliest days of Java and were successful, but the techniques were just never standardized for the Java
platform. It was later, when upstart open source object-relational mapping solutions such as Hibernate
became popular, that changes around persistence in the Java platform came about, leading to a
convergence toward object-relational mapping as the preferred solution.

These two products and others could be easily integrated with all the major application servers
and provided applications with all the persistence features they needed. Application developers were
perfectly satisfied to use a third-party product for their persistence needs, especially given that there
were no common and equivalent standards in sight.

JDBC

The second release of the Java platform, Java Development Kit JDK) 1.1, released in 1997, ushered in
the first major support for database persistence with JDBC. It was created as a Java-specific version of
its more generic predecessor, the Object Database Connectivity (ODBC) specification, a standard for
accessing any relational database from any language or platform. Offering a simple and portable
abstraction of the proprietary client programming interfaces offered by database vendors, JDBC
allows Java programs to fully interact with the database. This interaction is heavily reliant on SQL,
offering developers the chance to write queries and data manipulation statements in the language of
the database, but executed and processed using a simple Java programming model.

The irony of JDBC is that, although the programming interfaces are portable, the SQLlanguage is
not. Despite the many attempts to standardize it, it is still rare to write SQL of any complexity that will
run unchanged on two major database platforms. Even where the SQL dialects are similar, each
database performs differently depending on the structure of the query, necessitating vendor-specific
tuning in most cases.

10

CHAPTER 1 1 INTRODUCTION

There is also the issue of tight coupling between Java source and SQL text. Developers are
constantly tempted by the lure of ready-to-run SQL queries either dynamically constructed at runtime
or simply stored in variables or fields. This is a very attractive programming model until one day you
realize that the application has to support a new database vendor that doesn’t support the dialect of
SQL youhave been using.

Even with SQL text relegated to property files or other application metadata, there comes a point
when working with JDBC not only feels wrong but also simply becomes a cumbersome exercise in
taking tabular row and column data and continuously having to convert it back and forth into objects.
The application has an object model—why does it have to be so hard to use with the database?

Enterprise JavaBeans

The first release of the Java 2 Enterprise Edition (J2EE) platform introduced a new solution for Java
persistence in the form of the entity bean, part of the Enterprise JavaBean (EJB) family of components.
Intended to fully insulate developers from dealing directly with persistence, itintroduced an
interface-based approach, where the concrete bean class was never directly used by client code.
Instead, a specialized bean compiler generated an implementation of the bean interface to facilitate
such things as persistence, security, and transaction management, delegating the business logic to the
entity bean implementation. Entity beans were configured using a combination of standard and
vendor-specific XML deployment descriptors, which became notorious for their complexity and
verbosity.

It's probably fair to say that entity beans were over-engineered for the problem they were trying
to solve, yetironically the first release of the technology lacked many features necessary to
implement realistic business applications. Relationships between entities had to be managed by the
application, requiring foreign key fields to be stored and managed on the bean class. The actual
mapping of the entity bean to the database was done entirely using vendor-specific configurations, as
was the definition of finders (the entity bean term for queries). Finally, entity beans were modeled as
remote objects that used RMI and CORBA, introducing network overhead and restrictions that should
never have been added to a persistent object to begin with. The entity bean really began by solving
the distributed persistent component problem, a cure for which there was no disease, leaving behind
the common case of locally accessed lightweight persistent objects.

The EJB 2.0 specification solved many of the problems identified in the early releases. The notion
of container-managed entity beans was introduced, where bean classes became abstract and the
server was responsible for generating a subclass to manage the persistent data. Local interfaces and
container-managed relationships were introduced, allowing associations to be defined between
entity beans and automatically kept consistent by the server. This release also saw the introduction of
Enterprise JavaBeans Query Language (EJB QL), a query language designed to work with entities that
could be portably compiled to any SQL dialect.

Despite the improvements introduced with EJB 2.0, one major problem remained: excessive
complexity. The specification assumed that development tools would insulate the developer from the
challenge of configuring and managing the many artifacts required for each bean. Unfortunately,
these tools took too long to materialize, and so the burden fell squarely on the shoulders of developers,
even as the size and scope of EJB applications increased. Developers felt abandoned in a sea of
complexity without the promised infrastructure to keep them afloat.

Java Data Objects

Due in part to some of the failures of the EJB persistence model, and some frustration at not having a
satisfactory standardized persistence API, another persistence specification was attempted. Java Data
Objects JDO) was inspired and supported primarily by the object-oriented database (OODB) vendors

CHAPTER 1 1 INTRODUCTION

and never really got adopted by the mainstream programming community. It required vendors to
enhance the bytecode of domain objects to produce class files that were binary-compatible across all
vendors, and every compliant vendor’s products had to be capable of producing and consuming them.
JDO also had a query language that was decidedly object-oriented in nature, which did not sit well with
relational database users, who were in an overwhelming majority.

JDO reached the status of being an extension of the JDK, but never became an integrated part of
the enterprise Java platform. It had many good features and was adopted by a small community of
devoted users who stuck by it and tried desperately to promote it. Unfortunately, the major commercial
vendors did not share the same view of how a persistence framework should be implemented. Few
supported the specification, so JDO was talked about, but rarely used.

Some might argue that it was ahead of its time and that its reliance on bytecode enhancement
caused it to be unfairly stigmatized. This was probably true, and if it had been introduced three years
later, it might have been better accepted by a developer community that now thinks nothing of using
frameworks that make extensive use of bytecode enhancement. Once the EJB 3.0 persistence
movement was in motion, however, and the major vendors all signed up to be a part of the new
enterprise persistence standard, the writing was on the wall for JDO. People soon complained to Sun
that they now had two persistence specifications: one that was part of its enterprise platform and also
worked in Java SE, and one that was being standardized only for Java SE. Shortly thereafter, Sun
announced that JDO would be reduced to specification maintenance mode and that JPA would draw
from both JDO and the persistence vendors and become the single supported standard going forward.

Why Another Standard?

Software developers knew what they wanted, but many could not find it in the existing standards, so
they decided to look elsewhere. What they found was a range of proprietary persistence frameworks,
both commercial and open source. Many of the products that implemented these technologies adopted
a persistence model that did not intrude upon the domain objects. For these products, persistence was
nonintrusive to the business objects in that, unlike entity beans, they did not have to be aware of the
technology that was persisting them. They did not have to implement any type of interface or extend a
special class. The developer could simply treat the persistent object like any other Java object, and
then map it to a persistent store and use a persistence API to persist it. Because the objects were
regular Java objects, this persistence model came to be known as Plain Old Java Object (POJO)
persistence.

As Hibernate, TopLink, and other persistence APIs became ensconced in applications and met the
needs of the application perfectly well, the question was often asked, “Why bother updating the EJB
standard to match what these products already did? Why not just continue to use these products as has
already been done for years, or why not even just standardize on an open source product like
Hibernate?” There are actually many reasons why this could not be done and would be a bad idea
even if it could.

A standard goes far deeper than a product, and a single product (even a product as successful as
Hibernate or TopLink) cannot embody a specification, even though it can implement one. Atits very
core, the intention of a specification is that it be implemented by different vendors and that it have
different products offer standard interfaces and semantics that can be assumed by applications without
coupling the application to any one product.

Binding a standard to an open source projectlike Hibernate would be problematic for the
standard and probably even worse for the Hibernate project. Imagine a specification that was based
on a specific version or checkpoint of the code base of an open source project, and how confusing that
would be. Now imagine an open source software (OSS) project that could not change or could change
only in discrete versions controlled by a special committee every two years, as opposed to the changes

11

12

CHAPTER 1 1 INTRODUCTION

being decided by the project itself. Hibernate, and indeed any open source project, would likely be
suffocated.

Although standardization might not be valued by the consultant or the five-person software shop,
to a corporation it is huge. Software technologies are a big investment for most corporate IT shops, and
risk must be measured when large sums of money are involved. Using a standard technology reduces
that risk substantially and allows the corporation to be able to switch vendors if the initial choice turns
out not to have met the need.

Besides portability, the value of standardizing a technology is manifested in all sorts of other
areas as well. Education, design patterns, and industry communication are just some of the many
benefits that standards bring to the table.

The Java Persistence API

The Java Persistence APl is a lightweight, POJO-based framework for Java persistence. Although
object-relational mapping is a major component of the API, it also offers solutions to the architectural
challenges of integrating persistence into scalable enterprise applications. In the following sections
we will look at the evolution of the specification and provide an overview of the major aspects of this
technology.

History of the Specification

The Java Persistence APIis remarkable not only for what it offers developers but also for the way in
which it came to be. The following sections outline the prehistory of object-relational persistence
solutions and the genesis of JPA.

EJB 3.0 and JPA 1.0

After years of complaints about the complexity of building enterprise applications with Java, “ease of
development” was the theme for the Java EE 5 platform release. EJB 3.0 led the charge and found ways
to make Enterprise JavaBeans easier and more productive to use.

In the case of session beans and message-driven beans, solutions to usability issues were reached
by simply removing some of the more onerous implementation requirements and letting components
look more like plain Java objects.

In the case of entity beans, however, a more serious problem existed. If the definition of “ease of
use” is to keep implementation interfaces and descriptors out of application code and to embrace the
natural object model of the Java language, how do you make coarse-grained, interface-driven,
container-managed entity beans look and feel like a domain model?

The answer was to start over. Leave entity beans alone and introduce a new model for persistence.
The Java Persistence API was born out of recognition of the demands of practitioners and the existing
proprietary solutions that they were using to solve their problems. To ignore that experience would
have been folly.

Thus the leading vendors of object-relational mapping solutions came forward and standardized
the best practices represented by their products. Hibernate and TopLink were the first to sign on with
the EJB vendors, followed later by the JDO vendors.

Years of industry experience coupled with a mission to simplify development combined to produce
the first specification to truly embrace the new programming models offered by the Java SE 5 platform.
The use of annotations in particular resulted in a new way of using persistence in applications that
had never been seen before.

CHAPTER 1 1 INTRODUCTION

The resulting EJB 3.0 specification ended up being divided into three distinct pieces and split
across three separate documents, the third of which was the Java Persistence API. It was a stand-alone
specification that described the persistence model in both the Java SE and Java EE environments.

JPA 2.0

By the time the first version of JPA was started, ORM persistence had already been evolving for a
decade. Unfortunately there was only a relatively short period of time available (approximately 2
years) in the specification development cycle to create the initial specification, so not every possible
feature that had been encountered could be included in the first release. Still, an impressive number of
features were specified, with the remainder being left for subsequent releases and for the vendors to
support in proprietary ways in the meantime.

The nextrelease, JPA 2.0, actually did include a large number of the features that were not present
in the first release, specifically those that had been the most requested by users. By providing a more
complete set of persistence features, it is now less likely that an application will have to revert to
vendor additions.

Some of the features that made the 2.0 release included additional mapping capabilities, flexible
ways to determine the way the provider accessed the entity state, extensions to the Java Persistence
Query Language (JP QL), and an object-oriented Java criteria API for creating dynamic queries.
Throughout the book we have tried to distinguish the newly added features from those that were
presentin the first release. This will hopefully help readers that are still using an old JPA 1.0
implementation and for whatever reason are not able to move up to 2.0.

JPA and You

In the end, there may still be some feature that you, or some other JPA user, might look for in the 2.0
standard that has not yet been included. If the feature turns out to be requested by a sufficient number
of users then it will eventually become part of the standard, but that partly depends upon you, the
developers. If you think a feature should be standardized, you should speak up and request it from your
JPA provider, as well as to the expert group of the next JPA version. The community helps to shape and
drive the standards, and it is you, the community, that must make your needs known.

Note, however, that there will always be a subset of seldom-used features that will likely never
make itinto the standard simply because they are not mainstream enough to warrant being included.
The well-known philosophy of the “needs of the many” outweighing the “needs of the few” (don’t even
pretend that you don’t know the exact episode in which this philosophy was first expressed) must be
considered because each new feature adds some non-zero amount of complexity to the specification
rendering it that much bigger, and that much harder to understand, use, and implement. The lesson is
that even though we are asking you for your input, not all of it can possibly be incorporated into the
specification.

Overview

The model of JPA is simple and elegant, powerful and flexible. It is natural to use, and easy to learn,
especially if youhave used any of the existing persistence products on the market today on which the
API was based. The main operational API that an application will be exposed to is contained within a
small number of classes.

13

14

CHAPTER 1 1 INTRODUCTION

P0OJO Persistence

Perhaps the most important aspect of JPA is the fact that the objects are POJOs, meaning that there is
nothing special about any object that is made persistent. In fact, virtually any existing non-final
application object with a default constructor can be made persistable without so much as changing a
single line of code. Object-relational mapping with JPA is entirely metadata-driven. It can be done
either by adding annotations to the code or using externally defined XML. The objects that are
persisted are only as heavy as the data that is defined or mapped with them.

Nonintrusiveness

The persistence API exists as a separate layer from the persistent objects. The persistence APl is called
by the application business logic and is passed the persistence objects and instructed to operate upon
them. So even though the application must be aware of the persistence API, because it has to call into it,
the persistent objects themselves need not be aware. Because the API does not intrude upon the code
in the persistent object classes, we call this non-intrusive persistence.

Some people are under the misconception that non-intrusive persistence means that objects
magically get persisted, the way that object databases of yesteryear used to do when a transaction got
committed. This is sometimes called transparent persistence and is an incorrect notion that is even
more irrational when you think about querying. Youneed to have some way of retrieving the objects
from the data store. This requires a separate API object and, in fact, some object databases used
separate Extent objects to issue queries. Applications absolutely need to manage their persistent
objects in very explicit ways, and they require a designated API to do it.

Object Queries

A powerful query framework offers the ability to query across entities and their relationships without
having to use concrete foreign keys or database columns. Queries may be expressed in Java
Persistence Query Language (JP QL), a query language that is derived from EJB QL and modeled after
SQL for its familiarity, but it is not tied to the database schema or defined using the criteria APIL
Queries use a schema abstraction that is based on the entity model as opposed to the columns in which
the entity is stored. Java entities and their attributes are used as the query schema, so knowledge of the
database-mapping information is not required. The queries will eventually get translated by the JPA
implementation into SQL and executed on the database.

A query may be defined statically in metadata or created dynamically by passing query criteria
when constructing it. It is also possible to escape to SQL if a special query requirement exists that
cannot be met by the SQL generation from the persistence framework. These queries can all return
results that are entities and are valuable abstractions that enable querying across the Java domain
model instead of across database tables.

Mobile Entities

Client/server and web applications and other distributed architectures are clearly the most popular
types of applications in a connected world. To acknowledge this fact meant acknowledging that
persistent entities must be mobile in the network. Objects must be able to be moved from one virtual
machine to another and then back again, and must still be usable by the application.

CHAPTER 1 1 INTRODUCTION

Objects that leave the persistence layer are called detached. A key feature of the persistence model
is the ability to change detached entities and then reattach them upon their return to the virtual
machine. The detachment model provides a way of reconciling the state of an entity being reattached,
with the state that it was in before it became detached. This allows entity changes to be made offline,
while still maintaining entity consistency in the face of concurrency.

Simple Configuration

There are a great number of persistence features that the specification has to offer and that we will
explain in the chapters of this book. All the features are configurable through the use of annotations,
XML, or a combination of the two. Annotations offer ease of use thatis unparalleled in the history of
Java metadata. They are convenient to write and painless to read, and they make it possible for
beginners to get an application going quickly and easily. Configuration can also be done in XML for
those who like XML or want to externalize the metadata from the code.

Of greater significance than the metadata language is the fact that JPA makes heavy use of
defaults. This means that no matter which method is chosen, the amount of metadata that will be
required just to get running is the absolute minimum. In some cases, if the defaults are good enough,
almost no metadata will be required at all.

Integration and Testability

Multitier applications hosted on an application server have become the de facto standard for
application architectures. Testing on an application server is a challenge that few relish. It can bring
pain and hardship, and it is often prohibitive to unit testing and white box testing.

This is solved by defining the API to work outside as well as inside the application server. Although
itis not as common a use case, those applications that do run on two tiers (the application talking
directly to the database tier) can use the persistence API without the existence of an application server
at all. The more common scenario is for unit tests and automated testing frameworks that can be run
easily and conveniently in Java SE environments.

With the Java Persistence APl it is now possible to write server-integrated persistence code and be
able toreuse it for testing outside the server. When running inside a server container, all the benefits
of container support and superior ease of use apply, but with a few changes and a little bit of test
framework support the same application can also be configured to run outside the container.

Summary

This chapter presented an introduction to the Java Persistence API. We began with an introduction to
the primary problem facing developers trying to use object-oriented domain models in concert with a
relational database: the impedance mismatch. To demonstrate the complexity bridging the gap, we
presented three small object models and nine different ways to represent the same information. We
explored them a little and discussed how mapping objects to different table configurations can cause
differences, not only in the way data evolves in the database but also how expensive the resulting
database operations are and how the application performs.

We then presented an overview of current standards for persistence, looking at JDBC, EJB, and
JDO. In each case, we looked at the evolution of the standard and where it fell short. We gained some
general insights on particular aspects of the persistence problem that were learned along the way.

15

16

CHAPTER 1 1 INTRODUCTION

We concluded the chapter with a brieflook at JPA. We looked at the history of the specification and
the vendors who came together to create it. We then looked at the role it plays in enterprise
application development and gave an introduction to some of the features offered by the specification.

In the next chapter, youwill get your feet wet with JPA, taking a whirlwind tour of the basics and
building a simple application in the process.

CHAPTER 2

Getting Started

One of the main goals of JPA was that it should be simple to use and easy to understand. Although its
problem domain cannot be trivialized or watered down, the technology that enables one to deal with it
can be straightforward and intuitive. In this chapter, we will show how effortless it can be to develop
and use entities.

We will start by describing the basic characteristics of entities. We’ll define what an entity is and
how to create, read, update, and delete it. We’ll also introduce entity managers and how they are
obtained and used. Then we’ll take a quick look at queries and how to specify and execute a query
using the EntityManager and Query objects. The chapter will conclude by showing a simple working
application that runs in a standard Java SE environment and that demonstrates all of the example code
in action.

Entity Overview

The entity is not a new thing in data management. In fact, entities have been around longer than
many programming languages and certainly longer than Java. They were first introduced by Peter
Chen in his seminal paper on entity-relationship modeling.' He described entities as things that have
attributes and relationships. The expectation was that the attributes and relationships would be
persisted in a relational database.

Even now, the definition still holds true. An entity is essentially a noun, or a grouping of state
associated together as a single unit. It may participate in relationships to any number of other entities
in a number of standard ways. In the object-oriented paradigm, we would add behavior to it and call it
an object. In JPA, any application-defined object can be an entity, so the important question might be
this: What are the characteristics of an object that has been turned into an entity?

'Peter P. Chen, “The entity-relationship model—toward a unified view of data,” ACM Transactions on
Database Systems 1,no. 1 (1976): 9-36.

17

18

CHAPTER 2 1 GETTING STARTED

Persistability

The first and most basic characteristic of entities is that they are persistable. This generally just means
that they can be made persistent. More specifically, it means that their state can be representedin a
data store and can be accessed at a later time, perhaps well after the end of the process that created it.

We could call them persistent objects, and many people do, butitis not technically correct. Strictly
speaking, a persistent object becomes persistent the momentitis instantiated in memory.If a
persistent object exists, then by definition itis already persistent.

An entity is persistable because it can be created in a persistent store. The difference is that it is
not automatically persisted, and that in order for it to have a durable representation the application
must actively invoke an API method to initiate the process. This is an important distinction because it
leaves control over persistence firmly in the hands of the application. The application has the
flexibility to manipulate data and perform business logic on the entity, making it persistent only when
the application decides it is the right time. The lesson is that entities may be manipulated without
necessarily being persisted, and it is the application that decides whether they are or not.

Identity

Like any other Java object, an entity has an object identity, but when it exists in the database it also has
a persistent identity. Persistent identity, or an identifier, is the key that uniquely identifies an entity
instance and distinguishes it from all the other instances of the same entity type. An entity has a
persistent identity when there exists a representation of it in the data store; thatis, arow in a database
table. If itis not in the database then even though the in-memory entity may have its identity setin a
field, it does not have a persistent identity. The entity identifier, then, is equivalent to the primary key
in the database table that stores the entity state.

Transactionality

Entities are what we might call quasi-transactional. Although they can be created, updated, and deleted
in any context, these operations are normally done within the context of a transaction® because a
transaction is required for the changes to be committed in the database. Changes made to the database
either succeed or fail atomically, so the persistent view of an entity should indeed be transactional.

In memory, itis a slightly different story in the sense that entities may be changed without the
changes ever being persisted. Even when enlisted in a transaction, they may be leftin an undefined
or inconsistent state in the event of a rollback or transaction failure. The in-memory entities are
simple Java objects that obey all of the rules and constraints that are applied by the Java Virtual
Machine JVM) to other Java objects.

Granularity

Finally, we can also learn something about what entities are by describing what they are not. They are
not primitives, primitive wrappers, or built-in objects with single-dimensional state. These are no

*In most cases, this is a requirement, but in certain configurations the transaction may not be present
until later.

CHAPTER 2 1 GETTING STARTED

more than scalars and do not have any inherent semantic meaning to an application. A string, for
example, is too fine-grained an object to be an entity because it does not have any domain-specific
connotation. Rather, a string is well-suited and very often used as a type for an entity attribute and
given meaning according to the entity attribute thatitis typing.

Entities are meant to be fine-grained objects that have a set of aggregated state that is normally
stored in a single place, such as a row in a table, and typically have relationships to other entities. In
the most general sense, they are business domain objects that have specific meaning to the application
that accesses them.

While it is certainly true that entities may be defined in exaggerated ways to be as fine-grained as
storing a single string or coarse-grained enough to contain 500 columns’ worth of data, JPA entities
were definitely intended to be on the smaller end of the granularity spectrum. Ideally, entities
should be designed and defined as fairly lightweight objects of a size comparable to that of the average
Java object.

Entity Metadata

In addition to its persistent state, every entity has some associated metadata (even if a very small
amount) that describes it. This metadata may exist as part of the saved class file or it may be stored
external to the class, but it is not persisted in the database. It enables the persistence layer to
recognize, interpret, and properly manage the entity from the time it is loaded through to its runtime
invocation.

The metadata that is actually required for each entity is minimal, rendering entities easy to
define and use. However, like any sophisticated technology with its share of switches, levers, and
buttons, there is also the possibility to specify much, much more metadata than is required. It may be
extensive amounts, depending upon the application requirements, and may be used to customize
every detail of the entity configuration or state mappings.

Entity metadata may be specified in two ways: annotations or XML. Each is equally valid, but the
one that you use will depend upon your development preferences or process.

Annotations

Annotation metadata is a language feature introduced in Java SE 5 that allows structured and typed
metadata to be attached to the source code. Although annotations are not required by JPA, they are a
convenient way to learn and use the API. Because annotations co-locate the metadata with the
program artifacts, it is not necessary to escape to an additional file and a special language (XML) just
to specify the metadata.

Annotations are used throughout both the examples and the accompanying explanations in this
book. All the API annotations that are shown and described (except in Chapter 3, which talks about Java
EE annotations) are defined in the javax.persistence package. Example code snippets can be assumed
to have an implicit import of the form import javax.persistence.*;.

XML

For those who prefer to use traditional XML, this option is still available. It should be fairly
straightforward to switch to using XML descriptors after having learned and understood the
annotations because the XML has mostly been patterned after the annotations. Chapter 12 describes
how to use XML to specify or override entity mapping metadata.

19

20

CHAPTER 2 1 GETTING STARTED

Configuration by Exception

The notion of configuration by exception means that the persistence engine defines defaults that apply
to the majority of applications and that users need to supply values only when they want to override
the default value. In other words, having to supply a configuration value is an exception to the rule, not
arequirement.

Configuration by exception is ingrained in JPA and contributes strongly to its usability. Most
configuration values have defaults, rendering the metadata that does have to be specified more
relevant and concise.

The extensive use of defaults and the ease of use that it brings to configuration come at a price,
however. When defaults are embedded into the API and do not have to be specified, then they are not
visible or obvious to users. This can make it possible for users to be unaware of the complexity of
developing persistence applications, making it harder to debug or to change the behavior when it
becomes necessary.

Defaults are not meant to shield users from the often complex issues surrounding persistence.
They are meant to allow a developer to get started easily and quickly with something that will work
and then iteratively improve and implement additional functionality as the complexity of their
application increases. Even though the defaults may be what you want to have happen most of the time,
itis still important for developers to be familiar with the default values that are being applied. For
example, if a table name defaultis being assumed, it is important to know what table the runtime is
expecting, or if schema generation is used, what table will be generated.

For each of the annotations we will also discuss the default value so thatitis clear what will be
applied if the annotation is not specified. We recommend that you remember these defaults as you
learn them. After all, a default value is still part of the configuration of the application;itisjustreally
easy to configure!

Creating an Entity

Regular Java classes are easily transformed into entities simply by annotating them. In fact, by adding
a couple of annotations, virtually any class with a no-arg constructor can become an entity.

Let’s start by creating a regular Java class for an employee. Listing 2-1 shows a simple Employee
class.

Listing 2-1. Employee Class

public class Employee {
private int id;
private String name;
private long salary;

public Employee() {}
public Employee(int id) { this.id = id; }

public int getId() { return id; }

public void setId(int id) { this.id = id; }

public String getName() { return name; }

public void setName(String name) { this.name = name; }

public long getSalary() { return salary; }

public void setSalary (long salary) { this.salary = salary; }

CHAPTER 2 1 GETTING STARTED

You may notice that this class resembles a JavaBean-style class with three properties: id, name, and
salary. Each of these properties is represented by a pair of accessor methods to get and set the
property, and is backed by a member field. Properties or member fields are the units of state within the
entity that we want to persist.

To turn Employee into an entity, we first need to annotate the class with @Entity. This is primarily
just a marker annotation to indicate to the persistence engine that the class is an entity.

The second annotation that we need to add is @Id. This annotates the particular field or property
that holds the persistent identity of the entity (the primary key) and is needed so the provider knows
which field or property to use as the unique identifying key in the table.

Adding these two annotations to our Employee class, we end up with pretty much the same class
that we had before, except that now it is an entity. Listing 2-2 shows the entity class.

Listing 2-2. Employee Entity

@Entity

public class Employee {
@Id private int id;
private String name;
private long salary;

public Employee() {}
public Employee(int id) { this.id = id; }

public int getId() { return id; }

public void setId(int id) { this.id = id; }

public String getName() { return name; }

public void setName(String name) { this.name = name; }

public long getSalary() { return salary; }

public void setSalary (long salary) { this.salary = salary; }

When we say that the @Id annotation is placed on the field or property, we mean that the user can
choose to annotate either the declared field or the getter method® of a JavaBean-style property. Either
field or property strategy is allowed, depending on the needs and tastes of the entity developer. We
have chosen in this example to annotate the field because it is simpler; in general, this will be the
easiest and most direct approach. We will discuss the details of annotating persistent state using field
or property access in subsequent chapters.

The fields in the entity are automatically made persistable by virtue of their existence in the
entity. Default mapping and loading configuration values apply to these fields and enable them to be
persisted when the object is persisted. Given the questions that were brought up in the last chapter, one
might be led to ask, “How did the fields get mapped, and where do they get persisted to?”

To find the answer, we must first take a quick detour to dig inside the @Entity annotation and look
atan element called name that uniquely identifies the entity. The entity name may be explicitly
specified for any entity by using this name element in the annotation, as in @Entity(name="Emp").In

practice, this is seldom specified because it gets defaulted to be the unqualified name of the entity class.

This is almost always both reasonable and adequate.

3 Annotations on setter methods will just be ignored.

21

22

CHAPTER 2 1 GETTING STARTED

Now we can get back to the question about where the data gets stored. It turns out that the default
name of the table used to store any given entity of a particular entity type is the name of the entity. If
we have specified the name of the entity, that will be the default table name; if we have not, the default
value of the entity name will be used. We just stated that the default entity name was the unqualified
name of the entity class, so that is effectively the answer to the question of which table gets used. In the
Employee example, all entities of type Employee will get stored in a table called EMPLOYEE.

Each of the fields or properties has individual state in it and needs to be directed to a particular
column in the table. We know to go to the EMPLOYEE table, but we don’t know which column to use for
any given field or property. When no columns are explicitly specified, the default column is used for a
field or property, which is just the name of the field or property itself. So our employee id will get
stored in the ID column, the name in the NAME column, and the salary in the SALARY column of the
EMPLOYEE table.

Of course, these values can all be overridden to match an existing schema. We will discuss how to
override them when we get to Chapter 4 and discuss mapping in more detail.

Entity Manager

In the “Entity Overview” section, it was stated that a specific API call needs to be invoked before an
entity actually gets persisted to the database. In fact, separate API calls are needed to perform many of
the operations on entities. This API is implemented by the entity manager and encapsulated almost
entirely within a single interface called EntityManager. When all is said and done, it is to an entity
manager that the real work of persistence is delegated. Until an entity manager is used to actually
create, read, or write an entity, the entity is nothing more than a regular (nonpersistent) Java object.

When an entity manager obtains a reference to an entity, either by having it explicitly passed in
as an argument to a method call or because it was read from the database, that object is said to be
managed by the entity manager. The set of managed entity instances within an entity manager at any
given time is called its persistence context. Only one Java instance with the same persistent identity
may existin a persistence context at any time. For example, if an Employee with a persistent identity (or
id) of 158 exists in the persistence context, then no other Employee object withits id set to 158 may exist
within that same persistence context.

Entity managers are configured to be able to persist or manage specific types of objects, read and
write to a given database, and be implemented by a particular persistence provider (or provider for
short). It is the provider that supplies the backing implementation engine for the entire Java
Persistence API, from the EntityManager through to implementation of the query classes and SQL
generation.

All entity managers come from factories of type EntityManagerFactory. The configuration for an
entity manager is templated from the EntityManagerFactory that createdit, butitis defined separately
as a persistence unit. A persistence unit dictates either implicitly or explicitly the settings and entity
classes used by all entity managers obtained from the unique EntityManagerFactory instance bound to
that persistence unit. There is, therefore, a one-to-one correspondence between a persistence unit
andits concrete EntityManagerFactory.

Persistence units are named to allow differentiation of one EntityManagerFactory from another.
This gives the application control over which configuration or persistence unit is to be used for
operating on a particular entity.

CHAPTER 2 1 GETTING STARTED

Persistence
1
Creates v
]) <« Configured By .
Persistence Unit EntityManagerFactory
1 1
1 1
Creates Createsv
. < Manages .
PersistenceContext EntityManager
1 *

Figure 2-1. Relationships between JPA concepts

Figure 2-1 shows that for each persistence unit there is an EntityManagerFactory and that many
entity managers can be created from a single EntityManagerFactory. The part that may come as a
surprise is that many entity managers can point to the same persistence context. We have talked only
about an entity manager and its persistence context, but later on we will see that there may in fact be
multiple references to different entity managers all pointing to the same group of managed entities.
This will enable the control flow to traverse container components but continue to be able access the
same persistence context.

Obtaining an Entity Manager

An entity manager is always obtained from an EntityManagerFactory. The factory from which it was
obtained determines the configuration parameters that govern its operation. While there are shortcuts
that veil the factory from the user view when running in a Java EE application server environment, in
the Java SE environment we can use a simple bootstrap class called Persistence. The static
createEntityManagerFactory() method in the Persistence class returns the EntityManagerFactory for
the specified persistence unit name. The following example demonstrates creating an

EntityManagerFactory for the persistence unit named “EmployeeService”:

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("EmployeeService");

The name of the specified persistence unit “EmployeeService” passed into the
createEntityManagerFactory() method identifies the given persistence unit configuration that
determines such things as the connection parameters that entity managers generated from this
factory will use when connecting to the database.

23

24

CHAPTER 2 1 GETTING STARTED

Now that we have a factory, we can easily obtain an entity manager from it. The following
example demonstrates creating an entity manager from the factory that we acquired in the previous
example:

EntityManager em = emf.createEntityManager();

With this entity manager, we are now in a position to start working with persistent entities.

Persisting an Entity

Persisting an entity is the operation of taking a transient entity, or one that does not yet have any
persistent representation in the database, and storing its state so that it can be retrieved later. This is
really the basis of persistence—creating state that may outlive the process that created it. We are going
to start by using the entity manager to persist an instance of Employee. Here is a code example that
does just that:

Employee emp = new Employee(158);
em.persist(emp);

The firstline in this code segment is simply creating an Employee instance that we want to persist. If
we ignore the sad fact that we seem to be employing a nameless individual and paying him nothing
(we are setting only the id, not the name or salary) the instantiated Employee is just a regular Java
object.

The next line uses the entity manager to persist the entity. Calling persist() is all that is required
toinitiate it being persisted in the database. If the entity manager encounters a problem doing this,
then it will throw an unchecked PersistenceException. When the persist() call returns, emp will have
become a managed entity within the entity manager’s persistence context.

Listing 2-3 shows how to incorporate this into a simple method that creates a new employee and
persists it to the database.

Listing 2-3. Method for Creating an Employee

public Employee createEmployee(int id, String name, long salary) {
Employee emp = new Employee(id);
emp.setName(name);
emp.setSalary(salary);
em.persist(emp);
return emp;

This method assumes the existence of an entity manager in the em field of the instance and uses it
to persist the Employee. Note that we do not need to worry about the failure case in this example. It will
resultin a runtime PersistenceException being thrown, which will get propagated up to the caller.

Finding an Entity

Once an entity is in the database, the next thing one typically wants to do is find it again. In this
section, we will show how an entity can be found using the entity manager. There is really only one
line that we need to show:

Employee emp = em.find(Employee.class, 158);

CHAPTER 2 1 GETTING STARTED

We are passing in the class of the entity that is being sought (in this example, we are looking for an
instance of Employee) and the id or primary key that identifies the particular entity (in our case we
want to find the entity that we just created). This is all the information needed by the entity manager
to find the instance in the database, and when the call completes, the employee that gets returned will
be a managed entity, meaning that it will exist in the current persistence context associated with the
entity manager. Passing in the class as a parameter also allows the find method to be parameterized
andreturn an object of same type that was passed in, saving the caller an extra cast.

What happens if the object has been deleted or if we supplied the wrong id by accident? In the
event that the object was not found, then the find() call simply returns null. We would need to ensure
that a null check is performed before the next time the emp variable is used.

The code for a method that looks up and returns the Employee with a given id is now trivial and
shown in Listing 2-4.

Listing 2-4. Method for Finding an Employee

public Employee findEmployee(int id) {
return em.find(Employee.class, id);
}

In the case where no employee exists for the id that is passed in, then the method will return null
because that is what find() will return.

Removing an Entity

Removal of an entity from the database is not as common as you might think. Many applications never
delete objects, or if they do they just flag the data as being out of date or no longer valid and then just
keep it out of sight of clients. We are not talking about that kind of application-level logical removal,
where the data is not even removed from the database. We are talking about something that results in
a DELETE statement being made across one or more tables.

In order to remove an entity, the entity itself must be managed, meaning thatitis presentin the
persistence context. This means that the calling application should have already loaded or accessed the
entity and is now issuing a command to remove it. This is not normally a problem given that most
often the application will have caused it to become managed as part of the process of determining that
this was the object that it wanted to remove.

A simple example of removing an employee is the following:

Employee emp = em.find(Employee.class, 158);
em.remove(emp);

In this example, we are first finding the entity using the find() call, which returns a managed instance
of Employee, and then removing the entity using the remove() call on the entity manager. Of course, you
learned in the previous section that if the entity was not found, then the find() method will return
null. We would get a java.lang.IllegalArgumentException ifit turned out that we passed null into the
remove() call because we forgot to include a null check before calling remove().

In our application method for removing an employee, we can fix the problem by checking for the
existence of the employee before we issue the remove() call, as shown in Listing 2-5.

Listing 2-5. Method for Removing an Employee
public void removeEmployee(int id) {

Employee emp = em.find(Employee.class, id);
if (emp !'= null) {

25

26

CHAPTER 2 1 GETTING STARTED

em.remove(emp);

}

This method will ensure that the employee with the given id, provided the id is not null, is
removed from the database. It will return successfully whether the employee exists or not.

Updating an Entity

There are a few different ways of updating an entity, but for now we will illustrate the simplest and
most common case. This is where we have a managed entity and want to make changes to it. If we do
not have a reference to the managed entity, then we must first get one using find() and then perform
our modifying operations on the managed entity. This code adds $1,000 to the salary of the employee
withid 158:

Employee emp = em.find(Employee.class, 158);
emp.setSalary(emp.getSalary() + 1000);

Note the difference between this operation and the others. In this case we are not calling into the
entity manager to modify the object, but directly calling the object itself. For this reason it is important
that the entity be a managed instance; otherwise, the persistence provider will have no means of
detecting the change, and no changes will be made to the persistent representation of the employee.

Our method to raise the salary of a given employee will take the id and amount of the raise, find
the employee, and change the salary to the adjusted one. Listing 2-6 demonstrates this approach.

Listing 2-6. Method for Updating an Employee

public Employee raiseEmployeeSalary(int id, long raise) {
Employee emp = em.find(Employee.class, id);
if (emp != null) {
\ emp.setSalary(emp.getSalary() + raise);

return emp;

}

If we can’t find the employee, we return null so the caller will know that no change could be made.
We indicate success by returning the updated employee.

Transactions

You may feel that the code so far seems inconsistent with what we said earlier about transactionality
when working with entities. There were no transactions in any of the preceding examples, even
though we said that changes to entities must be made persistent using a transaction.

In all the examples except the one that called only find(), we assume that a transaction enclosed
each method. The find() call is not a mutating operation, so it may be called any time, with or without
a transaction.

Once again, the key is the environment in which the code is being executed. The typical situation
when running inside the Java EE container environment is that the standard Java Transaction API
(JTA) is used. The transaction model when running in the container is to assume the application will
ensure that a transactional context is present when one is required. If a transaction is not present,
then either the modifying operation will throw an exception or the change will simply never be
persisted to the data store. We will come back to discussing transactions in the Java EE environment in

CHAPTER 2 1 GETTING STARTED

more detail in
Chapter 3.

In our example in this chapter, though, we are notrunning in Java EE. We are in a Java SE
environment, and the transaction service that should be used in Java SEis the EntityTransaction
service. When executing in Java SE, we either need to begin and to commit the transaction in the
operational methods, or we need to begin and to commit the transaction before and after calling an
operational method. In either case, a transaction is started by calling getTransaction() on the entity
manager to get the EntityTransaction and then invoking begin() on it. Likewise, to commit the
transaction the commit() call is invoked on the EntityTransaction obtained from the entity manager.
For example, starting and committing before and after the method would produce code that creates an
employee the way itis done in Listing 2-7.

Listing 2-7. Beginning and Committing an EntityTransaction

em.getTransaction().begin();
createEmployee(158, "John Doe", 45000);
em.getTransaction().commit();

Further detail about resource-level transactions and the EntityTransaction API are containedin
Chapter 6.

Queries

In general, given that most developers have used a relational database at some point or another in
their lives, most of us pretty much know what a database query is. In JPA, a query is similar to a
database query, except that instead of using Structured Query Language (SQL) to specify the query
criteria, we are querying over entities and using a language called Java Persistence Query Language
JrQL).

A query is implemented in code as a Query or TypedQuery object. They are constructed using the
EntityManager as a factory. The EntityManager interface includes a variety of API calls thatreturn a
new Query or TypedQuery object. As a first-class object, a query can in turn be customized according to
the needs of the application.

A query can be defined either statically or dynamically. A static query is defined in either
annotation or XML metadata, and it must include the query criteria as well as a user-assigned name.
This kind of query is also called a named query, and it is later looked up by its name at the time it is
executed.

A dynamic query can be issued at runtime by supplying the JP QL query criteria, or a criteria object.
They may be a little more expensive to execute because the persistence provider cannot do any query
preparation beforehand, but JP QL queries are nevertheless very simple to use and can be issued in
response to program logic or even user logic.

27

28

CHAPTER 2 1 GETTING STARTED

Following is an example showing how to create a dynamic query and then execute it to obtain all
the employees in the database. Of course, this may not be a very good query to execute if the database
islarge and contains hundreds of thousands of employees, but it is nevertheless a legitimate example.
The simple query is as follows:

TypedQuery<Employee> query = em.createQuery("SELECT e FROM Employee e",
Employee.class);
List<Employee> emps = query.getResultList();

We create a TypedQuery object by issuing the createQuery() call on the EntityManager and passing
in the JP QL string that specifies the query criteria. The JP QL string refers not to an EMPLOYEE database
table but to the Employee entity, so this query is selecting all Employee objects without filtering them any
further. Youwill be diving into queries in Chapter 7, JP QL in Chapters 7 and 8, and criteria queries in
Chapter 9. Youwill see that you can be far more discretionary about which objects youwant to be
returned.

To execute the query we simply invoke getResultList() on it. This returns a List (a subinterface of
Collection) containing the Employee objects that matched the query criteria. We can easily create a
method that returns all of the employees, as shown in Listing 2-8.

Listing 2-8. Method for Issuing a Query

public List<Employee> findAllEmployees() {
TypedQuery<Employee> query = em.createQuery("SELECT e FROM Employee e",
Employee.class);
return query.getResultlList();

This example shows how simple queries are to create, execute, and process, but what this example
does not show is how powerful they are. In Chapter 7, we will examine many other extremely useful
andinteresting ways of defining and using queries in an application.

Putting It All Together

We can now take all the methods that we have created and combine them into a class. The class will act
like a service class, which we will call EmployeeService and will allow us to perform operations on
employees. The code should be pretty familiar by now. Listing 2-9 shows the complete
implementation.

Listing 2-9. Service Class for Operating on Employee Entities

import javax.persistence.*;
import java.util.list;

public class EmployeeService {
protected EntityManager em;

public EmployeeService(EntityManager em) {

this.em = em;

public Employee createEmployee(int id, String name, long salary) {
Employee emp = new Employee(id);

CHAPTER 2 1 GETTING STARTED

emp.setName(name) ;
emp.setSalary(salary);
em.persist(emp);
return emp;

}

public void removeEmployee(int id) {
Employee emp = findEmployee(id);
if (emp != null) {
em.remove(emp);
}

}

public Employee raiseEmployeeSalary(int id, long raise) {
Employee emp = em.find(Employee.class, id);
if (emp !'= null) {
emp.setSalary(emp.getSalary() + raise);

return emp;

}

public Employee findEmployee(int id) {
return em.find(Employee.class, id);
}

public List<Employee> findAllEmployees() {
TypedQuery<Employee> query = em.createQuery(
"SELECT e FROM Employee e", Employee.class);
return query.getResultlList();

}

This is a simple yet fully functional class that can be used to issue the typical create, read, update,
and delete (CRUD) operations on Employee entities. This class requires that an entity manager is
created and passed into it by the caller and also that any required transactions are begun and
committed by the caller. It may seem strange at first, but decoupling the transaction logic from the
operation logic makes this class more portable to the Java EE environment. We will revisit this
example in the next chapter, in which we focus on Java EE applications.

A simple main program that uses this service and performs all the required entity manager
creation and transaction management is shown in Listing 2-10.

Listing 2-10. Using EmployeeService

import javax.persistence.*;
import java.util.list;

public class EmployeeTest {

public static void main(String[] args) {
EntityManagerFactory emf =
Persistence.createEntityManagerFactory("EmployeeService");
EntityManager em = emf.createEntityManager();
EmployeeService service = new EmployeeService(em);

29

30

CHAPTER 2 1 GETTING STARTED

// create and persist an employee
em.getTransaction().begin();

Employee emp = service.createEmployee(158, "John Doe", 45000);
em.getTransaction().commit();

System.out.println("Persisted " + emp);

// find a specific employee
emp = service.findEmployee(158);
System.out.println("Found " + emp);

// find all employees

List<Employee> emps = service.findAllEmployees();

for (Employee e : emps)
System.out.println("Found employee:

+e);

// update the employee
em.getTransaction().begin();

emp = service.raiseEmployeeSalary(158, 1000);
em.getTransaction().commit();
System.out.println("Updated " + emp);

// remove an employee
em.getTransaction().begin();
service.removeEmployee(158);
em.getTransaction().commit();
System.out.println("Removed Employee 158");

// close the EM and EMF when done
em.close();
emf.close();

Note that at the end of the program we use the close() methods to clean up the entity manager and
the factory that we used to create it. This ensures that all the resources they might have allocated are
properly released.

Packaging It Up

Now that you know the basic building blocks of JPA, we are ready to organize the pieces into an
application that runs in Java SE. The only thing left to discuss is how to put it together so thatitruns.

Persistence Unit

The configuration that describes the persistence unitis defined in an XML file called persistence.xml.
Each persistence unit is named, so when a referencing application wants to specify the configuration
for an entity it needs only to reference the name of the persistence unit that defines that
configuration. A single persistence.xml file can contain one or more named persistence unit
configurations, but each persistence unit is separate and distinct from the others, and they can be
logically thought of as being in separate persistence.xml files.

CHAPTER 2 1 GETTING STARTED

Many of the persistence unit elements in the persistence.xml file apply to persistence units that
are deployed within the Java EE container. The only ones that we need to specify for our example are
name, transaction-type, class, and properties. There are a number of other elements that can be
specified in the persistence unit configuration in the persistence.xml file, but they will be discussed in
more detail in Chapter 13. Listing 2-11 shows the relevant part of the persistence.xml file for this
example.

Listing 2-11. Elements in the persistence.xml File

<persistence>
<persistence-unit name="EmployeeService"
transaction-type="RESOURCE_LOCAL">
<class>examples.model.Employee</class>
<properties>
<property name="javax.persistence.jdbc.driver"
value="org.apache.derby.jdbc.ClientDriver"/>
<property name="javax.persistence.jdbc.url"
value="jdbc:derby://localhost:1527/EmpServDB;create=true"/>
<property name="javax.persistence.jdbc.user" value="APP"/>
<property name="javax.persistence.jdbc.password" value="APP"/>
</properties>
</persistence-unit>
</persistence>

The name attribute of the persistence-unit elementindicates the name of our persistence unit and
is the string that we specify when we create the EntityManagerFactory. We have used
“EmployeeService” as the name. The transaction-type attribute indicates that our persistence unit
uses resource-level EntityTransaction instead of JTA transactions. The class elementlists the entity
that is part of the persistence unit. Multiple class elements can be specified when there is more than
one entity. They would not normally be needed when deploying in a Java EE container because the
container will scan for entities automatically as part of the deployment process, but they are needed
for portable execution when running in Java SE. We have only a single Employee entity.

The last section is just a list of properties that can be standard or vendor-specific. The JDBC
database login parameters must be specified when running in a Java SE environment to tell the
provider what resource to connect to. Other provider properties, such as logging options, are vendor-
specific and might also be useful.

TIP The names of the four JDBC properties (javax.persistence.jdbc.*) were standardized in JPA 2.0.
Previous to that, a provider chose its own property names and documented what users needed to specify in order
to connect to a JDBC data source.

Persistence Archive

The persistence artifacts are packaged in what we will loosely call a persistence archive. This is really
just a JAR-formatted file that contains the persistence.xml file in the META-INF directory and normally
the entity class files.

31

derby://localhost:1527/EmpServDB

32

CHAPTER 2 1 GETTING STARTED

Because we are running as a simple Java SE application, all we have to do is put the application
JAR, the persistence provider JARs, and the JPA JAR on the classpath when the program is executed.

Summary

This chapter discussed just enough of the basics of the Java Persistence API to develop and run a simple
application in a Java SE runtime.

We started out discussing the entity, how to define one, and how to turn an existing Java class into
one. We discussed entity managers and how they are obtained and constructed in the Java SE
environment.

The next step was to instantiate an entity instance and use the entity manager to persistitin the
database. After we inserted some new entities, we could retrieve them again and then remove them.
We also made some updates and ensured that the changes were written back to the database.

We talked about the resource-local transaction API and how to use it. We then went over some of
the different types of queries and how to define and execute them. Finally, we aggregated all these
techniques and combined them into a simple application that we can execute in isolation from an
enterprise environment.

In the next chapter, we will look at the impact of the Java EE environment when developing
enterprise applications using the Java Persistence APIL.

CHAPTER 3

Enterprise Applications

No technology exists in a vacuum, and JPA is no different in this regard. Although the fat-client style of
application demonstrated in the previous chapter is a viable use of JPA, the majority of enterprise Java
applications are deployed to a Java EE application server. Therefore it is essential to understand the
components that make up a Java EE application and the role of JPA in this environment.

We will begin with an overview of the major Java EE technologies relevant to persistence. As part
of this overview, we will also detour into the EJB component model, demonstrating the basic syntax for
stateless, stateful, singleton, and message-driven beans. Even if you have experience with previous
versions of these components, you might find this section helpful to get up to speed with the changes in
EJB 3 and Java EE. As part of the ease-of-development initiative for Java EE 5, EJB underwent some
major revision and became considerably easier to implement.

Although this chapter is not a complete or detailed exploration of Java EE, it will hopefully serve as
a sufficient overview to the simplified programming interfaces. We will introduce features only briefly
and spend the bulk of the chapter focusing on the elements relevant to developing applications that
use persistence.

Next we will look at the other application server technologies that have had a major impact on
applications using JPA: transactions and dependency management. Transactions, of course, are a
fundamental element of any enterprise application that needs to ensure data integrity. The
dependency-management facilities of Java EE are also key to understanding how the entity manager
is acquired by enterprise components and how these components can be linked together.

Finally, we will demonstrate how to use the Java EE components described in this chapter, with a
focus on how persistence integrates into each component technology. We will also revisit the Java SE
application from the previous chapter and retarget it to the Java EE platform.

Application Component Models

The word component has taken on many meanings in software development, solet’s begin with a
definition. A componentis a self-contained, reusable software unit that can be integrated into an
application. Clients interact with components via a well-defined contract. In Java, the simplest form of
software component is the JavaBean, commonly referred to as just a bean. Beans are components
implemented in terms of a single class whose contract is defined by the naming patterns of the
methods on the bean. The JavaBean naming patterns are so common now thatitis easy to forget that
they were originally intended to give user-interface builders a standard way of dealing with third-
party components.

In the enterprise space, components focus more on implementing business services, with the
contract of the component defined in terms of the business operations that can be carried out by that
component. The standard component model for Java EE is the EJB model, which defines ways to

33

34

CHAPTER 3 I ENTERPRISE APPLICATIONS

package, deploy, and interact with self-contained business services. The EJB’s type determines the
contractrequired to interact with it. Session beans use standard Java interfaces to define the set of
business methods that can be invoked on them, while message-driven bean behavior is determined by
the type and format of the messages the bean is designed to receive.

Choosing whether or not to use a component model in your application is largely a personal
preference. With some exceptions, most of the container services available to session beans are also
available to servlets. As a result, many web applications today sidestep EJBs entirely, going directly
from servlets to the database. Using components requires organizing the application into layers, with
business services living in the component model and presentation services layered on top of it.

Historically, one of the challenges in adopting components in Java EE was the complexity of
implementing them. With that problem largely solved, we are left with the benefits that a well-defined
set of business services brings to an application:

e Loose coupling. Using components to implement services encourages loose
coupling between layers of an application. The implementation of a component
can change without any impact to the clients or other components that depend
on it.

e Dependency management. Dependencies for a component can be declared in
metadata and automatically resolved by the container.

e Lifecycle management. The lifecycle of components is well defined and managed
by the application server. Componentimplementations can participate in
lifecycle operations to acquire and release resources, or perform other
initialization and shutdown behavior.

e Declarative container services. Business methods for components are intercepted
by the application server in order to apply services such as concurrency,
transaction management, security, and remoting.

e Portability. Components that comply to Java EE standards and that are deployed
to standards-based servers can be more easily ported from one compliant server
to another.

e Scalability and reliability. Application servers are designed to ensure that
components are managed efficiently with an eye to scalability. Depending on
the component type and server configuration, business operations implemented
using components can retry failed method calls or even fail over to another
server in a cluster.

One of the themes you will encounter as you read this book is the tendency for example code to be
written in terms of session beans. This is intentional. Not only are session beans easy to write and a
good way to organize application logic, but they are also a natural fit for interacting with JPA. In fact, as
web application frameworks continue to push application code farther away from the servlet, the
capability for session beans to seamlessly integrate and acquire the services of other components
makes them more valuable today than ever before.

Session Beans

Session beans are a component technology designed to encapsulate business services. The operations
supported by the service are usually defined using a regular Java interface, referred to as the business
interface of the session bean, that clients use to interact with the bean. The bean implementation is
little more than a regular Java class which implements the business interface if one is present. And

CHAPTER 3 % ENTERPRISE APPLICATIONS

yet, by virtue of being part of the EJB component model, the bean has access to a wide array of
container services that it can leverage to implement the business service. The significance of the
name session bean has to do with the way in which clients access and interact with them. Once a client
acquires a reference to a session bean from the server, it starts a session with that bean and can
invoke business operations on it.

There are three types of session bean: stateless, stateful, and singleton.

Interaction with a stateless session bean begins at the start of a business method call and ends
when the method call completes. There is no state that carries over from one business operation to the
other. An interaction with stateful session beans becomes more of a conversation that begins from the
moment the client acquires a reference to the session bean and ends when the client explicitly
releases it back to the server. Business operations on a stateful session bean can maintain state on the
bean instance across calls. We will provide more detail on the implementation considerations of this
difference in interaction style as we describe each type of session bean.

Singleton session beans, introduced in EJB 3.1, can be considered a hybrid of stateless and stateful
session beans. All clients share the same singleton bean instance, so it becomes possible to share state
across method invocations, but singleton session beans lack the conversational contract and mobility
of stateful session beans. State on a singleton session bean also raises issues of concurrency that need
to be taken into consideration when deciding whether or not to use this style of session bean.

Clients never interact directly with a session bean instance. The client references and invokes an
implementation of the business interface provided by the server. This implementation class acts as a
proxy to the underlying bean implementation. This decoupling of client from bean allows the server to
intercept method calls in order to provide the services required by the bean, such as transaction
management. It also allows the server to optimize and reuse instances of the session bean class as
necessary.

In the following sections we will discuss session beans using synchronous business method
invocations. Asynchronous business methods, introduced in EJB 3.1, offer an alternative invocation
pattern involving futures, but are beyond the scope of this book.

Stateless Session Beans

As we mentioned, a stateless session bean sets out to complete an operation within the lifetime of a
single method. Stateless beans can implement many business operations, but each method cannot
assume that any other was invoked before it.

This might sound like a limitation of the stateless bean, but it is by far the most common form of
business service implementation. Unlike stateful session beans, which are good for accumulating state
during a conversation (such as the shopping cart of a retail application), stateless session beans are
designed to carry out independent operations very efficiently. Stateless session beans can scale to
large numbers of clients with minimal impact to overall server resources.

Defining a Stateless Session Bean

A session bean is defined in two parts:

e Zeroor more business interfaces that define what methods a client can invoke
on the bean. When no interface is defined then the set of public methods on the
bean implementation class forms a logical client interface.

e Aclass thatimplements these interfaces, called the bean class, which is marked
with the @Stateless annotation.

35

36

CHAPTER 3 I ENTERPRISE APPLICATIONS

Most session beans have one business interface, but there is no restriction on the number of
interfaces that a session bean can expose to its clients. When the server encounters the @Stateless
annotation, it knows to treat the bean class as a session bean. It will configure the bean in the EJB
container and make it available for use by other components in the application. The @Stateless
annotation and other annotations described in this chapter are defined in either the javax.ejb or
javax.annotation package.

Let’s look at a complete implementation of a stateless session bean. Listing 3-1 shows the
business interface that will be supported by this session bean. In this example, the service consists of a
single method, sayHello(), which accepts a String argument corresponding to a person’s name and
returns a String response. There is no annotation or parent interface to indicate that this is a business
interface. When implemented by the session bean, it will be automatically treated as a local business
interface, meaning thatitis accessible only to clients within the same application server. A second
type of business interface for remote clients is discussed later in the section “Remote Business
Interfaces.” To emphasize that an interface is a local business interface, the @Local annotation can be
optionally added to the interface.

Listing 3-1. The Business Interface for a Session Bean

public interface HelloService {
public String sayHello(String name);

Now let’s consider the implementation, which is shown in Listing 3-2. This is a regular Java class
that implements the HelloService business interface. The only thing unique about this class is the
@Stateless annotation that marks it as a stateless session bean. The business method is implemented
without any special constraints or requirements. This is a regular class that just happens to be an EJB.

Listing 3-2. The Bean Class Implementing the HelloService Interface

@Stateless
public class HelloServiceBean implements HelloService {
public String sayHello(String name) {
return "Hello, " + name;
}

The No-Interface View

The no-interface view was introduced in EJB 3.1 to make it simpler to define a local session bean and for clients
to access local session beans. To define the same HelloServiceBean with a no-interface view, the bean developer
creates only the implementation class without implementing any business interface:

@Stateless
public class HelloServiceBean {
public String sayHello(String name) {
return “Hello, “ + name;

CHAPTER 3 % ENTERPRISE APPLICATIONS

The logical interface of the session bean consists of its public methods; in this case, the sayHello() method.
Clients use the HelloServiceBean class as if it were an interface, and must disregard any nonpublic methods or
details of the implementation. Under the covers, the client will be interacting with a proxy that extends the bean
class and overrides the business methods to provide the standard container services.

The advantage of the no-interface view is one of simplicity. It removes the need to implement a redundant
business interface and goes one step further in making EJBs look and feel like regular JavaBean classes.
However, because the no-interface view is available only for local session beans, this chapter uses the traditional
style of a separate interface for stateless and stateful session beans to be consistent.

There are only a couple of caveats about the stateless session bean class definition. The first is
thatit needs a no-arg constructor, but the compiler normally generates this automatically when no
other constructors are supplied. The second is that static fields should not be used, primarily because of
bean redeployment issues.

Many EJB containers create a pool of stateless session bean instances and then select an arbitrary
instance to service each client request. Therefore, there is no guarantee that the same state will be
used between calls, and hence it cannot be relied on. Any state placed on the bean class should be
restricted to factory classes that are inherently stateless, such as DataSource.

Lifecycle Callbacks

Unlike a regular Java class used in application code, the server manages the lifecycle of a stateless
session bean (which affects the implementation of a bean in two ways).

First, the server decides when to create and remove bean instances. The application has no
control over when or even how many instances of a particular stateless session bean are created or
how long they will stay around.

Second, the server has to initialize services for the bean after it is constructed, but before the
business logic of the bean is invoked. Likewise, the bean might have to acquire a resource such as a
JDBC data source before business methods can be used. However, in order for the bean to acquire a
resource, the server must first have completed initializing its services for the bean. This limits the
usefulness of the constructor for the class because the bean won’t have access to any resources until
server initialization has completed.

To allow both the server and the bean to achieve their initialization requirements, EJBs support
lifecycle callback methods that are invoked by the server at various points in the bean’s lifecycle. For
stateless session beans, there are two lifecycle callbacks: PostConstruct and PreDestroy. The server
will invoke the PostConstruct callback as soon as it has completed initializing all the container
services for the bean. In effect, this replaces the constructor as the location for initialization logic
because it is only here that container services are guaranteed to be available. The server invokes the
PreDestroy callback immediately before the server releases the bean instance to be garbage-
collected. Any resources acquired during PostConstruct that require explicit shutdown should be
released during PreDestroy.

37

38

CHAPTER 3 I ENTERPRISE APPLICATIONS

Listing 3-3 shows a stateless session bean that acquires a reference to a java.util.logging.Logger
instance during the PostConstruct callback. A bean can have at most one PostConstruct callback
method' that is identified by the @PostConstruct marker annotation. Likewise, the PreDestroy callback
is identified by the @PreDestroy annotation.

Listing 3-3. Using the PostConstruct Callback to Acquire a Logger

@Stateless
public class LoggerBean implements Logger {
private Logger logger;

@PostConstruct
public void init() {
logger = Logger.getlogger("notification");

public void logMessage(String message) {
logger.info(message);

Remote Business Interfaces

So far, we have only discussed session beans that use a local business interface. Local in this case
means that a dependency on the session bean can be declared only by Java EE components that are
running together in the same application server instance. It is not possible to use a session bean with
alocal interface from a remote client, for example.

To accommodate remote clients, session beans can mark their business interface with the @Remote
annotation to declare that it should be useable remotely. Listing 3-4 demonstrates this syntax for a
remote version of the HelloService interface shown in Listing 3-1. Marking an interface as being
remote is equivalent to having it extend the java.rmi.Remote interface. The reference to the bean that
gets acquired by a clientis nolonger alocal reference on the server but a Remote Method Invocation
(RMI) stub that will invoke operations on the session bean from across the network. No special support
isrequired on the bean class to use remote interfaces.

Listing 3-4. A Remote Business Interface

@Remote
public interface HelloServiceRemote {
public String sayHello(String name);

Making an interface remote has consequences both in terms of performance and how arguments
to business methods are handled. Remote business interfaces can be used locally within a running
server, but doing so might still result in network overhead if the method call is routed through the RMI
layer. Arguments to methods on remote interfaces are also passed by value instead of passed by

'In inheritance situations, additional callback methods from parent classes can also be invoked.

CHAPTER 3 % ENTERPRISE APPLICATIONS

reference. This means that the argument is serialized even when the client is local to the session bean.
Local interfaces for local clients are generally a better approach. Local interfaces preserve the
semantics of regular Java method calls and avoid the costs associated with networking and RML.

CAUTION Many application servers provide options to improve the performance of remote interfaces when
used locally. This might include the ability to disable serialization of method arguments or might sidestep RMI
entirely. Use caution when relying on these features in application code because they are not portable across
different application servers.

Stateful Session Beans

In our introduction to session beans we described the difference between stateless and stateful beans
as being based on the interaction style between client and server. In the case of stateless session
beans, that interaction started and ended with a single method call. Sometimes clients need to issue
multiple requests to a service and have each request be able to access or consider the results of
previous requests. Stateful session beans are designed to handle this scenario by providing a
dedicated service to a client that starts when the client obtains a reference to the bean and ends only
when the client chooses to end the conversation.

The quintessential example of the stateful session bean is the shopping cart of an e-commerce
application. The client obtains a reference to the shopping cart, starting the conversation. Over the
span of the user session, the client adds or removes items from the shopping cart, which maintains
state specific to the client. Then, when the session is complete, the client completes the purchase,
causing the shopping cart to be removed.

This is not unlike using a nonmanaged Java object in application code. We create an instance,
invoke operations on the object that accumulate state, and then dispose of the object when we no
longer need it. The only difference with the stateful session bean is that the server manages the actual
object instance and the client interacts with that instance indirectly through the business interface of
the bean.

Stateful session beans offer a superset of the functionality available in stateless session beans.
The features that we covered for stateless session beans such as remote interfaces apply equally to
stateful session beans.

Defining a Stateful Session Bean

Now that we have established the use case for a stateful session bean, let’s look at how to define one.
Similar to the stateless session bean, a stateful session bean is composed of one or more business
interfaces implemented by a single bean class. A sample local business interface for a shopping cart
bean is demonstrated in Listing 3-5.

Listing 3-5. Business Interface for a Shopping Cart

public interface ShoppingCart {
public void addItem(String id, int quantity);
public void removeItem(String id, int quantity);
public Map<String,Integer> getItems();

39

40

CHAPTER 3 I ENTERPRISE APPLICATIONS

public void checkout(int paymentId);
public void cancel();

Listing 3-6 shows the bean class that implements the ShoppingCart interface. The bean class has
been marked with the @Stateful annotation to indicate to the server that the class is a stateful session
bean.

Listing 3-6. Implementing a Shopping Cart Using a Stateful Session Bean

@Stateful
public class ShoppingCartBean implements ShoppingCart {
private HashMap<String,Integer> items = new HashMap<String,Integer>();

public void addItem(String item, int quantity) {
Integer orderQuantity = items.get(item);
if (orderQuantity == null) {
orderQuantity = 0;

orderQuantity += quantity;
items.put(item, orderQuantity);

}
/...

@Remove

public void checkout(int paymentId) {
// store items to database
/...

}

@Remove
public void cancel() {
}

There are two things different in this bean compared with the stateless session beans we have
been dealing with so far.

The first difference is that the bean class has state fields that are modified by the business methods
of the bean. This is allowed because the client that uses the bean effectively has access to a private
instance of the session bean on which to make changes.

The second difference is that there are methods marked with the @Remove annotation. These are
the methods that the client will use to end the conversation with the bean. After one of these methods
has been called, the server will destroy the bean instance, and the client reference will throw an
exception if any further attempt is made to invoke business methods. Every stateful session bean must
define at least one method marked with the @Remove annotation, even if the method doesn’t do
anything other than serve as an end to the conversation. In Listing 3-6, the checkout () method is
called if the user completes the shopping transaction, although cancel() is called if the user decides not
to proceed. The session bean is removed in either case.

CHAPTER 3 % ENTERPRISE APPLICATIONS

Lifecycle Callbacks

Like the stateless session bean, the stateful session bean also supports lifecycle callbacks in order to
facilitate bean initialization and cleanup. It also supports two additional callbacks to allow the bean to
gracefully handle passivation and activation of the bean instance. Passivation is the process by which
the server serializes the bean instance so that it can either be stored offline to free up resources or
replicated to another server in a cluster. Activation is the process of deserializing a passivated session
bean instance and making it active in the server once again. Because stateful session beans hold state
on behalf of a client and are not removed until the client invokes one of the remove methods on the
bean, the server cannot destroy a bean instance to free up resources. Passivation allows the server to
reclaim resources while preserving session state.

Before a bean is passivated, the server will invoke the PrePassivate callback. The bean uses this
callback to prepare the bean for serialization, usually by closing any live connections to other server
resources. The PrePassivate method is identified by the @PrePassivate marker annotation. After a bean
has been activated, the server will invoke the PostActivate callback. With the serialized instance
restored, the bean must then reacquire any connections to other resources that the business methods
of the bean might be depending on. The PostActivate method is identified by the @PostActivate marker
annotation. Listing 3-7 shows a session bean that makes full use of the lifecycle callbacks to maintain
a JDBC connection. Note that only the JDBC Connection is explicitly managed. As a resource
connection factory, the server automatically saves and restores the data source during passivation and
activation.

Listing 3-7. Using Lifecycle Callbacks on a Stateful Session Bean

@Stateful

public class OrderBrowserBean implements OrderBrowser {
DataSource ds;
Connection conn;

@PostConstruct

public void init() {
// acquire the data source
/...

acquireConnection();

@PrePassivate
public void passivate() { releaseConnection(); }

@PostActivate
public void activate() { acquireConnection(); }

@PreDestroy
public void shutdown() { releaseConnection(); }

private void acquireConnection() {
try {
conn = ds.getConnection();
} catch (SQLException e) {
throw new EJBException(e);
}

41

42

CHAPTER 3 I ENTERPRISE APPLICATIONS

}
private void releaseConnection() {
try {
conn.close();
} catch (SQLException e) {
conn = null;
}
public Collection<Order> listOrders() {
/...
}

Singleton Session Beans

Two of the most common criticisms of the stateless session bean have been the perceived overhead of
bean pooling and the inability to share state via static fields. The singleton session bean attempts to
provide a solution to both concerns, by providing a single shared bean instance that can both be
accessed concurrently and used as a mechanism for shared state. Singleton session beans share the
same lifecycle callbacks as a stateless session bean and server-managed resources such as persistence
contexts behave the same as if they were part of a stateless session bean. But the similarities end there
because singleton session beans have a different overall lifecycle than stateless session beans and
have the added complexity of developer-controlled locking for synchronization.

TIP Singleton session beans were introduced in EJB 3.1 and are not available in previous versions of EJB.

Unlike other session beans, the singleton can be created eagerly during application initialization
and exist until the application shuts down. Once created, it will continue to exist until the container
removes it, regardless of any exceptions that occur during business method execution. This is a key
difference from other session bean types because the bean instance will never be re-created in the
event of a system exception.

The long life and shared instance of the singleton session bean make it the ideal place to store
common application state, whether read-only or read-write. To safeguard access to this state, the
singleton session bean provides a number of concurrency options depending on the needs of the
application developer. Methods can be completely unsynchronized for performance, or automatically
locked and managed by the container. We will look at the concurrency options later in the section
“Singleton Concurrency.”

Defining a Singleton Session Bean

Following the pattern of stateless and stateful session beans, singleton session beans are defined
using the @Singleton annotation. Singleton session beans can include a local business interface or use
ano-interface view. Listing 3-8 shows a simple singleton session bean with a no-interface view to
track the number of visits to a web site.

CHAPTER 3 % ENTERPRISE APPLICATIONS

Listing 3-8. Implementing a Singleton Session Bean

@Singleton
public class HitCounter {
int count;

public void increment() { ++count; }
public void getCount() { return count; }

public void reset() { count = 0; }

If we compare the HitCounter bean in Listing 3-8 with the stateless and stateful session beans
defined earlier, we can see two immediate differences. Unlike the stateless session bean, there is state
in the form of a count field used to capture the visit count. But unlike the stateful session bean, there is
no @Remove annotation to identify the business method that will complete the session.

By default, the container will manage the synchronization of the business methods to ensure that
data corruption does not occur. In this example, that means all access to the bean is serialized so that
only one client is invoking a business method on the instance at any time.

The lifecycle of the singleton session bean is tied to the lifecycle of the overall application. The
container determines the point when the singleton instance gets created unless the bean includes the
@Startup annotation to force eager initialization when the application starts. The container can
create singletons that do not specify eager initialization lazily, but this is vendor-specific and cannot
be assumed.

When multiple singleton session beans depend on one another, the container needs to be
informed of the order in which they should be instantiated. This is accomplished via the @DependsOn
annotation on the bean class, which lists the names of other singleton session beans that must be
created first.

Lifecycle Callbacks

The lifecycle callbacks for singleton session beans are the same as for stateless session beans:
PostConstruct and PreDestroy. The container will invoke the PostConstruct callback after server
initialization of the bean instance and likewise invoke the PreDestroy callback prior to disposing of
the bean instance. The key difference here with respect to stateless session beans is that PreDestroy is
invoked only when the application shuts down as a whole. It will therefore be called only once,
whereas the lifecycle callbacks of stateless session beans are called frequently as bean instances are
created

and destroyed.

Singleton Concurrency

Singleton session beans can use container-managed or bean-managed concurrency. The default is
container-managed, which corresponds to a write lock on all business methods. All business method
invocations are serialized so that only one client can access the bean at any given time. The actual
implementation of the synchronization process is vendor-specific.

43

44

CHAPTER 3 I ENTERPRISE APPLICATIONS

Of course, not all business methods change the state of the bean. Those that do not can be safely
run in a concurrent fashion without affecting the overall integrity of the bean. If there is no danger of
corrupting the bean state through concurrent access, the @Lock (LockType.READ) annotation can be used
to declare that such access is safe and places a read lock on the method. If placed on the bean class,
@Lock(LockType.READ) switches the default business method behavior from write locks to read locks. If
placed on a business method, it overrides the class default. For beans that default to read locks,
@Lock(LockType .WRITE) can be used on business methods to override the default behavior and gain
write lock semantics. When container-managed concurrency is enabled, developers should always use
the @Lock annotation to control access and avoid Java primitives such as the synchronized keyword.

Althoughlocking semantics are declared in terms of business methods, conceptually the bean can
be thought of as having a single lock on the instance. Business methods will acquire either read or
write access on this lock depending on their @Lock declaration or default value. In terms of semantics,
multiple readers are allowed to proceed concurrently, but as soon as a write lock is acquired, all other
clients block until the write operation completes.

Listing 3-9. A Singleton Session Bean with Explicit Locking

@Singleton
public class HitCounter {
int count;

public void increment() { ++count; }

@Lock(LockType.READ)
public void getCount() { return count; }

public void reset() { count = 0; }

Listing 3-9 shows the HitCounter bean overriding the locking semantics for a business method. In
this case, the getCount () method has been marked @Lock(LockType.READ), indicating that multiple
clients can safely execute the method concurrently. The remaining methods are still defaulted to
@Lock(LockType .WRITE), and the container will ensure that read and write method invocations are
mutually exclusive.

For those who wish to have fine-grained control over concurrency, the singleton session bean can
be configured to use bean-managed concurrency via the
@ConcurrencyManagement (ConcurrencyManagementType.BEAN) annotation on the bean class. This
effectively disables the container-managed concurrency andrelies on the developer to use the
appropriate Java concurrency primitives to ensure data safety. The @Lock annotation has no effect for
bean-managed concurrency.

There are a number of cases in which bean-managed concurrency might be preferable to
container-managed concurrency. If the singleton session bean has no state, or if state operations are
restricted to a small subset of methods, bean-managed concurrency will yield better performance.
When container-managed concurrency is enabled, all business methods involve a lock of some kind,
whether state operations are involved or not.

Multiple sets of mutually exclusive state on the bean are also a candidate for bean-managed
concurrency. With container-managed concurrency, only one write lock can be held at any time
across all business methods. But if there are sets of state that are mutually exclusive, it might be safe to
execute concurrent writes across different sets. Bean-managed concurrency with developer-
maintainedlocks will again yield better performance. Alternatively, refactoring the bean into
multiple singleton session beans each focused on a single type of state will also improve the
performance of container-managed concurrency.

CHAPTER 3 % ENTERPRISE APPLICATIONS

Message-Driven Beans

So far, we have been looking at components that are typically synchronous in nature. The client
invokes a method through the business interface, and the server completes that method invocation
before returning control to the client. For the majority of services, this is the most natural approach.
There are cases, however, in whichitis not necessary for the client to wait for a response from the
server. We want the client to be able to issue a request and continue while the server processes the
request asynchronously.?

The message-driven bean (MDB) is the EJB component for asynchronous messaging. Clients issue
requests to the MDB using a messaging system such as Java Message Service (JMS). These requests are
queued and eventually delivered to the MDB by the server. The server invokes the business interface
of the MDB whenever itreceives a message sent from a client. Although the component contract of a
session bean is defined by its business interface, the component contract of an MDB is defined by the
structure of the messages it is designed to receive.

Defining a Message-Driven Bean

When defining a session bean, the developer usually creates a business interface, and the bean class
implements it. In the case of message-driven beans, the bean class implements an interface specific to
the messaging system the MDB is based on. The most common case is JMS, but other messaging
systems are possible with the Java Connector Architecture JCA). For JMS message-driven beans, the
business interface is javax.jms.MessagelListener, which defines a single method: onMessage().

Listing 3-10 shows the basic structure of a message-driven bean. The @MessageDriven annotation
marks the class as an MDB. The activation configuration properties, defined using the
@ActivationConfigProperty annotations, tell the server the type of messaging system and any
configuration details required by that system. In this case, the MDB will be invoked only if the JMS
message has a property named RECIPIENT in which the value is ReportProcessor. Whenever the server
receives a message, it invokes the onMessage() method with the message as the argument. Because
there is no synchronous connection with a client, the onMessage() method does not return anything.
However, the MDB can use session beans, data sources, or even other JMS resources to process and
carry out an action based on the message.

Listing 3-10. Defining a JMS Message-Driven Bean

@MessageDriven(
activationConfig = {
@ActivationConfigProperty(propertyName="destinationType",
propertyValue="javax.jms.Queue"),
@ActivationConfigProperty(propertyName="messageSelector",
propertyValue="RECIPIENT="'ReportProcessor'")

public class ReportProcessorBean implements javax.jms.MessagelListener {
public void onMessage(javax.jms.Message message) {
/...

% Although session beans can be invoked asynchronously, they do not offer the same quality of service
(QoS) guarantees as message driven beans.

45

46

CHAPTER 3 I ENTERPRISE APPLICATIONS

Servlets

Servlets are a component technology designed to serve the needs of web developers who need to
respond to HTTP requests and generate dynamic content in return. Servlets are the oldest and most
popular technology introduced as part of the Java EE platform. They are the foundation for
technologies such as JavaServer Pages (JSP) and the backbone of web frameworks such as JavaServer
Faces (JSF).

Although you might have some experience with servlets, it is worth describing the impact that web
application models have had on enterprise application development. Because of its reliance on the
HTTP protocol, the Web is inherently a stateless medium. Much like the stateless session beans
described earlier, a client makes a request, the server triggers the appropriate service method in the
servlet,and content is generated and returned to the client. Each request is entirely independent from
the last.

This presents a challenge because many web applications involve some kind of conversation
between the client and the server in which the previous actions of the user influence the results
returned on subsequent pages. To maintain that conversational state, many early applications
attempted to dynamically embed context information into URLs. Unfortunately, not only does this
technique not scale very well but it also requires a dynamic element to all content generation that
makes it difficult for nondevelopers to write content for a web application.

Servlets solve the problem of conversational state with the session. Not to be confused with the
session bean, the HTTP session is a map of data associated with a session id. When the application
requests that a session be created, the server generates a new id and returns an HTTPSession object
that the application can use to store key/value pairs of data. It then uses techniques such as browser
cookies to link the session id with the client, tying the two together into a conversation. For web
applications, the clientis largely ignorant of the conversational state that is tracked by the server.

Using the HTTP session effectively is an important element of servlet development. Listing 3-11
demonstrates the steps required to request a session and store conversational data in it. In this
example, assuming that the user has logged in, the servlet stores the user id in the session, making it
available for use in all subsequent requests by the same client. The getSession() call on the
HttpServletRequest object will either return the active session or create a new one if one does not
exist. Once obtained, the session acts like a map, with key/value pairs set and retrieved with the
setAttribute() and getAttribute() methods, respectively. As yousee later in this chapter, the servlet
session, which stores unstructured data, is sometimes paired with a stateful session bean to manage
session information with the benefit of a well-defined business interface.

Listing 3-11. Maintaining Conversational State with a Servlet
public class LoginServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
String userId = request.getParameter("user");
HttpSession session = request.getSession();
session.setAttribute("user", userld);

CHAPTER 3 % ENTERPRISE APPLICATIONS

/...

The rise of application frameworks targeted to the Web has also changed the way in which we
develop web applications. Application code written in servlets is rapidly being replaced with
application code further abstracted from the base model using frameworks such as JSF. When working
in an environment such as this, basic application persistence issues, such as where to acquire and store
the entity manager and how to effectively use transactions quickly, become more challenging.

Although we will explore some of these issues, persistence in the context of a framework such as
JSF is beyond the scope of this book. As a general solution, we recommend adopting a session bean
component model in which to focus persistence operations. Session beans are easily accessible from
anywhere within a Java EE application, making them perfect neutral ground for business services. The
ability to exchange entities inside and outside of the session bean model means that the results of
persistence operations will be directly usable in web frameworks without having to tightly couple your
presentation code to the persistence APL

Dependency Management

The business logic of a Java EE component is not always self-contained. More often than not, the
implementation depends on other resources hosted by the application server. This might include
server resources such as a JDBC data source or JMS message queue, or application-defined resources
such as a session bean or entity manager for a specific persistence unit.

To manage these dependencies, Java EE components support the notion of references to resources
that are defined in metadata for the component. A reference is a named link to a resource that can be
resolved dynamically at runtime from within application code or resolved automatically by the
container when the componentinstance is created. We’ll cover each of these scenarios shortly.

A reference consists of two parts: a name and a target. The name is used by application code to
resolve the reference dynamically, whereas the server uses target information to find the resource the
application is looking for. The type of resource to be located determines the type of information
required to match the target. Each resource reference requires a different set of information specific to
the resource type it refers to.

Areference is declared using one of the resource reference annotations: @Resource, @EJB,
@PersistenceContext, or @PersistenceUnit. These annotations can be placed on a class, field, or setter
method. The choice of location determines the default name of the reference, and whether or not the
server resolves the reference automatically.

Dependency Lookup

The first strategy for resolving dependencies in application code that we will discuss is called
dependency lookup. This is the traditional form of dependency management in Java EE, in which the
application code is responsible for using the Java Naming and Directory Interface JNDI) to look up a
namedreference.

All the resource annotations support an attribute called name that defines the name of the
reference. When the resource annotation is placed on the class definition, this attribute is mandatory.
If the resource annotation is placed on a field or a setter method, the server will generate a default
name. When using dependency lookup, annotations are typically placed at the class level, and the
name is explicitly specified. Placing a resource reference on a field or setter method has other effects
besides generating a default name that we will discuss in the next section.

47

48

CHAPTER 3 I ENTERPRISE APPLICATIONS

The role of the name is to provide a way for the client to resolve the reference dynamically. Every
Java EE application server supports JNDI, and each component has its own locally scoped JNDI naming
context called the environment naming context. The name of the reference is boundinto the
environment naming context, and when it is looked up using the JNDI API, the server resolves the
reference and returns the target of the reference.

Consider the DeptServiceBean session bean shown in Listing 3-12. It has declared a dependency
on a session bean using the @EJB annotation and given it the name “audit”. The beanInterface element
of the @EJB annotation references the business interface of the session bean that the client is
interested in. In the PostConstruct callback, the audit bean is looked up and stored in the audit field.
The Context and InitialContext interfaces are both defined by the JNDI API. The lookup() method of
the Context interface is the primary way to retrieve objects from a JNDI context. To find the reference
named “audit”, the application looks up the name “java:comp/env/audit” and casts the result to the
AuditService business interface. The prefix “java:comp/env/” that was added to the reference name
indicates to the server that the environment naming context should be searched to find the reference.
If the name is incorrectly specified, an exception will be thrown when the lookup fails.

Listing 3-12. Looking Up an EJB Dependency

@Stateless

@EJB(name="audit", beanInterface=AuditService.class)

public class DeptServiceBean implements DeptService {
private AuditService audit;

@PostConstruct
public void init() {
try {
Context ctx = new InitialContext();
audit = (AuditService) ctx.lookup("java:comp/env/audit");
} catch (NamingException e) {
throw new EJBException(e);

}
/1 ...

Using the JNDI API to look up resource references from the environment naming context is
supported by all Java EE components. It is, however, a somewhat cumbersome method of finding a
resource because of the exception-handling requirements of JNDI. EJBs also support an alternative
syntax using the lookup() method of the EJBContext interface. The EJBContext interface (and
subinterfaces such as SessionContext and MessageDrivenContext) is available to any EJB and provides
the bean with access to runtime services such as the timer service. Listing 3-13 shows the same
example as Listing 3-12 using the lookup() method. The SessionContext instance in this example is
provided via a setter method. We will revisit this example later in the section called “Referencing
Server Resources” to see how itis invoked.

Listing 3-13. Using the EJBContext lookup() Method

@Stateless
@EJB(name="audit", beanInterface=AuditService.class)
public class DeptServiceBean implements DeptService {
SessionContext context;
AuditService audit;

CHAPTER 3 % ENTERPRISE APPLICATIONS

public void setSessionContext(SessionContext context) {
this.context = context;
}

@PostConstruct
public void init() {

audit = (AuditService) context.lookup("audit");
}

/7 ...

The EJBContext lookup() method has two advantages over the JNDI APL The first is that the
argument to the method is the name exactly as it was specified in the resource reference. The second is
that only runtime exceptions are thrown from the lookup() method so the checked exception handling
of the JNDI API can be avoided. Behind the scenes, the exact same sequence of JNDI API calls from
Listing 3-12 is being made, but the JNDI exceptions are handled automatically.

Dependency Injection

When a resource annotation is placed on a field or setter method, two things occur. First, a resource
reference is declared just as if it had been placed on the bean class (similar to the example in Listing 3-
12), and the name for that resource will be bound into the environment naming context when the
component is created. Second, the server does the lookup automatically on your behalf and sets the
result into the instantiated class.

The process of automatically looking up a resource and setting it into the class is called
dependency injection because the server is said to inject the resolved dependency into the class. This
technique, one of several commonly referred to as inversion of control, removes the burden of
manually looking up resources from the JNDI environment context.

Dependency injection is considered a best practice for application development, not only because
it reduces the need for JNDI lookups (and the associated Service Locator® pattern) but also because it
simplifies testing. Without any JNDI API code in the class that has dependencies on the application
server runtime environment, the bean class can be instantiated directly in a unit test. The developer
can then manually supply the required dependencies and test the functionality of the class in question
instead of worrying about how to work around the JNDI APIs.

Field Injection

The first form of dependency injection is called field injection. Injecting a dependency into a field
means that after the server looks up the dependency in the environment naming context, it assigns
the result directly into the annotated field of the class. Listing 3-14 revisits the example from Listing 3-
12 and demonstrates the @EJB annotation, this time by injecting the result into the audit field. All the

3 Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design Strategies,
Second Edition. Upper Saddle River, N.J.: Prentice Hall PTR, 2003.

49

50

CHAPTER 3 I ENTERPRISE APPLICATIONS

directory interface code we demonstrated before is gone, and the business methods of the bean can
assume that the audit field holds a reference to the AuditService bean.

Listing 3-14. Using Field Injection

@Stateless
public class DeptServiceBean implements DeptService {
@EJB AuditService audit;

/...

Field injection is certainly the easiest to implement, and the examples in this book use this form
exclusively to conserve space. The only thing to consider with field injection is that if you are planning
on unit testing, you need either to add a setter method or make the field accessible to your unit tests to
manually satisfy the dependency. Private fields, althoughlegal, require unpleasant hacks if there is no
accessible way to set their value. Consider package scope for field injection if you want to unit test
without having to add a setter.

We mentioned in the previous section that a name is automatically generated for the reference
when a resource annotation is placed on a field or setter method. For completeness, we will describe
the format of this name, but it is unlikely that you will find many opportunities to use it. The generated
name is the fully qualified class name, followed by a forward slash and then the name of the field or
property. This means that if the AuditService bean is located in the persistence.session package, the
injected EJB referenced in Listing 3-14 would be accessible in the environment naming context under
the name “persistence.session.AuditService/audit”. Specifying the name element for the resource
annotation will override this default value.

Setter Injection

The second form of dependency injection is called setter injection and involves annotating a setter
method instead of a class field. When the server resolves the reference, it will invoke the annotated
setter method with the result of the lookup. Listing 3-15 revisits Listing 3-12 for the last time to
demonstrate using setter injection.

Listing 3-15. Using Setter Injection

@Stateless
public class DeptServiceBean implements DeptService {
private AuditService audit;

@EJB

public void setAuditService(AuditService audit) {
this.audit = audit;

}

/...

This style of injection allows for private fields, yet also works well with unit testing. Each test can
simply instantiate the bean class and manually perform the dependency injection by invoking the
setter method, usually by providing an implementation of the required resource that is tailored to
the test.

CHAPTER 3 % ENTERPRISE APPLICATIONS

Declaring Dependencies

The following sections describe some of the resource annotations defined by the Java EE and EJB
specifications. Each annotation has a name attribute for optionally specifying the reference name for
the dependency. Other attributes on the annotations are specific to the type of resource that needs to
be acquired.

Referencing a Persistence Context

In the previous chapter, we demonstrated how to create an entity manager for a persistence context
using an EntityManagerFactory returned from the Persistence class. In the Java EE environment, the
@PersistenceContext annotation can be used to declare a dependency on a persistence context and
have the entity manager for that persistence context acquired automatically.

Listing 3-16 demonstrates using the @PersistenceContext annotation to acquire an entity
manager through dependency injection. The unitName element specifies the name of the persistence
unit on which the persistence context will be based.

TIP If the unitName element is omitted, it is vendor-specific how the unit name for the persistence context is
determined. Some vendors can provide a default value if there is only one persistence unit for an application,
whereas others might require that the unit name be specified in a vendor-specific configuration file.

Listing 3-16. Injecting an EntityManager Instance

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

/...

After the warnings about using a state field in a stateless session bean, you might be wondering
how this code is legal. After all, entity managers must maintain their own state to be able to manage a
specific persistence context. The good news is that the specification was designed with Java EE
integration in mind, so what actually gets injected in Listing 3-16 is not an entity manager instance
like the ones we used in the previous chapter. The value injected into the bean is a container-
managed proxy that acquires and releases persistence contexts on behalf of the application code. This
is a powerful feature of the Java Persistence APl in Java EE and is covered extensively in Chapter 6. For
now, it is safe to assume that the injected value will “do the right thing.” It does not have to be disposed
of and works automatically with the transaction management of the application server.

51

52

CHAPTER 3 I ENTERPRISE APPLICATIONS

Referencing a Persistence Unit

The EntityManagerFactory for a persistence unit can be referenced using the @PersistenceUnit
annotation. Like the @PersistenceContext annotation, the unitName element identifies the persistence
unit for the EntityManagerFactory instance we want to access. If the persistent unit name is not
specified in the annotation, it is vendor-specific how the name is determined.

Listing 3-17 demonstrates injection of an EntityManagerFactory instance into a stateful session
bean. The bean then creates an EntityManager instance from the factory during the PostConstruct
lifecycle callback. An injected EntityManagerFactory instance can be safely stored on any component
instance. It is thread-safe and does not need to be disposed of when the bean instance is removed.

Listing 3-17. Injecting an EntityManagerFactory Instance

@Stateful

public class EmployeeServiceBean implements EmployeeService {
@PersistenceUnit(unitName="EmployeeService")
private EntityManagerFactory emf;
private EntityManager em;

@PostConstruct
public void init() {
em = emf.createEntityManager();

/7 ...

The EntityManagerFactory for a persistence unitis not used very often in the Java EE environment
because injected entity managers are easier to acquire and use. As youwill see in Chapter 6, there are
important differences between the entity managers returned from the factory and the ones provided
by the server in response to the @PersistenceContext annotation.

Referencing Enterprise JavaBeans

When a component needs to access an EJB, it declares a reference to that bean with the @EJB
annotation. The target of this reference type is typically a session bean. Message-driven beans have
no client interface, so they cannot be accessed directly and cannot be injected. We have already
demonstrated the beanInterface element for specifying the business interface of the session bean that
the clientis interested in. The server will search through all deployed session beans to find the one
that implements the requested business interface.

In the rare case that two session beans implement the same business interface or if the client
needs to access a session bean located in a different EJB jar, then the beanName element can also be
specified to identify the session bean by its name. The name of a session bean defaults to the
unqualified class name of the bean class or it can be set explicitly by using the name element of the
@Stateless and @Stateful annotations.

Listing 3-18 revisits the example shown in Listing 3-14, this time specifying the beanName element
on the injected value. Sharing the same business interface across multiple bean implementations is
not recommended. The beanName element should almost never be required.

CHAPTER 3 % ENTERPRISE APPLICATIONS

Listing 3-18. Qualifying an EJB Reference Using the Bean Name

@Stateless

public class DeptServiceBean implements DeptService {
@EJB(beanName="AuditServiceBean")
AuditService audit;

/...

Referencing Server Resources

The @Resource annotation is the catchall reference for all resource types that don’t correspond to one
of the types described so far. It is used to define references to resource factories, message destinations,
data sources, and other server resources. The @Resource annotation is also the simplest to define
because the only additional elementis resourceType, which allows you to specify the type of resource if
the server can’t figure it out automatically. For example, if the field you are injecting into is of type
Object, then there is no way for the server to know that you wanted a data source instead. The
resourceType element can be set to javax.sql.DataSource to make the need explicit.

One of the features of the @Resource annotation is thatitis used to acquire logical resources
specific to the component type. This includes EJBContext implementations as well as services such as
the EJB timer service. Without defining it as such, we used setter injection to acquire the EJBContext
instance in Listing 3-13. To make that example complete, the @Resource annotation would be placed on
the setSessionContext() method. Listing 3-19 revisits the example from Listing 3-13, this time
demonstrating field injection to acquire a SessionContext instance.

Listing 3-19. Injecting a SessionContext instance

@Stateless
@EJB(name="audit", beanInterface=AuditService.class)
public class DeptServiceBean implements DeptService {
@Resource SessionContext context;
AuditService audit;

@PostConstruct
public void init() {
audit = (AuditService) context.lookup("audit");

/...

Transaction Management

More than any other type of enterprise application, applications that use persistence require careful
attention to issues of transaction management. When transactions start, when they end, and how the
entity manager participates in container-managed transactions are all essential topics for developers
using JPA. The following sections will lay out the foundation for transactions in Java EE and then
revisit this topicin detail again in Chapter 6 as we look at the entity manager and how it participates

53

54

CHAPTER 3 I ENTERPRISE APPLICATIONS

in transactions. Advanced transaction topics are beyond the scope of this book. We recommend Java
Transaction Processing’ for an in-depth discussion on using and implementing transactions in Java,
and Principles of Transaction Processing’ for a look at transactions and transaction systems in general.

Transaction Review

A transaction is an abstraction that is used to group together a series of operations. Once grouped
together, the set of operations is treated as a single unit, and all of the operations must succeed or
none of them can succeed. The consequence of only some of the operations being successful would
produce an inconsistent view of the data that would be harmful or undesirable to the application. The
term used to describe whether the operations succeed together or not at all is called atomicity and is
arguably the most important of the four basic properties that are used to characterize how transactions
behave. Understanding these four properties is fundamental to understanding transactions. The
following list summarizes these properties:

e Atomicity: Either all the operations in a transaction are successful or none of
them is. The success of every individual operation is tied to the success of the
entire group.

e Consistency: The resulting state at the end of the transaction adheres to a set of
rules that define acceptability of the data. The data in the entire system is legal
or valid with respect to the rest of the data in the system.

e Isolation: Changes made within a transaction are visible only to the transaction
that is making the changes. Once a transaction commits the changes, they are
atomically visible to other transactions.

e Durability: The changes made within a transaction endure beyond the
completion of the transaction.

A transaction that meets all these requirements is said to be an ACID transaction (the familiar
ACID term being obtained by combining the first letter of each of the four properties).

Not all transactions are ACID transactions, and those that are often offer some flexibility in the
fulfillment of the ACID properties. For example, the isolation level is a common setting that can be
configured to provide either looser or tighter degrees of isolation than what was described earlier.
They are typically done for reasons of either increased performance or, on the other side of the
spectrum, if an application has more stringent data consistency requirements. The transactions that
we discuss in the context of Java EE are normally of the ACID variety.

* Little, Mark, Jon Maron, and Greg Pavlik. Java Transaction Processing: Design and Implementation.
Upper Saddle River, N.J.: Prentice Hall PTR, 2004.

® Bernstein, Philip A., and Eric Newcomer. Principles of Transaction Processing. Burlington, MA: Morgan
Kaufmann, 2009.

CHAPTER 3 % ENTERPRISE APPLICATIONS

Enterprise Transactions in Java

Transactions actually exist at different levels within the enterprise application server. The lowest and
most basic transaction is at the level of the resource, which in our discussion is assumed to be a
relational database fronted by a DataSource interface. This is called a resource-local transaction and is
equivalent to a database transaction. These types of transactions are manipulated by interacting
directly with the JDBC DataSource that is obtained from the application server. Resource-local
transactions are used much more infrequently than container transactions.

The broader container transaction uses the Java Transaction API JTA) thatis available in every
compliant Java EE application server. This is the typical transaction that is used for enterprise
applications and can involve or enlist a number of resources including data sources as well as other
types of transactional resources. Resources defined using Java Connector Architecture JCA)
components can also be enlisted in the container transaction.

Containers typically add their own layer on top of the JDBC DataSource to perform functions such
as connection management and pooling that make more efficient use of the resources and provide a
seamless integration with the transaction-management system. This is also necessary because it is
the responsibility of the container to perform the commit or rollback operation on the data source
when the container transaction completes.

Because container transactions use JTA and because they can span multiple resources, they are
also called JTA transactions or global transactions. The container transaction is a central aspect of
programming within Java EE application servers.

Transaction Demarcation

Every transaction has a beginning and an end. Beginning a transaction will allow subsequent
operations to become a part of the same transaction until the transaction has completed. Transactions
can be completed in one of two ways. They can be committed, causing all of the changes to be persisted
to the data store, or rolled back, indicating that the changes should be discarded. The act of causing a
transaction to either begin or complete is termed transaction demarcation. This is a critical part of
writing enterprise applications, because doing transaction demarcation incorrectly is one of the most
common sources of performance degradation.

Resource-local transactions are always demarcated explicitly by the application, whereas
container transactions can either be demarcated automatically by the container or by using a JTA
interface that supports application-controlled demarcation. In the first case, when the container takes
over the responsibility of transaction demarcation, we call it container-managed transaction
management, but when the application is responsible for demarcation, we call it bean-managed
transaction management.

EJBs can use either container-managed transactions or bean-managed transactions. Servlets are
limited to the somewhat poorly named bean-managed transaction. The default transaction
management style for an EJB component is container-managed. To configure an EJB to have its
transactions demarcated one way or the other, the @TransactionManagement annotation should be
specified on the session or message-driven bean class. The TransactionManagementType enumerated
type defines BEAN for bean-managed transactions and CONTAINER for container-managed transactions.
Listing 3-20 demonstrates how to enable bean-managed transactions using this approach.

55

56

CHAPTER 3 I ENTERPRISE APPLICATIONS

Listing 3-20. Changing the Transaction Management Type of a Bean

@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class ProjectServiceBean implements ProjectService {
// methods in this class manually control transaction demarcation
}

Because the default transaction management for a bean is container-managed, this annotation
needs to be specified only if bean-managed transactions are desired.

Container-Managed Transactions

The most common way to demarcate transactions is to use container-managed transactions (CMTs),
which spare the application the effort and code to begin and commit transactions explicitly.

Transaction requirements are determined by metadata on session and message-driven beans
and are configurable at the granularity of method execution. For example, a session bean can declare
that whenever any specific method on that bean gets invoked, the container must ensure that a
transaction is started before the method begins. The container would also be responsible for
committing the transaction after the completion of the method.

It is quite common for one bean to invoke another bean from one or more of its methods. In this
case, a transaction that can have been started by the calling method would not have been committed
because the calling method will not be completed until its call to the second bean has completed. This
is why we need settings to define how the container should behave when a method is invoked within a
specific transactional context.

For example, if a transaction is already in progress when a method is called, the container might
be expected to just make use of that transaction, whereas it might be directed to start a new one if no
transaction is active. These settings are called transaction attributes, and they determine exactly what
the container-managed transactional behavior is.

The defined transaction attributes choices are as follows:

e MANDATORY: If this attribute is specified for a method, a transaction is expected to
have already been started and be active when the method is called. If no
transaction is active, an exception is thrown. This attribute is seldom used, but
can be a development tool to catch transaction demarcation errors when it is
expected that a transaction should already have been started.

e REQUIRED: This attribute is the most common case in which a method is expected to
be in a transaction. The container provides a guarantee that a transaction is
active for the method. If one is already active, it is used; if one does not exist, a
new transaction is created for the method execution.

e REQUIRES_NEW:This attribute is used when the method always needs to be in its
own transaction; that is, the method should be committed or rolled back
independently of methods further up the call stack. It should be used with caution
because it can lead to excessive transaction overhead.

e SUPPORTS: Methods marked with supports are not dependent on a transaction, but
will tolerate running inside one if it exists. This is an indicator that no
transactional resources are accessed in the method.

CHAPTER 3 % ENTERPRISE APPLICATIONS

e NOT_SUPPORTED: A method marked to not support transactions will cause the
container to suspend the current transaction if one is active when the method is
called. It implies that the method does not perform transactional operations, but
might fail in other ways that could undesirably affect the outcome of a
transaction. This is not a commonly used attribute.

e NEVER: A method marked to never support transactions will cause the container to
throw an exception if a transaction is active when the method is called. This
attribute is very seldom used, but can be a development tool to catch transaction
demarcation errors when it is expected that transactions should already have
been completed.

Any time the container starts a transaction for a method, the container is assumed to also attempt
to commit the transaction at the end of the method. Each time the current transaction must be
suspended, the container is responsible for resuming the suspended transaction at the conclusion of
the method.

The transaction attribute for a method can be indicated by annotating a session or message-
driven bean class, or one of its methods that is part of the business interface, with the
@TransactionAttribute annotation. This annotation requires a single argument of the enumerated
type TransactionAttributeType, the values of which are defined in the preceding list. Annotating the
bean class will cause the transaction attribute to apply to all of the business methods in the class,
whereas annotating a method applies the attribute only to the method. If both class-level and method-
level annotations exist, the method-level annotation takes precedence. In the absence of class-level
or method-level @TransactionAttribute annotations, the default attribute of REQUIRED will be applied.

Listing 3-21 shows how the addItem() method from the shopping cart bean in Listing 3-6 might use
a transaction attribute. No transaction management setting was supplied, so container-managed
transactions will be used. No attribute was specified on the class, so the default behavior of REQUIRED
will apply to all the methods of the class. The exception is that the addItem() method has declared a
transaction attribute of SUPPORTS, which overrides the REQUIRED setting. Whenever a call to add an item
is made, that item will be added to the cart, but if no transaction was active none will need to be
started.

Listing 3-21. Specifying a Transaction Attribute

@Stateful
public class ShoppingCartBean implements ShoppingCart {

@TransactionAttribute(TransactionAttributeType.SUPPORTS)
public void addItem(String item, Integer quantity) {
verifyItem(item, quantity);
/] ...
}

/.

Furthermore, before the addItem() method adds the item to the cart, it does some validation in a
private method called verifyItem() that is not shown in the example. When this method is invoked
from verifyItem(), it will run in whatever transactional context addItem() was invoked.

Any bean wanting to cause a container-managed transaction to roll back can do so by invoking
the setRollbackOnly() method on the EJBContext object. Although this will not cause the immediate
rollback of the transaction, it is an indication to the container that the transaction should be rolled
back when the time comes. Note that entity managers will also cause the current transaction to be set

57

58

CHAPTER 3 I ENTERPRISE APPLICATIONS

to roll back when an exception is thrown during an entity manager invocation or when the
transaction completes.

Bean-Managed Transactions

The other way of demarcating transactions is to use bean-managed transactions (BMTs). Declaring that
a bean is using bean-managed transactions means that the bean class is assuming the responsibility
to begin and commit the transactions whenever it deems it’s necessary. With this responsibility,
however, comes the expectation that the bean class will get it right. Beans that use BMT must ensure
that any time a transaction has been started, it must also be completed before returning from the
method that started it. Failure to do so will result in the container rolling back the transaction
automatically and an exception being thrown.

One penalty of transactions being managed by the application instead of by the container is that
they do not get propagated to methods called on another BMT bean. For example, if Bean A begins a
transaction and then calls Bean B, which is using bean-managed transactions, then the transaction
will not get propagated to the method in Bean B. Any time a transaction is active when a BMT method
is invoked, the active transaction will be suspended until control returns to the calling method.

BMT is not generally recommended for use in EJBs because it adds complexity to the application
andrequires the application to do work that the server can already do for it. It is necessary, though,
when transactions must be initiated from the web tier, because it is the only supported way that non-
EJB components can use container transactions.

UserTransaction

To be able to manually begin and commit container transactions, the application must have an
interface that supports it. The UserTransaction interface is the designated object in the JTA that
applications can hold on to and invoke to manage transaction boundaries. An instance of
UserTransaction is not actually the current transaction instance; it is a sort of proxy that provides the
transaction APl and represents the current transaction. A UserTransaction instance can be injected
into BMT components by using the @Resource annotation. When using dependency lookup, it is found
in the environment naming context using the reserved name “java:comp/UserTransaction”. The
UserTransaction interface is shown in Listing 3-22.

Listing 3-22. The UserTransaction Interface

public interface javax.transaction.UserTransaction {
public abstract void begin();
public abstract void commit();
public abstract int getStatus();
public abstract void rollback();
public abstract void setRollbackOnly();
public abstract void setTransactionTimeout(int seconds);

EachJTA transaction is associated with an execution thread, so it follows that no more than one
transaction can be active at any given time. So if one transaction is active, the user cannot start
another one in the same thread until the first one has committed or rolled back. Alternatively, the
transaction can time out, causing the transaction to roll back.

We discussed earlier thatin certain CMT conditions the container will suspend the current
transaction. From the previous API, you can see that there is no UserTransaction method for
suspending a transaction. Only the container can do this using an internal transaction management

CHAPTER 3 % ENTERPRISE APPLICATIONS

APIL In this way, multiple transactions can be associated with a single thread, even though only one
can ever be active ata time

Rollbacks can occur in several different scenarios. The setRollbackOnly() method indicates that
the current transaction cannot be committed, leaving rollback as the only possible outcome. The
transaction can be rolled back immediately by calling the rollback() method. Alternately, a time limit
for the transaction can be set with the setTransactionTimeout () method, causing the transaction to roll
back when the limit is reached. The only catch with transaction timeouts is that the time limit must be
set before the transaction starts and it cannot be changed once the transaction is in progress.

In JTA every thread has a transactional status that can be accessed through the getStatus() call.
The return value of this method is one of the constants defined on the java.transaction.Status
interface. If no transaction is active, for example, then the value returned by getStatus() will be the
STATUS_NO_TRANSACTION. Likewise, if setRollbackOnly() has been called on the current transaction, then
the status will be STATUS_MARKED_ROLLBACK until the transaction has begun rolling back.

Listing 3-23 shows a fragment from a servlet using the ProjectService bean to demonstrate using
UserTransaction to invoke multiple EJB methods within a single transaction. The doPost () method uses
the UserTransaction instance injected with the @Resource annotation to start and commit a transaction.
Note the try ... finally block required around the transaction operations to ensure that the
transaction is correctly cleaned up in the event of a failure.

Listing 3-23. Using the UserTransaction Interface
public class ProjectServlet extends HttpServlet {
@Resource UserTransaction tx;
@EJB ProjectService bean;

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

/...

try {
tx.begin();
try {

bean.assignEmployeeToProject(projectId, empId);
bean.updateProjectStatistics();

} finally {
tx.commit();

} catch (Exception e) {

// handle exceptions from UserTransaction methods
/...

/7 ...

59

60

CHAPTER 3 I ENTERPRISE APPLICATIONS

Using Java EE Components

Now that we have described how to define Java EE components and make use of services such as
transaction management that are provided by the application server, we can demonstrate how to put
these components to work. Once again we must caution that this is not an exhaustive overview of these
technologies, but is provided by way of introduction to Java EE to put the upcoming persistence
examples in context and for developers who might be new to the platform.

Using a Stateless Session Bean

A client of a stateless session bean is any Java EE component that can declare a dependency on the
bean. This includes other session beans, message-driven beans, and servlets. Two-tier access from a
remote clientis also possible if the bean defines a remote business interface.

Consider the servlet shown in Listing 3-24, which uses the EJB from Listing 3-2 to obtain a
message and then generates a simple HTML page. As discussed earlier in the section on dependency
management, the @EJB annotation causes the HelloService bean to be automatically injected into the
servlet. Therefore, when the doGet () method is invoked, methods on the business interface can be
invoked without any extra steps.

Listing 3-24. A Servlet That Uses a Session Bean

public class HelloServlet extends HttpServlet {
@EJB HelloService bean;

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException {
String name = request.getParameter("name");
String message = bean.sayHello(name);

PrintWriter out = response.getWriter();

out.println("<html>" +
"<head><title>Hello</title></head>" +
"<body><p>" + message + "</p></body>" +
"</html>");

In the case of session beans that depend on other session beans, note that it is always safe to
declare a reference to a stateless session bean and store itin a field on the bean. The bean reference
in the case of a stateless session bean is itself a stateless and thread-safe object.

Using a Stateful Session Bean

There are a few basic things to keep in mind when working with stateful session beans:

e When a client obtains a reference to a stateful session bean, a private instance
of that bean is created for the client. In other words, there is one bean instance
per clientreference.

CHAPTER 3 % ENTERPRISE APPLICATIONS

e The bean does not go away until the client invokes a method annotated with
@Remove. If the client forgets or is unable to end the conversation with the bean, it
will hang around until the server can determine that it is safe to remove it.

e Areference to a stateful session bean cannot be shared between threads.

A consequence of these rules is that clients need to plan carefully when they need to start the
session and when it can be ended. It also means that using the @EJB annotation to inject a stateful
session bean is not a good solution. Servlets, stateless session beans, and message-driven beans are
all stateless components. As stated in the description of stateless session beans, any object placed on a
stateless component must also be stateless as well. A stateful session bean reference is itself stateful
because it references a private instance of the bean managed by the server. If @EJB were used to inject
a stateful session bean into a stateless session bean where the server had pooled 100 bean instances,
there would be 100 stateful session bean instances created as well. The only time itis ever safe to
inject a stateful session bean is into another stateful session bean.

Dependency lookup is the preferred method for acquiring a stateful session bean instance for a
stateless client. The EJBContext lookup() method is the easiest way to accomplish this, but JNDI will be
required if the clientis a servlet. Listing 3-25 demonstrates a typical pattern for servlets using stateful
session beans. A reference is declared to the bean, it is looked up lazily when needed, and the resultis
bound to the HTTP session. The stateful session bean and HTTP session have similar lifecycles,
making them good candidates to work together.

Listing 3-25. Creating and Using a Stateful Session Bean

@EJB(name="cart", beanInterface=ShoppingCart.class)
public class ShoppingCartServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
HttpSession session = request.getSession(true);
ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");
if (cart == null) {
try {
Context ctx = new InitialContext();
cart = (ShoppingCart) ctx.lookup("java:comp/env/cart");
session.setAttribute("cart", cart);
} catch (NamingException e) {
throw new ServletException(e);

}

if (request.getParameter("action").equals("add")) {
String itemId = request.getParameter("item");
String quantity = request.getParameter("quantity");
cart.addItem(itemId, Integer.parseInt(quantity));

}

if (request.getParameter("action").equals("cancel™)) {
cart.cancel();
session.removeAttribute("cart");

61

62

CHAPTER 3 I ENTERPRISE APPLICATIONS

/...

When the server receives a request to look up a stateful session bean, it asks the EJB container to
create a new instance of the bean, which is then assigned a unique identifier. The reference to the
bean thatis returned keeps track of this identifier and uses it when communicating with the server to
ensure that the right bean instance is used to invoke each business method.

Using a Singleton Session Bean

From the perspective of a client, using a singleton session bean is similar to using a stateless session
bean. It can be acquired via a context lookup or dependency injection and used without any extra steps.
Likewise, no special action is required to dispose of the bean. It will be disposed of automatically when
the application is shut down.

The concurrent nature of singleton session beans does have some side effects with respect to
clients. Business method calls on the singleton session bean can block if a write operation from
another thread is in progress. Singleton session beans with container-managed concurrency can also
specify a time limit for blocked method calls, resulting in a ConcurrentAccessTimeoutException being
thrown to the client if the time limit is exceeded.

Using a Message-Driven Bean

As an asynchronous component, clients of a message-driven bean can’t directly invoke business
operations. Instead they send messages, which are then delivered to the MDB by the messaging system
being used. The client needs to know only the format of the message that the MDB is expecting and the
messaging destination where the message must be sent. Listing 3-26 demonstrates sending a message
to the MDB defined in Listing 3-8. The ReportProcessor MDB expects an employee id as its message
format. Therefore, the session bean client in this example creates a text message with the employee id
and sends it through the JMS API The same criteria that were specified on the MDB to filter the
messages are also specified here on the client.

Listing 3-26. Sending a Message to an MDB

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@Resource Queue destinationQueue;
@Resource QueueConnectionFactory factory;

public void generateReport() {
try {
QueueConnection connection = factory.createQueueConnection();
QueueSession session =
connection.createQueueSession(false, 0);
QueueSender sender = session.createSender(destinationQueue);

Message message = session.createTextMessage("12345");
message.setStringProperty("RECIPIENT", "ReportProcessor");

sender.send(message);

CHAPTER 3 % ENTERPRISE APPLICATIONS

sender.close();

session.close();
connection.close();
} catch (IMSException e) {
/...
}
}
/...

Adding the Entity Manager

Using stateless session beans as components to manage persistence operations is the preferred
strategy for Java EE applications. Clients gain the benefit of working with a session facade that
presents a business interface that is decoupled from the specifics of the implementation. The bean can
leverage the dependency-management capabilities of the server to access the entity manager and can
make use of services such as container-managed transactions to precisely specify the transaction
requirements of each business operation. Finally, the POJO nature of entities allows them to be easily
returned from and passed as arguments to a session bean method.

Leveraging the stateless session bean for persistence is largely a case of injecting an entity
manager. Listing 3-27 demonstrates a typical session bean that injects an entity manager and uses it
to implement its business operations.

Listing 3-27. Using the Entity Manager with a Stateless Session Bean

@Stateless

public class DepartmentServiceBean {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

public void addEmployeeToDepartment(int empId, int deptId) {
Employee emp = em.find(Employee.class, empld);
Department dept = em.find(Department.class, deptId);
dept.getEmployees().add(emp);
emp.setDept(dept);

}

/1 ...

Stateful session beans are also well suited to managing persistence operations within an
application component model. The ability to store state on the session bean means that query criteria
or other conversational state can be constructed across multiple method calls before being acted upon.
The results of entity manager operations can also be cached on the bean instance in some situations.

Listing 3-28 revisits the shopping cart bean from Listing 3-6. In this example, Order and Itemare
entities representing a sales transaction. The order is built up incrementally over the life of the
session and then persisted to the database using the injected entity manager when payment has been
confirmed.

63

64

CHAPTER 3 I ENTERPRISE APPLICATIONS

Listing 3-28. Using the Entity Manager with a Stateful Session Bean

@Stateful

public class ShoppingCartBean implements ShoppingCart {
@PersistenceContext(unitName="order")
private EntityManager em;
private Order order = new Order();

public void addItem(Item item, int quantity) {
order.addItem(item, quantity);

/7 ...

@Remove

public void checkout(int paymentId) {
order.setPaymentId(paymentId);
em.persist(order);

From the perspective of using the entity manager with message-driven beans, the main question
is whether the MDB should use the Java Persistence API directly or delegate to another component such
as a session bean. A common pattern in many applications is to treat the MDB as an asynchronous
facade for session beans in situations where the business logic does not produce results that are
customer-facing (that is, where the results of the business operation are stored in a database or
propagated to another messaging system). This is largely an issue of personal taste because message-
driven beans fully supportinjecting the entity manager and can leverage container-managed
transactions.

Putting It All Together

Now that we have discussed the application component model and services available as part of a Java
EE application server, we can revisit the EmployeeService example from the previous chapter and bring
it to the Java EE environment. Along the way, we’ll provide example code to show how the components
fit together and how they relate back to the Java SE example.

Defining the Component

To begin, let’s consider the definition of the EmployeeService class from Listing 2-9 in Chapter 2. The
goal of this class is to provide business operations related to the maintenance of employee data. In
doing so, it encapsulates all the persistence operations. To introduce this class into the Java EE
environment, we must first decide how it should be represented. The service pattern exhibited by the
class suggests the session bean as the ideal component. Because the business methods of the bean have
no dependency on each other, we can further decide that a stateless session bean is suitable. In fact,

CHAPTER 3 % ENTERPRISE APPLICATIONS

this bean demonstrates a very typical design pattern called a session facade,’ in which a stateless
session bean is used to shield clients from dealing with a particular persistence APL Our first stepis to
extract a business interface from the original bean. Listing 3-29 shows the EmployeeService business
interface.

Listing 3-29. The EmployeeService Business Interface

public interface EmployeeService {
public Employee createEmployee(int id, String name, long salary);
public void removeEmployee(int id);
public Employee changeEmployeeSalary(int id, long newSalary);
public Employee findEmployee(int id);
public List<Employee> findAllEmployees();

In the Java SE example, the EmployeeService class must create and maintain its own entity
manager instance. We can replace this logic with dependency injection to acquire the entity manager
automatically. Having decided on a stateless session bean and dependency injection, the converted
stateless session bean is demonstrated in Listing 3-30. With the exception of how the entity manager is
acquired, the business methods are identical. This is an important feature of the Java Persistence API
because the same EntityManager interface can be used both inside and outside of the application
server.

Listing 3-30. The EmployeeService Session Bean

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
protected EntityManager em;

public EntityManager getEntityManager() {
return em;

public Employee createEmployee(int id, String name, long salary) {
Employee emp = new Employee(id);
emp.setName(name) ;
emp.setSalary(salary);
getEntityManager().persist(emp);
return emp;

}

public void removeEmployee(int id) {
Employee emp = findEmployee(id);
if (emp !'= null) {
getEntityManager().remove(emp);

6 Alur et al., Core J2EE Patterns.

65

CHAPTER 3 I ENTERPRISE APPLICATIONS

}

public Employee changeEmployeeSalary(int id, long newSalary) {
Employee emp = findEmployee(id);
if (emp !'= null) {
emp.setSalary(newSalary);
}

return emp;

}

public Employee findEmployee(int id) {
return getEntityManager().find(Employee.class, id);

public List<Employee> findAllEmployees() {
TypedQuery query = getEntityManager().createQuery("SELECT e FROM Employee e",
Employee.class);
return query.getResultList();

Defining the User Interface

The next question to consider is how the bean will be accessed. A web interface is the standard
presentation method for modern enterprise applications. To demonstrate how this stateless session
bean might be used by a servlet, consider Listing 3-31. The request parameters are interpreted to
determine the action, which is then carried out by invoking methods on the injected EmployeeService
bean. Although only the first action is described, you can see how this could easily be extended to
handle each of the operations defined on the EmployeeService business interface.

Listing 3-31. Using the EmployeeService Session Bean from a Servlet

public class EmployeeServlet extends HttpServlet {
@EJB EmployeeService bean;

protected void doPost(HttpServletRequest request,
HttpServletResponse response) {
String action = request.getParameter("action");

if (action.equals("create")) {
String id = request.getParameter("id");
String name = request.getParameter("name");
String salary = request.getParameter("salary");
bean.createEmployee(Integer.parseInt(id), name,
Long.parselong(salary));

/7 ...

CHAPTER 3 % ENTERPRISE APPLICATIONS

Packaging It Up

In the Java EE environment, many properties required in the persistence.xml file for Java SE can be
omitted. In Listing 3-32, you see the persistence.xml file from Listing 2-11 converted for deployment
as part of a Java EE application. Instead of JDBC properties for creating a connection, we now declare
that the entity manager should use the data source name “jdbc/EmployeeDS”. If the data source was
defined to be available in the application namespace instead of the local component naming context
then we might instead use the data source name of “java:app/jdbc/EmployeeDS”. The transaction-
type attribute has also been removed to allow the persistence unit to default to JTA. The application
server will automatically find entity classes, so even the list of classes has been removed. This
example represents the ideal minimum Java EE configuration.

Because the business logic that uses this persistence unitis implemented in a stateless session
bean, the persistence.xml file would typically be located in the META-INF directory of the corresponding
EJB JAR. We will fully describe the persistence.xml file and its placement within a Java EE application
in Chapter 13.

Listing 3-32. Defining a Persistence Unit in Java EE

<persistence>
<persistence-unit name="EmployeeService">
<jta-data-source>jdbc/EmployeeDS</jta-data-source>
</persistence-unit>
</persistence>

Summary

It would be impossible to provide details on all of the features of the Java EE platform in a single
chapter. However, we cannot put JPA in context without explaining the application server
environment in which it will be used. So we have tried to introduce the technologies that are of the
most relevance to the developer using persistence in enterprise applications.

We began with an introduction to software component models and introduced the EJB model for
enterprise components. We argued that the use of components is more important than ever before and
identified some of the benefits that come from leveraging this approach.

In the section on session beans, we introduced the fundamentals and then looked in detail at
stateless, stateful, and singleton session beans. We learned about the difference in interaction style
between the session types and looked at the syntax for declaring beans. We also looked at the
difference between local and remote business interfaces.

We nextlooked at dependency management in Java EE application servers. We discussed the
reference annotation types and how to declare them. We also looked at the difference between
dependency lookup and dependency injection. In the case of injection, we looked at the difference
between field and setter injection. Finally, we explored each of the resource types, demonstrating how
to acquire server and JPA resources.

In the section on transaction management, we looked at JTA and its role in building data-centric
applications. We then looked at the difference between bean-managed transactions and container-
managed transactions for EJBs. We documented the different types of transaction attributes for CMT
beans and showed how to manually control bean-managed transactions.

Finally, we concluded the chapter by exploring how to use Java EE components in applications and
how they can leverage JPA. We also discussed an end-to-end example of the JPA in the Java EE
environment, converting the example application introduced in the previous chapter from a
command-line Java SE application to a web-based application running on an application server.

67

68

CHAPTER 3 I ENTERPRISE APPLICATIONS

Now that we have introduced JPA in both the Java SE and Java EE environments, it’s time to dive
into the specification in detail. In the next chapter we begin this journey with the central focus of JPA:
object-relational mapping.

CHAPTER 4

Object-Relational Mapping

The largest part of an API that persists objects to a relational database ends up being the object-
relational mapping (ORM) component. The topic of ORM usually includes everything from how the
object state is mapped to the database columns to how to issue queries across the objects. We are
focusing this chapter primarily on how to define and map entity state to the database, emphasizing the
simple manner in which it can be done.

This chapter will introduce the basics of mapping fields to database columns and then go on to
show how to map and automatically generate entity identifiers. We will go into some detail about
different kinds of relationships and illustrate how they are mapped from the domain model to the
data model.

Persistence Annotations

We have shown in previous chapters how annotations have been used extensively both in the EJB and
JPA specifications. We will discuss persistence and mapping metadata in significant detail, and
because we use annotations to explain the concepts, it is worth reviewing a few things about the
annotations before we get started.

Persistence annotations can be applied at three differentlevels: class, method, and field. To
annotate any of these levels, the annotation must be placed in front of the code definition of the
artifact being annotated. In some cases, we will put them on the same line just before the class,
method, or field; in other cases, we will put them on the line above. The choice is based completely on
the preferences of the person applying the annotations, and we think it makes sense to do one thing in
some cases and the other in other cases. It depends on how long the annotation is and what the most
readable format seems to be.

The JPA annotations were designed to be readable, easy to specify, and flexible enough to allow
different combinations of metadata. Most annotations are specified as siblings instead of being nested
inside each other, meaning that multiple annotations can annotate the same class, field, or property
instead of having annotations embedded within other annotations. As with all trade- offs, the piper
must be paid however, and the cost of flexibility is that many possible permutations of top-level
metadata will be syntactically correct but semantically invalid. The compiler will be of no use, but the
provider runtime will often do some basic checking for improper annotation groupings. The nature of
annotations, however, is that when they are unexpected, they will often just not get noticed at all. This
is worthremembering when attempting to understand behavior that might not match what you thought
youspecified in the annotations. It could be that one or more of the annotations are being ignored.

The mapping annotations can be categorized as being in one of two categories: logical
annotations and physical annotations. The annotations in the logical group are those that describe the
entity model from an object modeling view. They are tightly bound to the domain model and are the

69

70

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

sort of metadata that you might want to specify in UML or any other object modeling language or
framework. The physical annotations relate to the concrete data model in the database. They deal with
tables, columns, constraints, and other database-level artifacts that the object model might never be
aware of otherwise.

We will make use of both types of annotations throughout the examples and to demonstrate the
mapping metadata. Understanding and being able to distinguish between these two levels of
metadata will help you to make decisions about where to declare metadata, and where to use
annotations and XML. As youwill see in Chapter 12, there are XML equivalents to all the mapping
annotations described in this chapter, giving you the freedom to use the approach that best suits your
development needs.

Accessing Entity State

The mapped state of an entity must be accessible to the provider at runtime, so that when it comes time
to write the data out, it can be obtained from the entity instance and stored in the database. Similarly,
when the state is loaded from the database, the provider runtime must be able to insertitinto a new
entity instance. The way the state is accessed in the entity is called the access mode.

In Chapter 2, youlearned that there are two different ways to specify persistent entity state: we
can either annotate the fields or annotate the JavaBean-style properties. The mechanism that we use
to designate the persistent state is the same as the access mode that the provider uses to access that
state. If we annotate fields, the provider will get and set the fields of the entity using reflection. If the
annotations are set on the getter methods of properties, those getter and setter methods will be
invoked by the provider to access and set the state.

Field Access

Annotating the fields of the entity will cause the provider to use field access to get and set the state of
the entity. Getter and setter methods might or might not be present, but if they are present, they are
ignored by the provider. All fields must be declared as either protected, package, or private. Public
fields are disallowed because it would open up the state fields to access by any unprotected cass in the
VM. Doing so is not just an obviously bad practice but could also defeat the provider implementation.
Of course, the other qualifiers do not prevent classes within the same package or hierarchy from doing
the same thing, but there is an obvious trade-off between what should be constrained and what should
be recommended. Other classes must use the methods of an entity in order to access its persistent
state, and even the entity class itself should only really manipulate the fields directly during
initialization.

The example in Listing 4-1 shows the Employee entity being mapped using field access. The @Id
annotation indicates not only that the id field is the persistent identifier or primary key for the entity
but also that field access should be assumed. The name and salary fields are then defaulted to being
persistent, and they get mapped to columns of the same name.

Listing 4-1. Using Field Access

@Entity

public class Employee {
@Id private int id;
private String name;
private long salary;

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

public int getId() { return id; }
public void setId(int id) { this.id = id; }

public String getName() { return name; }
public void setName(String name) { this.name = name; }

public long getSalary() { return salary; }
public void setSalary(long salary) { this.salary = salary; }

Property Access

When property access mode is used, the same contract as for JavaBeans applies, and there must be
getter and setter methods for the persistent properties. The type of property is determined by the
return type of the getter method and must be the same as the type of the single parameter passed into
the setter method. Both methods must be either public or protected visibility. The mapping
annotations for a property must be on the getter method.

In Listing 4-2, the Employee class has an @Id annotation on the getId() getter method so the
provider will use property access to get and set the state of the entity. The name and salary properties
will be made persistent by virtue of the getter and setter methods that exist for them, and will be
mapped to NAME and SALARY columns, respectively. Note that the salary property is backed by the wage
field, which does not share the same name. This goes unnoticed by the provider because by specifying
property access, we are telling the provider to ignore the entity fields and use only the getter and
setter methods for naming.

Listing 4-2. Using Property Access

@Entity

public class Employee {
private int id;
private String name;
private long wage;

@Id public int getId() { return id; }
public void setId(int id) { this.id = id; }

public String getName() { return name; }
public void setName(String name) { this.name = name; }

public long getSalary() { return wage; }
public void setSalary(long salary) { this.wage = salary; }

Mixed Access

Itis also possible to combine field access with property access within the same entity hierarchy, or
even within the same entity. This will not be a very common occurrence, but can be useful, for
example, when an entity subclass is added to an existing hierarchy that uses a different access type.
Adding an @Access annotation with a specified access mode on the subclass entity will cause the default
access type to be overridden for that entity subclass.

71

72

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

The @Access annotation is also useful when youneed to perform a simple transformation to the
data when reading from or writing to the database. Usually youwill want to access the data through
field access, but in this case youwill define a getter/setter method pair to perform the transformation
and use property access for that one attribute. In general, there are three essential steps to add a
persistent field or property to be accessed differently from the default access mode for that entity.

Consider an Employee entity that has a default access mode of FIELD, but the database column stores
the area code as part of the phone number, and we only want to store the area code in the entity
phoneNum field if it is not a local number. We can add a persistent property that transforms it
accordingly on reads and writes.

The first thing that must be done is to explicitly mark the default access mode for the class by
annotating it with the @Access annotation and indicating the access type. Unless this is done, it will be
undefined if both fields and properties are annotated. We would tag our Employee entity as having
FIELD access:

@Entity
@Access(AccessType.FIELD)
public class Employee { .. }

The next step is to annotate the additional field or property with the @Access annotation, but this
time specifying the opposite access type from what was specified at the class level. It might seem a little
redundant, for example, to specify the access type of AccessType.PROPERTY on a persistent property
because it is obvious by looking at it thatitis a property, but doing so indicates that what you are doing
is not an oversight, but a conscious exception to the default case.

@Access(AccessType.PROPERTY) @Column(name="PHONE")
protected String getPhoneNumberForDb() { .. }

The final thing to remember is that the corresponding field or property to the one being made
persistent must be marked as transient so that the default accessing rules do not cause the same state
to be persisted twice. For example, because we are adding a persistent property to an entity for which
the default access type is through fields, the field in which the persistent property state is being stored
in the entity must be annotated with @Transient:

@Transient private String phoneNum;

Listing 4-3 shows the complete Employee entity class annotated to use property access for only one
property.
Listing 4-3. Using Combined Access
@Entity

@Access(AccessType.FIELD)
public class Employee {

public static final String LOCAL_AREA CODE = "613";

@Id private int id;
@Transient private String phoneNum;

"p.ublic int getId() { return id; }
public void setId(int id) { this.id = id; }

public String getPhoneNumber() { return phoneNum; }
public void setPhoneNumber(String num) { this.phoneNum = num; }

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

@Access(AccessType.PROPERTY) @Column(name="PHONE")
protected String getPhoneNumberForDb() {
if (phoneNum.length() == 10)
return phoneNum;
else
return LOCAL_AREA CODE + phoneNum;

protected void setPhoneNumberForDb(String num) {
if (num.startsWith(LOCAL_AREA CODE))
phoneNum = num.substring(3);
else
phoneNum = num;

TIP The @Access annotation and the ability to combine access modes were introduced in JPA 2.0.

Mapping to a Table

Yousaw in Chapter 2 that in the simplest case, mapping an entity to a table does not need any
mapping annotations at all. Only the @Entity and @Id annotations need to be specified to create and
map an entity to a database table.

In those cases, the default table name, which is just the unqualified name of the entity class, was
perfectly suitable. If it happens that the default table name is not the name that we like, or if a suitable
table that contains the state already exists in our database with a different name, we must specify the
name of the table. We do this by annotating the entity class with the @Table annotation and including
the name of the table using the name element. Many databases have terse names for tables. Listing 4-4
shows an entity that is mapped to a table that has a name different from its class name.

Listing 4-4. Overriding the Default Table Name

@Entity
@Table(name="EMP")
public class Employee { ... }

TIP Default names are not specified to be either uppercase or lowercase. Most databases are not
case-sensitive, so it won't generally matter whether a vendor uses the case of the entity name or converts it
to uppercase. In Chapter 10, we discuss how to delimit database identifiers when the database is set to be
case-sensitive.

73

74

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

The @Table annotation provides the ability to not only name the table that the entity state is being
stored in but also to name a database schema or catalog. The schema name is commonly used to
differentiate one set of tables from another and is indicated by using the schema element. Listing 4-5
shows an Employee entity that is mapped to the EMP table in the HR schema.

Listing 4-5. Setting a Schema

@Entity
@Table(name="EMP", schema="HR")
public class Employee { ... }

When specified, the schema name will be prepended to the table name when the persistence
provider goes to the database to access the table. In this case the HR schema will be prepended to the EMP
table each time the table is accessed.

TIP Some vendors might allow the schema to be included in the name element of the table without having to
specify the schema element—for example, @Table (name="HR.EMP"). Support for inlining the name of the schema
with the table name is nonstandard.

Some databases support the notion of a catalog. For these databases, the catalog element of the
@Table annotation can be specified. Listing 4-6 shows a catalog being explicitly set for the EMP table.

Listing 4-6. Setting a Catalog

@Entity
@Table(name="EMP", catalog="HR")
public class Employee { ... }

Mapping Simple Types

Simple Java types are mapped as part of the immediate state of an entity in its fields or properties. The
list of persistable types is quite lengthy and includes pretty much every type that you would want to
persist. They include the following:

e Primitive Java types: byte, int, short, long, boolean, char, float, double

e Wrapper classes of primitive Java types: Byte, Integer, Short, Long, Boolean,
Character, Float, Double

e Byte and character array types: byte[], Byte[], char[], Character[]
e Large numeric types: java.math.BigInteger, java.math.BigDecimal
e Strings: java.lang.String

e Javatemporal types: java.util.Date, java.util.Calendar

e JDBC temporal types: java.sql.Date, java.sql.Time, java.sql.Timestamp

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

¢ Enumerated types: Any system or user-defined enumerated type
e Serializable objects: Any system or user-defined serializable type

Sometimes the type of the database column being mapped to is not exactly the same as the Java
type. In almost all cases, the provider runtime can convert the type returned by JDBC into the correct
Java type of the attribute. If the type from the JDBC layer cannot be converted to the Java type of the
field or property, an exception will normally be thrown, although itis not guaranteed.

TIP When the persistent type does not match the JDBC type, some providers might choose to take proprietary
action or make a best guess to convert between the two. In other cases, the JDBC driver might be performing the
conversion on its own.

When persisting a field or property, the provider looks at the type and ensures that it is one of the
persistable types listed earlier. If it is in the list, the provider will persist it using the appropriate JDBC
type and pass it through to the JDBC driver. At that point, if the field or property is not serializable, the
result is unspecified. The provider might choose to throw an exception or just try and pass the object
through to JDBC.

An optional @Basic annotation can be placed on a field or property to explicitly mark it as being
persistent. This annotation is mostly for documentation purposes and is not required for the field or
property to be persistent. Because of the annotation, we call mappings of simple types basic mappings.

Now that we have seen how we can persist either fields or properties and how they are virtually
equivalent in terms of persistence, we will just call them attributes. An attribute is a field or property
of a class, and we will use the term attribute from now on to avoid having to continually refer to fields
or properties in specific terms.

Column Mappings

Where the persistent attributes can be thought of as being logical mappings that indicate that a given
attribute is persistent, the physical annotation that is the companion annotation to the basic mapping
is the @Column annotation. Specifying @Column on the attribute indicates specific characteristics of the
physical database column that the object model is less concerned about. In fact, the object model might
never even need to know to which column it is mapped, and the column name and physical mapping
metadata can be located in a separate XML file.

A number of annotation elements can be specified as part of @olumn, but most of them apply only
to schema generation and will be covered later in the book. The only one that is of consequence is the
name element, which is just a string that specifies the name of the column that the attribute has been
mapped to. This is used when the default column name is not appropriate or does not apply to the
schema being used. We can think of the name element of the @Column annotation as a means of
overriding the default column name that would have otherwise been applied.

The example in Listing 4-7 shows how we can override the default column name for an attribute.

75

76

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Listing 4-7. Mapping Attributes to Columns

@Entity

public class Employee {
@Id
@Column(name="EMP_ID")
private int id;
private String name;
@Column(name="SAL")
private long salary;
@Column(name="COMM")
private String comments;
/...

To put these annotations in context, let’s look at the full table mapping represented by this entity.
The first thing that we notice is that no @Table annotation exists on the class, so the default table name
of EMPLOYEE will be applied to it.

The next thing we see is that @Column can be used with @Id mappings as well as with basic
mappings. The id field is being overridden to map to the EMP_ID column instead of the default ID
column. The name field is not annotated with @Column, so the default column name NAME would be used
to store and retrieve the employee name. The salary and comments fields, however, are annotated to
map to the SAL and COMM columns, respectively. The Employee entity is therefore mapped to the table that
is shown in Figure 4-1.

EMPLOYEE
PK | EMP_ID

NAME
SAL
COMM

Figure 4-1. EMPLOYEE entity table

Lazy Fetching

On occasion, we know that certain portions of an entity will be seldom accessed. In these situations,
we can optimize the performance when retrieving the entity by fetching only the data that we expect to
be frequently accessed. We would like the remainder of the data to be fetched only when or ifitis
required. There are many names for this kind of feature, including lazy loading, deferred loading, lazy
fetching, on-demand fetching, just-in-time reading, indirection, and others. They all mean pretty
much the same thing, which is just that some data might not be loaded when the object is initially read
from the database, but will be fetched only when itis referenced or accessed.

The fetch type of a basic mapping can be configured to be lazily or eagerly loaded by specifying the
fetch element in the corresponding @Basic annotation. The FetchType enumerated type defines the
values for this element, which can be either EAGER or LAZY. Setting the fetch type of a basic mapping to
LAZY means that the provider might defer loading the state for that attribute until it is referenced. The
defaultis to load all basic mappings eagerly. Listing 4-8 shows an example of overriding a basic
mapping to be lazily loaded.

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Listing 4-8. Lazy Field Loading

@Entity

public class Employee {
/...
@Basic(fetch=FetchType.LAZY)
@Column(name="COMM")
private String comments;
/...

We are assuming in this example that applications will seldom access the comments in an
employee record, so we mark it as being lazily fetched. Note that in this case the @asic annotation is
not only present for documentation purposes but also required in order to specify the fetch type for the
field. Configuring the comments field to be fetched lazily will allow an Employee instance returned from
a query to have the comments field empty. The application does not have to do anything special to get it,
however. By simply accessing the comments field, it will be transparently read and filled in by the
provider if it was not already loaded.

Before you use this feature, you should be aware of a few pertinent points about lazy attribute
fetching. First and foremost, the directive to lazily fetch an attribute is meant only to be a hint to the
persistence provider to help the application achieve better performance. The provider is notrequired
to respect the request because the behavior of the entity is not compromised if the provider goes ahead
and loads the attribute. The converse is not true, though, because specifying that an attribute be
eagerly fetched might be critical to being able to access the entity state once the entity is detached
from the persistence context. We will discuss detachment more in Chapter 6 and explore the
connection between lazy loading and detachment.

Second, on the surface it might appear that this is a good idea for certain attributes of an entity, but
in practice it is almost never a good idea to lazily fetch simple types. There is little to be gained in
returning only part of a database row unless you are certain that the state will not be accessed in the
entity later on. The only times when lazy loading of a basic mapping should be considered are when
there are many columns in a table (for example, dozens or hundreds) or when the columns are large
(for example, very large character strings or byte strings). It could take significant resources to load the
data, and not loading it could save quite a lot of effort, time, and resources. Unless either of these two
cases is true, in the majority of cases lazily fetching a subset of object attributes will end up being more
expensive than eagerly fetching them.

Lazy fetching is quite relevant when it comes to relationship mappings, though, so we will be
discussing this topic later in the chapter.

Large Obijects

A common database term for a character or byte-based object that can be very large (up to the gigabyte
range) is large object, or LOB for short. Database columns that can store these types of large objects
require special JDBC calls to be accessed from Java. To signal to the provider that it should use the LOB
methods when passing and retrieving this data to and from the JDBC driver, an additional annotation
must be added to the basic mapping. The @Lob annotation acts as the marker annotation to fulfill this
purpose and might appear in conjunction with the @asic annotation, or it might appear when @Basic
is absent and implicitly assumed to be on the mapping.

Because the @Lob annotation is really just qualifying the basic mapping, it can also be
accompanied by a @Column annotation when the name of the LOB column needs to be overridden from
the assumed default name.

77

78

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

LOBs come in two flavors in the database: character large objects, called CLOBs, and binary large
objects, or BLOBs. As their names imply, a CLOB column holds a large character sequence, and a BLOB
column can store a large byte sequence. The Java types mapped to BLOB columns are byte[], Byte[],
and Serializable types, while char[], Character[], and String objects are mapped to CLOB columns.
The provider is responsible for making this distinction based on the type of the attribute being
mapped.

An example of mapping an image to a BLOB column is shown in Listing 4-9. Here, the PIC column
is assumed to be a BLOB column to store the employee picture thatis in the picture field. We have
also marked this field to be loaded lazily, a common practice applied to LOBs that do not get
referenced often.

Listing 4-9. Mappinga BLOB Column

@Entity

public class Employee {
@Id
private int id;
@Basic(fetch=FetchType.LAZY)
@Lob @Column(name="PIC")
private byte[] picture;
/...

}

Enumerated Types

Another of the simple types that might be treated specially is the enumerated type. The values of an
enumerated type are constants that can be handled differently depending on the application needs.
As with enumerated types in other languages, the values of an enumerated type in Java have an
implicit ordinal assignment that is determined by the order in which they were declared. This ordinal
cannot be modified at runtime and can be used to represent and store the values of the enumerated
type in the database. Interpreting the values as ordinals is the default way that providers will map
enumerated types to the database, and the provider will assume that the database column is an integer

type.

Consider the following enumerated type:

public enum EmployeeType {
FULL_TIME_EMPLOYEE,
PART_TIME EMPLOYEE,
CONTRACT_EMPLOYEE

The ordinals assigned to the values of this enumerated type at compile time would be 0 for
FULL_TIME_EMPLOYEE, 1 for PART_TIME_EMPLOYEE, and 2 for CONTRACT EMPLOYEE.In Listing 4-10, we define a
persistent field of this type.

Listing 4-10. Mapping an Enumerated Type Using Ordinals

@Entity

public class Employee {
@Id private int id;
private EmployeeType type;
/...

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

We can see that mapping EmployeeType is trivially easy to the point where we don’t actually have
to do anything at all. The defaults are applied, and everything will just work. The type field will get
mapped to an integer TYPE column, and all full-time employees will have an ordinal of 0 assigned to
them. Similarly the other employees will have their types stored in the TYPE column accordingly.

If an enumerated type changes, however, then we have a problem. The persisted ordinal data in
the database will nolonger apply to the correct value. For example, if the company benefits policy
changed and we started giving additional benefits to part-time employees who worked more than 20
hours per week, we would want to differentiate between the two types of part-time employees. By
adding a PART_TIME_BENEFITS_EMPLOYEE value after PART_TIME_EMPLOYEE, we would be causing a new
ordinal assignment to occur, where our new value would get assigned the ordinal of 2 and
CONTRACT_EMPLOYEE would get 3. This would have the effect of causing all the contract employees on
record to suddenly become part-time employees with benefits, clearly not the result that we were
hoping for.

We could go through the database and adjust all the Employee entities to have their correct type, but
if the employee type is used elsewhere, then we would need to make sure that they were all fixed as
well. This is not a good maintenance situation to be in.

A better solution would be to store the name of the value as a string instead of storing the ordinal.
This would isolate us from any changes in declaration and allow us to add new types without having to
worry about the existing data. We can do this by adding an @Enumerated annotation on the attribute and
specifying a value of STRING.

The @Enumerated annotation actually allows an EnumType to be specified, and the EnumType is itself
an enumerated type that defines values of ORDINAL and STRING. While it is somewhat ironic that an
enumerated type is being used to indicate how the provider should represent enumerated types, it is
wholly appropriate. Because the default value of @Enumerated is ORDINAL, specifying
@Enumerated(ORDINAL) is useful only when youwant to make this mapping explicit.

In Listing 4-11, we are storing strings for the enumerated values. Now the TYPE column must be a
string-based type, and all of the full-time employees will have the string “FULL_TIME_EMPLOYEE”
stored in their corresponding TYPE column.

Listing 4-11. Mapping an Enumerated Type Using Strings

@Entity

public class Employee {
@Id
private int id;
@Enumerated(EnumType.STRING)
private EmployeeType type;
/...

Note that using strings will solve the problem of inserting additional values in the middle of the
enumerated type, but it will leave the data vulnerable to changes in the names of the values. For
instance, if we wanted to change PART_TIME_EMPLOYEE to PT_EMPLOYEE, then we would be in trouble. This
is a less likely problem, though, because changing the names of an enumerated type would cause all
the code that uses the enumerated type to have to change also. This would be a bigger bother than
reassigning values in a database column.

In general, storing the ordinal will be the best and most efficient way to store enumerated types
as long as the likelihood of additional values inserted in the middle is not high. New values could still
be added on the end of the type without any negative consequences.

One final note about enumerated types is that they are defined quite flexibly in Java. In fact, it is
even possible to have values that contain state. There is currently no support within the JPA for
mapping state contained within enumerated values. Neither is there support for the compromise

79

80

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

position between STRING and ORDINAL of explicitly mapping each enumerated value to a dedicated
numeric value different from its compiler-assigned ordinal value. More extensive enumerated
support is being considered for future releases.

Temporal Types

Temporal types are the set of time-based types that can be used in persistent state mappings. The list
of supported temporal types includes the three java.sql types java.sql.Date, java.sql.Time, and
java.sql.Timestamp, and it includes the two java.util types java.util.Date and java.util.Calendar.

The java.sql types are completely hassle-free. They act just like any other simple mapping type
and do not need any special consideration. The two java.util types need additional metadata,
however, to indicate which of the JDBC java.sql types to use when communicating with the JDBC
driver. This is done by annotating them with the @Temporal annotation and specifying the JDBC type as
a value of the TemporalType enumerated type. There are three enumerated values of DATE, TIME, and
TIMESTAMP to represent each of the java.sql types.

Listing 4-12 shows how java.util.Date and java.util.Calendar can be mapped to date columns in
the database.

Listing 4-12. Mapping Temporal Types

@Entity

public class Employee {
@Id
private int id;
@Temporal(TemporalType.DATE)
private Calendar dob;
@Temporal (TemporalType.DATE)
@Column(name="S DATE")
private Date startDate;
/...

Like the other varieties of basic mappings, the @Column annotation can be used to override the
default column name.

Transient State

Attributes that are part of a persistent entity but not intended to be persistent can either be modified
with the transient modifier in Java or be annotated with the @Transient annotation. If either is
specified, the provider runtime will not apply its default mapping rules to the attribute on which it was
specified.

Transient fields are used for various reasons. One might be the case earlier on in the chapter
when we mixed the access mode and didn’t want to persist the same state twice. Another might be
when youwant to cache some in-memory state that you don’t want to have to recompute, rediscover,
or reinitialize. For example, in Listing 4-13 we are using a transient field to save the correctlocale-
specific word for Employee so that we print it correctly wherever it is being displayed. We have used the
transient modifier instead of the @Transient annotation so that if the Employee gets serialized from one
VM to another then the translated name will get reinitialized to correspond to the locale of the new
VM. In cases where the non-persistent value should be retained across serialization, the annotation
should be used instead of the modifier.

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Listing 4-13. Using a Transient Field

@Entity
public class Employee {
@Id private int id;
private String name;
private long salary;
transient private String translatedName;
/...

public String toString() {
if (translatedName == null) {
translatedName =
ResourceBundle.getBundle("EmpResources").getString("Employee");

}

return translatedName +

+ id + + name;

Mapping the Primary Key

Every entity thatis mapped to a relational database must have a mapping to a primary key in the table.
You have already learned the basics of how the @Id annotation indicates the identifier of the entity. In
this section, we explore simple identifiers and primary keys in a little more depth and learn how we
can let the persistence provider generate unique identifier values for us.

Overriding the Primary Key Column

The same defaulting rules apply to id mappings as to basic mappings, which is that the name of the
column is assumed to be the same as the name of the attribute. Just as with basic mappings, the @Column
annotation can be used to override the column name that the id attribute is mapped to.

Primary keys are assumed to be insertable, but not nullable or updatable. When overriding a
primary key column the nullable and updatable elements should not be overridden. Only in the very
specific circumstance of mapping the same column to multiple fields/relationships (as described in
Chapter 10) should the insertable element be set to false.

Primary Key Types

Except for its special significance in designating the mapping to the primary key column, an id
mapping is almost the same as the basic mapping. The other main difference is that id mappings are
generally restricted to the following types:

e Primitive Java types: byte, int, short, long, char

e Wrapper classes of primitive Java types: Byte, Integer, Short, Long, Character
e String: java.lang.String

e Large numeric type: java.math.BigInteger

e Temporal types: java.util.Date, java.sql.Date

81

82

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Floating point types such as float and double are permitted, as well as the Float and Double
wrapper classes and java.math.BigDecimal, but they are discouraged because of the nature of rounding
error and the untrustworthiness of the equals() operator when applied to them. Using floating types
for primary keys is a risky endeavor and definitely not recommended.

Identifier Generation

Sometimes applications do not want to be bothered with trying to define and ensure uniqueness in
some aspect of their domain model and are content to let the identifier values be automatically
generated for them. This is called id generation and is specified by the @GeneratedValue annotation.

When id generation is enabled, the persistence provider will generate an identifier value for
every entity instance of that type. Once the identifier value is obtained, the provider will insertitinto
the newly persisted entity; however, depending on the way itis generated, it might not actually be
present in the object until the entity has been inserted in the database. In other words, the application
cannotrely on being able to access the identifier until after either a flush has occurred or the
transaction has completed.

Applications can choose one of four differentid generation strategies by specifying a strategy in
the strategy element. The value can be any one of AUTO, TABLE, SEQUENCE, or IDENTITY enumerated
values of the GenerationType enumerated type.

Table and sequence generators can be specifically defined and then reused by multiple entity
classes. These generators are named and are globally accessible to all the entities in the persistence
unit.

Automatic Id Generation

If an application does not care what kind of generation is used by the provider but wants generation to
occur, it can specify a strategy of AUTO. This means that the provider will use whatever strategy it wants
to generate identifiers. Listing 4-14 shows an example of using automaticid generation. This will
cause an identifier value to be created by the provider and inserted into the id field of each Employee
entity that gets persisted.

Listing 4-14. Using Auto Id Generation

@Entity

public class Employee {
@Id @GeneratedValue(strategy=GenerationType.AUTO)
private int id;
/...

There is a catch to using AUTO, though. The provider gets to pick its own strategy to store the
identifiers, but it needs to have some kind of persistent resource in order to do so. For example, if it
chooses a table-based strategy, it needs to create a table; if it chooses a sequence-based strategy, it
needs to create a sequence. The provider can’t always rely on the database connection that it obtains
from the server to have permissions to create a table in the database. This is normally a privileged
operation that is often restricted to the DBA. There will need to be some kind of creation phase or
schema generation to cause the resource to be created before the AUTO strategy is able to function.

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

The AUTO mode is really a generation strategy for development or prototyping. It works well as a
means of getting you up and running more quickly when the database schema is being generated. In
any other situation, it would be better to use one of the other generation strategies discussed in the
later sections.

Id Generation Using a Table

The most flexible and portable way to generate identifiers is to use a database table. Not only will it
port to different databases but it also allows for storing multiple different identifier sequences for
different entities within the same table.

An id generation table should have two columns. The first column is a string type used to identify
the particular generator sequence. It is the primary key for all the generators in the table. The second
column is an integer type that stores the actual id sequence that is being generated. The value stored
in this column is the last identifier that was allocated in the sequence. Each defined generator
represents a row in the table.

The easiest way to use a table to generate identifiers is to simply specify the generation strategy
to be TABLE in the strategy element:

@Id @GeneratedValue(strategy=GenerationType.TABLE)
private int id;

Because the generation strategy is indicated but no generator has been specified, the provider
will assume a table of its own choosing. If schema generation is used, it will be created; if not, the
default table assumed by the provider must be known and must exist in the database.

A more explicit approach would be to actually specify the table that is to be used for id storage. This
is done by defining a table generator that, contrary to what its name implies, does not actually
generate tables. Rather, itis an identifier generator that uses a table to store them. We can define one
by using a @TableGenerator annotation and then refer to it by name in the @GeneratedValue
annotation:

@TableGenerator (name="Emp_Gen")
@Id @GeneratedValue(generator="Emp_Gen")
private int id;

Although we are showing the @TableGenerator annotating the identifier attribute, it can actually be
defined on any attribute or class. Regardless of where it is defined, it will be available to the entire
persistence unit. A good practice would be to define it locally on the id attribute if only one class is
using it but to define it in XML, as described in Chapter 12, if it will be used for multiple classes.

The name element globally names the generator, which then allows us to reference itin
@GeneratedValue. This is functionally equivalent to the previous example where we simply said that we
wanted to use table generation but did not specify the generator. Now we are specifying the name of
the generator but not supplying any of the generator details, leaving them to be defaulted by the
provider.

A further qualifying approach would be to specify the table details, as in the following:

@TableGenerator(name="Emp_Gen",
table="ID_GEN",
pkColumnName="GEN_NAME",
valueColumnName="GEN_VAL")

We have included some additional elements after the name of the generator. Following the name
are three elements table, pkColumnName, and valueColumnName which define the actual table that stores
the identifiers for “Emp_Gen”.

83

84

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

The table element justindicates the name of the table. The pkColumnName element is the name of the
primary key column in the table that uniquely identifies the generator, and the valueColumnName
elementis the name of the column that stores the actual id sequence value being generated. In this
case, our table is named “ID_GEN”, the name of the primary key column (the column that stores the
generator names) is named “GEN_NAME”, and the column that stores the id sequence values is named
“GEN_VAL".

The name of the generator becomes the value stored in the pkColumnName column for that row and
is used by the provider to look up the generator to obtain its last allocated value.

In our example, we named our generator “Emp_Gen” so our table would look like the one in
Figure 4-2.

ID_GEN

GEN_NAME GEN_VAL
Emp_Gen 0

Figure 4-2. Table for identifier generation

We can see that the last allocated Employee identifier is 0, which tells us that no identifiers have
been generated yet. An initialValue elementrepresenting the last allocated identifier can be
specified as part of the generator definition, but the default setting of 0 will suffice in almost every
case. This setting is used only during schema generation when the table is created. During subsequent
executions, the provider will read the contents of the value column to determine the next identifier to
give out.

To avoid updating the row for every single identifier that gets requested, an allocation size is
used. This will cause the provider to preallocate a block of identifiers and then give out identifiers
from memory as requested until the block is used up. Once this block is used up, the next request for an
identifier triggers another block of identifiers to be preallocated, and the identifier value is
incremented by the allocation size. By default, the allocation size is set to 50. This value can be
overridden to be larger or smaller through the use of the allocationSize element when defining the
generator.

TIP The provider might allocate identifiers within the same transaction as the entity being persisted or in a
separate transaction. It is not specified, but you should check your provider documentation to see how it can avoid
the risk of deadlock when concurrent threads are creating entities and locking resources.

Listing 4-15 shows an example of defining a second generator to be used for Address entities but
that uses the same ID _GEN table to store the identifier sequence. In this case, we are actually explicitly
dictating the value we are storing in the identifier table’s primary key column by specifying the
pkColumnvalue element. This element allows the name of the generator to be different from the column
value, although doing so is rarely needed. The example shows an Address id generator named
“Address_Gen” but then defines the value stored in the table for Address id generation as “Addr_Gen”.
The generator also sets the initial value to 10000 and the allocation size to 100.

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Listing 4-15. Using Table Id Generation

@TableGenerator (name="Address Gen",
table="ID GEN",
pkColumnName="GEN_NAME",
valueColumnName="GEN_VAL",
pkColumnValue="Addr_Gen",
initialValue=10000,
allocationSize=100)

@Id @GeneratedValue(generator="Address Gen")

private int id;

If both “Emp_Gen” and “Address_Gen” generators were defined, then on application startup the
ID_GEN table would look like Figure 4-3. As the application allocates identifiers, the values stored in the
GEN_VAL column will increase.

ID_GEN
GEN_NAME GEN_VAL
Emp_Gen 0
Addr_Gen 10000

Figure 4-3. Table for generating Address and Employee identifiers

If you haven’t used the automatic schema generation feature (discussed in Chapter 13), the table
must already exist or be created in the database through some other means and be configured to be in
this state when the application starts up for the first time. The following SQL could be applied to create
andinitialize this table:

CREATE TABLE id_gen (
gen_name VARCHAR(80),
gen_val INTEGER,
CONSTRAINT pk_id gen

PRIMARY KEY (gen_name)

).
INSERT INTO id gen (gen_name, gen _val) VALUES ('Emp _Gen', 0);
INSERT INTO id_gen (gen _name, gen val) VALUES ('Addr Gen', 10000);

Id Generation Using a Database Sequence

Many databases support an internal mechanism for id generation called sequences. A database
sequence can be used to generate identifiers when the underlying database supports them.

As we saw with table generators, if it is known that a database sequence should be used for
generating identifiers, and we are not concerned that it be any particular sequence, specifying the
generator type alone should be sufficient:

@Id @GeneratedValue(strategy=GenerationType.SEQUENCE)
private int id;

85

86

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

In this case, no generator is named, so the provider will use a default sequence object of its own
choosing. Note that if multiple sequence generators are defined but not named, it is not specified
whether they use the same default sequence or different ones. The only difference between using one
sequence for multiple entity types and using one for each entity would be the ordering of the sequence
numbers and possible contention on the sequence. The safer route would be to define a named
sequence generator and refer toitin the @GeneratedValue annotation:

@SequenceGenerator (name="Emp_Gen", sequenceName="Emp Seq")
@Id @GeneratedValue(generator="Emp_Gen")
private int getld;

Unless schema generation is enabled, it would require that the sequence be defined and already
exist. The SQL to create such a sequence would be as follows:

CREATE SEQUENCE Emp_Seq
MINVALUE 1
START WITH 1
INCREMENT BY 50

The initial value and allocation size can also be used in sequence generators and would need to
be reflected in the SQL to create the sequence. We can see that the default allocation size is 50, just as it
is with table generators. If schema generation is not being used, and the sequence is being manually
created, the INCREMENT BY clause would need to be configured to match the setting or default value of
the allocation size.

Id Generation Using Database Identity

Some databases support a primary key identity column, sometimes referred to as an autonumber
column. Whenever a row is inserted into the table, the identity column will get a unique identifier
assigned toit. It can be used to generate the identifiers for objects, but once again is available only
when the underlying database supports it. Identity is often used when database sequences are not
supported by the database or because a legacy schema has already defined the table to use identity
columns. They are generally less efficient for object-relational identifier generation because they
cannot be allocated in blocks and because the identifier is not available until after commit time.

Toindicate that IDENTITY generation should occur, the @GeneratedValue annotation should specify
a generation strategy of IDENTITY. This will indicate to the provider that it must reread the inserted
row from the table after an insert has occurred. This will allow it to obtain the newly generated
identifier from the database and put it into the in-memory entity that was just persisted:

@Id @GeneratedValue(strategy=GenerationType.IDENTITY)
private int id;

There is no generator annotation for IDENTITY because it must be defined as part of the database
schema definition for the primary key column of the entity. Because each entity primary key column
defines its own identity characteristic, IDENTITY generation cannot be shared across multiple entity
types.

Another difference, hinted at earlier, between using IDENTITY and other id generation strategies
is that the identifier will not be accessible until after the insert has occurred. Although no guarantee is
made about the accessibility of the identifier before the transaction has completed, it is atleast
possible for other types of generation to eagerly allocate the identifier. But when using identity, it is
the action of inserting that causes the identifier to be generated. It would be impossible for the
identifier to be available before the entity is inserted into the database, and because insertion of

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

entities is most often deferred until commit time, the identifier would not be available until after the
transaction has been committed.

Relationships

If entities contained only simple persistent state, the business of object-relational mapping would be a
trivial one, indeed. Most entities need to be able to reference, or have relationships with, other
entities. This is what produces the domain model graphs that are common in business applications.

In the following sections, we will explore the different kinds of relationships that can exist and
show how to define and map them using JPA mapping metadata.

Relationship Concepts

Before we go off and start mapping relationships, we should really take a quick tour through some of
the basicrelationship concepts and terminology. Having a firm grasp on these concepts will make it
easier to understand the remainder of the relationship mapping sections.

Roles

There is an old adage that says every story has three sides: yours, mine, and the truth. Relationships
are kind of the same in that there are three different perspectives. The first is the view from one side of
the relationship, the second is from the other side, and the third is from a global perspective that knows
about both sides. The “sides” are called roles. In every relationship there are two entities that are
related to one another, and each entity is said to play a role in the relationship.

Relationships are everywhere, so examples are not hard to come by. An employee has a
relationship to the department that he or she works in. The Employee entity plays the role of working in
the department, while the Department entity plays the role of having an employee working in it.

Of course, the role a given entity is playing differs according to the relationship, and an entity
might be participating in many different relationships with many different entities. We can conclude,
therefore, that any entity might be playing a number of different roles in any given model. If we think
of an Employee entity, we realize that it does, in fact, play other roles in other relationships, such as the
role of working for a manager in its relationship with another Employee entity, working on a projectin
its relationship with the Project entity, and so forth.

Unlike EJB 2.1, where the roles all had to be enumerated in metadata for every relationship, JPA
does not have metadata requirements to declare the role an entity is playing. Nevertheless, roles are
still helpful as a means of understanding the nature and structure of relationships.

Directionality

In order to have relationships at all, there has to be a way to create, remove, and maintain them. The
basic way this is done is by an entity having a relationship attribute that refers to its related entity in a
way thatidentifies it as playing the other role of the relationship. It is often the case that the other
entity, in turn, has an attribute that points back to the original entity. When each entity points to the
other, the relationship is bidirectional. If only one entity has a pointer to the other, the relationship is
said to be unidirectional.

87

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

A relationship from an Employee to the Project that they work on would be bidirectional. The
Employee should know its Project, and the Project should point to the Employee working on it. A UML
model of this relationship is shown in Figure 4-4. The arrows going in both directions indicate the
bidirectionality of the relationship.

An Employee and its Address would likely be modeled as a unidirectional relationship because the
Address is not expected to ever need to know its resident. If it did, of course, then it would need to
become a bidirectional relationship. Figure 4-5 shows this relationship. Because the relationship is
unidirectional, the arrow points from the Employee to the Address.

Employee Project

Figure 4-4. Employee and Project in a bidirectional relationship

Employee Address

Figure 4-5. Employee in a unidirectional relationship with Address

As youwill see later in the chapter, although they both share the same concept of directionality, the
object and data models each see it a little differently because of the paradigm difference. In some
cases, unidirectional relationships in the object model can pose a problem in the database model.

We can use the directionality of a relationship to help describe and explain a model, but when it
comes to actually discussing it in concrete terms, it makes sense to think of every bidirectional
relationship as a pair of unidirectional relationships. Instead of having a single bidirectional
relationship of an Employee working on a Project, we would have one unidirectional “project”
relationship where the Employee points to the Project they work on and another unidirectional
“worker” relationship where the Project points to the Employee that works on it. Each of these
relationships has an entity that is the source or referring role, and the side that is the farget or
referred-to role. The beauty of this is that we can use the same terms no matter which relationship we
are talking about and no matter what the roles are in the relationship. Figure 4-6 shows how the two
relationships have source and target entities, and how from each relationship perspective the source
and target entities are different.

Source Target
Employee Project
Target Source
Employee Project

Figure 4-6. Unidirectional relationships between Employee and Project

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Cardinality

Itisn’t very often that a project has only a single employee working on it. We would like to be able to
capture the aspect of how many entities exist on each side of the same relationship instance. This is
called the cardinality of the relationship. Eachrole in a relationship will have its own cardinality,
which indicates whether there can be only one instance of the entity or many instances.

In our Employee and Department example, we might first say that one employee works in one
department, so the cardinality of both sides would be one. But chances are that more than one
employee works in the department, so we would make the relationship have a many cardinality on the
Employee or source side, meaning that many Employee instances could each point to the same
Department. The target or Department side would keep its cardinality of one. Figure 4-7 shows this
many-to-one relationship. The “many” side is marked with an asterisk (*).

Employee Department

* 1

Figure 4-7. Unidirectional many-to-one relationship

In our Employee and Project example, we have a bidirectional relationship, or two relationship
directions. If an employee can work on multiple projects, and a project can have multiple employees
working on it, then we would end up with cardinalities of “many” on the sources and targets of both
directions. Figure 4-8 shows the UML diagram of this relationship.

Employee Project

* *

Figure 4-8. Bidirectional many-to- many relationship
A picture is worth a thousand words, and describing these relationships in text is quite a lot harder
than showing a picture. In words, though, this picture indicates the following:
e Eachemployee can work on a number of projects.
e Many employees can work on the same project.
e Eachproject can have a number of employees working on it.
e Many projects can have the same employee working on them.

Implicit in this model is the fact that there can be sharing of Employee and Project instances across
multiple relationship instances.

Ordinality

A role can be further specified by determining whether or not it might be present at all. This is called
the ordinality and serves to show whether the target entity needs to be specified when the source
entity is created. Because the ordinality is really just a Boolean value, we also refer to it as the
optionality of the relationship.

In cardinality terms, ordinality would be indicated by the cardinality being a range instead of a
simple value, and the range would begin with 0 or 1 depending on the ordinality. It is simpler, though,
to merely state that the relationshipis either optional or mandatory. If optional, the target might not

89

90

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

be present; if mandatory, a source entity without a reference to its associated target entity is in an
invalid state.

Mappings Overview

Now that you know enough theory and have the conceptual background to be able to discuss
relationships, we can go on to explaining and using relationship mappings.

Each one of the mappings is named for the cardinality of the source and target roles. As shown in
the previous sections, we can view a bidirectional relationship as a pair of two unidirectional
mappings. Each of these mappings is really a unidirectional relationship mapping, and if we take the
cardinalities of the source and target of the relationship and combine them together in that order,
permuting them with the two possible values of “one” and “many”, we end up with the following
names given to the mappings:

1. Many-to-one
2. One-to-one

3. One-to-many
4, Many-to-many

These mapping names are also the names of the annotations that are used to indicate the
relationship types on the attributes that are being mapped. They are the basis for the logical
relationship annotations, and they contribute to the object modeling aspects of the entity.

Like basic mappings, relationship mappings can be applied to either fields or properties of
the entity.

Single-Valued Associations

An association from an entity instance to another entity instance (where the cardinality of the target
is “one”) is called a single-valued association. The many-to-one and one-to-one relationship
mappings fall into this category because the source entity refers to at most one target entity. We will
discuss these relationships and some of their variants first.

Many-to-One Mappings

In our cardinality discussion of the Employee and Department relationship (shown in Figure 4-7), we
first thought of an employee working in a department, so we just assumed that it was a one-to-one
relationship. However, when we realized that more than one employee works in the same department,
we changed it to a many-to-one relationship mapping. It turns out that many-to-one is the most
common mapping and is the one that is normally used when creating an association to an entity.

Figure 4-9 shows a many-to-one relationship between Employee and Department. Employee is the
“many” side and the source of the relationship, and Department is the “one” side and the target. Once
again, because the arrow points in only one direction, from Employee to Department, the relationshipis
unidirectional. Note thatin UML, the source class has an implicit attribute of the target class type if it
can be navigated to. For example, Employee has an attribute called department that will contain a
reference to a single Department instance.

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Employee Department
id: int id: int
name: String " name: String
salary: long 0.1

Figure 4-9. Many-to-one relationship from Employee to Department

A many-to-one mapping is defined by annotating the attribute in the source entity (the attribute
that refers to the target entity) with the @ManyToOne annotation. Listing 4- 16 shows how the @anyToOne
annotation is used to map this relationship. The department field in Employee is the source attribute that
is annotated.

Listing 4-16. Many- to- One Relationship from Employee to Department

@Entity
public class Employee {
/] ...
@ManyToOne
private Department department;
/...
}

We have included only the bits of the class that are relevant to our discussion, but you can see from
the previous example that the code was rather anticlimactic. A single annotation was all that was
required to map the relationship, and it turned out to be quite dull, really. Of course, when it comes to
configuration, dull is beautiful.

The same kinds of attribute flexibility and modifier requirements that were described for basic
mappings also apply to relationship mappings. The annotation can be present on either the field or
property, depending on the strategy used for the entity.

Using Join Columns

In the database, a relationship mapping means that one table has a reference to another table. The
database term for a column that refers to a key (usually the primary key) in another table is a foreign
key column. In JPA, we call them join columns, and the @JoinColumn annotation is the primary
annotation used to configure these types of columns.

NOTE Later in the chapter, we will talk about join columns that are present in other tables called join tables; in
Chapter 10, we’ll cover a more advanced case of using a join table for single-valued associations.

91

92

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Consider the EMPLOYEE and DEPARTMENT tables shown in Figure 4-10 that correspond to the Employee
and Department entities. The EMPLOYEE table has a foreign key column named DEPT_ID that references
the DEPARTMENT table. From the perspective of the entity relationship, DEPT_ID is the join column that
associates the Employee and Department entities.

EMPLOYEE
PK | 1D DEPARTMENT
B>O------OH PK | ID
NAME =
SALARY NAME
FK1 | DEPT_ID

Figure 4-10. EMPLOYEE and DEPARTMENT tables

In almost every relationship, independent of source and target sides, one of the two sides will
have the join column in its table. That side is called the owningside or the owner of the relationship.
The side that does not have the join column is called the non-owning or inverse side.

Ownership is important for mapping because the physical annotations that define the mappings to
the columns in the database (for example, @JoinColumn) are always defined on the owning side of the
relationship. If they are not there, the values are defaulted from the perspective of the attribute on the
owning side.

Many-to-one mappings are always on the owning side of a relationship, so if there is a
@JoinColumn to be found in the relationship that has a many-to-one side, thatis where it will be located.
To specify the name of the join column, the name element is used. For example, the
@JoinColumn(name="DEPT_ID") annotation means that the DEPT_ID column in the source entity table is
the foreign key to the target entity table, whatever the target entity of the relationship happens to be.

If no @JoinColumn annotation accompanies the many-to-one mapping, a default column name will
be assumed. The name that is used as the default is formed from a combination of both the source and
target entities. It is the name of the relationship attribute in the source entity, which is department in
our example, plus an underscore character (), plus the name of the primary key column of the target
entity. So if the Department entity were mapped to a table that had a primary key column named ID, the
join column in the EMPLOYEE table would be assumed to be named DEPARTMENT _ID. If this is not actually
the name of the column, the @JoinColumn annotation must be defined to override the default.

Going back to Figure 4-10, the foreign key column is named DEPT_ID instead of the defaulted
DEPARTMENT_ID column name. Listing 4-17 shows the @JoinColumn annotation being used to override the
join column name to be DEPT_ID.

Listing 4-17. Many-to-One Relationship Overriding the Join Column

@Entity

public class Employee {
@Id private int id;
@ManyToOne
@JoinColumn(name="DEPT ID")
private Department department;
/...

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Annotations allow us to specify @oinColumn on either the same line as @anyToOne or on a
separate line, above or below it. By convention, the logical mapping should appear first, followed by
the physical mapping. This makes the object model clear because the physical partis less important to
the object model.

One-to-One Mappings

If only one employee could work in a department, we would be back to the one-to-one association
again. A more realistic example of a one-to-one association, however, would be an employee who has
a parking space. Assuming that every employee got assigned his or her own parking space, we would
create a one-to-one relationship from Employee to ParkingSpace. Figure 4-11 shows this relationship.

Employee ParkingSpace
id: int id: int
name: String lot: int
salary: long 0.1 0.1 | jocation: String

Figure 4-11. One-to-one relationship from Employee to ParkingSpace

We define the mapping in a similar way to the way we define a many-to-one mapping, except that
we use the @0neToOne annotation instead of a @anyToOne annotation on the parkingSpace attribute. Just
as with a many-to-one mapping, the one-to-one mapping has a join column in the database and needs
to override the name of the column in a @JoinColumn annotation when the default name does not apply.
The default name is composed the same way as for many-to-one mappings using the name of the
source attribute and the target primary key column name.

Figure 4-12 shows the tables mapped by the Employee and ParkingSpace entities. The foreign key
column in the EMPLOYEE table is named PSPACE_ID and refers to the PARKING SPACE table.

EMPLOYEE
PARKING_SPACE
PK 11D PK | ID
NAME HO- OH
SALARY Lot
FK1 | PSPACE_ID LOCATION

Figure 4-12. EMPLOYEE and PARKING_SPACE tables

As it turns out, one-to-one mappings are almost the same as many-to-one mappings except that
only one instance of the source entity can refer to the same target entity instance. In other words, the
target entity instance is not shared among the source entity instances. In the database, this equates to
having a uniqueness constraint on the source foreign key column (that is, the foreign key column in
the source entity table). If there were more than one foreign key value that was the same, it would
contravene the rule that no more than one source entity instance can refer to the same target entity
instance.

93

94

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Listing 4-18 shows the mapping for this relationship. The @JoinColumn annotation has been used to
override the default join column name of PARKINGSPACE_ID to be PSPACE_ID.

Listing 4-18. One-to-One Relationship from Employee to ParkingSpace

@Entity

public class Employee {
@Id private int id;
private String name;
@0neToOne
@JoinColumn(name="PSPACE_ID")
private ParkingSpace parkingSpace;
/...

Bidirectional One-to-One Mappings

The target entity of the one-to-one often has a relationship back to the source entity; for example,
ParkingSpace has a reference back to the Employee that uses it. When this is the case, we call it a
bidirectional one-to-one relationship. As you saw previously, we actually have two separate one-to-
one mappings, one in each direction, but we call the combination of the two a bidirectional one-to-one
relationship. To make our existing one-to-one employee and parking space example bidirectional, we
need only change the ParkingSpace to point back to the Employee. Figure 4-13 shows the bidirectional
relationship.

Employee ParkingSpace
id: int id: int
name: String lot: int
salary: long 0.1 0.1 | jocation: String

Figure 4-13. One-to-one relationship between Employee and ParkingSpace

You already learned that the entity table that contains the join column determines the entity that
is the owner of the relationship. In a bidirectional one-to-one relationship, both the mappings are
one-to-one mappings, and either side can be the owner, so the join column might end up being on one
side or the other. This would normally be a data modeling decision, not a Java programming decision,
and it would likely be decided based on the most frequent direction of traversal.

Consider the ParkingSpace entity class shown in Listing 4-19. This example assumes the table
mapping shown in Figure 4-12, and it assumes that Employee is the owning side of the relationship. We
now have to add a reference from ParkingSpace back to Employee. This is achieved by adding the
@0neToOne relationship annotation on the employee field. As part of the annotation, we must add a
mappedBy element to indicate that the owning side is the Employee, not the ParkingSpace. Because
ParkingSpace is the inverse side of the relationship, it does not have to supply the join column
information.

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Listing 4-19. Inverse Side of a Bidirectional One-to-One Relationship

@Entity
public class ParkingSpace {
@Id private int id;
private int lot;
private String location;
@0neToOne (mappedBy="parkingSpace")
private Employee employee;
/...

The mappedBy element in the one-to-one mapping of the employee attribute of ParkingSpace is
needed to refer to the parkingSpace attribute in the Employee class. The value of mappedBy is the name of
the attribute in the owning entity that points back to the inverse entity.

The two rules, then, for bidirectional one-to-one associations are the following:

e The @JoinColumn annotation goes on the mapping of the entity that is mapped to
the table containing the join column, or the owner of the relationship. This might
be on either side of the association.

e The mappedBy element should be specified in the @neToOne annotation in the
entity that does not define a join column, or the inverse side of the relationship.

It would not be legal to have a bidirectional association that had mappedBy on both sides, just as it
would be incorrect to not have it on either side. The difference is that if it were absent on both sides of
the relationship, the provider would treat each side as an independent unidirectional relationship.
This would be fine except that it would assume that each side was the owner and that each had a join
column.

Bidirectional many-to-one relationships are explained later as part of the discussion of
multivalued bidirectional associations.

Collection-Valued Associations

When the source entity references one or more target entity instances, a many-valued association or
associated collection is used. Both the one-to-many and many-to-many mappings fit the criteria of
having many target entities, and although the one-to-many association is the most frequently used,
many-to-many mappings are useful as well when there is sharing in both directions.

One-to-Many Mappings

When an entity is associated with a Collection of other entities, it is most often in the form of a one-to-
many mapping. For example, a department would normally have a number of employees. Figure 4-14
shows the Employee and Department relationship that we showed earlier in the section “Many-to-One
Mappings,” only this time the relationshipis bidirectional in nature.

95

96

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Employee Department
id: int id: int
name: String " name: String
salary: long 0.1

Figure 4-14. Bidirectional Employee and Department relationship

When a relationship is bidirectional, there are actually two mappings, one for each direction. A
bidirectional one-to-many relationship always implies a many-to-one mapping back to the source, so
in our Employee and Department example there is a one-to-many mapping from Department to Employee
and a many-to-one mapping from Employee back to Department. We could just as easily say that the
relationship is bidirectional many-to-one if we were looking at it from the Employee perspective. They
are equivalent because bidirectional many-to-one relationships imply a one-to-many mapping back
from the target to source, and vice versa.

When a source entity has an arbitrary number of target entities stored in its collection, there is no
scalable way to store those references in the database table that it maps to. How would it store an
arbitrary number of foreign keys in a single row? Instead, it must let the tables of the entities in the
collection have foreign keys back to the source entity table. This is why the one-to-many association is
almost always bidirectional and never the owning side.

Furthermore, if the target entity tables have foreign keys that point back to the source entity table,
the target entities should have many-to-one associations back to the source entity object. Having a
foreign key in a table for which there is no association in the corresponding entity object model is not
in keeping with the data model and not supported by the APL

Let’slook at a concrete example of a one-to-many mapping based on the Employee and Department
example shown in Figure 4-15. The tables for this relationship are exactly the same as those shown in
Figure 4-10, which showed a many-to-one relationship. The only difference between the many-to-one
example and this one is that we are now implementing the inverse side of the relationship. Because
Employee has the join column and is the owner of the relationship, the Employee class is unchanged from
Listing 4-16.

On the Department side of the relationship, we need to map the employees collection of Employee
entities as a one-to-many association using the @neToMany annotation. Listing 4-20 shows the
Department class that uses this annotation. Note that because this is the inverse side of the relationship,
we need to include the mappedBy element, just as we did in the bidirectional one-to-one relationship
example.

Listing 4-20. One-to-Many Relationship

@Entity

public class Department {
@Id private int id;
private String name;
@0OneToMany (mappedBy="department")
private Collection<Employee> employees;
/7 ...

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

There are a couple of noteworthy points to mention about this class. The first is that a generic
type-parameterized Collection is being used to store the Employee entities. This provides the strict
typing that guarantees that only objects of type Employee will exist in the Collection. This is quite
useful because it not only provides compile-time checking of our code but also saves us from having to
perform cast operations when we retrieve the Employee instances from the collection.

JPA assumes the availability of generics; however, it is still perfectly acceptable to use a Collection
that is not type-parameterized. We might just as well have defined the Department class without using
generics but defining only a simple Collection type, as we would have done in releases of standard
Java previous to Java SE 5 (except for JDK 1.0 or 1.1 when java.util.Collection was noteven
standardized!). If we did, we would need to specify the type of entity that will be stored in the
Collection thatis needed by the persistence provider. The code is shown in Listing 4-21 and looks
almost identical, except for the targetEntity element that indicates the entity type.

Listing 4-21. Using targetEntity

@Entity
public class Department {
@Id private int id;
private String name;
@0neToMany(targetEntity=Employee.class, mappedBy="department")
private Collection employees;
/...

There are two important points to remember when defining bidirectional one-to-many (or
many-to-one) relationships:

¢ The many-to-one side is the owning side, so the join column is defined on that
side.

e The one-to-many mapping is the inverse side, so the mappedBy element must be
used.

Failing to specify the mappedBy element in the @0neToMany annotation will cause the provider to
treat it as a unidirectional one-to-many relationship that is defined to use a join table (described
later). This is an easy mistake to make and should be the first thing you look for if you see a missing
table error with a name that has two entity names concatenated together.

Many-to-Many Mappings

When one or more entities are associated with a Collection of other entities, and the entities have
overlapping associations with the same target entities, we must model it as a many-to-many
relationship. Each of the entities on each side of the relationship will have a collection-valued
association that contains entities of the target type. Figure 4-15 shows a many-to-many relationship
between Employee and Project. Each employee can work on multiple projects, and each project can be
worked on by multiple employees.

97

98

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Employee Project
id: int id: int
name: String " ~>| hame: String
salary: long

Figure 4-15. Bidirectional many-to-many relationship

A many-to-many mapping is expressed on both the source and target entities as a @anyToMany
annotation on the collection attributes. For example, in Listing 4-22 the Employee has a projects
attribute that has been annotated with @anyToMany. Likewise, the Project entity has an employees
attribute that has also been annotated with @anyToMany.

Listing 4-22. Many- to-Many Relationship Between Employee and Project

@Entity

public class Employee {
@Id private int id;
private String name;

@ManyToMany
private Collection<Project> projects;
/7 ...

}

@Entity

public class Project {
@Id private int id;
private String name;
@ManyToMany (mappedBy="projects")
private Collection<Employee> employees;
/...

There are some important differences between this many-to-many relationship and the one-to-
many relationship discussed earlier. The firstis a mathematical inevitability: when a many-to-many
relationship is bidirectional, both sides of the relationship are many-to-many mappings.

The second difference is that there are no join columns on either side of the relationship. You will
see in the next section that the only way to implement a many-to-many relationship is with a separate
join table. The consequence of not having any join columns in either of the entity tables is that there is
no way to determine which side is the owner of the relationship. Because every bidirectional
relationship has to have both an owning side and an inverse side, we must pick one of the two entities
to be the owner. In this example, we picked Employee to be owner of the relationship, but we could have
just as easily picked Project instead. As in every other bidirectional relationship, the inverse side must
use the mappedBy element to identify the owning attribute.

Note that no matter which side is designated as the owner, the other side should include the
mappedBy element; otherwise, the provider will think that both sides are the owner and that the
mappings are separate unidirectional relationships.

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Using Join Tables

Because the multiplicity of both sides of a many-to-many relationship is plural, neither of the two
entity tables can store an unlimited set of foreign key values in a single entity row. We must use a
third table to associate the two entity types. We call this association table a join table, and each many-
to-many relationship must have one. They might be used for the other relationship types as well, but
are notrequired and are therefore less common.

A join table consists simply of two foreign key or join columns to refer to each of the two entity
types in the relationship. A collection of entities is then mapped as multiple rows in the table, each of
which associates one entity with another. The set of rows that contains the same value in the foreign
key column to an entity represents the associations that entity instance has with entity instances that
itis related to.

Figure 4-16 shows the EMPLOYEE and PROJECT tables for the Employee and Project entities and the
EMP_PROJ join table that associates them. The EMP_PROJ table contains only foreign key columns that
make up its compound primary key. The EMP_ID column refers to the EMPLOYEE primary key, while the
PROJ_ID column refers to the PROJECT primary key.

PROJECT EMP_PROJ PROJECT
PK | ID PK,FK1 | EMP_ID
NAVIE H o PK,FK2 | PROJ_ID PO t PK | 1D
SALARY NAME

Figure 4-16. Join table for a many-to-many relationship

In order to map the tables described in Figure 4-16, we need to add some additional metadata to
the Employee class that we have designated as the owner of the relationship. Listing 4-23 shows the
many-to-many relationship with the accompanying join table annotations.

Listing 4-23. Using a Join Table

@Entity
public class Employee {
@Id private int id;
private String name;
@ManyToMany
@JoinTable(name="EMP_PROJ",
joinColumns=@JoinColumn(name="EMP_ID"),
inverseJoinColumns=@JoinColumn(name="PROJ_ID"))
private Collection<Project> projects;
/...

The @JoinTable annotation is used to configure the join table for the relationship. The two join
columns in the join table are distinguished by means of the owning and inverse sides. The join
column to the owning side is described in the joinColumns element, while the join column to the
inverse side is specified by the inverseJoinColumns element. You can see from the previous example
that the values of these elements are actually @oinColumn annotations embedded within the
@JoinTable annotation. This provides the ability to declare all of the information about the join
columns within the table that defines them. The names are plural for times when there might be

99

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

multiple columns for each foreign key (either the owning entity or the inverse entity has a multipart
primary key). This more complicated case will be discussed in Chapter 10.

In our example, we fully specified the names of the join table and its columns because this is the
most common case. But if we were generating the database schema from the entities, we would not
actually need to specify this information. We could have relied on the default values that would be
assumed and used when the persistence provider generates the table for us. When no @JoinTable
annotation is present on the owning side, then a default join table named <Owner>_<Inverse> is
assumed, where <Owner> is the name of the owning entity, and <Inverse> is the name of the inverse
or non-owning entity. Of course, the owner is basically picked at random by the developer, so these
defaults will apply according to the way the relationship is mapped and whichever entity is designated
as the owning side.

The join columns will be defaulted according to the join column defaulting rules that were
previously described in the section “Using Join Columns.” The default name of the join column that
points to the owning entity is the name of the attribute on the inverse entity that points to the owning
entity, appended by an underscore and the name of the primary key column of the owning entity
table. So in our example, the Employee is the owning entity, and the Project has an employees attribute
that contains the collection of Employee instances. The Employee entity maps to the EMPLOYEE table and
has a primary key column of ID, so the defaulted name of the join column to the owning entity would
be EMPLOYEES_ID. The inverse join column would be likewise defaulted to be PROJECTS_ID.

Itis fairly clear that the defaulted names of a join table and the join columns within it are not
likely to match up with an existing table. This is why we mentioned that the defaults are really useful
only if the database schema being mapped to was generated by the provider.

Unidirectional Collection Mappings

When an entity has a one-to-many mapping to a target entity, but the @neToMany annotation does not
include the mappedBy element, it is assumed to be in a unidirectional relationship with the target entity.
This means that the target entity does not have a many-to-one mapping back to the source entity.
Figure 4-17 shows a unidirectional one-to-many association between Employee and Phone.

Employee Phone
id: int id: int
name: String —>1 type: String
salary: long 0.1 number: String

Figure 4-17. Unidirectional one-to-many relationship

Consider the data model in Figure 4-18. There is no join column to store the association back from
Phone to Employee. Therefore, we have used a join table to associate the Phone entity with the Employee
entity.

100

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

EMPLOYEE EMP_PHONE PHONE
PK | ID PK,FK1 | PHONE_ID PK | ID
H o PK,FK2 | EMP_ID tO H
NAME TYPE
SALARY NUM

Figure 4-18. Join table for a unidirectional one-to-many relationship

Similarly, when one side of a many-to-many relationship does not have a mapping to the other, it
is a unidirectional relationship. The join table must still be used; the only difference is that only one of
the two entity types actually uses the table to load its related entities or updates it to store additional
entity associations.

In both of these two unidirectional collection-valued cases, the source code is similar to the earlier
examples, but there is no collection attribute in the target entity, and the mappedBy element will not be
present in the @neToMany annotation on the source entity. The join table must now be specified as part
of the mapping. Listing 4-24 shows Employee with a one-to-many relationship to Phone using a join
table.

Listing 4-24. Unidirectional One-to-Many Relationship

@Entity
public class Employee {
@Id private int id;
private String name;
@0neToMany
@JoinTable(name="EMP_PHONE",
joinColumns=@JoinColumn(name="EMP_ID"),
inverseJoinColumns=@JoinColumn(name="PHONE_ID"))
private Collection<Phone> phones;
/...

Note that when generating the schema, default naming for the join columns is slightly differentin
the unidirectional case because there is no inverse attribute. The name of the join table would default
to EMPLOYEE_PHONE and would have a join column named EMPLOYEE_ID after the name of the Employee
entity and its primary key column. The inverse join column would be named PHONES_ID, which is
the concatenation of the phones attribute in the Employee entity and the ID primary key column of the
PHONE table.

Lazy Relationships

Previous sections showed how to configure an attribute to be loaded when it got accessed and not
necessarily before. We learned that lazy loading at the attribute level is not normally very beneficial.

At the relationship level, however, lazy loading can be a big boon to enhancing performance. It
can reduce the amount of SQL that gets executed, and speed up queries and object loading
considerably.

The fetch mode can be specified on any of the four relationship mapping types. When not specified
on a single-valued relationship, the related object is guaranteed to be loaded eagerly. Collection-
valued relationships default to be lazily loaded, but because lazy loading is only a hint to the provider,
they can be loaded eagerly if the provider decides to do so.

101

102

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

In bidirectional relationship cases, the fetch mode might be lazy on one side but eager on the
other. This kind of configuration is actually quite common because relationships are often accessed in
different ways depending on the direction from which navigation occurs.

An example of overriding the default fetch mode is if we don’t want to load the ParkingSpace for an
Employee every time we load the Employee. Listing 4-25 shows the parkingSpace attribute configured to
use lazy loading.

Listing 4-25. Changing the Fetch Mode on a Relationship

@Entity

public class Employee {
@Id private int id;
@0neToOne(fetch=FetchType.LAZY)
private ParkingSpace parkingSpace;
/...

TIP A relationship that is specified or defaulted to be lazily loaded might or might not cause the related object
to be loaded when the getter method is used to access the object. The object might be a proxy, so it might take
actually invoking a method on it to cause it to be faulted in.

Embedded Objects

An embedded object is one that is dependent on an entity for its identity. It has no identity of its own,
but is merely part of the entity state that has been carved off and stored in a separate Java object
hanging off of the entity. In Java, embedded objects appear similar to relationships in that they are
referenced by an entity and appear in the Java sense to be the target of an association. In the database,
however, the state of the embedded object is stored with the rest of the entity state in the database row,
with no distinction between the state in the Java entity and thatin its embedded object.

If the database row contains all the data for both the entity and its embedded object, why have such
an object anyway? Why not just define the fields of the entity to reference all its persistence state
instead of splitting it up into one or more subobjects that are second-class persistent objects
dependent on the entity for their existence?

This brings us back to the object-relational impedance mismatch we talked about in Chapter 1.
Because the database record contains more than one logical type, it makes sense to make that
relationship explicit in the object model of the application even though the physical representation is
different. You could almost say that the embedded object is a more natural representation of the
domain concept than a simple collection of attributes on the entity. Furthermore, once we have

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

identified a grouping of entity state that makes up an embedded object, we can share the same
embedded object type with other entities that also have the same internal representation.!

An example of suchreuse is address information. Figure 4-19 shows an EMPLOYEE table that
contains a mixture of basic employee information as well as columns that correspond to the home
address of the employee.

EMPLOYEE
PK | ID

NAME
SALARY
STREET
CITy
STATE
ZIP_CODE

Figure 4-19. EMPLOYEE table with embedded address information

The STREET, CITY, STATE, and ZIP_CODE columns combine logically to form the address. In the object
model, this is an excellent candidate to be abstracted into a separate Address embedded type instead of
listing each attribute on the entity class. The entity class would then simply have an address attribute
pointing to an embedded object of type Address. Figure 4-20 shows the relationship between Employee
and Address. The UML composition association is used to denote that the Employee wholly owns the
Address, and that an instance of Address cannot be shared by any other object other than the Employee
instance that owns it.

Employee Address
id: int street: String
name: String [@———> city: String
salary: long 1 0.1 | state: String
zip: String

Figure 4-20. Employee and Address relationship

With this representation, not only is the address information neatly encapsulated within an object
but if another entity such as Company also has address information, it can also have an attribute that
points to its own embedded Address object. We will describe this scenario in the next section.

! Even though embedded types can be shared or reused, the instances cannot. An embedded object
instance belongs to the entity that references it; and no other entity instance, of that entity type or any
other, can reference the same embedded instance.

103

104

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

An embedded type is marked as such by adding the @Embeddable annotation to the class definition.
This annotation serves to distinguish the class from other regular Java types. Once a class has been
designated as embeddable, then its fields and properties will be persistable as part of an entity. We
might also want to define the access type of the embeddable object so it is accessed the same way
regardless of which entity it is embedded in. Listing 4-26 shows the definition of the Address embedded

type.
Listing 4-26. Embeddable Address Type

@Embeddable @Access(AccessType.FIELD)
public class Address {

private String street;

private String city;

private String state;

@Column(name="ZIP_CODE")

private String zip;

/...

To use this class in an entity, the entity needs to have only an attribute of the embeddable type.
The attribute is optionally annotated with the @Embedded annotation to indicate that it is an embedded
mapping. Listing 4-27 shows the Employee class using an embedded Address object.

Listing 4-27. Using an Embedded Object

@Entity
public class Employee {
@Id private int id;
private String name;
private long salary;
@Embedded private Address address;
/...

When the provider persists an instance of Employee, it will access the attributes of the Address
object just as if they were present on the entity instance itself. Column mappings on the Address type
really pertain to columns on the EMPLOYEE table, even though they are listed in a different type.

The decision to use embedded objects or entities depends on whether you think youwill ever need
to create relationships to them or from them. Embedded objects are not meant to be entities,and as
soon as you start to treat them as entities you should probably make them first-class entities instead of
embedded objects if the data model permits it.

TIP It is not portable to define embedded objects as part of inheritance hierarchies. Once they begin to extend
one another, the complexity of embedding them increases, and the value for cost ratio decreases.

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Before we got to our example, we mentioned that an Address class could be reused in both Employee
and Company entities. Ideally we would like the representation shown in Figure 4-21. Even though both
the Employee and Company classes comprise the Address class, this is not a problem because each
instance of Address will be used by only a single Employee or Company instance.

Employee Address Company
id: int street: String name: String
name: String [@———> city: String <—@
salary: long 0.1 | state: String 0.1
zip: String

Figure 4-21. Address shared by two entities

Given that the column mappings of the Address embedded type apply to the columns of the
containing entity, you might be wondering how sharing could be possible if the two entity tables have
different column names for the same fields. Figure 4-22 demonstrates this problem. The COMPANY table
matches the default and mapped attributes of the Address type defined earlier, but the EMPLOYEE table in
this example has been changed to match the address requirements of a person living in Canada. We
need a way for an entity to map the embedded object according to its own entity table needs, and we
have one in the @AttributeOverride annotation.

EMPLOYEE
PK |10 COMPANY
PK | NAME

NAME —
SALARY STREET
STREET cITY
CITY STATE
PROVINCE ZIP_CODE
POSTAL_CODE

Figure 4-22. EMPLOYEE and COMPANY tables

We use an @AttributeOverride annotation for each attribute of the embedded object that we want
to override in the entity. We annotate the embedded field or property in the entity and specify in the
name element the field or property in the embedded object that we are overriding. The column element
allows us to specify the column that the attribute is being mapped to in the entity table. We indicate this
in the form of a nested @Column annotation. If we are overriding multiple fields or properties, we can
use the plural @AttributeOverrides annotation and nest multiple @AttributeOverride annotations
inside of it.

Listing 4-28 shows an example of using Address in both Employee and Company. The Company entity
uses the Address type without change, but the Employee entity specifies two attribute overrides to
map the state and zip attributes of the Address to the PROVINCE and POSTAL_CODE columns of the EMPLOYEE
table.

105

106

CHAPTER 4 1 OBJECT-RELATIONAL MAPPING

Listing 4-28. Reusing an Embedded Object in Multiple Entities

@Entity
public class Employee {
@Id private int id;
private String name;
private long salary;
@Embedded
@AttributeOverrides({
@AttributeOverride(name="state", column=@Column(name="PROVINCE")),
@AttributeOverride(name="zip", column=@Column(name="POSTAL CODE"))

private Address address;
/...

}

@Entity

public class Company {
@Id private String name;
@Embedded
private Address address;
/...

}

Summary

Mapping objects to relational databases is of critical importance to persistence applications. Dealing
with the impedance mismatch requires a sophisticated suite of metadata. The JPA not only provides this
metadata but also facilitates easy and convenient development.

In this chapter, we went through the process of mapping entity state that included simple Java
types, large objects, enumerated types, and temporal types. We also used the metadata to do meet-in-
the-middle mapping to specific table names and columns.

We explained how identifiers are generated and described four different strategies of generation.
You saw the different strategies in action and learned how to differentiate them from each other.

We then reviewed some of the relationship concepts and applied them to object-relational
mapping metadata. We used join columns and join tables to map single-valued and collection-valued
associations and went over some examples. We also discussed special types of objects called
embeddables that are mapped but can exist only within persistent entities.

The next chapter will discuss more of the intricacies of mapping collection-valued relationships,
as well as how to map collections of non-entity objects. We will delve into the different Collection
types and the ways that these types can be used and mapped, and see how they affect the database
tables that are being mapped to.

CHAPTER 5

Collection Mapping

Sometimes a Collection is used like a milk crate: it’s just a simple container with no apparent order or
intended organization. Other cases demand some kind of system of order and arranging so the way
objects are retrieved from the collection has meaning. Whether the collection is of the first type or the
second, collections of objects require more effort to map than single objects, although in compensation
they offer greater flexibility.

In the last chapter, we began the journey of mapping collection-valued relationships, spooning out
only the basics of mapping collections of entities to the database. This chapter goes into more detail
about how you can map more sophisticated collection types, such as persistently ordered Lists, and
Maps with keys and values that are of various object types. We will even explore how to map collections of
objects that are not entities.

Relationships and Element Collections

When we speak of mapping collections, there are actually three kinds of objects that we can store in
mapped collections. We can map collections of entities, embeddables, or basic types, and each one
requires a certain level of understanding to be correctly mapped and efficiently used.

TIP Support for collections of embeddable and simple types was added in JPA 2.0.

We should clarify one potential point of confusion about these types of objects when they are stored
in collections. In the previous chapter, we introduced the concept of relationships from one entity type
to another, and you learned that when the source entity has a collection containing instances of the
target entity type it is called a multivalued relationship. However, collections of embeddable and basic
types are not relationships; they are simply collections of elements that are thus called element
collections. Relationships define associations between independent entities, whereas element
collections contain objects that are dependent upon the referencing entity, and can be retrieved only
through the entity that contains them.

A practical difference between relationships and element collections is the annotation that is used
to denote them. A relationship minimally requires the relationship annotation, either @neToMany or
@ManyToMany, whereas an element collection is indicated by the @ElementCollection annotation.
Assuming the VacationEntry embeddable class in Listing 5-1, Listing 5-2 shows an example of an

107

108

CHAPTER 5 1 COLLECTION MAPPING

element collection of embeddables in the vacationBookings attribute, as well as an element collection of
basic types (String) in the nickNames attribute.

Listing 5-1. VacationEntry embeddable

@Embeddable

public class VacationEntry {
@Temporal (TemporalType.DATE)
private Calendar startDate;

@Column(name="DAYS")
private int daysTaken;
/..

}

Listing 5-2. Element collections of embeddables and basic types

@Entity

public class Employee {
@Id private int id;
private String name;
private long salary;
/...

@ElementCollection(targetClass=VacationEntry.class)
private Collection vacationBookings;

@ElementCollection
private Set<String> nickNames;

/1.

You can see from Listing 5-2 that, like the relationship annotations, the @ElementCollection
annotation includes a targetClass element that is used to specify the class if the Collection does not
define the type of element contained in it. It also includes a fetch element to indicate whether the
collection should be lazily loaded.

A more interesting aspect of the mappings in Listing 5-2 is the absence of any additional metadata.
Recall that the elements that are being stored in the collections are not entities, so they do not have any
mapped table. Embeddables are supposed to be stored in the same table as the entity that refers to
them, but if there is a collection of embeddables, how would it be possible to store a multiplicity of like-
mapped objects in a single row? Similarly for basic types, we could not map each nickname String to a
column in the EMPLOYEE table and expect to store multiple strings in a single row. For this reason,
element collections require a separate table called a collection table. Every collection table must have a
join column that refers to the containing entity table. Additional columns in the collection table are used
to map the attributes of the embeddable element, or the basic element state if the element is of a basic
type.

We can specify a collection table using an @CollectionTable annotation, which allows us to
designate the name of the table, as well as the join column. Default values will apply if the annotation or
specific elements within that annotation are not specified. The table name will default to the name of the
referencing entity, appended with an underscore and the name of the entity attribute that contains the
element collection. The join column default is similarly the name of the referencing entity, appended
with an underscore and the name of the primary key column of the entity table. Because no collection

CHAPTER 5 = COLLECTION MAPPING

tables were specified in either of the element collections in the vacationBookings and nickNames
attributes of the Employee entity defined in Listing 5-2, they are defaulted to use collection tables named
EMPLOYEE_VACATIONBOOKINGS and EMPLOYEE_NICKNAMES, respectively. The join column in each of the
collection tables will be EMPLOYEE_ID, which is just the name of the entity combined with the mapped
Employee primary key column.

We map the fields or properties of the embeddable type to the columns in the collection table
instead of to the primary table of the entity, with the usual column name defaulting rules applying.
When the element collection contains basic types, the values are also stored in a column in the
collection table, with the default column name being the name of the entity attribute. Applying this rule,
we would see that the nicknames will be stored in the NICKNAMES column. After all the defaults are
applied, the mapped tables would look like those in Figure 5-1.

EMPLOYEE_VACATIONBOOKINGS
PK,FK1 EMPLOYEE_ID

PK STARTDATE
PK DAYS
EMPLOYEE
H——0<
PK | ID
NAME
SALARY EMPLOYEE_NICKNAMES

PK,FK1 EMPLOYEE_ID
PK NICKNAMES

Figure 5-1. EMPLOYEE entity table and mapped collection tables

When we first discussed embeddables, you saw how the attributes were mapped within the
embeddable object but could be overridden when embedded inside other entities or embeddables. We
used the @AttributeOverride annotation to override the column names. The same annotation can also
be used to override the embedded attributes in the elements of an element collection. In Listing 5-3, the
daysTaken attribute is being remapped, using @AttributeOverride, from being stored in the DAYS column
to being stored in the DAYS_ABS column. One important difference between using @AttributeOverride on
simple embedded mappings and using it to override the columns of embeddables in an element
collection is that in the latter case the column specified by @AttributeOverride actually applies to the
collection table, not to the entity table.

Listing 5-3. Overriding collection table columns

@Entity

public class Employee {
@Id private int id;
private String name;
private long salary;
/..

@ElementCollection(targetClass=VacationEntry.class)
@CollectionTable(
name="VACATION",
joinColumns=@JoinColumn(name="EMP_ID"))

109

110

CHAPTER 5 1 COLLECTION MAPPING

@AttributeOverride(name="daysTaken",
column=@Column(name="DAYS ABS"))
private Collection vacationBookings;

@ElementCollection
@Column(name="NICKNAME")
private Set<String> nickNames;
/...

In order to override the name of the column in which the nicknames are stored, we can use the
@Column annotation, remembering again that the name specifies a column in the collection table, not the
entity table. Figure 5-2 shows the mapped tables, including the overridden VACATION collection table
mapped by the vacationBookings collection.

VACATION
PK,FK1 EMP_ID
PK STARTDATE
PK DAYS_ABS
EMPLOYEE
H——0<
PK | ID
NAME
SALARY EMPLOYEE_NICKNAMES

PK,FK1 EMPLOYEE_ID
PK NICKNAME

Figure 5-2. EMPLOYEE entity table and mapped collection tables with overrides

Using Different Collection Types

We can use different types of collections to store multivalued entity associations and collections of
objects. Depending upon the needs of the application, any of Collection, Set, List, and Map might be
appropriate. There are rules corresponding to the type of collection, however, that guide its usage, so
before using a given collection type, you should be familiar with the rules that govern how that type can
be mapped and manipulated.

The first step is to define the collection to be any one of the interface types mentioned previously.
You then initialize the attribute with a concrete implementation class. This can be done in a constructor
or initialization method of the entity class and allows you to put objects in the implementation
collection of a new or unpersisted entity. Once the entity becomes managed or has been persisted by
means of an EntityManager.persist() call, the interface must always be used when operating on the
collection, whether it has been read in from the database or has been detached from the entity manager.
This is because the moment the entity becomes managed, the persistence provider can replace the
initial concrete instance with an alternate instance of a Collection implementation class of its own.

CHAPTER 5 = COLLECTION MAPPING

Sets or Collections

The most common collection type used in associations is the standard Collection superinterface. This is
used when it doesn’t matter which implementation is underneath and when the common Collection
methods are all that is required to access the entities stored in it.

A Set will prevent duplicate elements from being inserted and might be a simpler and more concise
collection model, while a vanilla Collection interface is the most generic. Neither of these interfaces
requires additional annotations beyond the original mapping annotation to further specify them. They
are used the same way as if they held non-persistent objects. An example of using a Set interface for an
element collection is in Listing 5-3.

Lists

Another common collection type is the List. A List is typically used when the entities or elements are to
be retrieved in some user-defined order. Because the notion of row order in the database is not
commonly defined, the task of determining the ordering must lie with the application.

There are two ways to determine the order of the List. The first is to map it so that it is ordered
according to state that exists in each entity or element in the List. This is the easiest method and is less
intrusive on the data model. The second involves maintaining the order of the List in an additional
database column. It is more Java-friendly in that it supports the traditional ordering semantics of a Java
List, but can be far less performant, as we will see in the following sections.

Ordering By Entity or Element Attribute

The most prevalent approach to ordering entities or elements in a List is to specify an ordering rule
based on the comparison of a particular attribute of the entity or element. If the List is a relationship,
the attribute is most often the primary key of the target entity.

We indicate the attribute to order by in the @0rderBy annotation. The value of the annotation is a
string that contains one or more comma-separated fields or properties of the object being ordered. Each
of the attributes can be optionally followed by an ASC or DESC keyword to define whether the attribute
should be ordered in ascending or descending order. If the direction is not specified, the property will be
ordered in ascending order.

If the List is a relationship and references entities, specifying @rderBy with no fields or properties,
or not specifying it at all, will cause the List to be ordered by the primary keys of the entities in the List.
In the case of an element collection of basic types then the List will be ordered by the values of the
elements. Element collections of embeddable types will result in the List being defaulted to be in some
undefined order, typically in the order returned by the database in the absence of any ORDER BY clause.

The example back in Listing 4-20 of the previous chapter had a one-to-many relationship from
Department to Employee. If we want the employees to be in a particular order, we can use a List instead of
a Collection. By adding an @0rderBy annotation on the mapping, we can indicate that we want the
employees to be ordered in ascending alphabetical order by name. Listing 5-4 shows the updated
example.

111

112

CHAPTER 5 1 COLLECTION MAPPING

Listing 5-4. One-to-Many Relationship Using a List

@Entity

public class Department {
/...
@0OneToMany (mappedBy="department")
@0rderBy("name ASC")
private List<Employee> employees;
/...

We needn’t have included the ASC in the @0rderBy annotations because it would be ascending by
default, but it is good style to include it.

We could have just as easily ordered the employee List by an embedded field of Employee. For
example, if name had been embedded in an embedded Employee field called info that was of embeddable
type EmployeeInfo, we would write the annotation as @rderBy("info.name ASC").

We might also want to have suborderings using multiple attributes. We can do that by specifying
comma-separated <attribute name ASC/DESC> pairs in the annotation. For example, if Employee had a
status, we might have ordered by status and then by name by using an @0rderBy annotation of
@0rderBy("status DESC, name ASC"). Of course, the prerequisite for using an attribute in an @0rderBy
annotation is that the attribute type should be comparable, meaning that it supports comparison
operators.

If you were to simply switch the order of two employees in the List, it might appear that they were
assuming new positions in the List. However, if in a new persistence context you read the department
back in again and accessed its employees the List would come back in the order that it was in before you
manipulated it'. This is because the List order is based upon the collation order asserted by the
@0rderBy annotation. Simply changing the order of the items in a List in memory will not cause that
order to be stored in the database at commit time. In fact, the order specified in @0rderBy will be used
only when reading the List back into memory. As a rule of thumb, the List order should always be
maintained in memory to be consistent with the @0rderBy ordering rules.

Persistently Ordered Lists

Another example that calls for the order provided by List is a print queue that keeps a list of the print
jobs that are queued up at any given time. The PrintQueue is essentially a First In First Out (FIFO) queue
that, when the printer is available, takes the next PrintJob from the front of the queue and sends it to the
printer for printing. Assuming that PrintQueue and PrintJob are entities, we would have a one-to-many
relationship from PrintQueue to PrintJob and a many-to-one relationship back.

Given that we know how to map the relationships, and you just learned above how to map ordered
lists using @0rderBy, it would seem pretty straightforward to map this relationship using a List. The
PrintJob entity, in Listing 5-5, illustrates its many-to-one side of the bidirectional mapping.

! Assuming that the collection was not returned from a second level shared cache.

CHAPTER 5 = COLLECTION MAPPING

Listing 5-5. PrintJob Entity

@Entity

public class PrintJob {
@Id private int id;
/...
@ManyToOne
private PrintQueue queue;
/...

The problem arises when we discover that the PrintJob entity does not have an attribute that can be
used in @0rderBy. Because the order of the job does not really affect the actual PrintJob that gets
serviced, the decision was made to not store the order of a given job within the PrintJob entity. The
position of a particular PrintJob in the queue is determined simply by its position in the job List.

The PrintJob entities in the Java List cannot retain their order unless a designated database column
has been created to store it. We call this column the order column, and it provides a stronger persistent
ordering than @0rderBy. It is in the order column that the object’s order is stored and updated when it is
moved from one position to another within the same List. It is transparent to the user in that the user
does not need to manipulate it, or even necessarily be aware of it, in order to use the List. It does need
to be known and considered as part of the mapping process, though, and is declared by means of an
@0rderColumn annotation.

TIP The @0rderColumn annotation and the ability to do persistent ordering were introduced in JPA 2.0.

Using an @0rderColumn annotation precludes the use of @0rderBy, and vice versa. Listing 5-6 shows
how @0rderColumn can be used with our one-to-many relationship mapping in PrintQueue. The table
mappings are shown in Figure 5-3.

Listing 5-6. One-To-Many List from PrintQueue to PrintJob

@Entity

public class PrintQueue {
@Id private String name;
/...
@0neToMany (mappedBy="queue")
@0rderColumn(name="PRINT ORDER")
private List<PrintJob> jobs;

17
}
PRINTQUEUE HiLIFLD
Pk (N Ho---og KD
FK1 | QUEUE
PRINT_ORDER

Figure 5-3. PRINTQUEUE table and target PRINTJOB table with order column

113

114

CHAPTER 5 1 COLLECTION MAPPING

You probably noticed something different about the declaration of the order column on the one-to-
many side of the relationship. In the last chapter, we explained the practice of mapping the physical
columns on the owning side because that is the side that owns the table in which they apply. The order
column can be an exception to this rule when the relationship is bidirectional because the column is
always defined beside the List that it is ordering, even though it is in the table mapped by the owning
many-to-one entity side. So in Listing 5-6, the @0rderColumn annotation is on the PrintQueue side of the
relationship, but the column named PRINT_ORDER is referring to whatever table the PrintJob entity is
mapped to.

Although the @0rderColumn annotation must be present to enable the ordered position of the entity
to be stored in a database column, the elements of the annotation are optional. The name just defaults to
the name of the entity attribute, appended by the “_ORDER” string. So, if the name had not been
overridden in Listing 5-6 to be PRINT_ORDER, it would have defaulted to be JOBS_ORDER.

The table that the order column is stored in depends on the mapping that @rderColumn is being
applied to. It is usually in the table that stores the entity or element being stored. As we mentioned, in
our bidirectional one-to-many relationship in Listing 5-6, the entity being stored is PrintJob, and the
order column would be stored in the PRINTJOB table. If the mapping were an element collection, the
order column would be stored in the collection table. In many-to-many relationships, the order column
is in the join table.

Some additional comments about using @0rderColumn are due because it is a feature that could
easily be misused. We said that the order column is transparent to the user of the list, but it turns out
that this transparency can have unexpected repercussions for a naive user.

Consider a busy company with lots of people and lots of print jobs being submitted and printed.
When a job makes it to the first position, it gets removed from the queue and sent to the printer.
Meanwhile, another job inherits the “on deck” position. Every time a job gets serviced, every other
PrintJob remaining on the queue moves up by one position and is one step closer to being printed. In
other words, with each printed job, the order of each and every other PrintJob changes and must be
resaved to the database. In our case, the order column is being stored in the table in which PrintJob
entities are stored: the PRINTJOB table.

Needless to say, we are looking at a potentially large cost, further compounded as the queue gets
longer. For every job added to a queue of size n, there will be n additional SQL updates sent to the
database to change the order of that job before it even makes it to the printer. That could ring alarm bells
for a database administrator, especially a vigilant one with a penchant for perusing the SQL audits.

As a final comment on List usage, there is special support in JPA queries that allows ordered subsets
or individual items of a List to be accessed and returned. We will see how this can be achieved in
Chapter 8.

Maps

The Map is a very common collection that is used in virtually every application and offers the ability to
associate a key object with an arbitrary value object. The various underlying implementations are
expected to use fast hashing techniques to optimize direct access to the keys.

There is a great deal of flexibility with Map types in JPA, given that the keys and values can be any
combination of entities, basic types, and embeddables. Permuting the three types in the two key and
value positions renders nine distinct Map types. We will give detailed explanations of the most common
combinations in the following sections.

TIP In JPA 1.0, Maps could be used only in relationships (values could only be entities), and the keys had to be
an attribute of the entity value.

CHAPTER 5 = COLLECTION MAPPING

Keys and Values

Although basic types, embeddable types, or entity types can be Map keys, remember that if they are
playing the role of key, they must follow the basic rules for keys. They must be comparable and respond
appropriately to the hashCode () method, and equals() method when necessary®. They should also be
unique, at least within the domain of a particular collection instance, so that values are not lost or
overwritten in memory. Keys should not be changed, or more specifically, the parts of the key object that
are used in the hashCode() and equals() methods must not be changed while the object is acting as a key
in a Map.

When keys are basic or embeddable types, they are stored directly in the table being referred to.
Depending upon the type of mapping, it can be either the target entity table, join table, or collection
table. However, when keys are entities, only the foreign key is stored in the table because entities are
stored in their own table, and their identity in the database must be preserved.

It is always the type of the value object in the Map that determines what kind of mapping must be
used. If the values are entities, the Map must be mapped as a one-to-many or many-to-many
relationship, whereas if the values of the Map are either embeddable or basic types, the Map is mapped as
an element collection.

Even though the Map keys do not affect the type of mapping, they still require annotations, in
addition to the relationship or element collection annotations, to indicate the column(s) in which they
are stored. These annotations will be covered in the different use cases in the following sections.

Keying By Basic Type

We mentioned in the previous sections that element collections of basic types are stored in collection
tables, and basic keys are stored in the tables referred to by the mapping. If the mapping is an element
collection keyed by a basic type, the keys will be stored in the same collection table in which the Map
values are stored. Likewise, if it is a one-to-many relationship, and the foreign key is in the target entity
table, the keys will be in the target entity table. If the relationship mapping uses a join table, the keys will
be in the join table.

To show the collection table case, let’s look at an element collection example that maps the phone
numbers of an Employee. If we use a Map, we can key on the phone number type and store the phone
number as the value. So the key of each Map entry will be any of “Home”, “Work” or “Mobile”, as a
String, and the value will be the associated phone number String. Listing 5-7 shows the element
collection mapping code.

% See the javadoc for java.util.Map for more details.

115

116

CHAPTER 5 1 COLLECTION MAPPING

Listing 5-7. Element Collection of Strings with String Keys

@Entity

public class Employee {
@Id private int id;
private String name;
private long salary;

@ElementCollection
@CollectionTable(name="EMP_PHONE")
@MapKeyColumn(name="PHONE_TYPE")
@Column(name="PHONE_NUM")

private Map<String, String> phoneNumbers;
/...

The @ElementCollection and @CollectionTable annotations are nothing new, and Listing 5-3
showed that we can use the @Column annotation to override the name of the column that stores the
values in the Collection. Here we are doing the same thing, except that we are overriding the column in
which the Map values would be stored instead of the items in a generic Collection.

The only new annotation is @apKeyColumn, which is used to indicate the column in the collection
table that stores the basic key. When the annotation is not specified, the key is stored in a column named
after the mapped collection attribute, appended with the “_KEY” suffix. In Listing 5-7, if we had not
specified @MapKeyColumn, the defaulting rule would have caused the key to be mapped to the
PHONENUMBERS_KEY column in the EMP_PHONE collection table.

Phone number values can be duplicated in the collection table (for example, multiple employees
living at the same home and having the same phone number), so the PHONE_NUM column obviously won’t
be unique in the table. The types of phone numbers have to be unique only within a given Map or
Employee instance, so the PHONE_TYPE column won’t be the primary key, either. In fact, because basic
types do not have identity, and in some cases the same key-value entries can be duplicated in multiple
source entities, the key-value columns can’t be the primary key columns on their own. Unique tuples in
the collection table must be the combination of the key column and the foreign key column that
references the source entity instance. In Figure 5-4, we see the resulting collection table, along with the
source EMPLOYEE entity table that it references. You can see the primary key constraint on the
EMPLOYEE_ID and PHONE_TYPE columns.

EMPLOYEE EMP_PHONE
PK | ID PK,FK1 EMPLOYEE_ID
PK PHONE_TYPE
NAME
SALARY PHONE_NUM

Figure 5-4. EMPLOYEE entity table and EMP_PHONE collection table

We should really improve our model, though, because using a String key to store something that is
constrained to be one of only three values (“Home”, “Mobile”, or “Work”), is not great style. An
appropriate improvement would be to use an enumerated type instead of String. We can define our
enumerated type as follows:

public enum PhoneType { Home, Mobile, Work }

CHAPTER 5 = COLLECTION MAPPING

Now we have the valid options as enumerated constants, and there is no chance of mistyping or
having invalid phone types. However, there is one further enhancement to consider. If we want to
protect ourselves from future changes to the enumerated type values, either by reordering existing
values or inserting additional ones, we should override the way the value is stored in the database.
Instead of relying on the default approach of storing the ordinal value of the enumerated element, we
want to store the String value, so we get the best of both worlds. The column will contain values that
correspond to phone type settings in a human readable way, and the Java Map will have a strongly
typed key.

The usual way of overriding the storage strategy for an enumerated type is to use the @Enumerated
annotation. However, if we were to put @Enumerated on our Map attribute, it would apply to the values of
the element collection, not the keys. That is why there is a special @apKeyEnumerated annotation (see
Listing 5-8). There is also an equivalent @MapKeyTemporal to specify the temporal type when the key is of
type java.util.Date. Both @MapKeyEnumerated and @MapKeyTemporal are applicable to keys that are of a
basic type, regardless of whether it is an element collection or a relationship.

Listing 5-8. Element Collection of Strings with Enumerated Type Keys

@Entity

public class Employee {
@Id private int id;
private String name;
private long salary;

@ElementCollection
@CollectionTable(name="EMP_PHONE")
@MapKeyEnumerated (EnumType.STRING)
@MapKeyColumn(name="PHONE_TYPE")
@Column(name="PHONE_NUM")

private Map<PhoneType, String> phoneNumbers;
/...

Listing 5-4 had a one-to-many relationship that used a List to hold all the employees in a given
department. Suppose that we change it to use a Map and keep track of which employee is working in any
given office or cubicle. By keying on the cubicle number (which can contain letters as well, so we will
represent them as a String), we can easily find which Employee works in that cubicle. Because this is a
bidirectional one-to-many relationship, it will be mapped as a foreign key to DEPARTMENT in the EMPLOYEE
table. The cubicle number keys will be stored in an additional column in the EMPLOYEE table, each one
stored in the row corresponding to the Employee associated with that cubicle. Listing 5-9 shows the one-
to-many mapping.

Listing 5-9. One-to-Many Relationship Using a Map with String Key

@Entity
public class Department {
@Id private int id;

@0OneToMany (mappedBy="department")
@MapKeyColumn(name="CUB_ID")

private Map<String, Employee> employeesByCubicle;
/...

117

118

CHAPTER 5 1 COLLECTION MAPPING

What if an employee could split his time between multiple departments? We would have to change
our model to a many-to-many relationship and use a join table. The @apKeyColumn will be stored in the
join table that references the two entities. The relationship is mapped in Listing 5-10.

Listing 5-10. Many-to-Many Relationship Using a Map with String Keys

@Entity

public class Department {
@Id private int id;
private String name;

@ManyToMany

@JoinTable(name="DEPT EMP",
joinColumns=@JoinColumn(name="DEPT_ID"),
inverseJoinColumns=@JoinColumn(name="EMP_ID"))

@MapKeyColumn(name="CUB_ID")

private Map<String, Employee> employeesByCubicle;

/...

If we did not override the key column with @MapKeyColumn, it would have been defaulted as the name
of the collection attribute suffixed by “_KEY”. This would have produced a dreadful-looking
EMPLOYEESBYCUBICLE_KEY column in the join table, which is not only ugly to read, but does not actually
indicate what the key really is. Figure 5-5 shows the resulting tables.

EMPLOYEE DEPT EMP
- DEPARTMENT
PK | ID PKFK1 | EMP_ID
H——O< pkx2 |pepT 0 PO—HH PK | ID
NAME — -
SALARY CUB_ID

Figure 5-5. EMPLOYEE and DEPARTMENT entity tables and DEPT_EMP join table

NOTE You can use a Map on only one side of a many-to-many relationship; it makes no difference which side.

Keying by Entity Attribute

When a one-to-many or many-to-many relationship collection of entities is represented as a Map, it is
most often keyed by some attribute of the target entity type. Keying by entity attribute is actually a
special case of keying by basic type where the mapping is a relationship, and the basic type of the key is
the type of the attribute (that we are keying on) in the target entity. When this common case
occurs, the @MapKey annotation can be used to designate the attribute of the target entity that is being
keyed on.

If each department keeps track of the employees in it, as in our previous example in Listing 5-4, we
could use a Map and key on the Employee id for quick Employee lookup. The updated Department mapping
is shown in Listing 5-11.

CHAPTER 5 = COLLECTION MAPPING

Listing 5-11. One-to-Many Relationship Keyed by Entity Attribute

@Entity
public class Department {
/...
@0OneToMany (mappedBy="department")
@MapKey (name="1d")
private Map<Integer, Employee> employees;
/...

The id attribute of Employee is also the identifier or primary key attribute, and it turns out that
keying on the identifier is the most common case of all. It is so common that when no name is specified
the entities will by default be keyed by their identifier attribute®. When the identifier attribute is
defaulted and not explicitly listed, you do need to know what the type of the identifier is so you can
correctly specify the first type parameter of the Map when using a parameterized Map.

One of the reasons why the identifier attribute is used for the key is because it fits the key criteria
nicely. It responds to the necessary comparison methods, hashCode() and equals(), and it is guaranteed
to be unique.

If another attribute is used as the key, it should also be unique, although it is not absolutely required
that it be unique across the entire domain of that entity type. It really needs to be unique only within the
scope of the relationship. For example, we could key on the employee name as long as we made sure
that the name would be unique within any department.

In the previous section, we stated that a basic key is stored in the table referred to by the mapping.
The special case of keying by entity attribute is an exception to that rule in that no additional column is
needed to store the key. It is already stored as part of the entity. That is why the @apKeyColumn
annotation is never used when keying on an entity attribute. A provider can easily build the contents of a
one-to-many relationship Map by loading the entities that are associated with the source entity and
extracting the attribute being keyed on from each of the loaded entities. No additional columns need to
be read or extra joins performed.

Keying by Embeddable Type

Using embeddables as keys is not something that you should encounter very often. In fact, if you are
considering doing it at all, you should probably think twice before proceeding. Just because it’s possible
does not mean that it is a good idea.

The problem with embeddables is that they are not full-fledged entities. They are not queryable in
the sense that they can’t be discovered or returned except as an aggregate part of their enclosing entities.
Although this might not seem like a very severe limitation at the outset, it often becomes a problem later
on in the development cycle.

Identity of embeddables is not defined in general, but when they are used as keys in a Map there
must be some notion of uniqueness defined, applicable at least within the given Map. This means that the
uniqueness constraint, at least logically, is on the combination of the embedded attributes and the
foreign key column to the source entity.

® The @MapKey annotation is still required, however; otherwise, the @apKeyColumn defaults would apply.

119

120

CHAPTER 5 1 COLLECTION MAPPING

Embeddable key types are similar to basic key types in that they are also stored in the table referred
to by the mapping, but with embeddable types there are multiple attributes to store, not just one value.
This results in multiple columns contributing to the primary key.

Sharing Embeddable Key Mappings with Values

The code example in Listing 5-11 showed a bidirectional one-to-many relationship from Department to
Employee that was keyed by the id attribute of Employee. What if we had wanted to key on multiple
attributes of Employee? For example, it might be desirable to look up employees by name in the Map,
assuming that the name is unique within a given department. If the name were split into two attributes,
one for the first name and one for the last name, as shown in Listing 5-12, then we would need a separate
object to combine them and act as the key object in the Map. An embeddable type, such as EmployeeName
in Listing 5-13, can be used for this purpose. Having an EmployeeName embeddable type also provides a
useful class for passing the encapsulated full name around the system.

Listing 5-12. Employee Entity

@Entity

public class Employee {
@Id private int id;
@Column(name="F NAME")
private String firstName;
@Column(name="L_NAME")
private String lastName;
private long salary;
/l ...

}
Listing 5-13. EmployeeName Embeddable with Read-Only Mappings

@Embeddable

public class EmployeeName {
@Column(name="F_NAME", insertable=false, updatable=false)
private String first Name;
@Column(name="L_NAME", insertable=false, updatable=false)
private String last Name;
/...

Because the bidirectional one-to-many relationship from Department to Employee is stored in the
target entity table, the embeddable object key must also be stored there. However, it would be
redundant for the two name components to be stored twice in each row: once for the firstName and
lastName attributes of Employee and once for the first_Name and last_Name attributes of the EmployeeName
key object. With a bit of clever mapping we can just reuse the two columns mapped to the Employee
attributes and map them as read-only in the key (setting insertable and updatable to false). That is why
in Listing 5-13 we map the first Name and last_Name attributes to the same columns as the firstName
and lastName attributes of Employee. From the Department perspective, the relationship in Listing 5-14
does not change much from Listing 5-11, except that the Map is keyed by EmployeeName instead of by
Integer, and @MapKey is not used because the key is an embeddable and not an attribute of Employee.

CHAPTER 5 = COLLECTION MAPPING

Listing 5-14. One-to-Many Relationship Keyed by Embeddable

@Entity
public class Department {
/...
@0OneToMany (mappedBy="department")
private Map<EmployeeName, Employee> employees;
/1 ...

Overriding Embeddable Attributes

Another modelling option is to combine the two name columns within the Employee entity and define an
embedded attribute of type EmployeeName, as shown in Listing 5-15.

Listing 5-15. Employee Entity with Embedded Attribute

@Entity
public class Employee {
@Id private int id;

@Embedded

private EmployeeName name;
private long salary;
/...

This time we are not sharing columns, so we must ensure that the mappings in EmployeeName are no
longer read-only, or else the name will never get written to the database. The updated EmployeeName
embeddable is in Listing 5-16.

Listing 5-16. EmployeeName Embeddable

@Embeddable

public class EmployeeName {
@Column(name="F_NAME")
private String first Name;
@Column(name="L_NAME")
private String last Name;
/...

For the purpose of illustration, let us go back to the many-to-many model that we described in
Listing 5-10, except that we will key on the EmployeeName embeddable instead of the cubicle id. Even
though the EmployeeName attributes are stored in the EMPLOYEE table for every Employee, the keys of the Map
must still be stored in the DEPT_EMP join table. This is a result of the key being an embeddable type.
Keying by either a single attribute of the entity or by a basic type would alleviate this denormalized data
scenario.

121

122

CHAPTER 5 1 COLLECTION MAPPING

By default, the key attributes would be mapped to the column names from the mappings defined
within EmployeeName, but if the join table already exists and the columns in the join table do not have
those names, the names must be overridden. Listing 5-17 shows how the embeddable attribute
mappings of the Map key can be overridden from what they are defined to be in the embeddable class.

Listing 5-17. Many-to-Many Map Keyed by Embeddable Type with Overriding

@Entity
public class Department {
@Id private int id;

@ManyToMany
@JoinTable(name="DEPT_EMP",
joinColumns=@JoinColumn(name="DEPT_ID"),
inverseJoinColumns=@JoinColumn(name="EMP_ID"))
@AttributeOverrides({
@AttributeOverride(
name="first_Name",
column=@Column(name="EMP_FNAME")),
@AttributeOverride(
name="last Name",
column=@Column(name="EMP_LNAME"))
b
private Map<EmployeeName, Employee> employees;
/...

The tables for the mapping are shown in Figure 5-6, with the embeddable attributes mapped to
the join table for the key state and in the EMPLOYEE table for the Employee state. If the mapping had
been an element collection, the embeddable attributes would be stored in a collection table instead of
ajoin table.

EMPLOYEE DEPT_EMP
DEPARTMENT
PK |ID PK,FK1 | EMP_ID
E NAVE HH——O< PKFK2 |DEPTID PO—H PK | ID
L_NAME EMP_FNAME
SALARY EMP_LNAME

Figure 5-6. DEPARTMENT and EMPLOYEE entity tables and DEPT_EMP join table

As you can see from Listing 5-17, the mapping defaults for the key are being overridden through the
use of @AttributeOverride. If instead of a many-to-many relationship we had an @ElementCollection of

some embeddable type in a Map, we would have to differentiate between the key and the value. We would

do this by prefixing the attribute name with “key.” or “value.”, depending upon which of the
embeddable types we were overriding. An element collection of embedded EmployeeInfo types, with the
same key overrides as those in the relationship in Listing 5-17, would use the key prefixes:

@ElementCollection
@AttributeOverrides({
@AttributeOverride(name="key.first Name",
column=@Column(name="EMP_FNAME")),

CHAPTER 5 = COLLECTION MAPPING

@AttributeOverride(name="key.last Name",
column=@Column(name="EMP_LNAME"))

1)

private Map<EmployeeName, EmployeeInfo> empInfos;

Keying by Entity

You might be reluctant to use entities as keys because intuition might lead you to think of this as a more
resource-intensive option, with higher load and management costs. While that might be true in some
cases, it is not necessarily always so. Quite often the entity you are considering keying on will already be
in memory, or needed anyway, and keying on it either just accesses a cached instance or causes the
instance to be loaded for later use.

One advantage of keying by entity type is that entity instances are globally unique (within the
persistence unit) so there will not be any identity problems to deal with across different relationships or
collections. A corollary of the basic identity property of entities is that only a foreign key needs to be
stored in the mapped table, leading to a more normalized design and data storage schema.

As with the other types of Map keys, the key (in this case, a foreign key to the entity being keyed on)
will be stored in the table referred to by the mapping.

Recall that the term used by JPA to represent a foreign key column is join column, and we use join
columns in many-to-one and one-to-one relationships, as well as in join tables of collection-valued
relationships. We now have a similar situation, except that instead of referring to the target of a
relationship, our join column is referring to the entity key in a Map entry. To differentiate join columns
that point to map keys from the ones used in relationships, a separate @apKeyJoinColumn annotation
was created. This annotation is used to override the join column defaults for an entity key. When it is not
specified, the join column will have the same default column name as basic keys (the name of the
relationship or element collection attribute, appended with the string “_KEY”).

To illustrate the case of an entity being used as a key, we can add the notion of the seniority an
Employee has within a given Department. We want to have a loose association between an Employee and
his seniority; and the seniority has to be local to a Department. By defining an element collection Map in
Department, with the seniority as the values and Employee entities as the keys, the seniority any Employee
has in a given Department can be looked up by using the Employee instance as a key. The seniority is
stored in a collection table, and if an Employee changes departments none of the other Employee objects
needs to change. The indirection of the collection table; and the fact that the connections between the
Department, the Employee and the seniority value are all maintained by virtue of the Map, provide just the
right level of coupling. Only the entries in the collection table would need to be updated.

Listing 5-18 shows the element collection mapping, with the join column being overridden using
the @MapKeyJoinColumn annotation and the Map value column being overridden using the standard
@Column annotation.

Listing 5-18. Element Collection Map Keyed by EntityType

@Entity

public class Department {
@Id private int id;
private String name;
/...
@ElementCollection
@CollectionTable(name="EMP_SENIORITY")
@MapKeyJoinColumn(name="EMP_ID")
@Column(name="SENIORITY")
private Map<Employee, Integer> seniorities;
/...

123

124

CHAPTER 5 1 COLLECTION MAPPING

Figure 5-7 shows that the collection table is nothing more than the values of the Map (the seniority)
with a foreign key to the Department source entity table and another foreign key to the Employee entity
key table.

EMP_SENIORITY EMPLOYEE
DEPARTMENT
PK,FK1 | DEPARTMENT ID PK | ID
PK | ID H——O< pkrk2 | EMP ID
= NAME
NAME SENIORITY SALARY

Figure 5-7. DEPARTMENT and EMPLOYEE entity tables with EMP_SENIORITY collection table

Untyped Maps

If we did not want to (or were not able to) use the typed parameter version of Map<KeyType, ValueType>,
we would define it using the non-parameterized style of Map shown in Listing 5-19.

Listing 5-19. One-to-Many Relationship Using a Non-parameterized Map

@Entity
public class Department {
/...
@0neToMany(targetEntity=Employee.class, mappedBy="department")
@MapKey
private Map employees;
/...

The targetEntity element only ever indicates the type of the Map value. Of course, if the Map holds an
element collection and not a relationship, the targetClass element of @ElementCollection is used to
indicate the value type of the Map.

In Listing 5-19, the type of the Map key can be easily deduced because the mapping is an entity
relationship. The @MapKey default is to use the identifier attribute, id, of type int or Integer. If @MapKey
had been specified and dictated that the key be an attribute that was not an identifier attribute, the type
would still have been deducible because the entity attributes are all mapped with known types.
However, if the key isn’t an attribute of the target entity, @apKeyClass might be used instead of @MapKey.
It indicates the type of the key class when the Map is not defined in a typed way using generics. It is also
used when the Map references an element collection instead of a relationship because basic or
embeddable types do not have identifier attributes, and basic types do not even have attributes.

To illustrate how @MapKeyClass is used, let’s take the element collection in Listing 5-7 and
assume that it does not define the type parameters on the Map. The typing is filled in through the use
of the @MapKeyClass annotation and the targetClass element in @ElementCollection, as shown in Listing
5-20.

Listing 5-20. Untyped Element Collection of Strings with String Keys
@Entity

public class Employee {
@Id private int id;

CHAPTER 5 = COLLECTION MAPPING

private String name;
private long salary;

@ElementCollection(targetClass=String.class)
@CollectionTable(name="EMP_PHONE")
@MapKeyColumn(name="PHONE _TYPE")
@MapKeyClass(String.class)
@Column(name="PHONE_NUM")

private Map phoneNumbers;

/...

The @MapKeyClass annotation should be used whenever the key class cannot be deduced from the
attribute definition or the other mapping metadata.

Rules for Maps

Learning about the various Map variants can get kind of confusing given that we can choose any one of
three different kinds of key types and three different kinds of value types. Below are some of the basic
rules of using a Map.

e Use the @MapKeyClass and targetEntity/targetClass elements of the relationship
and element collection mappings to specify the classes when an untyped Map is
used.

e Use @MapKey with one-to-many or many-to-many relationship Map that is keyed on
an attribute of the target entity.

e Use @MapKeyJoinColumn to override the join column of the entity key.

e Use @Column to override the column storing the values of an element collection of
basic types.

e Use @MapKeyColumn to override the column storing the keys when keyed by a basic
type.

e Use @MapKeyTemporal and @MapKeyEnumerated if you need to further qualify a basic
key that is a temporal or enumerated type.

e Use@AttributeOverride with a “key.” or “value.” prefix to override the column of
an embeddable attribute type that is a Map key or a value, respectively.

Table 5-1 summarizes some of the different aspects of using a Map.

125

CHAPTER 5 1 COLLECTION MAPPING

Table 5-1. Summary of Mapping a Map

126

Map Mapping Key Annotation Value Annotation
Map<Basic,Basic> @ElementCollection @MapKeyColumn, @Column
@MayKeyEnumerated,
@MapKeyTemporal
Map<Basic,Embeddable> @ElementCollection @MapKeyColumn, Mapped by
embeddable,
@MayKeyEnumerated,
@MapKeyTemporal @AttributeOverride,
@AssociationOverride
Map<Basic,Entity> @0neToMany, @ManyToMany @MapKey, Mapped by entity
@MapKeyColumn,
@MayKeyEnumerated,
@MapKeyTemporal
Map<Embeddable,Basic> @ElementCollection Mapped by embeddable, @Column
@AttributeOverride
Map<Embeddable,Embeddable> @ElementCollection Mapped by embeddable, Mapped by
@AttributeOverride embeddable,
@AttributeOverride,
@AssociationOverride
Map<Embeddable,Entity> @0neToMany, @ManyToMany Mapped by embeddable Mapped by entity
Map<Entity,Basic> @ElementCollection @MapKeyJoinColumn @Column
Map<Entity,Embeddable> @ElementCollection @MapKeyJoinColumn Mapped by
embeddable,
@AttributeOverride,
@AssociationOverride
Map<Entity,Entity> @0neToMany, @ManyToMany @MapKeyJoinColumn Mapped by entity
Duplicates

When we were discussing the Set interface we mentioned that it was ideal for preventing duplicates.
What we meant was that the Set datatype in Java does not allow them. We didn’t really say anything

CHAPTER 5 = COLLECTION MAPPING

about duplicates in the database. In fact, the JPA specification does not say anything about whether
duplicates are allowed in collections, either in the database or in memory, and in most cases they will
not be supported. To get a feeling for why supporting duplicates is difficult, we need to go to the data
model and uncover some of the gory details. You might prefer to skip this section if duplicates are not
interesting to you. Read on, however, if you are in a situation where an external application can come in
behind your back and insert a duplicate record, for example.

The Collection interface is very general and allows for a multitude of Collection subinterfaces and
implementation classes. So it is very soft in its specification of whether duplicates are allowed, instead
allowing the subinterface or implementation class to decide what behavior best fits that Collection type.

For a Collection that does happen to allow duplicates, collection-valued relationship mappings use
either a foreign key in the target entity table or a join table. The first case will always be a one-to-many
mapping, and in that case there will be only one row for the target entity, and only one column in that
row to contain the foreign key to the source entity. That leaves no way to capture the fact that the target
entity is in the collection more than once.

In the join table case, each row stores a join column to the source entity and a join column to the
target entity, and the primary key of the join table is composed of the combination of the two. Only
duplicate rows in that model could link multiple instances of the target to the same source, and
duplicate rows in a relational database are highly frowned upon.

An element collection is in a similar situation, except that instead of a foreign key to the target entity
there are one or more columns in the collection table storing the basic or embeddable values. These
columns just combine with the foreign key to the source entity to make up the primary key, and once
again duplicate rows would be required to have duplicate values in a collection.

The persistently ordered List is a little different, however, because it adds an order column to the
mix. If the order column were to be included as part of the primary key, multiple relationship entries
could exist in the List each of their respective rows potentially having the same element value data and
foreign key reference, but differing only by the value of the order column. Thus, the uniqueness of a row
is identified not only by the source and target objects but also by its position in the List.

In the case of the foreign key in the target table, it would be bad practice indeed to include the order
column in the primary key of an entity table, so we won’t even explore that as an option. However, when
ajoin table or collection table is used, it is a perfectly reasonable thing to do, allowing duplicate values to
be inserted in a persistently ordered List. This is possible, though, only if the provider includes the order
column in the primary key of the table or gives you the option of configuring it in that way.

Before you rejoice that your provider might allow you to store duplicates, be aware that there is a
price to pay. This can be seen in the example of exchanging the order of two elements in the List. If the
order column were just a regular column, it wouldn’t be too much of a stretch for the provider to
optimize the database operations by simply updating the order columns of the two records with the
correct values. However, if the order column is part of the primary key, what you are really saying is that
the ordering of the contained object in the List is an integral part of the relationship between the
containing and contained objects. Assigning a new order to the contained object is not modifying an
aspect of the relationship, but effectively destroying the relationship and creating a new one with a
different ordering. That means deleting the two old rows and creating two new ones.

A Map has keys that must be unique, so duplicate keys clearly don’t make sense. It is similar to a List
when it comes to its values, however, because it has a key column that can be part of the primary key.
Once again, the case of the foreign key in the target table does not allow for multiple keys to point to the
same entity, so one-to-many relationships that are mapped that way simply do not permit the same
entity to be mapped to multiple keys in the same Map.

For join tables and collection tables, duplicates will be possible in the Map only if it is keyed by
something other than an attribute of the entity, or embeddable, and the key column is included in the
primary key. The trade-off in the case of the Map is similar to the one that we discussed with List, except
that the price of allowing duplicates in a Map is paid when you want to reassign an existing key to a
different value.

127

128

CHAPTER 5 1 COLLECTION MAPPING

Null Values

It is probably even less common to insert null values in a collection than it is to have duplicates. This is
one reason why the JPA specification is not particularly clear on what happens when you insert null into
a collection. As with duplicates, the cases are a little complex and require individual consideration.

The Set, List, and Map interfaces join the Collection interface in being general enough to be wishy-
washy when it comes to specifying what happens when null is inserted. They simply delegate the
decision to the implementation, so an implementation class might choose to support inserting null
values or simply throw an exception. JPA does no better; it ends up falling to the particular vendor’s
proxy implementation to allow null or throw a NullPointerException when null is added. Note that you
cannot make your collection interface allow null simply by initializing it with an implementation
instance, such as HashSet, that allows null. The provider will replace the instance with one of its own
implementation classes the next time the object becomes managed, and the new implementation class
might or might not allow null values.

In order for a null value to exist in the database the value column or columns must be nullable. This
is the obvious part, but the corollary might be less evident, if a little repetitive. It claims once again that
only relationships and element collections that use a join table or collection table can have null values in
the collection. The proof is left for you to figure out, but (as a hint) try creating an entity that has all null
values, including the identifier, with no identifier generation.

There is a further limitation on null values when it comes to element collections of embeddable
objects. Entity references in a join table or element collections of basic types in a collection table are
single-column values or references. The problem in the embeddable case is that if a combination of
columns mapped to an embeddable are all null, there is no way for the provider to know whether it
signifies a null value or an empty embeddable object full of null values. Providers might assume that it is
an empty embedded object or they might have a controllable option to dictate whether the nulls get
treated one way or the other.

Maps are equally non-committal about allowing null keys, but it really doesn’t fit very well with the
model of key columns being primary key fields. Most databases do not even allow one of the primary key
fields to be nullable, and we would not recommend it even for the odd one that does.

Best Practices

With all the options and possibilities that have emerged, we would be cruel indeed if we did not offer at
least some measure of guidance to the lonely collections traveler. Of course, the reason why there are so
many options is because there are so many different cases to solve, so it is not really appropriate to come
up with hard and fast rules. However, some general guidelines will hopefully assist you in picking the
right mapping strategy for your specific application use case.

e When using a List, do not assume that it is ordered automatically if you have not
actually specified any ordering. The List order might be affected by the database
results, which are only partially deterministic with respect to how they are
ordered. There are no guarantees that such an ordering will be the same across
multiple executions.

e Itwill generally be possible to order the objects by one of their own attributes.
Using the @0rderBy annotation will always be the best approach when compared
to a persistent List that must maintain the order of the items within it by updating
a specific order column. Use the order column only when it is impossible to do
otherwise.

CHAPTER 5 = COLLECTION MAPPING

e Map types are very helpful, but they can be relatively complicated to properly
configure. Once you reach that stage, however, the modeling capabilities that they
offer and the loose association support that can be leveraged makes them ideal
candidates for various kinds of relationships and element collections.

e Aswith the List, the preferred and most efficient use of a Map is to use an attribute
of the target object as a key, making a Map of entities keyed by a basic attribute type
the most common and useful. It will often solve most of the problems you
encounter. A Map of basic keys and values can be a useful configuration for
associating one basic object with another.

e Avoid using embedded objects in a Map, particularly as keys, because their identity
is typically not defined. Embeddables in general should be treated with care and
used only when absolutely necessary.

e Support for duplicate or null values in collections is not guaranteed, and is not
recommended even when possible. They will cause certain types of operations on
the collection type to be slower and more database-intensive, sometimes
amounting to a combination of record deletion and insertion instead of simple
updates.

Summary

In this chapter, we took a more in-depth look at various ways of mapping collections to the database. We
looked at how the contents of the collection determine how it is mapped, and noted that there are many
flexible options for storing different kinds of objects in various types of collections.

We showed that the difference between relationships and element collections was whether entities
or basic/embeddable types were being stored in them. We went on to examine the different types of
collections, and how Collection and Set can be used for simple container purposes, while List can be
used to maintain ordered collections. We saw that there are two different approaches to using a List and
that maintaining a persistent List is possible, but not usually the best strategy.

We then elaborated on all the Map types, explaining how combinations of basic, embeddable, and
entity types can be used as keys and values. We experimented with and showed examples of using many
of the different combinations of key and value types, illustrating how each changed the way the
collection was mapped. We then outlined, in list form, the basic rules of using a Map type.

We finished off collections by looking at the corner cases of adding duplicates and null values to
collections and outlined the cases when support might be reasonable. Some best practices and practical
guidance to using collections followed.

The next chapter will discuss using entity managers and persistence contexts in more advanced
ways than we did previously, delving into the practices and nuances of injecting and using them in Java
EE and Java SE environments.

129

CHAPTER 6

Entity Manager

Entities do not persist themselves when they are created. Nor do they remove themselves from the
database when they are garbage-collected. It is the logic of the application that must manipulate
entities to manage their persistent lifecycle. JPA provides the EntityManager interface for this purpose
in order to let applications manage and search for entities in the relational database.

At first, this might seem like a limitation of JPA. If the persistence runtime knows which objects are
persistent, why should the application have to be involved in the process? Rest assured that this design
is both deliberate and far more beneficial to the application than any transparent persistence
solution. Persistence is a partnership between the application and persistence provider. JPA brings a
level of control and flexibility that could not be achieved without the active participation of the
application.

In Chapter 2 we introduced the EntityManager interface and described some of the basic operations
that it provides for operating on entities. We extended that discussion in Chapter 3 to include an
overview of the Java EE environment and the types of services that impact persistence applications.
Finally, in Chapters 4 and 5 we described object-relational mapping, the key to building entities out of
objects. With that groundwork in place we are ready to revisit entity managers, persistence contexts,
and persistence units, and to begin a more in-depth discussion of these concepts.

Persistence Contexts

Let’s begin by reintroducing the core terms of JPA. A persistence unit is a named configuration of
entity classes. A persistence context is a managed set of entity instances. Every persistence context is
associated with a persistence unit, restricting the classes of the managed instances to the set defined
by the persistence unit. Saying that an entity instance is managed means thatitis contained within a
persistence context and it can be acted upon by an entity manager. It is for this reason that we say that
an entity manager manages a persistence context.

Understanding the persistence context is the key to understanding the entity manager. An
entity’s inclusion or exclusion from a persistence context will determine the outcome of any persistent
operations on it. If the persistence context participates in a transaction, the in-memory state of the
managed entities will get synchronized to the database. Yet despite the important role thatit plays, the
persistence context is never actually visible to the application. It is always accessed indirectly through
the entity manager and assumed to be there when we need it.

So far so good, but how does the persistence context get created and when does this occur? How
does the entity manager figure in the equation? This is where it starts to get interesting.

131

132

CHAPTER 6 1 ENTITY MANAGER

Entity Managers

Up to this point, we have demonstrated only basic entity manager operations in both the Java SE and
Java EE environments. We have reached a point, however, where we can finally reveal the full range
of entity manager configurations. JPA defines no fewer than three different types of entity managers,
each of which has a different approach to persistence context management that is tailored to a
different application need. As we will see, the persistence context is just one part of the puzzle.

Container-Managed Entity Managers

In the Java EE environment, the most common way to acquire an entity manager is by using the
@PersistenceContext annotation to inject one. An entity manager obtained in this way is called
container-managed because the container manages the lifecycle of the entity manager, typically by
proxying the one that it gets from the persistence provider. The application does not have to create it
or close it. This is the style of entity manager we demonstrated in Chapter 3.

Container-managed entity managers come in two varieties. The style of a container-managed
entity manager determines how it works with persistence contexts. The first and most common style is
called transaction-scoped. This means that the persistence contexts managed by the entity manager
are scoped by the active JTA transaction, ending when the transaction is complete. The second style is
called extended. Extended entity managers work with a single persistence context that is tied to the
lifecycle of a stateful session bean and are scoped to the life of that stateful session bean, potentially
spanning multiple transactions.

Transaction-Scoped

All the entity manager examples that we have shown so far for the Java EE environment have been
transaction-scoped entity managers. A transaction-scoped entity manager is returned whenever the
reference created by the @PersistenceContext annotation is resolved. As we mentioned in Chapter 3, a
transaction-scoped entity manager is stateless, meaning that it can be safely stored on any Java EE
component. Because the container manages it for us, it is also basically maintenance-free.

Once again, let’s introduce a stateless session bean that uses a transaction-scoped entity
manager. Listing 6-1 shows the bean class for a session bean that manages project information. The
entity manager is injected into the em field using the @PersistenceContext annotation and is then used
in the business methods of the bean.

Listing 6-1. The ProjectService Session Bean

@Stateless

public class ProjectServiceBean implements ProjectService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

public void assignEmployeeToProject(int empId, int projectId) {
Project project = em.find(Project.class, projectld);
Employee employee = em.find(Employee.class, empId);
project.getEmployees().add(employee);
employee.getProjects().add(project);

/7 ...

CHAPTER 6 @ ENTITY MANAGER

We described the transaction-scoped entity manager as stateless. If that is the case, how can it
work with a persistence context? The answer lies with the JTA transaction. All container-managed
entity managers depend on JTA transactions because they can use the transaction as a way to track
persistence contexts. Every time an operation is invoked on the entity manager, the container proxy
for that entity manager checks to see whether a persistence context is associated with the container
JTA transaction. If it finds one, the entity manager will use this persistence context. If it doesn’t find
one, it creates a new persistence context and associates it with the transaction. When the transaction
ends, the persistence context goes away.

Let’s walk through an example. Consider the assignEmployeeToProject() method from Listing 6-1.
The first thing the method does is search for the Employee and Project instances using the find()
operation. When the first find() method is invoked, the container checks for a transaction. By default,
the container will ensure that a transaction is active whenever a session bean method starts, so the
entity manager in this example will find one ready. It then checks for a persistence context. This is the
first time any entity manager call has occurred, so there isn’t a persistence context yet. The entity
manager creates a new one and uses it to find the project.

When the entity manager is used to search for the employee, it checks the transaction again and
this time finds the one it created when searching for the project. It then reuses this persistence context
to search for the employee. At this point, employee and project are both managed entity instances. The
employee is then added to the project, updating both the employee and project entities. When the
method call ends, the transaction is committed. Because the employee and project instances were
managed, the persistence context can detect any state changes in them, and it updates the database
during the commit. When the transaction is over, the persistence context goes away.

This process is repeated every time one or more entity manager operations are invoked within
a transaction.

Extended

In order to describe the extended entity manager, we must first talk a little about stateful session
beans. As youlearned in Chapter 3, stateful session beans are designed to hold conversational state.
Once acquired by a client, the same bean instance is used for the life of the conversation until the
clientinvokes one of the methods marked @emove on the bean. While the conversation is active, the
business methods of the client can store and access information using the fields of the bean.

Let’s try using a stateful session bean to help manage a department. Our goal is to create a
business object for a Department entity that provides business operations relating to that entity. Listing
6-2 shows our first attempt. The business method init() is called by the client to initialize the
department id. We then store this department id on the bean instance, and the addEmployee() method
uses it to find the department and make the necessary changes. From the perspective of the client, they
only have to set the department id once, and then subsequent operations always refer to the same
department.

Listing 6-2. First Attempt at Department Manager Bean

@Stateful

public class DepartmentManagerBean implements DepartmentManager {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;
int deptId;

public void init(int deptId) {
this.deptId = deptld;

133

134

CHAPTER 6 1 ENTITY MANAGER

public void setName(String name) {
Department dept = em.find(Department.class, deptId);
dept.setName(name);

public void addEmployee(int empId) {
Department dept = em.find(Department.class, deptId);
Employee emp = em.find(Employee.class, empld);
dept.getEmployees().add(emp);
emp.setDepartment (dept);

}

/7 ...

@Remove
public void finished() {
}

The first thing that should stand out when looking at this bean is that it seems unnecessary to have
to search for the department every time. After all, we have the department id, so why not just store the
Department entity instance as well? Listing 6-3 revises our first attempt by searching for the
department once during the init() method and then reusing the entity instance for each business
method.

Listing 6-3. Second Attempt at Department Manager Bean

@Stateful

public class DepartmentManagerBean implements DepartmentManager {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;
Department dept;

public void init(int deptId) {
dept = em.find(Department.class, deptId);

public void setName(String name) {
dept.setName(name);

public void addEmployee(int empId) {
Employee emp = em.find(Employee.class, empId);
dept.getEmployees().add(emp);
emp.setDepartment(dept);

/.

@Remove
public void finished() {

}

CHAPTER 6 @ ENTITY MANAGER

This version looks better suited to the capabilities of a stateful session bean. It is certainly more
natural to reuse the Department entity instance instead of searching for it each time. But there is a
problem. The entity manager in Listing 6-3 is transaction-scoped. Assuming there is no active
transaction from the client, every method on the bean will start and commit a new transaction
because the default transaction attribute for each method is REQUIRED. Because there is a new
transaction for each method, the entity manager will use a different persistence context each time.

Even though the Department instance still exists, the persistence context that used to manage it
went away when the transaction associated with the init() call ended. We refer to the Department
entity in this case as being detached from a persistence context. The instance is still around and can be
used, but any changes to its state will be ignored. For example, invoking setName() will change the
name in the entity instance, but the changes will never be reflected in the database.

This is the situation that the extended entity manager is designed to solve. Designed specifically
for stateful session beans, it prevents entities from becoming detached when transactions end. Before
we go too much further, let’s introduce our third and final attempt at a department manager bean.
Listing 6-4 shows our previous example updated to use an extended persistence context.

Listing 6-4. Using an Extended Entity Manager

@Stateful
public class DepartmentManagerBean implements DepartmentManager {
@PersistenceContext(unitName="EmployeeService",
type=PersistenceContextType.EXTENDED)
EntityManager em;
Department dept;

public void init(int deptId) {
dept = em.find(Department.class, deptId);

public void setName(String name) {
dept.setName(name);

public void addEmployee(int empId) {
Employee emp = em.find(Employee.class, empld);
dept.getEmployees().add(emp);
emp.setDepartment(dept);

}

/7 ...

@Remove
public void finished() {
}

Asyoucan see, we changed only one line. The @PersistenceContext annotation that we introduced
in Chapter 3 has a special type attribute that can be set to either TRANSACTION or EXTENDED. These
constants are defined by the PersistenceContextType enumerated type. TRANSACTION is the default and
corresponds to the transaction-scoped entity managers we have been using up to now. EXTENDED
means that an extended entity manager should be used.

135

136

CHAPTER 6 1 ENTITY MANAGER

With this change made, the department manager bean now works as expected. Extended entity
managers create a persistence context when a stateful session bean instance is created that lasts until
the bean is removed. Unlike the persistence context of a transaction-scoped entity manager, which
begins when the transaction begins and lasts until the end of a transaction, the persistence context of
an extended entity manager will last for the entire length of the conversation. Because the Department
entity is still managed by the same persistence context, whenever itis usedin a transaction any
changes will be automatically written to the database.

The extended persistence context allows stateful session beans to be written in a way that is more
suited to their capabilities. Later we will discuss special limitations on the transaction management of
extended entity managers, but by and large they are well suited to the type of example we have
shown here.

The biggestlimitation of the extended entity manager is that itrequires a stateful session bean.
Despite having been available in the EJB specification for many years, stateful session beans are still
not widely used. Partly because of the poor quality of early vendor implementations, stateful session
beans gained a reputation for poor performance and poor scalability. Even though modern application
servers are very efficient in their management of stateful session beans, developer skepticism
remains. Given that the HT TP session offers similar capabilities and is readily available without
developing new beans, developers have traditionally preferred it to stateful session beans for
conversational data.

More importantly, many Java EE applications do not require the kind of conversational state that
stateful session beans provide. But that said, the extended persistence contextis a significant feature
custom-tailored to stateful session beans, and as best practices emerge for this type of persistence
context they might see more use in the future.

Application-Managed Entity Managers

In Chapter 2 we introduced JPA with an example written using Java SE. The entity manager in that
example, and any entity manager that is created from the createEntityManager() call of an
EntityManagerFactory instance, is what we call an application-managed entity manager. This name
comes from the fact that the application, rather than the container, manages the lifecycle of the entity
manager. Note that all open entity managers, whether container-managed or application-managed,
are associated with an EntityManagerFactory instance. The factory used to create the entity manager
can be accessed from the getEntityManagerFactory() call on the EntityManager interface.

Although we expect the majority of applications to be written using container-managed entity
managers, application-managed entity managers still have a role to play. They are the only entity
manager type available in Java SE, and as we will see, they can be used in Java EE as well.

Creating an application-managed entity manager is simple enough. All youneed is an
EntityManagerFactory to create the instance. What separates Java SE and Java EE for application-
managed entity managers is not how you create the entity manager but how you get the factory.
Listing 6-5 demonstrates use of the Persistence class to bootstrap an EntityManagerFactory instance
that is then used to create an entity manager.

Listing 6-5. Application-Managed Entity Managers in Java SE

public class EmployeeClient {
public static void main(String[] args) {
EntityManagerFactory emf =
Persistence.createEntityManagerFactory("EmployeeService");
EntityManager em = emf.createEntityManager();

List<Employee> emps = em.createQuery("SELECT e FROM Employee e")

CHAPTER 6 @ ENTITY MANAGER

.getResultlist();
for (Employee e : emps) {
System.out.println(e.getId() + ", " + e.getName());
}

em.close();
emf.close();

The Persistence class offers two variations of the same createEntityManager () method that can be
used to create an EntityManagerFactory instance for a given persistence unit name. The first,
specifying only the persistence unit name, returns the factory created with the default properties
defined in the persistence.xml file. The second form of the method call allows a map of properties to be
passed in, adding to, or overriding the properties specified in persistence.xml. This form is useful
when required JDBC properties might not be known until the application is started, perhaps with
information provided as command-line parameters. The set of active properties for an entity
manager can be determined via the getProperties() method on the EntityManager interface. We will
discuss persistence unit properties in Chapter 13.

The best way to create an application-managed entity manager in Java EE is to use the
@PersistenceUnit annotation to declare a reference to the EntityManagerFactory for a persistence unit.
Once acquired, the factory can be used to create an entity manager, which can be used just as it would
in Java SE. Listing 6-6 demonstrates injection of an EntityManagerFactory into a servlet and its use to
create a short-lived entity manager in order to verify a user id.

Listing 6-6. Application-Managed Entity Managers in Java EE

public class LoginServlet extends HttpServlet {
@PersistenceUnit(unitName="EmployeeService")
EntityManagerFactory emf;

protected void doPost(HttpServletRequest request,
HttpServletResponse response) {
String userId = request.getParameter("user");

// check valid user
EntityManager em = emf.createEntityManager();
try {
User user = em.find(User.class, userId);
if (user == null) {
// return error page
/] ...

}
} finally {
em.close();

/] ...

137

138

CHAPTER 6 1 ENTITY MANAGER

One thing common to both of these examples is that the entity manager is explicitly closed with the
close() call when itis nolonger needed. This is one of the lifecycle requirements of an entity
manager that must be performed manually in the case of application-managed entity managers, and
that is normally taken care of automatically by container-managed entity managers. Likewise, the
EntityManagerFactory instance must also be closed, but only in the Java SE application. In Java EE, the
container closes the factory automatically, so no extra steps are required.

In terms of the persistence context, the application-managed entity manager is similar to an
extended container-managed entity manager. When an application-managed entity manager is
created, it creates its own private persistence context thatlasts until the entity manager is closed. This
means that any entities managed by the entity manager will remain that way, independent of any
transactions.

The role of the application-managed entity manager in Java EE is somewhat specialized. If
resource-local transactions are required for an operation, an application-managed entity manager is
the only type of entity manager that can be configured with that transaction type within the server. As
we will describe in the next section, the transaction requirements of an extended entity manager can
make them difficult to deal with in some situations. Application-managed entity managers can be
safely used on stateful session beans to accomplish similar goals.

Transaction Management

Developing a persistence application is as much about transaction management as it is about object-
relational mapping. Transactions define when new, changed, or removed entities are synchronized to
the database. Understanding how persistence contexts interact with transactions is a fundamental
part of working with JPA.

Note that we said persistence contexts, not entity managers. There are several different entity
manager types, but all use a persistence context internally. The entity manager type determines the
lifetime of a persistence context, but all persistence contexts behave the same way when they are
associated with a transaction.

There are two transaction-management types supported by JPA. The first is resource-local
transactions, which are the native transactions of the JDBC drivers that are referenced by a
persistence unit. The second transaction-management type is JTA transactions, which are the
transactions of the Java EE server, supporting multiple participating resources, transaction lifecycle
management, and distributed XA transactions.

Container-managed entity managers always use JTA transactions, while application-managed
entity managers can use either type. Because JTA is typically not available in Java SE applications, the
provider needs to support only resource-local transactions in that environment. The default and
preferred transaction type for Java EE applications is JTA. As we will describe in the next section,
propagating persistence contexts with JTA transactions is a major benefit to enterprise persistence
applications.

The transaction type is defined for a persistence unit and is configured using the persistence.xml
file. We will discuss this setting and how to apply itin Chapter 13.

JTA Transaction Management

In order to talk about JTA transactions, we must first discuss the difference between transaction
synchronization, transaction association, and transaction propagation. Transaction synchronization is
the process by which a persistence context is registered with a transaction so that the persistence
context can be notified when a transaction commits. The provider uses this notification to ensure that
a given persistence context is correctly flushed to the database. Transaction association is the act of

CHAPTER 6 @ ENTITY MANAGER

binding a persistence context to a transaction. You can also think of this as the active persistence
context within the scope of that transaction. Transaction propagation is the process of sharing a
persistence context between multiple container-managed entity managers in a single transaction.

There can be only one persistence context associated with and propagated across a JTA
transaction. All container-managed entity managers in the same transaction must share the same
propagated persistence context.

Transaction-Scoped Persistence Contexts

As the name suggests, a transaction-scoped persistence context is tied to the lifecycle of the
transaction. It is created by the container during a transaction and will be closed when the transaction
completes. Transaction-scoped entity managers are responsible for creating transaction-scoped
persistence contexts automatically when needed. We say only when needed because transaction-
scoped persistence context creation is lazy. An entity manager will create a persistence context only
when a method is invoked on the entity manager and when there is no persistence context available.

When a method is invoked on the transaction-scoped entity manager, it must first see whether
there is a propagated persistence context. If one exists, the entity manager uses this persistence
context to carry out the operation. If one does not exist, the entity manager requests a new persistence
context from the persistence provider and then marks this new persistence context as the propagated
persistence context for the transaction before carrying out the method call. All subsequent
transaction-scoped entity manager operations, in this component or any other, will thereafter use this
newly created persistence context. This behavior works independently of whether container-
managed or bean-managed transaction demarcation has been used.

Propagation of the persistence context simplifies the building of enterprise applications. When an
entity is updated by a component inside of a transaction, any subsequent references to the same entity
will always correspond to the correct instance, no matter what component obtains the entity
reference. Propagating the persistence context gives developers the freedom to build loosely coupled
applications knowing that they will always get the right data even though they are not sharing the
same entity manager instance.

To demonstrate propagation of a transaction-scoped persistence context, we introduce an audit
service bean that stores information about a successfully completed transaction. Listing 6-7 shows the
complete bean implementation. The logTransaction() method ensures that an employee id is valid by
attempting to find the employee using the entity manager.

Listing 6-7. AuditService Session Bean

@Stateless

public class AuditServiceBean implements AuditService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

public void logTransaction(int empId, String action) {
// verify employee number is valid
if (em.find(Employee.class, empId) == null) {
throw new IllegalArgumentException("Unknown employee id");

LogRecord 1r = new LogRecord(empId, action);
em.persist(lr);

140

CHAPTER 6 1 ENTITY MANAGER

Now consider the fragment from the EmployeeService session bean example shown in Listing 6-8.
After an employee is created, the logTransaction() method of the AuditService session bean is
invoked to record the “created employee” event.

Listing 6-8. Logging EmployeeService Transactions

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

@EJB AuditService audit;

public void createEmployee(Employee emp) {
em.persist(emp);
audit.logTransaction(emp.getId(), "created employee");

}
/...

Even though the newly created Employee is not yet in the database, the audit bean can find the
entity and verify that it exists. This works because the two beans are actually sharing the same
persistence context. The transaction attribute of the createEmployee() method is REQUIRED by default
because no attribute has been explicitly set. The container will guarantee that a transaction is started
before the method is invoked. When persist() is called on the entity manager, the container checks to
see whether a persistence context is already associated with the transaction. Let’s assume in this case
that this was the first entity manager operation in the transaction, so the container creates a new
persistence context and marks it as the propagated one.

When the logTransaction() method starts, it issues a find() call on the entity manager from the
AuditServiceBean. We are guaranteed to be in a transaction because the transaction attribute is also
REQUIRED, and the container-managed transaction from createEmployee() has been extended to this
method by the container. When the find() method is invoked, the container again checks for an active
persistence context. It finds the one created in the createEmployee() method and uses that persistence
context to search for the entity. Because the newly created Employee instance is managed by this
persistence context, it is returned successfully.

Now consider the case where logTransaction() has been declared with the REQUIRES NEW
transaction attribute instead of the default REQUIRED. Before the logTransaction() method call starts,
the container will suspend the transaction inherited from createEmployee() and start a new
transaction. When the find() method is invoked on the entity manager, it will check the current
transaction for an active persistence context only to determine that one does not exist. A new
persistence context will be created starting with the find() call, and this persistence context will be the
active persistence context for the remainder of the logTransaction() call. Because the transaction
started in createEmployee() has not yet committed, the newly created Employee instance is not in the
database and therefore is not visible to this new persistence context. The find() method will return
null, and the logTransaction() method will throw an exception as a result.

The rule of thumb for persistence context propagation is that the persistence context propagates as
the JTA transaction propagates. Therefore, it is important to understand not only when transactions
begin and end, but also when a business method expects to inherit the transaction context from
another method and when doing so would be incorrect. Having a clear plan for transaction
management in your application is key to getting the most out of persistence context propagation.

CHAPTER 6 @ ENTITY MANAGER

Extended Persistence Contexts

The lifecycle of an extended persistence context is tied to the stateful session bean to which it is bound.
Unlike a transaction-scoped entity manager that creates a new persistence context for each
transaction, the extended entity manager of a stateful session bean always uses the same persistence
context. The stateful session bean is associated with a single extended persistence context that is
created when the bean instance is created and closed when the bean instance is removed. This has
implications for both the association and propagation characteristics of the extended persistence
context.

Transaction association for extended persistence contexts is eager. In the case of container-
managed transactions, as soon as a method call starts on the bean, the container automatically
associates the persistence context with the transaction. Likewise, in the case of bean-managed
transactions; as soon as UserTransaction.begin() is invoked within a bean method, the container
intercepts the call and performs the same association.

Because a transaction-scoped entity manager will use an existing persistence context associated
with the transaction before it will create a new persistence context, it is possible to share an extended
persistence context with other transaction-scoped entity managers. As long as the extended
persistence context is propagated before any transaction-scoped entity managers are accessed, the
same extended persistence context will be shared by all components.

Similar to the auditing EmployeeServiceBean we demonstrated in Listing 6-8, consider the same
change made to a stateful session bean DepartmentManagerBean to audit when an employee is added to a
department. Listing 6-9 shows this example.

Listing 6-9. Logging Department Changes

@Stateful
public class DepartmentManagerBean implements DepartmentManager {
@PersistenceContext(unitName="EmployeeService",
type=PersistenceContextType.EXTENDED)
EntityManager em;
Department dept;
@EJB AuditService audit;

public void init(int deptId) {
dept = em.find(Department.class, deptId);

public void addEmployee(int empId) {
Employee emp = em.find(Employee.class, empld);
dept.getEmployees().add(emp);
emp.setDepartment(dept);
audit.logTransaction(emp.getId(),
"added to department

+ dept.getName());
}

/...

The addEmployee() method has a default transaction attribute of REQUIRED. Because the container
eagerly associates extended persistence contexts, the extended persistence context stored on the
session bean will be immediately associated with the transaction when the method call starts. This will
cause the relationship between the managed Department and Employee entities to be persisted to the

141

142

CHAPTER 6 1 ENTITY MANAGER

database when the transaction commits. It also means that the extended persistence context will now
be shared by other transaction-scoped persistence contexts used in methods called from addEmployee().

The logTransaction() method in this example will inherit the transaction context from
addEmployee() because its transaction attribute is the default REQUIRED, and a transaction is active
during the call to addEmployee(). When the find() method is invoked, the transaction-scoped entity
manager checks for an active persistence context and will find the extended persistence context from
the DepartmentManagerBean. It will then use this persistence context to execute the operation. All the
managed entities from the extended persistence context become visible to the transaction-scoped
entity manager.

Persistence Context Collision

We said earlier that only one persistence context could be propagated with a JTA transaction. We also
said that the extended persistence context would always try to make itself the active persistence
context. This can quickly lead to situations in which the two persistence contexts collide with each
other. Consider, for example, that a stateless session bean with a transaction-scoped entity manager
creates a new persistence context and then invokes a method on a stateful session bean with an
extended persistence context. During the eager association of the extended persistence context, the
container will check to see whether there is already an active persistence context. If there is, it must be
the same as the extended persistence context thatitis trying to associate, or an exception will be
thrown. In this example, the stateful session bean will find the transaction-scoped persistence context
created by the stateless session bean, and the call into the stateful session bean method will fail. There
can be only one active persistence context for a transaction.

While extended persistence context propagation is useful if a stateful session bean with an
extended persistence context is the first EJB to be invoked in a call chain, it limits the situations in
which other components can call into the stateful session bean if they are also using entity managers.
This might or might not be common depending on your application architecture, but it is something to
keep in mind when planning dependencies between components.

One way to work around this problem is to change the default transaction attribute for the stateful
session bean that uses the extended persistence context. If the default transaction attribute is
REQUIRES NEW, any active transaction will be suspended before the stateful session bean method starts,
allowing it to associate its extended persistence context with the new transaction. This is a good
strategy if the stateful session bean calls in to other stateless session beans and needs to propagate the
persistence context. Note that excessive use of the REQUIRES NEW transaction attribute can lead to
application performance problems because many more transactions than normal will be created, and
active transactions will be suspended and resumed.

If the stateful session bean is largely self-contained; that is, it does not call other session beans
and does not need its persistence context propagated, a default transaction attribute type of
NOT_SUPPORTED can be worth considering. In this case, any active transaction will be suspended before
the stateful session bean method starts, but no new transaction will be started. If there are some
methods that need to write data to the database, those methods can be overridden to use the
REQUIRES_NEW transaction attribute.

Listing 6-10 repeats the DepartmentManager bean, this time with some additional getter methods
and customized transaction attributes. We have set the default transaction attribute to REQUIRES_NEW to
force a new transaction by default when a business method is invoked. For the getName () method, we
don’tneed a new transaction because no changes are being made, so it has been set to NOT_SUPPORTED.
This will suspend the current transaction, but won’tresultin a new transaction being created. With
these changes, the DepartmentManager bean can be accessed in any situation, even if there is already an
active persistence context.

CHAPTER 6 @ ENTITY MANAGER

Listing 6-10. Customizing Transaction Attributes to Avoid Collision

@Stateful
@TransactionAttribute(TransactionAttributeType.REQUIRES NEW)
public class DepartmentManagerBean implements DepartmentManager {
@PersistenceContext(unitName="EmployeeService",
type=PersistenceContextType.EXTENDED)
EntityManager em;
Department dept;
@EJB AuditService audit;

public void init(int deptId) {
dept = em.find(Department.class, deptId);

@TransactionAttribute(TransactionAttributeType.NOT SUPPORTED)
public String getName() { return dept.getName(); }
public void setName(String name) { dept.setName(name); }

public void addEmployee(int empId) {
Employee emp = em.find(empId, Employee.class);
dept.getEmployees().add(emp);
emp.setDepartment(dept);
audit.logTransaction(emp.getId(),
"added to department " + dept.getName());
}

/...

Finally, one last option to consider is using an application-managed entity manager instead of an
extended entity manager. If there is no need to propagate the persistence context, the extended entity
manager is not adding a lot of value over an application-managed entity manager. The stateful
session bean can safely create an application-managed entity manager, store it on the bean instance,
and use it for persistence operations without having to worry about whether an active transaction
already has a propagated persistence context. An example of this technique is demonstrated later in
the section “Application-Managed Persistence Contexts.”

Persistence Context Inheritance

The restriction of only one stateful session bean with an extended persistence context being able to
participate in a JTA transaction can cause difficulties in some situations. For example, the pattern we
followed earlier in this chapter for the extended persistence context was to encapsulate the behavior of
an entity behind a stateful session facade. In our example, clients worked with a DepartmentManager
session bean instead of the actual Department entity instance. Because a department has a manager, it
makes sense to extend this facade to the Employee entity as well.

Listing 6-11 shows changes to the DepartmentManager bean so thatit returns an EmployeeManager
stateful session bean from the getManager () method in order to represent the manager of the
department. The EmployeeManager stateful session bean is injected and then initialized during the
invocation of the init() method.

143

144

CHAPTER 6 1 ENTITY MANAGER

Listing 6-11. Creating and Returning a Stateful Session Bean

@Stateful
public class DepartmentManagerBean implements DepartmentManager {
@PersistenceContext(unitName="EmployeeService",
type=PersistenceContextType.EXTENDED)
EntityManager em;
Department dept;
@EJB EmployeeManager manager;

public void init(int deptId) {
dept = em.find(Department.class, deptId);
manager.init();

public EmployeeManager getManager() {
return manager;

/...

Should the init() method succeed or fail? So far based on what we have described, it looks like it
should fail. When init() is invoked on the DepartmentManager bean, its extended persistence context
will be propagated with the transaction. In the subsequent call to init() on the EmployeeManager bean,
it will attempt to associate its own extended persistence context with the transaction, causing a
collision between the two.

Perhaps surprisingly, this example actually works. When a stateful session bean with an extended
persistence context creates another stateful session bean that also uses an extended persistence
context, the child will inherit the parent’s persistence context. The EmployeeManager bean inherits the
persistence context from the DepartmentManager bean when itis injected into the DepartmentManager
instance. The two beans can now be used together within the same transaction.

Application-Managed Persistence Contexts

Like container-managed persistence contexts, application-managed persistence contexts can be
synchronized with JTA transactions. Synchronizing the persistence context with the transaction means
that a flush will occur if the transaction commits, but the persistence context will not be considered
associated by any container-managed entity managers. There is no limit to the number of
application-managed persistence contexts that can be synchronized with a transaction, but only one
container-managed persistence context will ever be associated. This is one of the most important
differences between application-managed and container-managed entity managers.

An application-managed entity manager participates in a JTA transaction in one of two ways. If
the persistence context is created inside the transaction, the persistence provider will automatically
synchronize the persistence context with the transaction. If the persistence context was created earlier
(outside of a transaction or in a transaction that has since ended), the persistence context can be
manually synchronized with the transaction by calling joinTransaction() on the EntityManager
interface. Once synchronized, the persistence context will automatically be flushed when the
transaction commits.

Listing 6-12 shows a variation of the DepartmentManagerBean from Listing 6-11 that uses an
application-managed entity manager instead of an extended entity manager.

CHAPTER 6 @ ENTITY MANAGER

Listing 6-12. Using Application-Managed Entity Managers with JTA

@Stateful

public class DepartmentManagerBean implements DepartmentManager {
@PersistenceUnit(unitName="EmployeeService")
EntityManagerFactory emf;
EntityManager em;
Department dept;

public void init(int deptId) {
em = emf.createEntityManager();
dept = em.find(Department.class, deptId);

}

public String getName() {
return dept.getName();

public void addEmployee(int empId) {
em.joinTransaction();
Employee emp = em.find(Employee.class, empIld);
dept.getEmployees().add(emp);
emp.setDepartment(dept);

}
/...

@Remove
public void finished() {
em.close();

Instead of injecting an entity manager, we are injecting an entity manager factory. Prior to
searching for the entity, we manually create a new application-managed entity manager using the
factory. Because the container does not manage its lifecycle, we have to close it later when the bean is
removed during the call to finished(). Like the container-managed extended persistence context, the
Department entity remains managed after the call to init(). When addEmployee() is called, there is the
extra step of calling joinTransaction() to notify the persistence context that it should synchronize itself
with the current JTA transaction. Without this call, the changes to Department would not be flushed to
the database when the transaction commits.

Because application-managed entity managers do not propagate, the only way to share managed
entities with other components is to share the EntityManager instance. This can be achieved by passing
the entity manager around as an argument to local methods or by storing the entity manager in a
common place such as an HTTP session or singleton session bean. Listing 6-13 demonstrates a servlet
creating an application-managed entity manager and using it to instantiate the EmployeeService class
we defined in Chapter 2. In these cases, care must be taken to ensure that access to the entity manager
is done in a thread-safe manner. While EntityManagerFactory instances are thread-safe, EntityManager
instances are not. Also, application code must not call joinTransaction() on the same entity manager
in multiple concurrent transactions.

145

146

CHAPTER 6 1 ENTITY MANAGER

Listing 6-13. Sharing an Application-Managed Entity Manager

public class EmployeeServlet extends HttpServlet {
@PersistenceUnit(unitName="EmployeeService")
EntityManagerFactory emf;
@Resource UserTransaction tx;

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

/...

int id = Integer.parselnt(request.getParameter("id"));

String name = request.getParameter("name");

long salary = Long.parselLong(request.getParameter("salary"));

tx.begin();

EntityManager em = emf.createEntityManager();

try {
EmployeeService service = new EmployeeService(em);
service.createEmployee(id, name, salary);

} finally {
em.close();

tx.commit();
/...

Listing 6-13 demonstrates an additional characteristic of the application-managed entity
manager in the presence of transactions. If the persistence context becomes synchronized with a
transaction, changes will still be written to the database when the transaction commits, even if the
entity manager is closed. This allows entity managers to be closed at the point where they are created,
removing the need to worry about closing them after the transaction ends. Note that closing an
application-managed entity manager still prevents any further use of the entity manager.Itis only
the persistence context that continues until the transaction has completed.

There is a danger in mixing multiple persistence contexts in the same JTA transaction. This occurs
when multiple application-managed persistence contexts become synchronized with the transaction
or when application-managed persistence contexts become mixed with container-managed
persistence contexts. When the transaction commits, each persistence context will receive notification
from the transaction manager that changes should be written to the database. This will cause each
persistence context to be flushed.

What happens if an entity with the same primary key is used in more than one persistence
context? Which version of the entity gets stored? The unfortunate answer is that there is no way to
know for sure. The container does not guarantee any ordering when notifying persistence contexts of
transaction completion. As a result, it is critical for data integrity that entities never be used by more
than one persistence context in the same transaction. When designing your application, we
recommend picking a single persistence context strategy (container-managed or application-
managed) and sticking to that strategy consistently.

CHAPTER 6 @ ENTITY MANAGER

Resource-Local Transactions

Resource-local transactions are controlled explicitly by the application. The application server, if
there is one, has no partin the management of the transaction. Applications interact with resource-
local transactions by acquiring an implementation of the EntityTransaction interface from the entity
manager. The getTransaction() method of the EntityManager interface is used for this purpose.

The EntityTransaction interface is designed to imitate the UserTransaction interface defined by
JTA, and the two behave very similarly. The main difference is that EntityTransaction operations are
implemented in terms of the transaction methods on the JDBC Connection interface. Listing 6-14
shows the complete EntityTransaction interface.

Listing 6-14. The EntityTransaction Interface

public interface EntityTransaction {
public void begin();
public void commit();
public void rollback();
public void setRollbackOnly();
public boolean getRollbackOnly();
public boolean isActive();

There are only six methods on the EntityTransaction interface. The begin() method starts a new
resource transaction. If a transaction is active, isActive() will return true. Attempting to start a new
transaction while a transaction is active will result in an I1legalStateException being thrown. Once
active, the transaction can be committed by invoking commit () or rolled back by invoking rollback().
Both operations will fail withan I1legalStateException if there is no active transaction. A
PersistenceException will be thrown if an error occurs during rollback, while a RollbackException will
be thrown if the commit fails.

If a persistence operation fails while an EntityTransaction is active, the provider will mark it for
rollback. It is the application’s responsibility to ensure that the rollback actually occurs by calling
rollback().If the transaction is marked for rollback, and a commit is attempted, a RollbackException
will be thrown. To avoid this exception, the getRollbackOnly() method can be called to determine
whether the transaction is in a failed state. Until the transaction is rolled back, it is still active and will
cause any subsequent commit or begin operation to fail.

Listing 6-15 shows a Java SE application that uses the EntityTransaction API to perform a password
change for users who failed to update their passwords before they expired.

Listing 6-15. Using the EntityTransaction Interface

public class ExpirePasswords {
public static void main(String[] args) {
int maxAge = Integer.parseInt(args[0]);
String defaultPassword = args[1];

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("admin");

try {
EntityManager em = emf.createEntityManager();

Calendar cal = Calendar.getInstance();

147

CHAPTER 6 1 ENTITY MANAGER

cal.add(Calendar.DAY_OF YEAR, -maxAge);

em.getTransaction().begin();
Collection expired =
em.createQuery("SELECT u FROM User u WHERE u.lastChange <= ?1")
.setParameter(1, cal)
.getResultlist();
for (Iterator i = expired.iterator(); i.hasNext();) {
User u = (User) i.next();
System.out.println("Expiring password for
u.setPassword(defaultPassword);

+ u.getName());

em.getTransaction().commit();
em.close();

} finally {
emf.close();

Within the application server, JTA transaction management is the default and should be used by
most applications. One example use of resource-local transactions in the Java EE environment might
be for logging. If your application requires an auditlog stored in the database that must be written
regardless of the outcome of any JTA transactions, a resource-local entity manager can be used to
persist data outside of the current transaction. Resource transactions can be freely started and
committed any number of times within a JTA transaction without impacting the state of the JTA
transactions.

Listing 6-16 shows an example of a stateless session bean that provides audit logging that will
succeed even if the active JTA transaction fails.

Listing 6-16. Using Resource-Local Transactions in the Java EE Environment

@Stateless

public class LogServiceBean implements LogService {
@PersistenceUnit(unitName="1logging")
EntityManagerFactory emf;

public void logAccess(int userId, String action) {
EntityManager em = emf.createEntityManager();
try {
LogRecord 1r = new LogRecord(userId, action);
em.getTransaction().begin();
em.persist(lr);
em.getTransaction().commit();
} finally {
em.close();

Of course, you could make the argument that this is overkill for a simple logging bean. Direct JDBC
would probably work just as easily, but these same log records can have uses elsewhere in the
application. It is a trade-off in configuration (defining a completely separate persistence unit in order

148

CHAPTER 6 @ ENTITY MANAGER

to enable the resource-local transactions) versus the convenience of having an object-oriented
representation of a log record.

Transaction Rollback and Entity State

When a database transaction is rolled back, all the changes made during the transaction are
abandoned. The database reverts to whatever state it was in before the transaction began. But as
mentioned in Chapter 2, the Java memory model is not transactional. There is no way to take a
snapshot of object state and revert to it later if something goes wrong. One of the harder parts of using
an object-relational mapping solution is that while we can use transactional semantics in our
application to control whether data is committed to the database, we can’t truly apply the same
techniques to the in-memory persistence context that manages our entity instances.

Any time we are working with changes that must be persisted to the database, we are working with
a persistence context synchronized with a transaction. At some point during the life of the transaction,
usually just before it commits, the changes we require will be translated into the appropriate SQL
statements and sent to the database. Whether we are using JTA transactions or resource-local
transactions is irrelevant. We have a persistence context participating in a transaction with changes
that need to be made.

If that transaction rolls back, two things happen. The first is that the database transaction will be
rolled back. The next thing that happens is that the persistence context is cleared, detaching all our
managed entity instances. If the persistence context was transaction-scoped, it is removed.

Because the Java memory model is not transactional, we are basically left with a bunch of
detached entity instances. More importantly, these detached instances reflect the entity state exactly
as it was at the point when the rollback occurred. Faced with a rolled-back transaction and detached
entities, you might be tempted to start a new transaction, merge the entities into the new persistence
context, and start over. The following issues need to be considered in this case:

o Ifthere is a new entity that uses automatic primary key generation, there can be
a primary key value assigned to the detached entity. If this primary key was
generated from a database sequence or table, the operation to generate the
number might have been rolled back with the transaction. This means that the
same sequence number could be given out again to a different object. Clear the
primary key before attempting to persist the entity again, and do notrely on the
primary key value in the detached entity.

e Ifyour entity uses a version field for locking purposes that is automatically
maintained by the persistence provider, it might be set to an incorrect value. The
value in the entity will not match the correct value stored in the database. We
will cover locking and versioning in Chapter 11.

If youneed to reapply some of the changes that failed and are currently sitting in the detached
entities, consider selectively copying the changed data into new managed entities. This guarantees
that the merge operation will not be compromised by stale data left in the detached entity. To merge
failed entities into a new persistence context, some providers might offer additional options that avoid
some or all these issues. The safe and sure approachis to ensure the transaction boundaries are well
enough defined so in the event of a failure the transaction can be retried, including retrieving all
managed state and reapplying the transactional operations.

149

150

CHAPTER 6 1 ENTITY MANAGER

Choosing an Entity Manager

With three different entity manager types, each with a differentlifecycle and different rules about
transaction association and propagation, it can all be a little overwhelming. What style is right for
your application? Application-managed or container-managed? Transaction-scoped or extended?

Generally speaking, we believe that container-managed, transaction-scoped entity managers
are the best model for most applications. This is the design that originally inspired JPA and is the
model that commercial persistence providers have been using for years. The selection of this style to
be the default for Java EE applications was no accident. It offers the best combination of flexible
transaction propagation with easy-to-understand semantics.

Container-managed, extended persistence contexts offer a different programming model, with
entities remaining managed after commit, but they are tied to the lifecycle of a Java EE component in
this case, the stateful session bean. There are some interesting new techniques possible with the
extended persistence context (some of which we will describe later in this chapter), but they might not
apply to all applications.

In most enterprise applications, application-managed entity managers are unlikely to see much
use. There is rarely a need for persistence contexts that are not associated with a container
transaction and that remain isolated from the rest of the container-managed persistence contexts. The
lack of propagation means that application-managed entity managers must be passed around as
method arguments or stored in a shared object in order to share the persistence context. Evaluate
application-managed entity managers based on your expected transactional needs, and the size and
complexity of your application.

More than anything, we recommend that you try to be consistent in how entity managers are
selected and applied. Mixing all three entity manager types into an application is likely to be
frustrating because the different entity manager types can intersect in unexpected ways.

Entity Manager Operations

Armed with information about the different entity manager types and how they work with persistence
contexts, we can now revisit the basic entity manager operations we introduced in Chapter 2 and
reveal more of the details. The following sections describe the entity manager operations with respect
to the different entity manager and persistence context types. Locking modes and the locking variants
of the following operations will be discussed in Chapter 11.

Persisting an Entity

The persist() method of the EntityManager interface accepts a new entity instance and causes it to
become managed. If the entity to be persisted is already managed by the persistence context, it is
ignored. The contains() operation can be used to check whether an entity is already managed, but it is
very rare that this should be required. It should not come as a surprise to the application to find out
which entities are managed and which are not. The design of the application dictates when entities
become managed.

For an entity to be managed does not mean that it is persisted to the database right away. The
actual SQL to create the necessary relational data will not be generated until the persistence context is
synchronized with the database, typically only when the transaction commits. However, once a new
entity is managed, any changes to that entity can be tracked by the persistence context. Whatever state
exists on the entity when the transaction commits is what will be written to the database.

CHAPTER 6 @ ENTITY MANAGER

When persist() is invoked outside of a transaction, the behavior depends on the type of entity
manager. A transaction-scoped entity manager will throw a TransactionRequiredException because
there is no persistence context available in which to make the entity managed. Application-managed
and extended entity managers will accept the persist request, causing the entity to become managed,
but no immediate action will be taken until a new transaction begins and the persistence context
becomes synchronized with the transaction. In effect, this queues up the change to happen at a later
time. It is only when the transaction commits that changes will be written out to the database.

The persist() operation is intended for new entities that do not already exist in the database. If
the provider immediately determines thatitis not true, an EntityExistsException will be thrown. If the
provider does not make this determination (because it has deferred the existence check and the insert
until flush or commit time), and the primary key is in fact a duplicate, an exception will be thrown
when the persistence context is synchronized to the database.

Up to this point we have been discussing the persistence of entities only without relationships.
But, as we learned in Chapter 4, JPA supports a wide variety of relationship types. In practice, most
entities are in a relationship with atleast one other entity. Consider the following sequence of
operations:

Department dept = em.find(Department.class, 30);
Employee emp = new Employee();

emp.setId(53);

emp.setName("Peter");

emp.setDepartment (dept);
dept.getEmployees().add(emp);

em.persist(emp);

Despite the brevity of this example, we have covered a lot of points relating to persisting a
relationship. We begin by retrieving a pre-existing Department instance. A new Employee instance is
then created, supplying the primary key and basic information about the Employee. We then assign the
employee to the department, by setting the department attribute of the Employee to point to the
Department instance we retrieved earlier. Because the relationshipis bidirectional, we then add the
new Employee instance to the employees collection in the Department instance. Finally the new Employee
instance is persisted with the call to persist(). Assuming a transaction then commits, the new entity
will be stored in the database.

An interesting thing about this example is that the Department is a passive participant despite the
Employee instance being added to its collection. The Employee entity is the owner of the relationship
because itis in a many-to-one relationship with the Department. As we mentioned in Chapter 4, the
source side of the relationship is the owner, while the target is the inverse in this type of relationship.
When the Employee is persisted, the foreign key to the Department is written out to the table mapped by
the Employee, and no actual change is made to the Department entity’s physical representation. Had we
only added the employee to the collection and not updated the other side of the relationship, nothing
would have been persisted to the database.

Finding an Entity

The ever-present find() method is the workhorse of the entity manager. Whenever an entity needs to
be located by its primary key, find() is usually the best way to go. Not only does it have simple
semantics, but most persistence providers will also optimize this operation to use an in-memory cache
that minimizes trips to the database.

The find() operation returns a managed entity instance in all cases except when invoked outside
of a transaction on a transaction-scoped entity manager. In this case, the entity instance is returned
in a detached state. It is not associated with any persistence context.

151

152

CHAPTER 6 1 ENTITY MANAGER

There exists a special version of find() that can be used in one particular situation. That situation
is when a relationship is being created between two entities in a one-to-one or many-to-one
relationship in which the target entity already exists and its primary key is well known. Because we
are only creating a relationship, it might not be necessary to fully load the target entity to create the
foreign key reference to it. Only its primary key is required. The getReference() operation can be used
for this purpose. Consider the following example:

Department dept = em.getReference(Department.class, 30);
Employee emp = new Employee();

emp.setId(53);

emp.setName("Peter");

emp.setDepartment (dept);

dept.getEmployees().add(emp);

em.persist(emp);

The only difference between this sequence of operations and the ones we demonstrated earlier is
that the find() call has been replaced with a call to getReference(). When the getReference() call is
invoked, the provider can return a proxy to the Department entity without actually retrieving it from the
database. Aslong as only its primary key is accessed, Department data does not need to be fetched.
Instead, when the Employee is persisted, the primary key value will be used to create the foreign key to
the corresponding Department entry. The getReference() call is effectively a performance optimization
that removes the need to retrieve the target entity instance.

There are some drawbacks to using getReference() that must be understood. The first is that if a
proxy is used, it might throw an EntityNotFoundException exception if itis unable to locate the real
entity instance when an attribute other than the primary key is accessed. The assumption with
getReference() is that you are sure the entity with the correct primary key exists. If, for some reason,
an attribute other than the primary key is accessed, and the entity does not exist, an exception will be
thrown. A corollary to this is that the object returned from getReference() might not be safe to use if it
is nolonger managed. If the provider returns a proxy, it will be dependent on there being an active
persistence context to load entity state.

Given the very specific situation in which getReference() can be used, find() should be used in
virtually all cases. The in-memory cache of a good persistence provider is effective enough that the
performance cost of accessing an entity via its primary key will not usually be noticed. In the case of
EclipseLink, it has a fully integrated shared object cache, so not only is local persistence context
management efficient but also all threads on the same server can benefit from the shared contents of
the cache. The getReference() call is a performance optimization that should be used only when there
is evidence to suggest that it will actually benefit the application.

Removing an Entity

Removing an entity is not a complex task, but it can require several steps depending on the number of
relationships in the entity to be removed. At its most basic, removing an entity is simply a case of
passing a managed entity instance to the remove() method of an entity manager. As soon as the
associated persistence context becomes synchronized with a transaction and commits, the entity is
removed. At least that is what we would like to happen. As we will soon show, removing an entity
requires some attention to its relationships, or else the integrity of the database can be compromised
in the process.

Let’s walk through a simple example. Consider the Employee and ParkingSpace relationship that we
demonstrated in Chapter 4. The Employee has a unidirectional one-to-one relationship with the
ParkingSpace entity. Now imagine that we execute the following code inside a transaction, where empId
corresponds to an Employee primary key:

CHAPTER 6 @ ENTITY MANAGER

Employee emp = em.find(Employee.class, empId);
em.remove(emp.getParkingSpace());

When the transaction commits, we see the DELETE statement for the PARKING_SPACE table get
generated, but then we get an exception containing a database error that shows that we have violated
a foreign key constraint. It turns out that a referential integrity constraint exists between the EMPLOYEE
table and the PARKING_SPACE table. The row was deleted from the PARKING_SPACE table, but the
corresponding foreign key in the EMPLOYEE table was not set to NULL. To correct the problem we have to
explicitly set the parkingSpace attribute of the Employee entity to null before the transaction commits:

Employee emp = em.find(Employee.class, empId);
ParkingSpace ps = emp.getParkingSpace();
emp.setParkingSpace(null);

em.remove(ps);

Relationship maintenance is the responsibility of the application. We will repeat this statement
over the course of this book, but it cannot be emphasized enough. Almost every problem related to
removing an entity always comes back to this issue. If the entity to be removed is the target of foreign
keys in other tables, those foreign keys must be cleared for the remove to succeed. The remove
operation will either fail as it did here or it will result in stale data being left in the foreign key
columns referring to the removed entity in the event that there is no referential integrity.

An entity can be removed only if it is managed by a persistence context. This means that a
transaction-scoped entity manager can be used to remove an entity only if there is an active
transaction. Attempting to invoke remove() when there is no transaction will resultin a
TransactionRequiredException exception. Like the persist() operation we described earlier,
application-managed and extended entity managers can remove an entity outside of a transaction,
but the change will not take place in the database until a transaction involving the persistence context
is committed.

After the transaction has committed, all entities that were removed in that transaction are leftin
the state that they were in before they were removed. A removed entity instance can be persisted
again with the persist() operation, but the same issues with generated state that we discussed in the
“Transaction Rollback and Entity State” section apply here as well.

Cascading Operations

By default, every entity manager operation applies only to the entity supplied as an argument to the
operation. The operation will not cascade to other entities that have a relationship with the entity that
is being operated on. For some operations, such as remove(), this is usually the desired behavior. We
wouldn’t want the entity manager to make incorrect assumptions about which entity instances should
be removed as a side effect from some other operation. But the same does not hold true for operations
such as persist().Chances are that if we have a new entity and it has a relationship to another new
entity, the two must be persisted together.

Consider the sequence of operations in Listing 6-17 that are required to create a new Employee
entity with an associated Address entity and make the two persistent. The second call to persist() that
makes the Address entity managed is bothersome. An Address entity is coupled to the Employee entity
that holds on to it. Whenever a new Employee is created, it makes sense to cascade the persist()
operation to the Address entity if itis present. In Listing 6-17 we are manually cascading by means of
an explicit persist() call on the associated Address.

153

154

CHAPTER 6 1 ENTITY MANAGER

Listing 6-17. Persisting Employee and Address Entities

Employee emp = new Employee();
emp.setId(2);

emp.setName("Rob");

Address addr = new Address();
addr.setStreet("645 Stanton Way");
addr.setCity("Manhattan");
addr.setState("NY");
emp.setAddress(addr);
em.persist(addr);

em.persist(emp);

Fortunately, JPA provides a mechanism to define when operations such as persist() should be
automatically cascaded across relationships. The cascade attribute, in all the logical relationship
annotations (@0neToOne, @neToMany, @anyToOne, and @ManyToMany), defines the list of entity manager
operations to be cascaded.

Entity manager operations are identified using the CascadeType enumerated type when listed as
part of the cascade attribute. The PERSIST, REFRESH, REMOVE, MERGE, and DETACH constants pertain to the
entity manager operation of the same name. The constantALL is shorthand for declaring that all five
operations should be cascaded. By default, relationships have an empty cascade set.

The following sections will define the cascading behavior of the persist() and remove()
operations. We will introduce the detach() and merge() operations and their cascading behavior later
in this chapter in the section “Merging Detached Entities.” Likewise, we will introduce the refresh()
operation and its cascading behavior in Chapter 11.

Cascade Persist

To begin, let’s consider the changes required to make the persist() operation cascade from Employee
to Address. In the definition of the Employee class, there is a @anyToOne annotation defined for the
address relationship. To enable the cascade, we must add the PERSIST operation to the list of cascading
operations for this relationship. Listing 6- 18 shows a fragment of the Employee entity that
demonstrates this change.

Listing 6-18. Enabling Cascade Persist

@Entity

public class Employee {
/] ...
@ManyToOne(cascade=CascadeType.PERSIST)
Address address;
/...

Toleverage this change, we need only ensure that the Address entity has been set on the Employee
instance before invoking persist() on it. As the entity manager encounters the Employee instance and
adds it to the persistence context, it will navigate across the address relationship looking for a new
Address entity to manage as well. In comparison with the approachin Listing 6-17, this change frees us
from having to persist the Address separately.

CHAPTER 6 @ ENTITY MANAGER

Cascade settings are unidirectional. This means that they must be explicitly set on both sides of a
relationship if the same behavior is intended for both situations. For example, in Listing 6-18, we only
added the cascade setting to the address relationship in the Employee entity. If Listing 6-17 were
changed to persist only the Address entity, not the Employee entity, the Employee entity would not
become managed because the entity manager has not been instructed to navigate out from any
relationships defined on the Address entity.

Even though it is legal to do so, it is still unlikely that we would add cascading operations from the
Address entity to the Employee entity, because itis a child of the Employee entity. While causing the
Employee instance to become managed as a side effect of persisting the Address instance is harmless,
application code would not expect the same from the remove () operation, for example. Therefore we
must be judicious in applying cascades because there is an expectation of ownership in relationships
that influences what developers expect when interacting with these entities.

In the “Persisting an Entity” section, we mentioned that the entity instance is ignored if itis
already persisted. This is true, but the entity manager will still honor the PERSIST cascade in this
situation.

For example, consider our Employee entity again. If the Employee instance is already managed, and a
new Address instance is setin it, invoking persist() again on the Employee instance will cause the
Address instance to become managed. No changes will be made to the Employee instance because it
is already managed.

Because adding the PERSIST cascade is a very common and desirable behavior for relationships, it
is possible to make this the default cascade setting for all relationships in the persistence unit. We will
discuss this technique in Chapter 10.

Cascade Remove

At first glance, having the entity manager automatically cascade remove() operations might sound
attractive. Depending on the cardinality of the relationship, it could eliminate the need to explicitly
remove multiple entity instances. And yet, while we could cascade this operation in a number of
situations, this should be applied only in certain cases. There are really only two cases in which
cascading the remove() operation makes sense: one-to-one and one-to-many relationships, in which
there is a clear parent-child relationship. It can’t be blindly applied to all one-to-one and one-to-
many relationships because the target entities might also be participating in other relationships or
might make sense as stand-alone entities. Care must be taken when using the REMOVE cascade option.

With that warning given, let’s look at a situation in which cascading the remove() operation makes
sense. If an Employee entity is removed (hopefully an uncommon occurrence!), it might make sense to
cascade the remove() operation to both the ParkingSpace and Phone entities related to the Employee.
These are both cases in which the Employee is the parent of the target entities, meaning they are not
referenced by other entities in the system. Listing 6-19 demonstrates the changes to the Employee
entity class that enables this behavior. Note that we have added the REMOVE cascade in addition to the
existing PERSIST option. Chances are, if an owning relationship is safe to use REMOVE, it is also safe to
use PERSIST.

Listing 6-19. Enabling Cascade Remove

@Entity
public class Employee {
/...
@0neToOne (cascade={CascadeType.PERSIST, CascadeType.REMOVE})
ParkingSpace parkingSpace;
@0neToMany (mappedBy="employee",
cascade={CascadeType.PERSIST, CascadeType.REMOVE})

155

156

CHAPTER 6 1 ENTITY MANAGER

Collection<Phone> phones;
/...

Now let’s take a step back and look at what it means to cascade the remove() operation. As it
processes the Employee instance, the entity manager will navigate across the parkingSpace and phones
relationships and invoke remove() on those entity instances as well. Like the remove() operation on a
single entity, this is a database operation and has no effect at all on the in-memory links between the
object instances. When the Employee instance becomes detached, its phones collection will still contain
all the Phone instances that were there before the remove() operation took place. The Phone instances
are detached because they were removed as well, but the link between the two instances remains.

Because the remove() operation can be safely cascaded only from parent to child, it can’t help the
situation we encountered earlier in the “Removing an Entity” section. There is no setting that can be
applied to a relationship from one entity to another that will cause it to be removed from a parent
without also removing the parent in the process. For example, when trying to remove the ParkingSpace
entity, we hit an integrity constraint violation from the database unless the parkingSpace field in the
Employee entity is set to null. Setting the REMOVE cascade option on the @0neToOne annotation in the
ParkingSpace entity would not cause it to be removed from the Employee; instead, it would cause the
Employee instance itself to become removed. Clearly this is not the behavior we desire. There are no
shortcuts to relationship maintenance.

Clearing the Persistence Context

Occasionally, it might be necessary to clear a persistence context of its managed entities. This is
usually required only for application-managed and extended persistence contexts that are long-lived
and have grown too large. For example, consider an application-managed entity manager that issues
a query returning several hundred entity instances. After changes are made to a handful of these
instances and the transaction is committed, you have left in memory hundreds of objects that you have
no intention of changing any further. If you don’t want to close the persistence context, youneed to be
able to clear out the managed entities, or else the persistence context will continue to grow over time.

The clear () method of the EntityManager interface can be used to clear the persistence context. In
many respects, this is semantically equivalent to a transaction rollback. All entity instances managed
by the persistence context become detached with their state left exactly as it was when the clear()
operation was invoked. If a transaction was started at this point and then committed, nothing would be
written out to the database because the persistence context is empty. The clear() operation is all or
nothing. Selectively cancelling the management of any particular entity instance while the
persistence context is still open is achieved via the detach() operation. We discuss this later in the
section “Detachment and Merging.”

Although technically possible, clearing the persistence context when there are uncommitted
changes is a dangerous operation. The persistence context is an in-memory structure, and clearing it
simply detaches the managed entities. If you are in a transaction and changes have already been
written to the database, they will not be rolled back when the persistence context is cleared. The
detached entities that result from clearing the persistence context also suffer from all the negative
effects caused by a transaction rollback even though the transaction is still active. For example,
identifier generation and versioning should be considered suspect for any entities detached as a
result of using the clear() operation.

CHAPTER 6 @ ENTITY MANAGER

Synchronization with the Database

Any time the persistence provider generates SQL and writes it out to the database over a JDBC
connection, we say that the persistence context has been flushed. All pending changes thatrequire a
SQL statement to become part of the transactional changes in the database have been written out and
will be made permanent when the database transaction commits. It also means that any subsequent
SQL operation that takes place after the flush will incorporate these changes. This is particularly
important for SQL queries that are executed in a transaction that is also changing entity data.

If there are managed entities with changes pending, a flush is guaranteed to occur in two
situations. The first is when the transaction commits. A flush of any required changes will occur before
the database transaction has completed. The only other time a flush is guaranteed to occur is when the
entity manager flush() operation is invoked. This method allows developers to manually trigger the
same process that the entity manager internally uses to flush the persistence context.

That said, a flush of the persistence context could occur at any time if the persistence provider
deems it necessary. An example of this is when a query is about to be executed and it depends on new
or changed entities in the persistence context. Some providers will flush the persistence context to
ensure that the query incorporates all pending changes. A provider might also flush the persistence
context often if it uses an eager-write approach to entity updates. Most persistence providers defer
SQL generation to the last possible moment for performance reasons, but this is not guaranteed.

Now that we have covered the circumstances in which a flush can occur, let’s look at exactly what it
means to flush the persistence context. A flush basically consists of three components: new entities
that need to be persisted, changed entities that need to be updated, and removed entities that need to
be deleted from the database. All this information is managed by the persistence context. It maintains
links to all the managed entities that will be created or changed as well as the list of entities that need
to be removed.

When a flush occurs, the entity manager firstiterates over the managed entities and looks for new
entities that have been added to relationships with cascade persist enabled. This is logically
equivalent to invoking persist() again on each managed entity just before the flush occurs. The entity
manager also checks to ensure the integrity of all the relationships. If an entity points to another
entity thatis not managed or has been removed, an exception can be thrown.

The rules for determining whether the flush fails in the presence of an unmanaged entity can be
complicated. Let’s walk through an example that demonstrates the most common issues. Figure 6-1
shows an object diagram for an Employee instance and some of the objects thatitis related to. The emp
and ps entity objects are managed by the persistence context. The addr object is a detached entity from
a previous transaction, and the Phone objects are new objects that have not been part of any
persistence operation so far.

Persistence Context

/ addr: Address

emp: Employee phone1: Phone
ps: ParkingSpace \ phone?2: Phone

Figure 6-1. Links to unmanaged entities from a persistence context

157

158

CHAPTER 6 1 ENTITY MANAGER

To determine the outcome of flushing the persistence context given the arrangement shown in
Figure 6-1, we must first look at the cascade settings of the Employee entity. Listing 6-20 shows the
relationships as implemented in the Employee entity. Only the phones relationship has the PERSIST
cascade option set. The other relationships are all defaulted so they will not cascade.

Listing 6-20. Relationship Cascade Settings for Employee

@Entity
public class Employee {
/...
@0neToOne
ParkingSpace parkingSpace;
@0neToMany (mappedBy="employee", cascade=CascadeType.PERSIST)
Collection<Phone> phones;
@anyToOne
Address address;
/...

Starting with the emp object, let’s walk through the flush process as if we are the persistence
provider. The emp object is managed and has links to four other objects. The first step in the process is
to navigate the relationships from this entity as if we are invoking persist() on it. The first object we
encounter in this process is the ps object across the parkingSpace relationship. Because ps is also
managed, we don’t have to do anything further.

Next we navigate the phones relationship to the two Phone objects. These entities are new, and this
would normally cause an exception, but because the PERSIST cascade option has been set, we perform
the equivalent of invoking persist() on each Phone object. This makes the objects managed, making
them part of the persistence context. The Phone objects do not have any further relationships to cascade
the persist operation, so we are done here as well.

Next we reach the addr object across the address relationship. Because this object is detached, we
would normally throw an exception, but this particular relationship is a special case in the flush
algorithm. Any time a detached object that is the target of the one-to-one or many-to-one relationship
is encountered where the source entity is the owner, the flush will still proceed because the act of
persisting the owning entity does not depend on the target. The owning entity has the foreign key
column and needs to store only the primary key value of the target entity.

This completes the flush of the emp object. The algorithm then moves to the ps object and starts the
process again. Because there are no relationships from the ps object to any other, the flush process
completes. So in this example even though three of the objects pointed to from the emp object are not
managed, the overall flush completes successfully because of the cascade settings and rules of the flush
algorithm.

Ideally, during a flush all the objects pointed to by a managed entity will also be managed entities
themselves. If this is not the case, the next thing we need to be aware of is the PERSIST cascade setting. If
the relationship has this setting, target objects in the relationship will also be persisted, making them
managed before the flush completes. If the PERSIST cascade option is not set, an I1legalStateException
exception will be thrown whenever the target of the relationship is not managed, except in the special
case related to one-to-one and many-to-one relationships that we described previously.

In light of how the flush operation works, it is always safer to update relationships pointing to
entities that will be removed before carrying out the remove() operation. A flush can occur at any time,
so invoking remove() on an entity without clearing any relationships that point to the removed entity
couldresultin an unexpected I1legalStateException exception if the provider decides to flush the
persistence context before you get around to updating the relationships.

CHAPTER 6 @ ENTITY MANAGER

In Chapter 7, we will also discuss techniques to configure the data integrity requirements of
queries so that the persistence provider is better able to determine when a flush of the persistence
context is really necessary.

Detachment and Merging

Simply put, a detached entityis one thatis no longer associated with a persistence context. It was
managed at one point, but the persistence context might have ended or the entity might have been
transformed so that it has lost its association with the persistence context that used to manage it. The
persistence context, if there still is one, is nolonger tracking the entity. Any changes made to the
entity won'’t be persisted to the database, but all the state that was there on the entity when it was
detached can still be used by the application. A detached entity cannot be used with any entity
manager operation that requires a managed instance.

The opposite of detachment is merging. Merging is the process by which an entity manager
integrates detached entity state into a persistence context. Any changes to entity state that were made
on the detached entity overwrite the current values in the persistence context. When the transaction
commits, those changes will be persisted. Merging allows entities to be changed “offline” and then
have those changes incorporated later on.

The following sections will describe detachment and how detached entities can be merged back
into a persistence context.

Detachment

There are two views of detachment. On one hand, itis a powerful tool that can be leveraged by
applications in order to work with remote applications or to support access to entity data long after a
transaction has ended. On the other hand, it can be a frustrating problem when the domain model
contains lots of lazy-loading attributes and clients using the detached entities need to access this
information.

There are many ways in which an entity can become detached. Each of the following situations
will lead to detached entities:

e When the transaction that a transaction-scoped persistence context is associated
with commits, all the entities managed by the persistence context become
detached.

e Ifan application-managed persistence context is closed, all its managed entities
become detached.

e Ifastateful session bean with an extended persistence context is removed, all its
managed entities become detached.

e Ifthe clear() method of an entity manager is used, it detaches all the entities in
the persistence context managed by that entity manager.

e Ifthe detach() method of an entity manager is used, it detaches a single entity
instance from the persistence context managed by that entity manager.

e When transaction rollback occurs, it causes all entities in all persistence contexts
associated with the transaction to become detached.

e When an entity is serialized, the serialized form of the entity is detached from its
persistence context.

159

160

CHAPTER 6 1 ENTITY MANAGER

Some of these situations might be intentional and planned for, such as detachment after the end of
the transaction or serialization. Others might be unexpected, such as detachment because of rollback.

Explicit detachment of an entity is achieved through the detach() operation. Unlike the clear()
operation discussed earlier, if passed an entity instance as a parameter, the detach() operation will be
restricted to a single entity and its relationships. Like other cascading operations, the detach()
operation will also navigate across relationships that have the DETACH or ALL cascade options set,
detaching additional entities as appropriate. Note that passing a new or removed entity to detach()
has different behavior than a normal managed entity. The operation does not detach either new or
removed entities, but it will still attempt, when configured to cascade, to cascade across relationships
on removed entities and detach any managed entities that are the target of those relationships.

In Chapter 4, we introduced the LAZY fetch type that can be applied to any basic mapping or
relationship. This has the effect of hinting to the provider that the loading of a basic or relationship
attribute should be deferred until it is accessed for the first time. Although not commonly used on basic
mappings, marking relationship mappings to be lazy loaded is an important part of performance
tuning.

We need to consider, however, the impact of detachment on lazy loading. Consider the Employee
entity shown in Listing 6-21. The address relationship will eagerly load because many-to-one
relationships eagerly load by default. In the case of the parkingSpace attribute, which would also
normally eagerly load, we have explicitly marked the relationship as being lazy loading. The phones
relationship, as a one-to-many relationship, will also lazy load by default.

Listing 6-21. Employee with Lazy-Loading Mappings

@Entity

public class Employee {
/...
@anyToOne
private Address address;
@0neToOne(fetch=FetchType.LAZY)
private ParkingSpace parkingSpace;
@0neToMany (mappedBy="employee")
private Collection<Phone> phones;
/...

Aslong as the Employee entity is managed, everything works as we expect. When the entity is
retrieved from the database, only the associated Address entity will be eagerly loaded. The provider
will fetch the necessary entities the first time the parkingSpace and phones relationships are accessed.

If this entity becomes detached, the outcome of accessing the parkingSpace and phones
relationships is suddenly a more complexissue. If the relationships were accessed while the entity was
still managed, the target entities can also be safely accessed while the Employee entity is detached. If
the relationships were not accessed while the entity was managed, we have a problem.

The behavior of accessing an unloaded attribute when the entity is detached is not defined. Some
vendors might attempt to resolve the relationship, while others might simply throw an exception or
leave the attribute uninitialized. If the entity was detached because of serialization, there is virtually
no hope of resolving the relationship. The only portable thing to do with attributes that are unloaded is
leave them alone. Of course, this implies that you know which attributes have been loaded, and that is
not always easy.

In the case where entities have no lazy-loading attributes, detachment is not a big deal. All the
entity state that was there in the managed version is still available and ready to use in the detached
version of the entity. In the presence of lazy-loading attributes, care must be taken to ensure that all
the information youneed to access offline is available. When possible, try to define the set of detached

CHAPTER 6 @ ENTITY MANAGER

entity attributes that can be accessed by the offline component. The supplier of the entities should treat
that set as a contract and honor it by triggering those attributes while the entity is still managed. Later
in the chapter we will demonstrate a number of strategies for planning for, and working with,
detached entities, including how to cause unloaded attributes to be loaded.

Merging Detached Entities

The merge() operation is used to merge the state of a detached entity into a persistence context. The
method is straightforward to use, requiring only the detached entity instance as an argument. There
are some subtleties to using merge() that make it different to use from other entity manager methods.
Consider the following example, which shows a session bean method that accepts a detached Employee
parameter and merges it into the current persistence context:

public void updateEmployee(Employee emp) {
em.merge(emp);
emp.setlLastAccessTime(new Date());

Assuming that a transaction begins and ends with this method call, any changes made to the Employee
instance while it was detached will be written to the database. What will not be written, however, is the
change to the last access time. The argument to merge() does not become managed as a result of the
merge. A different managed entity (either a new instance or an existing managed version already in
the persistence context) is updated to match the argument, and then this instance is returned from the
merge () method. Therefore to capture this change, we need to use the return value frommerge()
because it is the managed entity. The following example shows the correct implementation:

public void updateEmployee(Employee emp) {
Employee managedEmp = em.merge(emp);
managedEmp. setLastAccessTime(new Date());

Returning a managed instance other than the original entity is a critical part of the merge
process. If an entity instance with the same identifier already exists in the persistence context, the
provider will overwrite its state with the state of the entity that is being merged, but the managed
version that existed already must be returned to the client so that it can be used. If the provider did not
update the Employee instance in the persistence context, any references to that instance will become
inconsistent with the new state being merged in.

When merge() is invoked on a new entity, it behaves similarly to the persist() operation. It adds
the entity to the persistence context, but instead of adding the original entity instance, it creates a new
copy and manages that instance instead. The copy that is created by the merge() operation is persisted
as if the persist() method were invoked on it.

In the presence of relationships, the merge() operation will attempt to update the managed entity
to point to managed versions of the entities referenced by the detached entity. If the entity has a
relationship to an object that has no persistent identity, the outcome of the merge operation is
undefined. Some providers might allow the managed copy to point to the non- persistent object,
whereas others might throw an exception immediately. The merge() operation can be optionally
cascaded in these cases to prevent an exception from occurring. We will cover cascading of the merge()
operation later in this section. If an entity being merged points to a removed entity, an
I1legalArgumentException exception will be thrown.

Lazy-loading relationships are a special case in the merge operation. If a lazy-loading
relationship was not triggered on an entity before it became detached, that relationship will be
ignored when the entity is merged. If the relationship was triggered while managed and then set to

161

162

CHAPTER 6 1 ENTITY MANAGER

null while the entity was detached, the managed version of the entity will likewise have the
relationship cleared during the merge.

Toillustrate the behavior of merge() with relationships, consider the object diagram shown in
Figure 6-2. The detached emp object has relationships to three other objects. The addr and dept objects
are detached entities from a previous transaction, whereas the phonel entity was recently created and
persisted using the persist() operation and is now managed as a result. Inside the persistence context
there is currently an Employee instance with a relationship to another managed Address. The existing
managed Employee instance does not have a relationship to the newly managed Phone instance.

Persistence Context
addr1: Address addr: Address
id=100 id=100
street=40 Juniper street=53 Harold
emp1: Employee emp: Employee
id=10 id=10
name=John / name=John
salary=40000 salary=50000
phone1: Phone dept: Department
id=20 id=30

Figure 6-2. Entity state prior to merge

Let’s consider the effect of invoking merge() on the emp object. The first thing that happens is that
the provider checks the persistence context for a pre-existing entity instance with the same identifier.
In this example, the emp1 object from the persistence context matches the identifier from the emp object
we are trying to merge. Therefore, the basic state of the emp object overwrites the state of the emp1
object in the persistence context, and the emp1 object will be returned from the merge() operation.

The provider next considers the Phone and Department entities pointed to from emp. The phonel
object is already managed, so the provider can safely update emp1 to point to this instance. In the case
of the dept object, the provider checks to see whether there is already a persistent Department entity
with the same identifier. In this case, it finds one in the database and loads it into the persistence
context. The emp1 object is then updated to point to this version of the Department entity. The detached
dept object does not become managed again.

CHAPTER 6

ENTITY MANAGER

Finally, the provider checks the addr object referenced from emp. In this case, it finds a pre-existing
managed object addr1 with the same identifier. Because the emp1 object already points to the addr1
object, no further changes are made. At this pointlet’s look at the state of the object model after the

merge. Figure 6-3 shows these changes.

Persistence Context

addr1: Address

id=100
street=40 Juniper

addr: Address

id=100
street=53 Harold

emp1: Employee emp: Employee
id=10 id=10
name=John name=John
salary=50000 salary=50000

dept1: Department phone1: Phone dept: Department
id=30 id=20 id=30

Figure 6-3. Entity state after merge

In Figure 6-3 we see that the emp1 object has been updated to reflect the state changes from emp.
The dept1 object is new to the persistence context after being loaded from the database. The emp1 object
now points to both the phone1 object and the dept1 object in order to match the relationships of the emp
object. The addr1 object has not changed at all. The fact that the addr1 object has not changed might
come as a surprise. After all, the addr object had pending changes and it was pointed to by the emp
object that was merged.

To understand why, we must return to the issue of cascading operations with the entity manager.
By default, no operations are cascaded when an entity manager operation is applied to an entity
instance. The merge() operation is no different in this regard. In order for the merge to be cascaded
across relationships from an Employee, the MERGE cascade setting must be set on the relationship
mappings. Otherwise, we would have to invoke merge() on eachrelated object.

Looking back at our example, the problem with the updated Address entity was that the Employee
entity did not cascade the merge() operation to it. This had the unfortunate side effect of effectively
discarding the changes we had made to the Address entity in favor of the version already in the
persistence context. To obtain the behavior that we intended, we must either invoke merge() explicitly

163

164

CHAPTER 6 1 ENTITY MANAGER

on the addr object or change the relationship mappings of the Employee entity to include the MERGE
cascade option. Listing 6-22 shows the changed Employee class.

Listing 6-22. Employee Entity with Merge Cascade Setting

@Entity

public class Employee {
@Id private int id;
private String name;
private long salary;
@ManyToOne(cascade=CascadeType.MERGE)
private Address address;
@ManyToOne
private Department department;
@0neToMany (mappedBy="employee", cascade=CascadeType.MERGE)
private Collection<Phone> phones;
/...

With the Employee entity changed in this way, the merge operation will be cascaded to the Address
and Phone entities pointed to by any Employee instances. This is equivalent to invoking merge() on each
instance individually. Note that we did not cascade the merge operation to the Department entity. We
generally cascade operations only down from parent to child, not upward from child to parent. Doing
so is not harmful, but it requires more effort from the persistence provider to search out changes. If the
Department entity changes as well, itis better to cascade the merge from the Department to its associated
Employee instances and then merge only a single Department instance instead of multiple Employee
instances.

Merging detached entities with relationships can be a tricky operation. Ideally, we want to merge
the root of an object graph and have all related entities get merged in the process. This can work, but
only if the MERGE cascade setting has been applied to all relationships in the graph. If it hasn’t, you must
merge eachinstance that is the target of a non-cascaded relationship one at a time.

Before we leave the topic of merging, we must mention thatlocking and versioning plays a vital
role in ensuring data integrity in these situations. We will explore this topicin Chapter 11.

Working with Detached Entities

Let’s begin with a scenario that is very common with modern web applications. A servlet calls out to a
session bean to execute a query and receives a collection of entities in return. The servlet then places
these entities into the request map and forwards the request to a JSP for presentation. This pattern is
called Page Controller,' a variation of the Front Controller? pattern in which there is a single
controller for each view instead of one central controller for all views. In the context of the familiar
Model-View-Controller (MVC) architecture, the session bean provides the model, the JSP page is the
view, and the servlet is the controller.

! Fowler, Martin. Patterns of Enterprise Application Architecture. Boston: Addison-Wesley, 2002.

% Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design Strategies,
Second Edition. Upper Saddle River, N.J.: Prentice Hall PTR, 2003.

CHAPTER 6 @ ENTITY MANAGER

First consider the session bean that will produce the results that will be rendered by the JSP page.
Listing 6-23 shows the bean implementation. In this example, we are looking at only the findA11()
method, which returns all the Employee instances stored in the database.

Listing 6-23. The EmployeeService Session Bean

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
private EntityManager em;

public List findAll() {
return em.createQuery("SELECT e FROM Employee e")
.getResultlist();

}
/...

Listing 6-24 shows the source code for a simple servlet that invokes the findA11() method of the
EmployeeService session bean to fetch all the Employee entities in the database. It then places the results
in the request map and delegates to the “listEmployees.jsp” JSP page to render the result.

Listing 6-24. The View Employees Servlet

public class EmployeeServlet extends HttpServlet {
@EJIB EmployeeService bean;

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
List emps = bean.findAll();
request.setAttribute("employees”, emps);
getServletContext().getRequestDispatcher("/1listEmployees.jsp")
.forward(request, response);

Finally, Listing 6-25 shows the last part of our MVC architecture, the JSP page to render the results.
It uses the JavaServer Pages Standard Tag Library (JSTL) to iterate over the collection of Employee
instances and display the name of each employee as well as the name of the department to which that
employee is assigned. The employees variable accessed by the <c:forEach/> tag is the List of Employee
instances that was placed in the request map by the servlet.

Listing 6-25. JSP Page to Display Employee Information

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<html>
<head>
<title>All Employees</title>
</head>
<body>
<table>

165

http://java.sun.com/jsp/jstl/core

166

CHAPTER 6 1 ENTITY MANAGER

<thead>
<tr>
<th>Name</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<c:forEach items="${employees}" var="emp">
<tr>
<td><c:out value="${emp.name}"/></td>
<td><c:out value="${emp.department.name}"/></td>
</tr>
</c:forEach>
</tbody>
</table>
</body>
</html>

The findA11l() method of the EmployeeService session bean uses REQUIRED container-managed
transactions by default. Because the servlet invoking the method has not started a transaction, the
container will start a new transaction before findA11() is invoked and commit the transaction after it
finishes executing. As a result, the results of the query become detached before they are returned to the
servlet.

This causes a problem. In this example, the department relationship of the Employee class has been
configured to use lazy fetching. As we learned previously in the section on detachment, the only
portable thing to do is leave them alone. In this example, however, we don’t want to leave them alone.
In order to display the department name for the employee, the JSP expression navigates to the
Department entity from the Employee entity. Because this is a lazy-loading relationship, the results are
unpredictable. It might work, but then again it might not.

This scenario forms the basis of our challenge. In the following sections we will look ata number
of strategies to either prepare the entities needed by the JSP page for detachment or avoid detachment
altogether.

Planning for Detachment

Knowing that the results of the findA11() method will be used to display employee information and
that the department name will be required as part of this process, we need to ensure that the
department relationship of the Employee entity has been resolved before the entities become detached.
There are several strategies that can be used to resolve lazy-loaded associations in preparation for
detachment. We will discuss two of them here, focusing on how to structure application code to plan for
detachment. A third strategy, for JP QL queries called fetch joins, will be discussed in Chapter 8.

Triggering Lazy Loading

The first strategy to consider in resolving lazy-loading associations is to simply trigger the lazy
loading behavior by accessing the field or relationship. It looks slightly odd in code because the return
values of the getter methods are discarded, but nevertheless it has the desired effect. Listing 6-26
shows an alternate implementation of the findA11() method of the EmployeeService session bean.In
this case, we iterate over the Employee entities, triggering the department relationship before returning
the original list from the method. Because findA11() is executed inside of a transaction, the

CHAPTER 6 @ ENTITY MANAGER

getDepartment() call completes successfully, and the Department entity instance is guaranteed to be
available when the Employee instance is detached.

Listing 6-26. Triggering a Lazy-Loading Relationship

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
private EntityManager em;

public List findAll() {
List<Employee> emps = (List<Employee>)
em.createQuery("SELECT e FROM Employee e")
.getResultlist();
for (Employee emp : emps) {
Department dept = emp.getDepartment();
if (dept != null) {
dept.getName();

}

return emps;

/7.

One thing that might look odd from Listing 6-26 is that we not only invoked getDepartment() on
the Employee instance but we also invoked getName() on the Address instance. If yourecall from
Chapter 4, the entity returned from a lazy-loading relationship can actually be a proxy that waits until
a method is invoked on the proxy before the entity is faulted in. We have to invoke a method on the
entity to guarantee that it is actually retrieved from the database. If this were a collection-valued
relationship, the size() method of the Collection would be commonly used to force eager loading.

Iflazy-loading basic mappings were used on either the Employee or Department entities, those
attributes would not be guaranteed to be present after detachment as well. This is another reason why
configuring basic mappings to use lazy loading is not recommended. Developers often expect that a
relationship is not eagerly loaded but can be caught off guard if a basic state field such as the name
attribute of the Employee instance is missing.

Configuring Eager Loading

When an association is continuously being triggered for detachment scenarios, at some point it is
worthrevisiting whether the association should be lazy loaded in the first place. Carefully switching
some relationships to eager loading can avoid a lot of special cases in code that attempt to trigger the
lazy loading.

In this example, Employee has a many-to-one relationship with Department. The default fetch type
for a many-to-one relationship is eager loading, but the class was modeled by explicitly using lazy
loading. By removing the LAZY fetch type from the department relationship or by specifying the EAGER
fetch type explicitly, we ensure that the Department instance is always available to the Employee
instance.

167

168

CHAPTER 6 1 ENTITY MANAGER

Collection-valued relationships lazy load by default, so the EAGER fetch type must be explicitly
applied to those mappings if eager loading is desired. Be judicious in configuring collection-valued
relationships to be eagerly loaded, however, because it might cause excessive database access in cases
where detachment is not a requirement.

Avoiding Detachment

The only complete solution to any detachment scenario is not to detach at all. If your code
methodically triggers every lazy-loaded relationship or has marked every association on an entity to
be eagerly loaded in anticipation of detachment, this is probably a sign that an alternative approach is
required.

Avoiding detachment boils down to just two approaches. Either we don’t work with entities in our
JSP page, or we must keep a persistence context open for the duration of the JSPrendering process so
that lazy-loading relationships can be resolved.

Not using entities means copying entity data into a different data structure that does not have the
same lazy-loading behavior. One approach would be to use the Transfer Object® pattern, but that
seems highly redundant given the POJO nature of entities. A better approach, which we will discuss in
Chapters 7 and 8, is to use projection queries to retrieve only the entity state that will be displayed on
the JSP page instead of retrieving full entity instances.

Keeping a persistence context open requires additional planning but allows the JSP page to work
with entity data using the JavaBean properties of the entity class. In practical terms, keeping a
persistence context open means that there is either an active transaction for entities fetched from
transaction-scoped persistence contexts or that an application-managed or extended persistence
context is in use. This obviously isn’t an option when entities must be serialized to a separate tier or
remote client, but it suits the web application scenario we described earlier. We’ll cover each of these
strategies here.

Transaction View

The persistence context created by a transaction-scoped entity manager remains open only as long as
the transaction in which it was created has not ended. Therefore, in order to use a transaction-scoped
entity manager to execute a query and be able to render the query results while resolving lazy-
loading relationships, both operations must be part of the same transaction. When a transaction is
started in the web tier and includes both session bean invocation and JSP page rendering before itis
committed, we call this pattern a Transaction View.

The benefit of this approach is that any lazy-loading relationships encountered during the
rendering of the view will be resolved because the entities are still managed by a persistence context.
To implement this pattern in our example scenario, we start a bean-managed transaction before the
findAl1() method is invoked and commit the transaction after the JSP page has rendered the results.
Listing 6-27 demonstrates this approach. Note that to save space we have omitted the handling of the
checked exceptions thrown by the UserTransaction operations. The commit() method alone throws no
fewer than six checked exceptions.

* Ibid.

CHAPTER 6 @ ENTITY MANAGER

Listing 6-27. Combining a Session Bean Method and JSP in a Single Transaction

public class EmployeeServlet extends HttpServlet {
@Resource UserTransaction tx;
@EJB EmployeeService bean;

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

/] ...
try {
tx.begin();
List emps = bean.findAll();
request.setAttribute("employees", emps);
getServletContext().getRequestDispatcher("/1istEmployees.jsp")
.forward(request, response);
} finally {
tx.commit();
/...

With this solution in place, the lazy-loading relationships of the Employee entity do not have to be
eagerly resolved before the JSP page renders the results. The only downside to this approachis that the
servlet must now manage transactions and recover from transaction failures. A lot of logic also has to
be duplicated between all the servlet controllers that need this behavior.

One way to work around this duplication is to introduce a common superclass for servlets that use
the Transaction View pattern that encapsulates the transaction behavior. If, however, you are using
the Front Controller pattern and controller actions are implemented using the Command’ pattern,
this might become more difficult to manage, particularly if the page flow is complex and multiple
controllers collaborate to build a composite view. Then not only does each controller need to start
transactions but it also needs to be aware of any transactions that were started earlier in the
rendering sequence.

Another possible, though non-portable, solution is to move the transaction logicinto a servlet
filter. It allows us to intercept the HT TP request before the first controller servlet is accessed and wrap
the entire request in a transaction. Such coarse-grained use of transactions is something that needs to
be managed carefully, however. If applied to all HTTP requests equally, it might also cause trouble for
requests that involve updates to the database. Assuming that these operations are implemented as
session beans, the REQUIRES NEW transaction attribute might be required in order to isolate entity
updates and handle transaction failure without impacting the overriding global transaction.

* Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Boston: Addison-Wesley, 1995.

169

170

CHAPTER 6 1 ENTITY MANAGER

Entity Manager per Request

For applications that do not encapsulate their query operations behind session bean facades, an
alternative to the Transaction View pattern is to create a new application-managed entity manager to
execute reporting queries, closing it only after the JSP page has been rendered. Because the entities
returned from the query on the application-managed entity manager will remain managed until the
entity manager is closed, it offers the same benefits as the Transaction View pattern without requiring
an active transaction.

Listing 6-28 revisits our EmployeeServlet servlet again, this time creating an application-
managed entity manager to execute the query. The results are placed in the map as before, and the
entity manager is closed after the JSP page has finished rendering.

Listing 6-28. Using an Application- Managed Entity Manager for Reporting

public class EmployeeServlet extends HttpServlet {
@PersistenceUnit(unitName="EmployeeService")
EntityManagerFactory emf;

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

EntityManager em = emf.createEntityManager();

try {
List emps = em.createQuery("SELECT e FROM Employee e")

.getResultlist();
request.setAttribute("employees", emps);
getServletContext().getRequestDispatcher("/1istEmployees.jsp")
.forward(request, response);

} finally {

em.close();

Unfortunately, we now have query logic embedded in our servletimplementation. The query is
alsonolonger reusable the way it was when it was part of a stateless session bean. There are a couple
of other options we can explore as a solution to this problem. Instead of executing the query directly,
we could create a POJO service class that uses the application-managed entity manager created by the
servlet to execute queries. This is similar to the first example we created in Chapter 2. We gain the
benefit of encapsulating the query behavior inside business methods while being decoupled from a
particular style of entity manager.

Alternatively we can place our query methods on a stateful session bean that uses an extended
entity manager. When a stateful session bean uses an extended entity manager, its persistence
context lasts for the lifetime of the session bean, which ends only when the user invokes a remove
method on the bean. If a query is executed against the extended persistence context of a stateful
session bean, the results of that query can continue to resolve lazy-loading relationships as long as the
bean is still available.

Let’s explore this option and see how it would look instead of the application-managed entity
manager we showed in Listing 6-28. Listing 6-29 introduces a stateful session bean equivalent to the
EmployeeService stateless session bean that we have been using so far. In addition to using the
extended entity manager, we have also set the default transaction type to be NOT_SUPPORTED. There is
no need for transactions because the results of the query will never be modified, only displayed.

CHAPTER 6 @ ENTITY MANAGER

Listing 6-29. Stateful Session Bean with Query Methods

@Stateful
@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public class EmployeeQueryBean implements EmployeeQuery {
@PersistenceContext(type=PersistenceContextType.EXTENDED,
unitName="EmployeeService")
EntityManager em;

public List findAll() {
return em.createQuery("SELECT e FROM Employee e")

.getResultlist();
}
/] ...
@Remove
public void finished() {
}

Using this bean is very similar to using the application-managed entity manager. We create an
instance of the bean, execute the query, and then remove the bean when the JSP page has finished
rendering. Listing 6-30 shows this approach.

Listing 6-30. Using an Extended Entity Manager for Reporting

@EJB(name="queryBean", beanInterface=EmployeeQuery.class)
public class EmployeeServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

EmployeeQuery bean = createQueryBean();

try {
List emps = bean.findAll();
request.setAttribute("employees", emps);
getServletContext().getRequestDispatcher("/1istEmployees.jsp")

.forward(request, response);

} finally {
bean.finished();

}

}

private EmployeeQuery createQueryBean() throws ServletException {
// look up queryBean
/...

At first glance this might seem like an overengineered solution. We gain the benefit of decoupling
queries from the servlet, but we have introduced a new session bean just to accomplish this goal.
Furthermore, we are using stateful session beans with very short lifetimes. Doesn’t that go against the
accepted practice of how to use a stateful session bean?

171

172

CHAPTER 6 1 ENTITY MANAGER

To a certain extent this is true, but the extended persistence context invites us to experiment with
new approaches. In practice, stateful session beans do not add a significant amount of overhead to an
operation, even when used for short durations. As we will see later in the section “Edit Session,”
moving the stateful session bean to the HT TP session instead of limiting it to a single request also
opens up new possibilities for web application design.

Merge Strategies

Creating or updating information is a regular part of most enterprise applications. Users typically
interact with an application via the Web, using forms to create or change data as required. The most
common strategy to handle these changes in a Java EE application that uses JPA is to place the results of
the changes into detached entity instances and merge the pending changes into a persistence context
so that they can be written to the database.

Let’s revisit our simple web application scenario again. This time, instead of simply viewing
Employee information, the user can select an Employee and update basic information about that
employee. The entities are queried for presentation in a formin one request and then updatedin a
second request when the user submits the form with changes entered.

Using a Session Facade pattern, this operation is straightforward. The changed entity is updated
and handed off to a stateless session bean to be merged. The only complexity involved is making sure
that relationships properly merge by identifying cases where the MERGE cascade setting is required.

Similar to the question of whether we can avoid detaching entities to compensate for lazy loading
concerns, the long-lived nature of application-managed and extended persistence contexts suggests
that there might also be a way to apply a similar technique to this situation. Instead of querying
entities in one HTTP request and throwing the entity instances away after the view has been
rendered, we want to keep these entities around in a managed state so that they can be updated in a
subsequent HTTP request and persisted merely by starting and committing a new transaction.

In the following sections, we will revisit the traditional Session Facade approach to merging and
then look at new techniques possible with the extended entity manager that will keep entities
managed for the life of a user’s editing session.

Session Facade

To use a Session Fagade pattern to capture changes to entities, we provide a business method that will
merge changes made to a detached entity instance. In our example scenario, this means accepting an
Employee instance and merging it into a transaction-scoped persistence context. Listing 6-31 shows an
implementation of this technique in our EmployeeService session bean.

Listing 6-31. Business Method to Update Employee Information

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
private EntityManager em;

public void updateEmployee(Employee emp) {
if (em.find(Employee.class, emp.getId()) == null) {
throw new IllegalArgumentException("Unknown employee id: " + emp.getId());

CHAPTER 6 @ ENTITY MANAGER

em.merge(emp);

/1 ...

The updateEmployee() method in Listing 6-31 is straightforward. Given the detached Employee
instance, it first attempts to check whether a matching identifier already exists. If no matching
Employee is found, an exception is thrown because we don’t want to allow new Employee records to be
created. Then we use the merge() operation to copy the changes into the persistence context, which are
then saved when the transaction commits.

Using the facade from a servletis a two-step approach. During the initial HTTP request to begin
an editing session, the Employee instance is queried (typically using a separate method on the same
facade) and used to create a web form on which the user can make desired changes. The detached
instance is then stored in the HTTP session so it can be updated when the user submits the form from
the browser. We need to keep the detached instance around in order to preserve any relationships or
other state that will remain unchanged by the edit. Creating a new Employee instance and supplying
only partial values could have many negative side effects when the instance is merged.

Listing 6-32 shows an EmployeeUpdateServlet servlet that collects the id, name, and salary
information from the request parameters and invokes the session bean method to perform the update.
The previously detached Employee instance is retrieved from the HTTP session and then the changes
indicated by the request parameters are set into it. We have omitted validation of the request
parameters to conserve space, but ideally this should happen before the business method on the
session bean is invoked.

Listing 6-32. Usinga Session Bean to Perform Entity Updates

public class EmployeeUpdateServlet extends HttpServlet {
@EJB EmployeeService bean;

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

int id = Integer.parselnt(request.getParameter("id"));

String name = request.getParameter("name");

long salary = Long.parselLong(request.getParameter("salary"));

HttpSession session = request.getSession();

Employee emp = (Employee) session.getAttribute("employee.edit");

emp.setId(id);

emp.setName(name) ;

emp.setSalary(salary);

bean.updateEmployee(emp);

/! ...

If the amount of information being updated is very small, we can avoid the detached object and
merge() operation entirely by locating the managed version and manually copying the changes into it.
Consider the following example:

public void updateEmployee(int id, String name, long salary) {
Employee emp = em.find(Employee.class, id);
if (emp == null) {
throw new IllegalArgumentException("Unknown employee id: " + id);
}

173

174

CHAPTER 6 1 ENTITY MANAGER

emp. setEmpName (name);
emp.setSalary(salary);

The beauty of this approach is its simplicity, but that is also its primary limitation. Typical web
applications today offer the ability to update large amounts of information in a single operation. To
accommodate these situations with this pattern, there would either have to be business methods taking
large numbers of parameters or many business methods that would have to be invoked in sequence to
completely update all the necessary information. And, of course, once you have more than one method
involved, it becomes important to maintain a transaction across all the update methods so that the
changes are committed as a single unit.

As aresult, despite the availability of this approach, the web tier still commonly collects changes
into detached entities or transfer objects and passes the changed state back to session beans to be
merged and written to the database.

Edit Session

With the introduction of the extended entity manager, we can take a different approach to building
web applications that update entities. As we have discussed in this chapter, entities associated with an
extended entity manager remain managed as long as the stateful session bean holding the extended
entity manager is not removed. By placing a stateful session bean in a central location such as the
HTTP session, we can operate on entities managed by the extended entity manager without having to
merge in order to persist changes. We will refer to this as the Edit Session pattern to reflect the fact that
the primary goal of this pattern is to encapsulate editing use cases using stateful session beans.
Listing 6-33 introduces a stateful session bean that represents an employee editing session.
Unlike the EmployeeService session bean that contains a number of reusable business methods, this
style of stateful session bean is targeted to a single application use case. In addition to using the
extended entity manager, we have also set the default transaction type to be NOT_SUPPORTED with the
exception of the save() method. There is no need for transactions for methods that simply access the
Employee instance because those methods only operate in memory. It is only when we want to persist
the changes to the database that we need a transaction, and that only happens in the save() method.

Listing 6-33. Stateful Session Bean to Manage an Employee Editing Session

@Stateful
@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public class EmployeeEditBean implements EmployeeEdit {
@PersistenceContext(type=PersistenceContextType.EXTENDED,
unitName="EmployeeService")
EntityManager em;
Employee emp;

public void begin(int id) {
emp = em.find(Employee.class, id);
if (emp == null) {
throw new IllegalArgumentException("Unknown employee id: " + id);

}

public Employee getEmployee() {
return emp;
}

CHAPTER 6 @ ENTITY MANAGER

@Remove
@TransactionAttribute(TransactionAttributeType.REQUIRES NEW)
public void save() {}

@Remove
public void cancel() {}

Let’s start putting the operations of the EmployeeEdit bean in context. When the HTTP request
arrives and starts the editing session, we will create a new EmployeeEdit stateful session bean and
invoke begin() using the id of the Employee instance that will be edited. The session bean then loads
the Employee instance and caches it on the bean. The bean is then bound to the HT TP session so that it
can be accessed again in a subsequent request once the user has changed the Employee information.
Listing 6-34 shows the EmployeeEditServlet servlet that handles the HTTP request to begin a new
editing session.

Listing 6-34. Beginning an Employee Editing Session

@EJB(name="EmployeeEdit", beanInterface=EmployeeEdit.class)
public class EmployeeEditServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
int id = Integer.parselnt(request.getParameter("id"));
EmployeeEdit bean = getBean();
bean.begin(id);
HttpSession session = request.getSession();
session.setAttribute("employee.edit", bean);
request.setAttribute("employee", bean.getEmployee());
getServletContext().getRequestDispatcher("/editEmployee.jsp")
.forward(request, response);

}

public EmployeeEdit getBean() throws ServletException {
// lookup EmployeeEdit bean
/...

Now let’s look at the other half of the editing session, in which we wish to commit the changes.
When the user submits the form that contains the necessary Employee changes, the
EmployeeUpdateServlet is invoked. It begins by retrieving the EmployeeEdit bean from the HTTP
session. The request parameters with the changed values are then copied into the Employee instance
obtained from calling getEmployee() on the EmployeeEdit bean. If everything is in order, the save()
method is invoked to write the changes to the database. Listing 6-35 shows the EmployeeUpdateServlet
implementation. Note that we need to remove the bean from the HTTP session once the editing
session has completed.

175

176

CHAPTER 6 1 ENTITY MANAGER

Listing 6-35. Completing an Employee Editing Session
public class EmployeeUpdateServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

String name = request.getParameter("name");

long salary = Long.parselLong(request.getParameter("salary"));

HttpSession session = request.getSession();

EmployeeEdit bean = (EmployeeEdit) session.getAttribute("employee.edit");

session.removeAttribute("employee.edit");

Employee emp = bean.getEmployee();

emp.setName(name);

emp.setSalary(salary);

bean.save();

/...

The pattern for using stateful session beans and extended entity managers in the web tier is as
follows:

1. For each application use case that modifies entity data, we create a stateful
session bean with an extended persistence context. This bean will hold onto
all entity instances necessary to make the desired changes.

2. The HTTPrequest thatinitiates the editing use case creates an instance of the
stateful session bean and binds it to the HTTP session. The entities are
retrieved at this point and used to populate the web form for editing.

3. The HTTPrequest that completes the editing use case obtains the previously
bound stateful session bean instance and writes the changed data from the
web form into the entities stored on the bean. A method is then invoked on the
bean to commit the changes to the database.

In our simple editing scenario, this might seem somewhat excessive, but the beauty of this
technique is that it can easily scale to accommodate editing sessions of any complexity.Department,
Project, and other information can all be edited in one or even multiple sessions with the results
accumulated on the stateful session bean until the application is ready to persist the results.

Another major benefit of this approach is that web application frameworks such as JSF can directly
access the bean bound in the HTTP session from within JSP pages. The entity can be accessed both to
display the form for editing and as the target of the form when the user submits the results. In this
scenario, the developer only has to ensure that the necessary save and cancel methods are invoked at
the correct point in the application page flow.

There are a couple of other points that we need to mention about this approach. Once bound to the
HTTP session, the session bean will remain there until it is explicitly removed or until the HTTP
session expires. It is therefore important to ensure that the bean is removed once the editing session is
complete, regardless of whether the changes will be saved or abandoned. The
HttpSessionBindinglListener callback interface can be used by applications to track when the HTTP
session is destroyed and clean up corresponding session beans appropriately.

The HTTP session is not thread-safe, and neither are stateful session bean references. In some
circumstances, it might be possible for multiple HT TP requests from the same user to access the HTTP
session concurrently. This is mostly an issue when requests take a long time to process and an

CHAPTER 6 @ ENTITY MANAGER

impatient user refreshes the page or abandons her editing session for another part of the web
application. In these circumstances, the web application will either have to deal with possible
exceptions occurring if the stateful session bean is accessed by more than one thread or proxy the
stateful session bean with a synchronized wrapper.

Summary

In this chapter, we have presented a thorough treatment of the entity manager and its interactions
with entities, persistence contexts, and transactions. As you have seen, the entity manager can be used
in many different ways to accommodate a wide variety of application requirements.

We began by reintroducing the core terminology of JPA and explored the persistence context.

We then covered the three different types of entity manager: transaction-scoped, extended, and
application-managed. We looked at how to acquire and use each type and the types of problems they
are designed to solve.

In the transaction management section, we looked at each of the entity manager types and how
they relate to container-managed JTA transactions and the resource-local transactions of the JDBC
driver. Transactions play an importantrole in all aspects of enterprise application development with
JPA.

Next we revisited the basic operations of the entity manager, this time armed with the full
understanding of the different entity manager types and transaction-management strategies. We
introduced the notion of cascading and looked at the impact of relationships on persistence.

In our discussion of detachment, we introduced the problem and looked at it both from the
perspective of mobile entities to remote tiers and the challenge of merging offline entity changes back
into a persistence context. We presented several strategies to minimize the impact of detachment and
merging on application design by adopting design patterns specific to JPA.

In the next chapter, we will turn our attention to the query facilities of JPA, showing how to create,
execute, and work with the results of query operations.

177

CHAPTER 7

Using Queries

For most enterprise applications, getting data out of the database is atleast as important as the ability
to put new data in. From searching to sorting, analytics, and business intelligence, efficiently moving
data from the database to the application and presenting it to the user is a regular part of enterprise
development. Doing so requires the ability to issue bulk queries against the database and interpret the
results for the application. Although high-level languages and expression frameworks have in many
cases attempted to insulate developers from the task of dealing with database queries at the level of
SQL, it’s probably fair to say that most enterprise developers have worked with atleast one SQL dialect
at some point in their career.

Object-relational mapping adds another level of complexity to this task. Most of the time, the
developer will want the results converted to entities so that the query results may be used directly by
application logic. Similarly, if the domain model has been abstracted from the physical model via
object-relational mapping, it makes sense to also abstract queries away from SQL, which is not only
tied to the physical model but also difficult to port between vendors. Fortunately, as we will see, JPA
can handle a diverse set of query requirements.

JPA supports two methods for expressing queries to retrieve entities and other persistent data
from the database: query languages and the criteria APIL The primary query language is Java
Persistence Query Language (JP QL), a database-independent query language that operates on the
logical entity model as opposed to the physical data model. Queries may also be expressed in SQL to
take advantage of the underlying database. We will explore using SQL queries with JPA in Chapter 11.
The criteria API provides an alternative method for constructing queries based on Java objects instead
of query strings. Chapter 9 covers the criteria APl in detail.

We will begin our discussion of queries with an introduction to JP QL, followed by an exploration
of the query facilities provided by the EntityManager and Query interfaces.

Java Persistence Query Language

Before discussing JP QL, we must first look to its roots in the EJB specification. The Enterprise
JavaBeans Query Language (EJB QL) was first introduced in the EJB 2.0 specification to allow
developers to write portable finder and select methods for container-managed entity beans. Based on
a small subset of SQL, it introduced a way to navigate across entity relationships both to select data
and to filter the results. Unfortunately, it placed strict limitations on the structure of the query, limiting
results to either a single entity or a persistent field from an entity. Inner joins between entities were
possible, but used an odd notation. The initial release didn’t even support sorting.

179

180

CHAPTER 7 1 USING QUERIES

The EJB 2.1 specification tweaked EJB QL a little bit, adding support for sorting, and introduced
basic aggregate functions; but again the limitation of a single result type hampered the use of
aggregates. You could filter the data, but there was no equivalent to SQL GROUP BY and HAVING
expressions.

JP QL significantly extends EJB QL, eliminating many weaknesses of the previous versions while
preserving backward compatibility. The following features are available above and beyond EJB QL:

e Single and multiple value result types

e Aggregate functions, with sorting and grouping clauses

e A more natural join syntax, including support for bothinner and outer joins
e Conditional expressions involving subqueries

e Update and delete queries for bulk data changes

e Result projection into non-persistent classes

The next few sections provide a quick introduction to JP QL intended for readers familiar with SQL
or EJB QL. A complete tutorial and reference for JP QL can be found in Chapter 8.

Getting Started

The simplest JP QL query selects all the instances of a single entity type. Consider the following query:

SELECT e
FROM Employee e

If this looks similar to SQL, it should. JP QL uses SQL syntax where possible in order to give
developers experienced with SQL a head start in writing queries. The key difference between SQL and
JP QL for this query is that instead of selecting from a table, an entity from the application domain
model has been specified instead. The SELECT clause of the query is also slightly different, listing only
the Employee alias e. This indicates that the result type of the query is the Employee entity, so executing
this statement will result in a list of zero or more Employee instances.

Starting with an alias, we can navigate across entity relationships using the dot (.) operator. For
example, if we want just the names of the employees, the following query will suffice:

SELECT e.name
FROM Employee e

Each part of the expression corresponds to a persistent field of the entity that is a simple or
embeddable type, or an association leading to another entity or collection of entities. Because the
Employee entity has a persistent field named name of type String, this query will resultin a list of zero or
more String objects.

We can also select an entity we didn’t even listin the FROM clause. Consider the following
example:

SELECT e.department
FROM Employee e

An employee has a many-to-one relationship with her department named department, so the
result type of the query is the Department entity.

CHAPTER 7 " USING QUERIES

Filtering Results

Just like SQL, JP QL supports the WHERE clause to set conditions on the data being returned. The
majority of operators commonly available in SQL are available in JP QL, including basic comparison
operators; IN, LIKE, and BETWEEN expressions; numerous function expressions (such as SUBSTRING
and LENGTH); and subqueries. The key difference for JP QL is that entity expressions and not column
references are used. Listing 7-1 demonstrates filtering using entity expressions in the WHERE clause.

Listing 7-1. Filtering Criteria Using Entity Expressions

SELECT e

FROM Employee e

WHERE e.department.name = 'NA42' AND
e.address.state IN ('NY','CA")

Projecting Results

For applications that need to produce reports, a common scenario is selecting large numbers of entity
instances, but using only a portion of that data. Depending on how an entity is mapped to the database,
this can be an expensive operation if much of the entity data is discarded. It would be useful to return
only a subset of the properties from an entity. The following query demonstrates selecting only the
name and salary of each Employee instance:

SELECT e.name, e.salary
FROM Employee e

Joins Between Entities

The result type of a select query cannot be a collection; it must be a single valued object such as an
entity instance or persistent field type. Expressions such as e.phones are illegal in the SELECT clause
because they would result in Collection instances (each occurrence of e.phones is a collection, not an
instance). Therefore, just as with SQL and tables, if we want to navigate along a collection association
andreturn elements of that collection, we must join the two entities together. Listing 7-2
demonstrates a join between Employee and Phone entities in order to retrieve all the cell phone
numbers for a specific department.

Listing 7-2. Joining Two Entities Together

SELECT p.number

FROM Employee e, Phone p

WHERE e = p.employee AND
e.department.name = 'NA42' AND
p.type = 'Cell’

In JP QL, joins may also be expressed in the FROM clause using the JOIN operator. The advantage
of this operator is that the join can be expressed in terms of the association itself, and the query engine
will automatically supply the necessary join criteria when it generates the SQL. Listing 7-3 shows the
same query rewritten to use the JOIN operator. Just as in the previous query, the alias p is of type Phone,
only this time it refers to each of the phones in the e.phones collection.

181

182

CHAPTER 7 1 USING QUERIES

Listing 7-3. Joining Two Entities Together Using the JOIN Operator

SELECT p.number

FROM Employee e JOIN e.phones p

WHERE e.department.name = 'NA42' AND
p.type = 'Cell’

JP QL supports multiple join types, including inner and outer joins, as well as a technique called
fetch joins for eagerly loading data associated to the result type of a query but not directly returned.
See the “Joins” section in Chapter 8 for more information.

Aggregate Queries

The syntax for aggregate queries in JP QL is very similar to that of SQL. There are five supported
aggregate functions (AVG, COUNT, MIN, MAX, and SUM), and results may be grouped in the GROUP
BY clause and filtered using the HAVING clause. Once again, the difference is the use of entity
expressions when specifying the data to be aggregated. Listing 7-4 demonstrates an aggregate query
withJP QL.

Listing 7-4. Query Returning Statistics for Departments with Five or More Employees

SELECT d, COUNT(e), MAX(e.salary), AVG(e.salary)
FROM Department d JOIN d.employees e

GROUP BY d

HAVING COUNT(e) »>= 5

Query Parameters

JP QL supports two types of parameter binding syntax. The first is positional binding, where
parameters are indicated in the query string by a question mark followed by the parameter number.
When the query is executed, the developer specifies the parameter number that should be replaced.
Listing 7-5 demonstrates positional parameter syntax.

Listing 7-5. Positional Parameter Notation

SELECT e

FROM Employee e

WHERE e.department = ?1 AND
e.salary > ?2

Named parameters may also be used and are indicated in the query string by a colon followed by
the parameter name. When the query is executed, the developer specifies the parameter name that
should be replaced. Listing 7-6 demonstrates named parameter syntax.

Listing 7-6. Named Parameter Notation

SELECT e

FROM Employee e

WHERE e.department = :dept AND
e.salary > :base

CHAPTER 7 " USING QUERIES

Defining Queries

JPA provides the Query and TypedQuery interfaces to configure and execute queries. The Query interface
is used in cases when the result type is Object, and the TypedQuery interface is used in the typical case
when typed results are preferred. As TypedQuery extends Query, a strongly typed query can always be
treated as an untyped version, though not vice versa. An implementation of the appropriate interface
for a given query is obtained through one of the factory methods in the EntityManager interface. The
choice of factory method depends on the type of query JP QL, SQL, or criteria object), whether the query
has been predefined and whether strongly typed results are desired. For now, we will restrict our
discussion to JP QL queries. SQL query definition is discussed in Chapter 11, and criteria queries are
discussed in Chapter 9.

NOTE The TypedQuery interface was introduced in JPA 2.0.

There are two approaches to defining a JP QL query. A query may either be dynamically specified
at runtime or configured in persistence unit metadata (annotation or XML) and referenced by name.
Dynamic queries are nothing more than strings, and therefore may be defined on the fly as the need
arises. Named queries, on the other hand, are staticand unchangeable, but are more efficient to
execute because the persistence provider can translate the JP QL string to SQL once when the
application starts as opposed to every time the query is executed.

The following sections compare the two approaches and discuss when one should be used instead
of the other.

Dynamic Query Definition

A query may be defined dynamically by passing the JP QL query string and expected result type to the
createQuery() method of the EntityManager interface. The result type may be omitted to create an
untyped query. We will discuss this approach in the section “Working with Query Results.” There are
norestrictions on the query definition. All JP QL query types are supported, as well as the use of
parameters. The ability to build up a string at runtime and use it for a query definition is useful,
particularly for applications where the user may specify complex criteria and the exact shape of the
query cannot be known ahead of time. As noted earlier, in addition to dynamic string queries, JPA also
supports a criteria API to create dynamic queries using Java objects. We will discuss this approach in
Chapter 9.

An issue to consider with string dynamic queries, however, is the cost of translating the JP QL
string to SQL for execution. A typical query engine will have to parse the JP QL string into a syntax
tree, get the object-relational mapping metadata for each entity in each expression, and then generate
the equivalent SQL. For applications that issue many queries, the performance cost of dynamic query
processing can become an issue.

Many query engines will cache the translated SQL for later use, but this can easily be defeated if
the application does not use parameter binding and concatenates parameter values directly into
query strings. This has the effect of generating a new and unique query every time a query that
requires parameters is constructed.

Consider the session bean method shown in Listing 7-7 that searches for salary information given
the name of a department and the name of an employee. There are two problems with this example,
one performance-related and one security-related. Because the names are concatenated into the

183

184

CHAPTER 7 1 USING QUERIES

string instead of using parameter binding, it is effectively creating a new and unique query each time.
One hundred calls to this method could potentially generate one hundred different query strings. This
not only requires excessive parsing of JP QL but also almost certainly makes it difficult for the
persistence provider if it attempts to build a cache of converted queries.

Listing 7-7. Defining a Query Dynamically

@Stateless

public class QueryServiceBean implements QueryService {
@PersistenceContext(unitName="DynamicQueries")
EntityManager em;

public long queryEmpSalary(String deptName, String empName) {
String query = "SELECT e.salary " +
"FROM Employee e " +

"WHERE e.department.name = '" + deptName +
m AND n +
" e.name = '" + empName + "'";

return em.createQuery(query, Long.class).getSingleResult();

}

The second problem with this example is that it is vulnerable to injection attacks, where a
malicious user could pass in a value that alters the query to his advantage. Consider a case where the
department argument was fixed by the application but the user was able to specify the employee name
(the manager of the department is querying the salaries of his or her employees, for example). If the
name argument were actually the text '_UNKNOWN' OR e.name = 'Roberts’',the actual query parsed by
the query engine would be as follows:

SELECT e.salary

FROM Employee e

WHERE e.department.name = 'NA65' AND
e.name = '_UNKNOWN' OR
e.name = 'Roberts’

By introducing the OR condition, the user has effectively given himself access to the salary value
for any employee in the company because the original AND condition has a higher precedence than
OR, and the fake employee name is unlikely to belong to a real employee in that department.

This type of problem may sound unlikely, but in practice many web applications take text
submitted over a GET or POST request and blindly construct queries of this sort without considering
side effects. One or two attempts that result in a parser stack trace displayed to the web page, and the
attacker will learn everything he needs to know about how to alter the query to his advantage.

Listing 7-8 shows the same method as in Listing 7-7, except that it uses named parameters instead.
This not only reduces the number of unique queries parsed by the query engine, but it also eliminates
the chance of the query being altered.

Listing 7-8. Using Parameters with a Dynamic Query

@Stateless
public class QueryServiceBean implements QueryService {
private static final String QUERY =
"SELECT e.salary " +
"FROM Employee e " +

CHAPTER 7 " USING QUERIES

"WHERE e.department.name = :deptName AND " +

e.name = :empName "°;

@PersistenceContext(unitName="DynamicQueries")
EntityManager em;

public long queryEmpSalary(String deptName, String empName) {
return em.createQuery(QUERY, Long.class)
.setParameter("deptName", deptName)
.setParameter("empName", empName)
.getSingleResult();

The parameter binding approach shown in Listing 7-8 defeats the security threat described
previously because the original query string is never altered. The parameters are marshaled using the
JDBC API and handled directly by the database. The text of a parameter string is effectively quoted by
the database, so the malicious attack would actually end up producing the following query:

SELECT e.salary
FROM Employee e
WHERE e.department.name = 'NA65' AND
e.name = ' UNKNOWN'' OR e.name = ''Roberts’

The single quotes used in the query parameter here have been escaped by prefixing them with an
additional single quote. This removes any special meaning from them, and the entire sequence is
treated as a single string value.

We recommend statically defined named queries in general, particularly for queries that are
executed frequently. If dynamic queries are a necessity, take care to use parameter binding instead of
concatenating parameter values into query strings in order to minimize the number of distinct query
strings parsed by the query engine.

Named Query Definition

Named queries are a powerful tool for organizing query definitions and improving application
performance. A named query is defined using the @amedQuery annotation, which may be placed on the
class definition for any entity. The annotation defines the name of the query, as well as the query text.
Listing 7-9 shows how the query string used in Listing 7-8 would be declared as a named query.

Listing 7-9. Defining a Named Query

@NamedQuery (name="findSalaryForNameAndDepartment",
query="SELECT e.salary " +
"FROM Employee e " +
"WHERE e.department.name = :deptName AND " +
" e.name = :empName")

Named queries are typically placed on the entity class that most directly corresponds to the query
result, so the Employee entity would be a good location for this named query. Note the use of string
concatenation in the annotation definition. Formatting your queries visually aids in the readability of
the query definition. The garbage normally associated with repeated string concatenation will not
apply here because the annotation will be processed only once at startup time and be executed at
runtime in query form.

185

CHAPTER 7 1 USING QUERIES

The name of the query is scoped to the entire persistence unit and must be unique within that
scope. This is an important restriction to keep in mind, as commonly used query names such as
"findA1l" will have to be qualified for each entity. A common practice is to prefix the query name with
the entity name. For example, the "findA11" query for the Employee entity would be named
"Employee.findAll". It is undefined what should happen if two queries in the same persistence unit
have the same name, but itis likely that either deployment of the application will fail or one will
overwrite the other, leading to unpredictable results at runtime.

If more than one named query is to be defined on a class, they must be placed inside of a
@NamedQueries annotation, which accepts an array of one or more @NamedQuery annotations. Listing 7-
10 shows the definition of several queries related to the Employee entity. Queries may also be defined
(or redefined) using XML. This technique is discussed in Chapter 12.

Listing 7-10. Multiple Named Queries for an Entity

@NamedQueries ({
@NamedQuery (name="Employee.findAll",
query="SELECT e FROM Employee e"),
@NamedQuery(name="Employee.findByPrimaryKey",
query="SELECT e FROM Employee e WHERE e.id = :id"),
@NamedQuery(name="Employee.findByName",
query="SELECT e FROM Employee e WHERE e.name = :name"

1

Because the query string is defined in the annotation, it cannot be altered by the application at
runtime. This contributes to the performance of the application and helps to prevent the kind of
security issues we discussed in the previous section. Due to the staticnature of the query string, any
additional criteria that are required for the query must be specified using query parameters. Listing 7-
11 demonstrates using the createNamedQuery() call on the EntityManager interface to create and
execute a named query that requires a query parameter.

Listing 7-11. Executing a Named Query

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

public Employee findEmployeeByName(String name) {
return em.createNamedQuery("Employee.findByName",
Employee.class)
.setParameter("name", name)
.getSingleResult();

}
/1 ...

Named parameters are the most practical choice for named queries because they effectively self-
document the application code that invokes the queries. Positional parameters are still supported,
however, and may be used instead.

186

CHAPTER 7 " USING QUERIES

Parameter Types

As mentioned earlier, JPA supports both named and positional parameters for JP QL queries. The query
factory methods of the entity manager return an implementation of the Query interface. Parameter
values are then set on this object using the setParameter () methods of the Query interface.

There are three variations of this method for both named parameters and positional parameters.
The first argument is always the parameter name or number. The second argument is the object to be
bound to the named parameter.Date and Calendar parameters also require a third argument that
specifies whether the type passed to JDBCis a java.sql.Date, java.sql.Time, or java.sql.TimeStamp
value.

Consider the following named query definition, which requires two named parameters:

@NamedQuery(name="findEmployeesAboveSal",
query="SELECT e " +
"FROM Employee e " +
"WHERE e.department = :dept AND " +
" e.salary > :sal")

This query highlights one of the nice features of JP QL in that entity types may be used as
parameters. When the query is translated to SQL, the necessary primary key columns will be inserted
into the conditional expression and paired with the primary key values from the parameter. Itis not
necessary to know how the primary key is mapped in order to write the query. Binding the parameters
for this query is a simple case of passing in the required Department entity instance as well as a long
representing the minimum salary value for the query. Listing 7-12 demonstrates how to bind the
entity and primitive parameters required by this query.

Listing 7-12. Binding Named Parameters

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

public List<Employee> findEmployeesAboveSal(Department dept,
long minSal) {
return em.createNamedQuery("findEmployeesAboveSal",
Employee.class)

.setParameter("dept", dept)
.setParameter("sal", minSal)
.getResultlist();

}

/...

Date and Calendar parameters are a special case because they represent both dates and times. In
Chapter 4, we discussed mapping temporal types by using the @Temporal annotation and the
TemporalType enumeration. This enumeration indicates whether the persistent field is a date, time, or
timestamp. When a query uses a Date or Calendar parameter, it must select the appropriate temporal
type for the parameter. Listing 7-13 demonstrates binding parameters where the value should be
treated as a date.

187

188

CHAPTER 7 1 USING QUERIES

Listing 7-13. Binding Date Parameters

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

public List<Employee> findEmployeesHiredDuringPeriod(Date start,
Date end) {
return em.createQuery("SELECT e " +
"FROM Employee e " +
"WHERE e.startDate BETWEEN ?1 AND ?2",
Employee.class)
.setParameter(1, start, TemporalType.DATE)
.setParameter(2, end, TemporalType.DATE)
.getResultlist();

}
/1 ...

One thing to keep in mind with query parameters is that the same parameter can be used multiple
times in the query string yet only needs to be bound once using the setParameter () method. For
example, consider the following named query definition, where the "dept" parameter is used twice in
the WHERE clause:

@NamedQuery(name="findHighestPaidByDepartment",
query="SELECT e " +
"FROM Employee e " +
"WHERE e.department = :dept AND " +
" e.salary = (SELECT MAX(e.salary) " +
" FROM Employee e " +
" WHERE e.department = :dept)")

To execute this query, the "dept" parameter needs to be set only once with setParameter(), as in
the following example:

public Employee findHighestPaidByDepartment(Department dept) {
return em.createNamedQuery("findHighestPaidByDepartment",
Employee.class)
.setParameter("dept", dept)
.getSingleResult();

Executing Queries

The Query and TypedQuery interfaces each provide three different ways to execute a query, depending
on whether or not the query returns results and how many results should be expected. For queries that
return values, the developer may choose to call either getSingleResult() if the query is expected to
return a single result or getResultList() if more than one result may be returned. The
executeUpdate() method is used to invoke bulk update and delete queries. We will discuss this method

CHAPTER 7 " USING QUERIES

later in the section “Bulk Update and Delete”. Note that both of the query interfaces define the same
set of methods and differ only in their return types. We will cover this issue in the next section.

The simplest form of query execution is via the getResultList() method. It returns a collection
containing the query results. If the query did not return any data, the collection is empty. The return
type is specified as a List instead of a Collection in order to support queries that specify a sort order. If
the query uses the ORDER BY clause to specify a sort order, the results will be put into the result listin
the same order. Listing 7-14 demonstrates how a query might be used to generate a menufor a
command-line application that displays the name of each employee working on a project as well as
the name of the department that the employee is assigned to. The results are sorted by the name of the
employee. Queries are unordered by default.

Listing 7-14. Iterating over Sorted Results

public void displayProjectEmployees(String projectName) {
List<Employee> result = em.createQuery(
"SELECT e " +
"FROM Project p JOIN p.employees e "+
"WHERE p.name = ?1 " +
"ORDER BY e.name",
Employee.class)
.setParameter(1, projectName)
.getResultlist();
int count = 0;
for (Employee e : result) {
System.out.println(++count + + e.getName() + ", " +
e.getDepartment().getName());

The getSingleResult() method is provided as a convenience for queries that return only a single
value. Instead of iterating to the first result in a collection, the object is directly returned. It is
important to note, however, that getSingleResult() behaves differently from getResultList() in how it
handles unexpected results. Whereas getResultList() returns an empty collection when no results are
available, getSingleResult() throws a NoResultException exception. Therefore if there is a chance that
the desired result may not be found, then this exception needs to be handled.

If multiple results are available after executing the query instead of the single expected result,
getSingleResult() will throw a NonUniqueResultException exception. Again, this can be problematic for
application code if the query criteria may result in more than one row being returned in certain
circumstances. Although getSingleResult() is convenient to use, be sure that the query and its possible
results are well understood, otherwise application code may have to deal with an unexpected runtime
exception. Unlike other exceptions thrown by entity manager operations, these exceptions will not
cause the provider to roll back the current transaction, if there is one.

Any SELECT query that returns data via the getResultList() and getSingleResult() methods may
also specify locking constraints for the database rows impacted by the query. This facility is exposed
through the query interfaces via the setLockMode() method. We will defer discussion of the locking
semantics for queries until the full discussion of locking in Chapter 11.

Query and TypedQuery objects may be reused as often as needed so long as the same persistence
context that was used to create the query is still active. For transaction-scoped entity managers, this
limits the lifetime of the Query or TypedQuery object to the life of the transaction. Other entity manager
types may reuse them until the entity manager is closed or removed.

189

190

CHAPTER 7 1 USING QUERIES

Listing 7-15 demonstrates caching a TypedQuery object instance on the bean class of a stateful
session bean that uses an extended persistence context. Whenever the bean needs to find the list of
employees who are currently not assigned to any project, it reuses the same unassignedQuery object
that was initialized during PostConstruct.

Listing 7-15. Reusing a Query Object

@Stateful
public class ProjectManagerBean implements ProjectManager {
@PersistenceContext(unitName="EmployeeService",
type=PersistenceContextType.EXTENDED)
EntityManager em;

TypedQuery<Employee> unassignedQuery;

@PostConstruct
public void init() {
unassignedQuery =
em.createQuery("SELECT e " +
"FROM Employee e " +
"WHERE e.projects IS EMPTY",
Employee.class);

}

public List<Employee> findEmployeesWithoutProjects() {
return unassignedQuery.getResultList();

/...

Working with Query Results

The result type of a query is determined by the expressions listed in the SELECT clause of the query. If
the result type of a query is the Employee entity, then executing getResultList() will resultin a
collection of zero or more Employee entity instances. There is a wide variety of results possible,
depending on the makeup of the query. The following are just some of the types that may result from JP
QL queries:

e Basictypes, such as String, the primitive types, and JDBC types

e Entity types
e Anarray of Object

e User-defined types created from a constructor expression

For developers used to JDBC, the most important thing to remember when using the Query and
TypedQuery interfaces is that the results are not encapsulated in a JDBCResultSet. The collection or
single result corresponds directly to the result type of the query.

Whenever an entity instance is returned, it becomes managed by the active persistence context. If
that entity instance is modified and the persistence context is part of a transaction, the changes will be
persisted to the database. The only exception to this rule is the use of transaction-scoped entity

CHAPTER 7 " USING QUERIES

managers outside of a transaction. Any query executed in this situation returns detached entity
instances instead of managed entity instances. To make changes on these detached entities, they must
first be merged into a persistence context before they can be synchronized with the database.

A consequence of the long-term management of entities with application-managed and extended
persistence contexts is that executing large queries will cause the persistence context to grow as it
stores all the managed entity instances that are returned. If many of these persistence contexts are
holding onto large numbers of managed entities for long periods of time, then memory use may
become a concern. The clear () method of the EntityManager interface may be used to clear
application-managed and extended persistence contexts, removing unnecessary managed entities.

Untyped Results

So far in this chapter we have been demonstrating the strongly typed versions of the query creation
methods. We have provided the expected result type and therefore received an instance of TypedQuery
that is bound to the expected type. By qualifying the result type in this way, the getResultList() and
getSingleResult() methods return the correct types without the need for casting.

In the event that the result type is Object, or the JP QL query selects multiple objects, you may use
the untyped versions of the query creation methods. Omitting the result type produces a Query instance
instead of a TypedQuery instance, which defines getResultList() to return an unbound List and
getSingleResult() to return Object. For an example of using untyped results see the code listings in the
“Special Result Types” section.

Optimizing Read-Only Queries

When the query results will not be modified, queries using transaction-scoped entity managers
outside of a transaction can be more efficient than queries executed within a transaction when the
result type is an entity. When query results are prepared within a transaction, the persistence provider
has to take steps to convert the results into managed entities. This usually entails taking a snapshot of
the data for each entity in order to have a baseline to compare against when the transaction is
committed. If the managed entities are never modified, the effort of converting the results into
managed entities is wasted.

Outside of a transaction, in some circumstances the persistence provider may be able to optimize
the case where the results will be detached immediately. Therefore it can avoid the overhead of
creating the managed versions. Note that this technique does not work on application-managed or
extended entity managers because their persistence context outlives the transaction. Any query result
from this type of persistence context may be modified for later synchronization to the database even if
there is no transaction.

When encapsulating query operations behind a stateless session facade, the easiest way to execute
nontransactional queries is to use the NOT_SUPPORTED transaction attribute for the session bean method.
This will cause any active transaction to be suspended, forcing the query results to be detached and
enabling this optimization. Listing 7-16 shows an example of this technique.

Listing 7-16. Executing a Query Outside of a Transaction

@Stateless

public class QueryServiceBean implements QueryService {
@PersistenceContext(unitName="EmployeeService")
EntityManager em;

@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)

191

CHAPTER 7 1 USING QUERIES

public List<Department> findAllDepartmentsDetached() {
return em.createQuery("SELECT d FROM Department d",
Department.class)
.getResultlist();

/...

Special Result Types

Whenever a query involves more than one expression in the SELECT clause, the result of the query will
be a List of Object arrays. Common examples include projection of entity fields and aggregate queries
where grouping expressions or multiple functions are used. Listing 7-17 revisits the menu generator
from Listing 7-14 using a projection query instead of returning full Employee entity instances. Each
element of the List is cast to an array of Object thatis then used to extract the employee and
department name information. We use an untyped query because the result has multiple elements in
it.

Listing 7-17. Handling Multiple Result Types

public void displayProjectEmployees(String projectName) {
List result = em.createQuery(
"SELECT e.name, e.department.name " +
"FROM Project p JOIN p.employees e " +
"WHERE p.name = ?1 " +
"ORDER BY e.name")
.setParameter(1, projectName)
.getResultlist();
int count = 0;
for (Iterator i = result.iterator(); i.hasNext();) {
Object[] values = (Object[]) i.next();
System.out.println(++count + ": " +

values[0] + ", " + values[1]);

Constructor expressions provide developers with a way to map array of Object result types to
custom objects. Typically this is used to convert the results into JavaBean-style classes that provide
getters for the different returned values. This makes the results easier to work with and makes it
possible to use the results directly in an environment such as JavaServer Faces without additional
translation.

A constructor expression is defined in JP QL using the NEW operator in the SELECT clause. The
argument to the NEW operator is the fully qualified name of the class that will be instantiated to hold
the results for each row of data returned. The only requirement on this class is that it has a constructor
with arguments matching the exact type and order that will be specified in the query. Listing 7-18
shows an EmpMenu class defined in the package example that could be used to hold the results of the query
that was executed in Listing 7-17.

192

CHAPTER 7 " USING QUERIES

Listing 7-18. Defining a Class for Use in a Constructor Expression

package example;

public class EmpMenu {
private String employeeName;
private String departmentName;

public EmpMenu(String employeeName, String departmentName) {
this.employeeName = employeeName;
this.departmentName = departmentName;

}

public String getEmployeeName() { return employeeName; }
public String getDepartmentName() { return departmentName; }

Listing 7-19 shows the same example as Listing 7-17 using the fully qualified EmpMenu class name
in a constructor expression. Instead of working with array indexes, eachresult is an instance of the
EmpMenu class and used like a regular Java object. We can also use typed queries again because there is
only one expression in the SELECT clause.

Listing 7-19. Using Constructor Expressions

public void displayProjectEmployees(String projectName) {
List<EmpMenu> result =
em.createQuery("SELECT NEW example.EmpMenu(" +
"e.name, e.department.name) " +
"FROM Project p JOIN p.employees e " +
"WHERE p.name = ?1 " +
"ORDER BY e.name",
EmpMenu.class)
.setParameter(1, projectName)
.getResultlist();
int count = 0;
for (EmpMenu menu : result) {
System.out.println(++count + ": " +
menu.getEmployeeName() + ", " +
menu.getDepartmentName());

Query Paging

Large result sets from queries are often a problem for many applications. In cases where it would be
overwhelming to display the entire result set, or if the application medium makes displaying many
rows inefficient (web applications, in particular), applications must be able to display ranges of a
result set and provide users with the ability to control the range of data that they are viewing. The most
common form of this technique is to present the user with a fixed-size table that acts as a sliding
window over the result set. Each increment of results displayed is called a page, and the process of
navigating through the results is called pagination.

193

194

CHAPTER 7 1 USING QUERIES

Efficiently paging through result sets has long been a challenge for both application developers
and database vendors. Before support existed at the database level, a common technique was to first
retrieve all the primary keys for the result set and then issue separate queries for the full results using
ranges of primary key values. Later, database vendors added the concept of logical row number to
query results, guaranteeing that as long as the result was ordered, the row number could be relied on
toretrieve portions of the result set. More recently, the JDBC specification has taken this even further
with the concept of scrollable result sets, which can be navigated forward and backward as required.

The Query and TypedQuery interfaces provide support for pagination via the setFirstResult() and
setMaxResults() methods. These methods specify the first result to be received (numbered from zero)
and the maximum number of results to return relative to that point. Values set for these methods may
be likewise retrieved via the getFirstResult() and getMaxResults() methods. A persistence provider
may choose to implement support for this feature in a number of different ways because not all
databases benefit from the same approach. It’s a good idea to become familiar with the way your
vendor approaches pagination and what level of support exists in the target database platform for your
application.

CAUTION The setFirstResult() and setMaxResults() methods should not be used with queries that join
across collection relationships (one-to-many and many-to-many) because these queries may return duplicate
values. The duplicate values in the result set make it impossible to use a logical result position.

To better illustrate pagination support, consider the stateful session bean shown in Listing 7-20.
Once created, itis initialized with the name of a query to count the total results and the name of a
query to generate the report. When results are requested, it uses the page size and current page
number to calculate the correct parameters for the setFirstResult() and setMaxResults() methods.
The total number of results possible is calculated by executing the count query. By using the next(),
previous(), and getCurrentResults() methods, presentation code can page through the results as
required. If this session bean were bound into an HTTP session, it could be directly used by a JSP or
JavaServer Faces page presenting the results in a data table. The class in Listing 7-20 is a general
template for a bean that holds intermediate state for an application query from which the results are
processed in segments.

Listing 7-20. Stateful Session Report Pager

@Stateful

public class ResultPagerBean implements ResultPager {
@PersistenceContext(unitName="QueryPaging")
private EntityManager em;

private String reportQueryName;
private long currentPage;
private long maxResults;
private long pageSize;

public long getPageSize() {
return pageSize;

CHAPTER 7 " USING QUERIES

public long getMaxPages() {
return maxResults / pageSize;

public void init(long pageSize, String countQueryName,
String reportQueryName) {
this.pageSize = pageSize;
this.reportQueryName = reportQueryName;
maxResults = em.createNamedQuery(countQueryName, Long.class)
.getSingleResult();
currentPage = 0;

}

public List getCurrentResults() {
return em.createNamedQuery(reportQueryName)
.setFirstResult(currentPage * pageSize)
.setMaxResults(pageSize)

.getResultlist();
}
public void next() {
currentPage++;

public void previous() {
currentPage--;
if (currentPage < 0) {
currentPage = 0;

}

public long getCurrentPage() {
return currentPage;

public void setCurrentPage(long currentPage) {
this.currentPage = currentPage;
}

@Remove
public void finished() {}

Queries and Uncommitted Changes

Executing queries against entities that have been created or changed in a transaction is a topic that
requires special consideration. As we discussed in Chapter 6, the persistence provider will attempt to
minimize the number of times the persistence context must be flushed within a transaction. Optimally
this will occur only once, when the transaction commits. While the transaction is open and changes are
being made, the provider relies on its own internal cache synchronization to ensure that the right
version of each entity is used in entity manager operations. At most the provider may have to read

195

196

CHAPTER 7 1 USING QUERIES

new data from the database in order to fulfill a request. All entity operations other than queries can be
satisfied without flushing the persistence context to the database.

Queries are a special case because they are executed directly as SQL against the database. Because
the database executes the query and not the persistence provider, the active persistence context cannot
usually be consulted by the query. As a result, if the persistence context has not been flushed and the
database query would be impacted by the changes pending in the persistence context, incorrect data is
likely to be retrieved from the query. The entity manager find() operation, on the other hand, queries
for a single entity with a given primary key. It can always check the persistence context before going
to the database, so incorrect data is not a concern.

The good news is that by default, the persistence provider will ensure that queries are able to
incorporate pending transactional changes in the query result. It might accomplish this by flushing the
persistence context to the database, or it mightleverage its own runtime information to ensure the
results are correct.

Andyet, there are times when having the persistence provider ensure query integrity is not
necessarily the behavior we need. The problem is that it is not always easy for the provider to
determine the best strategy to accommodate the integrity needs of a query. There is no practical way
the provider can logically determine at a fine-grained level which objects have changed and therefore
need to be incorporated into the query results. If the provider solution to ensuring query integrity is to
flush the persistence context to the database, then you might have a performance problem if this is a
frequent occurrence.

To put this issue in context, consider a message board application, which has modeled
conversation topics as Conversation entities. Each Conversation entity refers to one or more messages
represented by a Message entity. Periodically, conversations are archived when the last message added
to the conversation is more than 30 days old. This is accomplished by changing the status of the
Conversation entity from “ACTIVE” to “INACTIVE”. The two queries to obtain the list of active
conversations and the last message date for a given conversation are shown in Listing 7-21.

Listing 7-21. Conversation Queries

@NamedQueries ({
@NamedQuery (name="findActiveConversations",
query="SELECT ¢ " +
"FROM Conversation c " +
"WHERE c.status = 'ACTIVE'"),
@NamedQuery(name="findLastMessageDate",
query="SELECT MAX(m.postingDate) " +
"FROM Conversation c JOIN c.messages m " +
"WHERE ¢ = :conversation")

1

Listing 7-22 shows the session bean method used to perform this maintenance, accepting a Date
argument that specifies the minimum age for messages in order to still be considered an active
conversation. In this example, we see that two queries are being executed. The
"findActiveConversations" query collects all the active conversations, while the
"findLastMessageDate" returns the last date that a message was added to a Conversation entity. As the
code iterates over the Conversation entities, it invokes the "findLastMessageDate" query for each one.
As these two queries are related, it is reasonable for a persistence provider to assume that the results
of the "findLastMessageDate" query will depend on the changes being made to the Conversation
entities. If the provider ensures the integrity of the "findLastMessageDate" query by flushing the
persistence context, this could become a very expensive operation if hundreds of active conversations
are being checked.

CHAPTER 7 " USING QUERIES

Listing 7-22. Archiving Conversation Entities

@Stateless
public class ConversationMaintenanceBean
implements ConversationMaintenance {
@PersistenceContext(unitName="MessageBoard")
EntityManager em;

public void archiveConversations(Date minAge) {
List<Conversation> active =
em.createNamedQuery("findActiveConversations",
Conversation.class)
.getResultlist();
TypedQuery<Date> maxAge =
em.createNamedQuery("findLastMessageDate", Date.class);
for (Conversation c : active) {
maxAge.setParameter("conversation", c);
Date lastMessageDate = maxAge.getSingleResult();
if (lastMessageDate.before(minAge)) {
c.setStatus("INACTIVE");
}

}
/1 ...

To give developers more control over the integrity requirements of queries, the EntityManager
and Query interfaces support a setFlushMode() method to set the flush mode, an indicator to the
provider how it should handle pending changes and queries. There are two possible flush mode
settings, AUTO and COMMIT, which are defined by the FlushModeType enumerated type. The default setting
is AUTO, which means that the provider should ensure that pending transactional changes are included
in query results. If a query might overlap with changed data in the persistence context, this setting will
ensure that the results are correct. The current flush mode setting may be retrieved via the
getFlushMode () method.

The COMMIT flush mode tells the provider that queries don’t overlap with changed data in the
persistence context, so it does not need to do anything in order to get correct results. Depending on
how the provider implements its query integrity support, this might mean that it does not have to flush
the persistence context before executing a query because you have indicated that there is no changed
data in memory that would affect the results of the database query.

Although the flush mode is set on the entity manager, the flush mode is really a property of the
persistence context. For transaction-scoped entity managers, that means the flush mode has to be
changedin every transaction. Extended and application-managed entity managers will preserve their
flush mode setting across transactions.

Setting the flush mode on the entity manager applies to all queries, while setting the flush mode
for a query limits the setting to that scope. Setting the flush mode on the query overrides the entity
manager setting as you would expect. If the entity manager setting is AUTO and one query has the
COMMIT setting, the provider will guarantee query integrity for all the queries other than the one with
the COMMIT setting. Likewise, if the entity manager setting is COMMIT and one query has an AUTO setting,
only the query with the AUTO setting is guaranteed to incorporate pending changes from the
persistence context.

197

198

CHAPTER 7 1 USING QUERIES

Generally speaking, if you are going to execute queries in transactions where data is being
changed, AUTO is the right answer. If you are concerned about the performance implications of
ensuring query integrity, consider changing the flush mode to COMMIT on a per-query basis. Changing
the value on the entity manager, while convenient, can lead to problems if more queries are added to
the application later and they require AUTO semantics.

Coming back to the example at the start of this section, we can set the flush mode on the TypedQuery
object for the "findLastMessageDate" query to COMMIT because it does not need to see the changes being
made to the Conversation entities. The following fragment shows how this would be accomplished for
the archiveConversations() method shown in Listing 7-22:

public void archiveConversations(Date minAge) {
/...
TypedQuery<Date> maxAge = em.createNamedQuery (
"findLastMessageDate", Date.class);
maxAge. setFlushMode (FlushModeType.COMMIT);
/...

Query Timeouts

Generally speaking, when a query executes it will block until the database query returns. In addition
to the obvious concern about runaway queries and application responsiveness, it may also be a
problem if the query is participating in a transaction and a timeout has been set on the JTA transaction
or on the database. The timeout on the transaction or database may cause the query to abort early, but
it will also cause the transaction to roll back, preventing any further work in the same transaction.

If an application needs to set a limit on query response time without using a transaction or
causing a transaction rollback, the javax.persistence.query.timeout property may be set on the query
or as part of the persistence unit. This property defines the number of milliseconds that the query
should be allowed to run before itis aborted. Listing 7-23 demonstrates how to set a timeout value for a
given query. This example uses the query hint mechanism, which we will discuss in more detail later in
the section “Query Hints.” Setting properties on the persistence unit is covered in Chapter 13.

Listing 7-23. Setting a Query Timeout

public Date getlastUserActivity() {
TypedQuery<Date> lastActive =
em.createNamedQuery("findLastUserActivity", Date.class);
1ast?ctive.setHint("javax.persistence.query.timeout", 5000);
try
return lastActive.getSingleResult();
} catch (QueryTimeoutException e) {
return null;
}

Unfortunately, setting a query timeout is not portable behavior. It may not be supported by all
database platforms nor is it a requirement to be supported by all persistence providers. Therefore,
applications that want to enable query timeouts must be prepared for three scenarios. The first is that
the property is silently ignored and has no effect. The second is that the property is enabled and any
select, update, or delete operation that runs longer than the specified timeout value is aborted, and a
QueryTimeoutException is thrown. This exception may be handled and will not cause any active
transaction to be marked for rollback. Listing 7-23 demonstrates one approach to handling this

CHAPTER 7 " USING QUERIES

exception. The third scenario is that the property is enabled, but in doing so the database forces a
transaction rollback when the timeout is exceeded. In this case a PersistenceException will be thrown
and the transaction marked for rollback. In general, if enabled the application should be written to
handle the QueryTimeoutException, but should not fail if the timeout is exceeded and the exception is not
thrown.

TIP The javax.persistence.query.timeout hint was introduced in JPA 2.0.

Bulk Update and Delete

Like their SQL counterparts, JP QL bulk UPDATE and DELETE statements are designed to make
changes to large numbers of entities in a single operation without requiring the individual entities to
be retrieved and modified using the entity manager. Unlike SQL, which operates on tables, JP QL
UPDATE and DELETE statements must take the full range of mappings for the entity into account.
These operations are challenging for vendors to implement correctly, and as a result, there are
restrictions on the use of these operations that must be well understood by developers.

The full syntax for UPDATE and DELETE statements is described in Chapter 8. The following
sections will describe how to use these operations effectively and the issues that may result when used
incorrectly.

Using Bulk Update and Delete

Bulk update of entities is accomplished with the UPDATE statement. This statement operates on a
single entity type and sets one or more single-valued properties of the entity (either a state field or a
single-valued association) subject to the conditions in the WHERE clause. In terms of syntax, it is
nearly identical to the SQL version with the exception of using entity expressions instead of tables and
columns. Listing 7-24 demonstrates using a bulk UPDATE statement. Note that the use of the
REQUIRES_NEW transaction attribute type is significant and will be discussed following the examples.

Listing 7-24. Bulk Update of Entities

@Stateless

public class EmployeeServiceBean implements EmployeeService {
@PersistenceContext(unitName="BulkQueries")
EntityManager em;

@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public void assignManager(Department dept, Employee manager) {
em.createQuery("UPDATE Employee e " +
"SET e.manager = ?1 " +
"WHERE e.department = ?2")
.setParameter(1, manager)
.setParameter(2, dept)
.executeUpdate();

199

200

CHAPTER 7 1 USING QUERIES

Bulk removal of entities is accomplished with the DELETE statement. Again, the syntaxis the same
as the SQL version, except that the target in the FROM clause is an entity instead of a table, and the
WHERE clause is composed of entity expressions instead of column expressions. Listing 7-25
demonstrates bulk removal of entities.

Listing 7-25. Bulk Removal of Entities

@Stateless

public class ProjectServiceBean implements ProjectService {
@PersistenceContext(unitName="BulkQueries")
EntityManager em;

@TransactionAttribute(TransactionAttributeType.REQUIRES NEW)
public void removeEmptyProjects() {
em.createQuery("DELETE FROM Project p " +
"WHERE p.employees IS EMPTY")
.executeUpdate();

The first issue for developers to consider when using these statements is that the persistence
context is not updated to reflect the results of the operation. Bulk operations are issued as SQL against
the database, bypassing the in-memory structures of the persistence context. Therefore, updating the
salary of all the employees will not change the current values for any entities managed in memory as
part of a persistence context. The developer can rely only on entities retrieved after the bulk
operation completes.

For developers using transaction-scoped persistence contexts, this means that the bulk operation
should either execute in a transaction all by itself or be the first operation in the transaction. Running
the bulk operation in its own transaction is the preferred approach because it minimizes the chance of
the developer accidentally fetching data before the bulk change occurs. Executing the bulk operation
and then working with entities after it completes is also safe because then any find() operation or
query will go to the database to get current results. The examples in Listing 7-24 and Listing 7-25 used
the REQUIRES_NEW transaction attribute to ensure that the bulk operations occurred within their own
transactions.

A typical strategy for persistence providers dealing with bulk operations is to invalidate any in-
memory cache of data related to the target entity. This forces data to be fetched from the database the
next time it is required. How much cached data gets invalidated depends on the sophistication of the
persistence provider. If the provider can detect that the update impacts only a small range of entities,
those specific entities may be invalidated, leaving other cached data in place. Such optimizations are
limited, however, and if the provider cannot be sure of the scope of the change, the entire cache must
be invalidated. This can have an impact on the performance of the application if bulk changes are a
frequent occurrence.

CAUTION Native SQL update and delete operations should not be executed on tables mapped by an entity.
The JP QL operations tell the provider what cached entity state must be invalidated in order to remain consistent
with the database. Native SQL operations bypass such checks and can quickly lead to situations where the in-
memory cache is out of date with respect to the database.

CHAPTER 7 " USING QUERIES

The danger present in bulk operations and the reason they must occur firstin a transaction is that
any entity actively managed by a persistence context will remain that way, oblivious to the actual
changes occurring at the database level. The active persistence context is separate and distinct from
any data cache that the provider may use for optimizations. Consider the following sequence of
operations:

1. Anew transaction starts.
Entity A is created by calling persist() to make the entity managed.
Entity B is retrieved from a find() operation and modified.

2
3.
4. Abulkremove deletes entity A.

5 A bul;< update changes the same properties on entity B that were modified in
step 3.

6. The transaction commits.

What should happen to entities A and B in this sequence? (Before you answer, recall that bulk
operations translate directly to SQL and bypass the persistence context!) In the case of entity A, the
provider has to assume that the persistence context is correct and so will still attempt to insert the new
entity even though it should have been removed. In the case of entity B, again the provider has to
assume that managed version is the correct version and will attempt to update the version in the
database, undoing the bulk update change.

This brings us to the issue of extended persistence contexts. Bulk operations and extended
persistence contexts are a particularly dangerous combination because the persistence context
survives across transaction boundaries, but the provider will never refresh the persistence context to
reflect the changed state of the database after a bulk operation has completed. When the extended
persistence context is next associated with a transaction, it will attempt to synchronize its current state
with the database. Because the managed entities in the persistence context are now out of date with
respect to the database, any changes made since the bulk operation could result in incorrect results
being stored. In this situation, the only option is to refresh the entity state or ensure that the data is
versioned in such a way that the incorrect change can be detected. Locking strategies and refreshing of
entity state are discussed in Chapter 11.

Bulk Delete and Relationships

In our discussion of the remove() operation in the previous chapter, we emphasized that relationship
maintenance is always the responsibility of the developer. The only time a cascading remove occurs is
when the REMOVE cascade option is set for a relationship. Even then, the persistence provider won’t
automatically update the state of any managed entities that refer to the removed entity. As we are
about to see, the same requirement holds true when using DELETE statements as well.

A DELETE statement in JP QL corresponds more or less to a DELETE statement in SQL. Writing the
statement in JP QL gives you the benefit of working with entities instead of tables, but the semantics
are exactly the same. This has implications for how applications must write DELETE statements in
order to ensure that they execute correctly and leave the database in a consistent state.

DELETE statements are applied to a set of entities in the database, unlike remove(), which applies
to a single entity in the persistence context. A consequence of this is that DELETE statements do not
cascade to related entities. Even if the REMOVE cascade option is set on a relationship, it will not be
followed. It is your responsibility to ensure that relationships are correctly updated with respect to the
entities that have been removed. The persistence provider also has no control over constraints in the

201

202

CHAPTER 7 1 USING QUERIES

database. If you attempt to remove data that is the target of a foreign key relationship in another table,
youwill get a referential integrity constraint violation in return.

Let’s look at an example that puts these issues in context. Suppose, for example, that a company
wishes to reorganize its department structure. We want to delete a number of departments and then
assign the employees to new departments. The first step is to delete the old departments, so the
following statement is to be executed:

DELETE FROM Department d
WHERE d.name IN ('CA13', 'CA19', 'NY30')

This is a straightforward operation. We want to remove the department entities that match the
given list of names using a DELETE statement instead of querying for the entities and using the
remove() operation to dispose of them. But when this query is executed, a PersistenceException
exception is thrown, reporting that a foreign key integrity constraint has been violated. Another table
has a foreign key reference to one of the rows we are trying to delete. Checking the database, we see
that the table mapped by the Employee entity has a foreign key constraint against the table mapped by
the Department entity. Because the foreign key value in the Employee table is not NULL, the parent key
from the Department table can’t be removed.

We first need to update the Employee entities in question to make sure they do not point to the
department we are trying to delete:

UPDATE Employee e
SET e.department = null
WHERE e.department.name IN ('CA13', 'CA19', 'NY30')

With this change the original DELETE statement will work as expected. Now consider what would
have happened if the integrity constraint had not been in the database. The DELETE operation would
have completed successfully, but the foreign key values would still be sitting in the Employee table. The
next time the persistence provider tried to load the Employee entities with dangling foreign keys, it
would be unable to resolve the target entity. The outcome of this operation is vendor-specific, but it
may lead to a PersistenceException exception being thrown, complaining of the invalid relationship.

Query Hints

Query hints are the JPA extension point for query features. A hint is simply a string name and object
value. Hints allow features to be added to JPA without introducing a new API This includes standard
features such as the query timeouts we demonstrated earlier, as well as vendor-specific features. Note
that when not explicitly covered by the JPA specification, no assumptions can be made about the
portability of hints between vendors, even if the names are the same. Every query may be associated
with any number of hints, set either in persistence unit metadata as part of the @amedQuery
annotation, or on the Query or TypedQuery interfaces using the setHint() method. The current set of
hints enabled for a query may be retrieved with the getHints() method, which returns a map of name
and value pairs.

In order to simplify portability between vendors, persistence providers are required to ignore
hints that they do not understand. Listing 7-26 demonstrates the "eclipselink.cache-usage" hint
supported by the Reference Implementation of JPA 2.0 to indicate that the cache should not be checked
when reading an Employee from the database. Unlike the refresh() method of the EntityManager
interface, this hint will not cause the query result to override the current cached value.

CHAPTER 7 " USING QUERIES

Listing 7-26. Using Query Hints

public Employee findEmployeeNoCache(int empId) {
TypedQuery<Employee> q = em.createQuery(
"SELECT e FROM Employee e WHERE e.id = :empId", Employee.class);
// force read from database
q.setHint("eclipselink.cache-usage", "DoNotCheckCache");
q.setParameter("empId", empIld);
try {
return q.getSingleResult();
} catch (NoResultException e) {
return null;

If this query were to be executed frequently, a named query would be more efficient. The following
named query definition incorporates the cache hint used earlier:

@NamedQuery(name="findEmployeeNoCache",
query="SELECT e FROM Employee e WHERE e.id = :empId",
hints={@QueryHint(name="eclipselink.cache-usage",
value="DoNotCheckCache")})

The hints element accepts an array of @ueryHint annotations, allowing any number of hints to be
set for a query.

Query Best Practices

The typical application using JPA will have many queries defined. It is the nature of enterprise
applications that information is constantly being queried from the database for everything from
complex reports to drop-down lists in the user interface. Therefore, efficiently using queries can have
a major impact on your application’s overall performance and responsiveness. As you carry out the
performance testing of your queries, we recommend you consider some of the discussion points in the
following sections.

Named Queries

First and foremost, we recommend named queries whenever possible. Persistence providers will often
take steps to precompile JP QL named queries to SQL as part of the deployment or initialization phase
of an application. This avoids the overhead of continuously parsing JP QL and generating SQL. Even
with a cache for converted queries, dynamic query definition will always be less efficient than using
named queries.

Named queries also enforce the best practice of using query parameters. Query parameters help to
keep the number of distinct SQL strings parsed by the database to a minimum. Because databases
typically keep a cache of SQL statements on hand for frequently accessed queries, this is an essential
part of ensuring peak database performance.

As we discussed in the “Dynamic Query Definition” section, query parameters also help to avoid
security issues caused by concatenating values into query strings. For applications exposed to the
Web, security has to be a concern at every level of an application. You can either spend a lot of effort

203

204

CHAPTER 7 1 USING QUERIES

trying to validate input parameters, or you can use query parameters and let the database do the work
for you.

When naming queries, decide on a naming strategy early in the application development cycle,
with the understanding that the query namespace is global for each persistence unit. Collisions
between query names are likely to be a common source of frustration if there is no established
naming pattern. We find it convenient and recommend prefixing the name of the query with the name
of the entity that is being returned, separated by a dot.

Finally, using named queries allows for JP QL queries to be overridden with SQL queries or even
with vendor-specificlanguages and expression frameworks. For applications migrating from an
existing object-relational mapping solution, it is quite likely that the vendor will provide some support
for invoking their existing query solution using the named query facility in JPA. We will discuss SQL
named queries in Chapter 11.

Report Queries

If youare executing queries that return entities for reporting purposes and have no intention of
modifying the results, consider executing queries using a transaction-scoped entity manager but
outside of a transaction. The persistence provider may be able to detect the lack of a transaction and
optimize the results for detachment, often by skipping some of the steps required to create an interim
managed version of the entity results.

Likewise, if an entity is expensive to construct due to eager relationships or a complex table
mapping, consider selecting individual entity properties using a projection query instead of
retrieving the full entity result. If all you need is the name and office phone number for 500
employees, selecting only those 2 fields is likely to be far more efficient than fully constructing 1,000
entity instances.

Vendor Hints

It is likely that vendors will entice youwith a variety of hints to enable different performance
optimizations for queries. Query hints may well be an essential tool in meeting your performance
expectations. If source code portability to multiple vendors is important, you should resist the urge to
embed vendor query hints in your application code. The ideal location for query hints is in an XML
mapping file (which we will be describing in Chapter 12) or at the very least as part of a named query
definition. Hints are often highly dependent on the target platform and may well have to be changed
over time as different aspects of the application impact the overall balance of performance. Keep hints
decoupled from your code if at all possible.

Stateless Session Beans

We have tried to demonstrate as many examples as possible in the context of a stateless session bean
method because we believe that this is the best way to organize queries in a Java EE application. Using
the stateless session bean has a number of benefits over simply embedding queries all over the place
in application code:

e Clients can execute queries by invoking an appropriately named business
method instead of relying on a cryptic query name or multiple copies of the same
query string.

CHAPTER 7 " USING QUERIES

e Stateless session bean methods can optimize their transaction usage depending
on whether or not the results need to be managed or detached.

e Using a transaction-scoped persistence context ensures thatlarge numbers of
entity instances don’t remain managed long after they are needed.

e For existing EJB entity bean applications, the stateless session bean is the ideal
vehicle for migrating finder queries away from the entity bean home interface.
We will discuss this technique in Chapter 15.

This is not to say that other components are unsuitable locations for issuing queries, but stateless
session beans are a well-established best practice for hosting queries in the Java EE environment.

Bulk Update and Delete

If bulk update and delete operations must be used, ensure that they are executed only in an isolated
transaction where no other changes are being made. There are many ways in which these queries can
negatively impact an active persistence context. Interweaving these queries with other non-bulk
operations requires careful management by the application.

Entity versioning and locking requires special consideration when bulk update operations are
used. Bulk delete operations can have wide ranging ramifications depending on how well the
persistence provider can react and adjust entity caching in response. Therefore, we view bulk update
and delete operations as being highly specialized, to be used with care.

Provider Differences

Take time to become familiar with the SQL that your persistence provider generates for different JP QL
queries. Although understanding SQL is not necessary for writing JP QL queries, knowing what
happens in response to the various JP QL operations is an essential part of performance tuning. Joins
in JP QL are not always explicit, and you may find yourself surprised at the complex SQL generated for
a seemingly simple JP QL query.

The benefits of features such as query paging are also dependent on the approach used by your
persistence provider. There are a number of different techniques that can be used to accomplish
pagination, many of which suffer from performance and scalability issues. Because JPA can’t dictate a
particular approach that will work well in all cases, become familiar with the approach used by your
provider and whether or notitis configurable.

Finally, understanding the provider strategy for when and how often it flushes the persistence
context is necessary before looking at optimizations such as changing the flush mode. Depending on
the caching architecture and query optimizations used by a provider, changing the flush mode may or
may not make a difference to your application.

Summary

We began this chapter with an introduction to JP QL, the query language defined by JPA. We briefly
discussed the origins of JP QL and its role in writing queries that interact with entities. We also
provided an overview of major JP QL features for developers already experienced with SQL or EJB QL.
In the discussion on executing queries, we introduced the methods for defining queries both
dynamically at runtime and statically as part of persistence unit metadata. We looked at the Query and
TypedQuery interfaces and the types of query results possible using JP QL. We also looked at parameter

205

206

CHAPTER 7 1 USING QUERIES

binding, strategies for handling large result sets and how to ensure that queries in transactions with
modified data complete successfully.

In the section on bulk update and delete we looked at how to execute these types of queries and
how to ensure that they are used safely by the application. We provided details on how persistence
providers deal with bulk operations and the impact that they have on the active persistence context.

We ended our discussion of query features with a look at query hints. We showed how to specify
hints and provided an example using hints supported by the JPA Reference Implementation.

Finally, we summarized our view of best practices relating to queries, looking at named queries,
different strategies for the various query types, as well as the implementation details that need to be
understood for different persistence providers.

In the next chapter, we will continue to focus on queries by examining JP QL in detail.

CHAPTER 8

Query Language

The Java Persistence Query Language (JP QL) is the standard query language of JPA, but was actually
spun off from the EJB Query Language (EJBQL), first introduced in EJB 2.0. JP QL is a portable query
language designed to combine the syntax and simple query semantics of SQL with the expressiveness of
an object-oriented expression language. Queries written using this language can be portably compiled to
SQL on all major database servers.

In the last chapter, we looked at programming using the query interfaces and presented a brief
introduction to JP QL for users already experienced with SQL. This chapter will explore the query
language in detail, breaking the language down piece by piece with examples to demonstrate its
features.

Introduction

In order to describe what JP QL s, it is important to make clear what it is not. JP QL is not SQL. Despite
the similarities between the two languages in terms of keywords and overall structure, there are very
important differences. Attempting to write JP QL as if it were SQL is the easiest way to get frustrated with
the language. The similarities between the two languages are intentional (giving developers a feel for
what JP QL can accomplish), but the object-oriented nature of JP QL requires a different kind of
thinking.

IfJP QL is not SQL, what is it? Put simply, JP QL is a language for querying entities. Instead of tables
and rows, the currency of the language is entities and objects. It provides us with a way to express
queries in terms of entities and their relationships, operating on the persistent state of the entity as
defined in the object model, not in the physical database model.

If JPA supports SQL queries, why introduce a new query language? There are a couple of important
reasons to consider JP QL over SQL. The first is portability. JP QL can be translated into the SQL dialects
of all major database vendors. The second is that queries are written against the domain model of
persistent entities, without any need to know exactly how those entities are mapped to the database. We
hope that the examples in this chapter will demonstrate the power present in even the simplest JP QL
expressions.

Adopting JP QL does not mean losing all the SQL features you have grown accustomed to using. A
broad selection of SQL features are directly supported, including subqueries, aggregate queries, update
and delete statements, numerous SQL functions, and more.

207

208

CHAPTER 8 "1 QUERY LANGUAGE

Terminology

Queries fall into one of four categories: select, aggregate, update, and delete. Select queries retrieve
persistent state from one or more entities, filtering results as required. Aggregate queries are variations
of select queries that group the results and produce summary data. Together, select and aggregate
queries are sometimes called report queries, since they are primarily focused on generating data for
reporting. Update and delete queries are used to conditionally modify or remove entire sets of entities.
You will find each query type described in detail in its own section of this chapter.

Queries operate on the set of entities and embeddables defined by a persistence unit. This set of
entities and embeddables is known as the abstract persistence schema, the collection of which defines
the overall domain from which results can be retrieved.

NOTE To allow this chapter to be used as a companion to the Query Language chapter of the Java Persistence
API specification, the same terminology is used where possible.

In query expressions, entities are referred to by name. If an entity has not been explicitly named
(using the name attribute of the @Entity annotation, for example), the unqualified class name is used by
default. This name is the abstract schema name of the entity in the context of a query.

Entities are composed of one or more persistence properties implemented as fields or JavaBean
properties. The abstract schema type of a persistent property on an entity refers to the class or primitive
type used to implement that property. For example, if the Employee entity has a property name of type
String, the abstract schema type of that property in query expressions is String as well. Simple
persistent properties with no relationship mapping comprise the persistent state of the entity and are
referred to as state fields. Persistent properties that are also relationships are called association fields.

As we saw in the last chapter, queries can be defined dynamically or statically. The examples in this
chapter will consist of queries that can be used either dynamically or statically, depending on the needs
of the application.

Finally, it is important to note that queries are not case-sensitive except in two cases: entity names
and property names must be specified exactly as they are named.

Example Data Model

Figure 8-1 shows the domain model for the queries in this chapter. Continuing the examples we have
been using throughout the book, it demonstrates many different relationship types, including
unidirectional, bidirectional, and self-referencing relationships. We have added the role names to this
diagram to make the relationship property names explicit.

CHAPTER 8 ! QUERY LANGUAGE

0.1 manager

Phone * Employee employees dept Dept
number: String directs id: int 0.1 id: int
type: String * 1 name: String name: String
phones employee salary: long
*“|" employee
* | project Address
) id: long
Project 0.1 street: String
— address city: String
id:int state: String
name: String zip: String
| DesignProject | | QualityProject |

Figure 8-1. Example application domain model

The object relational mappings for this model are not included in this chapter except where we
describe the SQL equivalent of a particular query. It is not necessary to know how an object is mapped in
order to write queries because the query language is based entirely on the object model and the logical
relationships between entities. It is the job of the query translator to take the object-oriented query
expressions and interpret the mapping metadata in order to produce the SQL required to execute the
query on the database.

Example Application

Learning a new language can be a challenging experience. It’s one thing to read through page after page
of text describing the features of the language, but it’s another thing completely to put these features
into practice. To get used to writing queries, consider using an application like the one shown in Listing
8-1. This simple application reads queries from the console and executes them against the entities from
a particular persistence unit.

Listing 8-1. Application for Testing Queries
package persistence;

import java.io.*;

import java.util.*;

import javax.persistence.*;

import org.apache.commons.lang.builder.*;

public class QueryTester {

209

CHAPTER 8 "1 QUERY LANGUAGE

public static void main(String[] args) throws Exception {
String unitName = args[0];

EntityManagerFactory emf =
Persistence.createEntityManagerFactory(unitName);
EntityManager em = emf.createEntityManager();
BufferedReader reader =
new BufferedReader(new InputStreamReader(System.in));

for (5;) {
System.out.print("JP QL> ");
String query = reader.readlLine();
if (query.equals("quit")) {
break;

}
if (query.length() == 0) {
continue;

try {
List result = em.createQuery(query).getResultlist();
if (result.size() > 0) {
int count = 0;
for (Object o : result) {
System.out.print(++count + " ");
printResult(o);

} else {
System.out.println("0 results returned");

}
} catch (Exception e) {
e.printStackTrace();

}

private static void printResult(Object result) throws Exception {
if (result == null) {
System.out.print("NULL");
} else if (result instanceof Object[]) {
Object[] row = (Object[]) result;
System.out.print("[");
for (int i = 0; i < row.length; i++) {
printResult(row[i]);

System.out.print("]");
} else if (result instanceof Long ||
result instanceof Double ||
result instanceof String) {
System.out.print(result.getClass().getName() +
} else {
System.out.print(ReflectionToStringBuilder.toString(result, w
ToStringStyle.SHORT PREFIX STYLE));

+ result);

210

CHAPTER 8 ! QUERY LANGUAGE

System.out.println();

The only requirement for using this application is the name of a persistence unit containing the
entities you want to query against. The application will read the persistence unit name from the
command line and attempt to create an EntityManagerFactory for that name. If initialization is
successful, queries can be typed at the JP QL> prompt. The query will be executed and the results printed
out. The format of each result is the class name followed by each of the properties for that class. This
example uses the Apache Jakarta Commons-Lang library to generate the object summary. Listing 8-2
demonstrates a sample session with the application.

Listing 8-2. Example Session with QueryTester

P QL> SELECT p FROM Phone p WHERE p.type NOT IN ('office’, 'home')

1 Phone[id=5,number=516-555-1234, type=cell,employee=Employee@13c0b53]

2 Phone[id=9,number=650-555-1234,type=cell,employee=Employee@193f6e2]

3 Phone[id=12,number=650-555-1234,type=cell,employee=Employee@®36527f]

4 Phone[1id=18,number=585-555-1234,type=cell, employee=Employee@bd6a5f]

5 Phone[id=21,number=650-555-1234,type=cell,employee=Employee@979e8b]

JP QL> SELECT d.name, AVG(e.salary) FROM Department d JOIN d.employees e w»
GROUP BY d.name

1 [java.lang.String: QA

java.lang.Double: 52500.0

2 [java.lang.String: Engineering
%'ava.lang.Double: 56833.333333333336

JP QL> quit

Select Queries

Select queries are the most significant type of query and facilitate the bulk retrieval of data from the
database. Not surprisingly, select queries are also the most common form of query used in applications.
The overall form of a select query is as follows:

SELECT <select_expression>

FROM <from_clause>

[WHERE <conditional expression>]
[ORDER BY <order by clause>]

The simplest form of a select query consists of two mandatory parts: the SELECT clause and the
FROM clause. The SELECT clause defines the format of the query results, while the FROM clause defines
the entity or entities from which the results will be obtained. Consider the following complete query that
retrieves all the employees in the company:

SELECT e
FROM Employee e

The structure of this query is very similar to a SQL query, but with a couple of important differences.
The first difference is that the domain of the query defined in the FROM clause is not a table but an
entity; in this case, the Employee entity. As in SQL, it has been aliased to the identifier e. This aliased value

211

212

CHAPTER 8 "1 QUERY LANGUAGE

is known as an identification variable and is the key by which the entity will be referred to in the rest of
the select statement. Unlike queries in SQL, where a table alias is optional, the use of identification
variables is mandatory in JP QL.

The second difference is that the SELECT clause in this example does not enumerate the fields of the
table or use a wildcard to select all the fields. Instead, only the identification variable is listed in order to
indicate that the result type of the query is the Employee entity, not a tabular set of rows.

As the query processor iterates over the result set returned from the database, it converts the tabular
row and column data into a set of entity instances. The getResultList() method of the Query interface
will return a collection of zero or more Employee objects after evaluating the query.

Despite the differences in structure and syntax, every query is translatable to SQL. In order to
execute a query, the query engine first builds an optimal SQL representation of the JP QL query. The
resulting SQL query is what actually gets executed on the database. In this simple example, the SQL
might look something like this, depending upon the mapping metadata for the Employee entity:

SELECT id, name, salary, manager_ id, dept_id, address_id
FROM emp

The SQL statement must read in all the mapped columns required to create the entity instance,
including foreign key columns. Even if the entity is cached in memory, the query engine will still
typically read all required data to ensure that the cached version is up to date. Note that, if the
relationships between the Employee and the Department or Address entities had required eager loading,
the SQL statement would either be extended to retrieve the extra data or multiple statements would have
been batched together in order to completely construct the Employee entity. Every vendor will provide
some method for displaying the SQL it generates from translating JP QL. For performance tuning in
particular, understanding how your vendor approaches SQL generation can help you write more
efficient queries.

Now that we have looked at a simple query and covered the basic terminology, the following
sections will move through each of the clauses of the select query, explaining the syntax and features
available.

SELECT Clause

The SELECT clause of a query can take several forms, including simple and complex path expressions,
scalar expressions, constructor expressions, aggregate functions, and sequences of these expression
types. The following sections introduce path expressions and discuss the different styles of SELECT
clauses and how they determine the result type of the query. We will defer discussion of scalar
expressions until exploring conditional expressions in the WHERE clause. They are fully described in the
section called “Scalar Expressions.” Aggregate functions are detailed later in the chapter in the section
called “Aggregate Queries.”

Path Expressions

Path expressions are the building blocks of queries. They are used to navigate out from an entity, either
across a relationship to another entity (or collection of entities) or to one of the persistent properties of
an entity. Navigation that results in one of the persistent state fields (either field or property) of an entity
is referred to as a state field path. Navigation that leads to a single entity is referred to as a single-valued
association path, whereas navigation to a collection of entities is referred to as a collection-valued
association path.

CHAPTER 8 ! QUERY LANGUAGE

The dot operator (.) signifies path navigation in an expression. For example, if the Employee entity
has been mapped to the identification variable e, e.name is a state field path expression resolving to the
employee name. Likewise, the path expression e.department is a single-valued association from the
employee to the department to which he or she is assigned. Finally, e.directs is a collection-valued
association that resolves to the collection of employees reporting to an employee who is also a manager.

What makes path expressions so powerful is that they are not limited to a single navigation. Instead,
navigation expressions can be chained together to traverse complex entity graphs as long as the path
moves from left to right across single-valued associations. A path cannot continue from a state field or
collection-valued association. Using this technique, we can construct path expressions such as
e.department.name, which is the name of the department to which the employee belongs. Note that path
expressions can navigate into and across embedded objects as well as normal entities. The only
restriction on embedded objects in a path expression is that the root of the path expression must begin
with an entity.

Path expressions are used in every clause of a select query, determining everything from the result
type of the query to the conditions under which the results should be filtered. Experience with path
expressions is the key to writing effective queries.

Entities and Objects

The first and simplest form of the SELECT clause is a single identification variable. The result type for a
query of this style is the entity to which the identification variable is associated. For example, the
following query returns all the departments in the company:

SELECT d
FROM Department d

The keyword OBJECT can be used to indicate that the result type of the query is the entity bound to
the identification variable. It has no impact on the query, but it can be used as a visual clue:

SELECT OBJECT(d)
FROM Department d

The only problem with using OBJECT is that even though path expressions can resolve to an entity
type, the syntax of the OBJECT keyword is limited to identification variables. The expression
OBJECT(e.department) is illegal even though Department is an entity type. For that reason, we do not
recommend the OBJECT syntax. It exists primarily for compatibility with previous versions of the
language that required the OBJECT keyword on the assumption that a future revision to SQL would
include the same terminology.

A path expression resolving to a state field or single-valued association can also be used in the
SELECT clause. The result type of the query in this case becomes the type of the path expression, either
the state field type or the entity type of a single-valued association. The following query returns the
names for all employees:

SELECT e.name
FROM Employee e

The result type of the path expression in the SELECT clause is String, so executing this query using
getResultList() will produce a collection of zero or more String objects. Path expressions resolving in
state fields can also be used as part of scalar expressions, allowing the state field to be transformed in the
query results. We will discuss this technique later in the section called “Scalar Expressions.”

Entities reached from a path expression can also be returned. The following query demonstrates
returning a different entity as a result of path navigation:

SELECT e.department

213

214

CHAPTER 8 "1 QUERY LANGUAGE

FROM Employee e

The result type of this query is the Department entity because that is the result of traversing the
department relationship from Employee to Department. Executing the query will therefore result in a
collection of zero or more Department objects, including duplicates.

To remove the duplicates, the DISTINCT operator must be used:

SELECT DISTINCT e.department
FROM Employee e

The DISTINCT operator is functionally equivalent to the SQL operator of the same name. Once the
result set is collected, duplicate values (using entity identity if the query result type is an entity) are
removed so that only unique results are returned.

The result type of a select query is the type corresponding to each row in the result set produced by
executing the query. This can include entities, primitive types, and other persistent attribute types, but
never a collection type. The following query is illegal:

SELECT d.employees
FROM Department d

The path expression d.employees is a collection-valued path that produces a collection type.
Restricting queries in this way prevents the provider from having to combine successive rows from the
database into a single result object.

It is possible to select embeddable objects navigated to in a path expression. The following query
returns only the ContactInfo embeddable objects for all the employees:

SELECT e.contactInfo
FROM Employee e

The thing to remember about selecting embeddables is that the returned objects will not be
managed. If you issue a query to return employees (select e FROM Employee e) and then from the
results navigate to their ContactInfo embedded objects, you would be obtaining embeddables that were
managed. Changes to any one of those objects would be saved when the transaction committed.
Changing any of the ContactInfo object results returned from a query that selected the ContactInfo
directly, however, would have no persistent effect.

Combining Expressions

Multiple expressions can be specified in the same SELECT clause by separating them with commas. The
result type of the query in this case is an array of type Object, where the elements of the array are the
results of resolving the expressions in the order in which they appeared in the query.

Consider the following query that returns only the name and salary of an employee:

SELECT e.name, e.salary
FROM Employee e

When this is executed, a collection of zero or more instances of arrays of type Object will be
returned. Each array in this example has two elements, the first being a String containing the employee
name and the second being a Double containing the employee salary. The practice of reporting only a
subset of the state fields from an entity is called projection because the entity data is projected out from
the entity into tabular form.

CHAPTER 8 ! QUERY LANGUAGE

Projection is a useful technique for web applications in which only a few pieces of information are
displayed from a large set of entity instances. Depending on how the entity has been mapped, it might
require a complex SQL query to fully retrieve the entity state. If only two fields are required, the extra
effort spent constructing the entity instance might have been wasted. A projection query that returns
only the minimum amount of data is more useful in these cases.

Constructor Expressions

A more powerful form of SELECT clause involving multiple expressions is the constructor expression,
which specifies that the results of the query are to be stored using a user-specified object type. Consider
the following query:

SELECT NEW example.EmployeeDetails(e.name, e.salary, e.department.name)
FROM Employee e

The result type of this query is the example.EmployeeDetails Java class. As the query processor
iterates over the results of the query, it instantiates new instances of EmployeeDetails using the
constructor that matches the expression types listed in the query. In this case, the expression types are
String, Double, and String, so the query engine will search for a constructor with those class types for
arguments. Each row in the resulting query collection is therefore an instance of EmployeeDetails
containing the employee name, salary, and department name.

The result object type must be referred to by using the fully qualified name of the object. The class
does not have to be mapped to the database in any way, however. Any class with a constructor
compatible with the expressions listed in the SELECT clause can be used in a constructor expression.

Constructor expressions are powerful tools for constructing coarse-grained data transfer objects or
view objects for use in other application tiers. Instead of manually constructing these objects, a single
query can be used to gather together view objects ready for presentation on a web page.

Inheritance and Polymorphism

JPA supports inheritance between entities. As a result, the query language supports polymorphic results
where multiple subclasses of an entity can be returned by the same query.

In the example model, Project is an abstract base class for QualityProject and DesignProject. If an
identification variable is formed from the Project entity, the query results will include a mixture of
QualityProject and DesignProject objects, and the results can be cast to these classes as necessary.
There is no special syntax to enable this behavior. The following query retrieves all projects with at least
one employee:

SELECT p
FROM Project p
WHERE p.employees IS NOT EMPTY

If we want to restrict the result of the query to a particular subclass, we can use that particular
subclass in the FROM clause instead of the root. However, if we want to restrict the results to more than
one subclass in the query but not all, we must instead use the type expression in the WHERE clause to
filter the results. A type expression consists of the keyword TYPE followed by an expression in
parentheses that resolves to an entity. The result of a type expression is the entity name, which can then
be used for comparison purposes. The advantage of a type expression is that we can distinguish between
types without relying on a discrimination mechanism in the domain model itself. The following example
demonstrates using a type expression to return only design and quality projects:

215

216

CHAPTER 8 "1 QUERY LANGUAGE

SELECT p
FROM Project p
WHERE TYPE(p) = DesignProject OR TYPE(p) = QualityProject

Note that there are no quotes around the DesignProject and QualityProject identifiers. These are
treated as entity names in JP QL, not as strings. Despite this distinction, input parameters can be used in
place of hard coded names in query strings. Input parameters are discussed later in the “Input
Parameters” section.

TIP The TYPE keyword was introduced in JPA 2.0.

The impact that inheritance between entities has on the generated SQL is important to understand
for performance reasons and will be described in Chapter 10.

FROM Clause

The FROM clause is used to declare one or more identification variables, optionally derived from joined
relationships, that form the domain over which the query should draw its results. The syntax of the
FROM clause consists of one or more identification variables and join clause declarations.

Identification Variables

The identification variable is the starting point for all query expressions. Every query must have at least
one identification variable defined in the FROM clause, and that variable must correspond to an entity
type. When an identification variable declaration does not use a path expression (that is, when it is a
single entity name), it is referred to as a range variable declaration. This terminology comes from set
theory as the variable is said to range over the entity.

Range variable declarations use the syntax <entity name> [AS] <identifier>. We have been using
this syntax in all our earlier examples, but without the optional AS keyword. The identifier must follow
the standard Java naming rules and can be referenced throughout the query in a case-insensitive
manner. Multiple declarations can be specified by separating them with commas.

Path expressions can also be aliased to identification variables in the case of joins and subqueries.
The syntax for identification variable declarations in these cases will be covered in the next two sections.

Joins

A join is a query that combines results from multiple entities. Joins in JP QL queries is logically
equivalent to the SQL join. Ultimately, once the query is translated to SQL, it is quite likely that the joins
between entities will produce similar joins among the tables to which the entities are mapped.
Understanding when joins occur is therefore important to writing efficient queries.

CHAPTER 8 ! QUERY LANGUAGE

Joins occur whenever any of the following conditions are met in a select query:

1. Two or more range variable declarations are listed in the FROM clause and
appear in the select clause.

2. TheJOIN operator is used to extend an identification variable using a path
expression.

3. Apath expression anywhere in the query navigates across an association field,
to the same or a different entity.

4. One or more where conditions compare attributes of different identification
variables.

The semantics of a join between entities are the same as SQL joins between tables. Most queries
contain a series of join conditions, which are expressions that define the rules for matching one entity to
another. Join conditions can be specified explicitly, such as using the JOIN operator in the FROM clause
of a query, or implicitly as a result of path navigation.

An inner join between two entities returns the objects from both entity types that satisfy all the join
conditions. Path navigation from one entity to another is a form of inner join. The outer join of two
entities is the set of objects from both entity types that satisfy the join conditions plus the set of objects
from one entity type (designated as the left entity) that have no matching join condition in the other.

In the absence of join conditions between two entities, queries will produce a Cartesian product.
Each object of the first entity type is paired with each object of the second entity type, squaring the
number of results'. Cartesian products are rare with JP QL queries given the navigation capabilities of
the language, but they are possible if two range variable declarations in the FROM clause are specified
without additional conditions specified in the WHERE clause.

Further discussion and examples of each join style are provided in the following sections.

Inner Joins

All the example queries so far have been using the simplest form of FROM clause, a single entity type
aliased to an identification variable. However, as a relational language, JP QL supports queries that draw
on multiple entities and the relationships between them.

Inner joins between two entities can be specified in one of the ways that were listed previously. The
first and preferred form, because it is explicit and obvious that a join is occurring, is the JOIN operator in
the FROM clause. Another form requires multiple range variable declarations in the FROM clause and
WHERE clause conditions to provide the join conditions.

JOIN Operator and Collection Association Fields

The syntax of an inner join using the JOIN operator is [INNER] JOIN <path_expression> [AS]
<identifier>. Consider the following query:

SELECT p
FROM Employee e JOIN e.phones p

' The exact number of results will be M * N, where M is the number of entity instances of the first type
and N is the number of entity instances of the second type.

217

CHAPTER 8 "1 QUERY LANGUAGE

This query uses the JOIN operator to join the Employee entity to the Phone entity across the phones
relationship. The join condition in this query is defined by the object-relational mapping of the phones
relationship. No additional criteria need to be specified in order to link the two entities. By joining the
two entities together, this query returns all the Phone entity instances associated with employees in the
company.

The syntax for joins is similar to the JOIN expressions supported by ANSI SQL. For readers who
might not be familiar with this syntax, consider the equivalent SQL form of the previous query written
using the traditional join form:

SELECT p.id, p.phone_num, p.type, p.emp_id
FROM emp e, phone p
WHERE e.id = p.emp_id

The table mapping for the Phone entity replaces the expression e.phones. The WHERE clause also
includes the criteria necessary to join the two tables together across the join columns defined by the
phones mapping.

Note that the phones relationship has been mapped to the identification variable p. Even though the
Phone entity does not directly appear in the query, the target of the phones relationship is the Phone entity,
and this determines the identification variable type. This implicit determination of the identification
variable type can take some getting used to. Familiarity with how relationships are defined in the object
model is necessary to navigate through a written query.

Each occurrence of p outside of the FROM clause now refers to a single phone owned by an
employee. Even though a collection association field was specified in the JOIN clause, the identification
variable is really referring to entities reached by that association, not the collection itself. The variable
can now be used as if the Phone entity were listed directly in the FROM clause. For example, instead of
returning Phone entity instances, phone numbers can be returned instead:

SELECT p.number
FROM Employee e JOIN e.phones p

In the definition of path expressions earlier, it was noted that a path couldn’t continue from a state
field or collection association field. To work around this situation, the collection association field must
be joined in the FROM clause so that a new identification variable is created for the path, allowing it to
be the root for new path expressions.

IN versus JOIN

EJBQL as defined by the EJB 2.0 and EJB 2.1 specifications used a special operator IN in the FROM clause to map
collection associations to identification variables. Support for this operator was carried over to JP QL. The
equivalent form of the query used earlier in this section might be specified as

SELECT DISTINCT p
FROM Employee e, IN(e.phones) p

The IN operator is intended to indicate that the variable p is an enumeration of the phones collection. The JOIN
operator is a more powerful and expressive way to declare relationships and is the recommended operator for
queries.

218

CHAPTER 8 ! QUERY LANGUAGE

JOIN Operator and Single-Valued Association Fields

The JOIN operator works with both collection-valued association path expressions and single-valued
association path expressions. Consider the following example:

SELECT d
FROM Employee e JOIN e.department d

This query defines a join from Employee to Department across the department relationship. This is
semantically equivalent to using a path expression in the SELECT clause to obtain the department for
the employee. For example, the following query should result in similar if not identical SQL
representations involving a join between the Employee and Department entities:

SELECT e.department
FROM Employee e

The primary use case for using a single-valued association path expression in the FROM clause
(rather than just using a path expression in the SELECT clause) is for outer joins. Path navigation is
equivalent to the inner join of all associated entities traversed in the path expression.

The possibility of implicit inner joins resulting from path expressions is something that developers
should be aware of. Consider the following example that returns the distinct departments based in
California that are participating in the “Releasel” project:

SELECT DISTINCT e.department

FROM Project p JOIN p.employees e

WHERE p.name = 'Releasel’ AND
e.address.state = 'CA’

There are actually four logical joins here, not two. The translator will treat the query as if it had been
written with explicit joins between the various entities. We will cover the syntax for multiple joins later in
the “Multiple Joins” section, but for now consider the following query that is equivalent to the previous
query, reading the join conditions from left to right:

SELECT DISTINCT d
FROM Project p JOIN p.employees e JOIN e.department d JOIN e.address a
WHERE p.name = 'Release1’ AND

a.state = 'CA'

We say four logical joins because the actual physical mapping might involve more tables. In this
case, the Employee and Project entities are related via a many-to-many association using a join table.
Therefore the actual SQL for such a query uses five tables, not four:

SELECT DISTINCT d.id, d.name
FROM project p, emp_projects ep, emp e, dept d, address a
WHERE p.id = ep.project_id AND

ep.emp_id = e.id AND

e.dept _id = d.id AND

e.address id = a.id AND

p.name = 'Releasel' AND

a.state = 'CA'

The first form of the query is certainly easier to read and understand. However, during performance
tuning, it might be helpful to understand how many joins can occur as the result of seemingly trivial
path expressions.

219

220

CHAPTER 8 "1 QUERY LANGUAGE

Join Conditions in the WHERE Clause

SQL queries have traditionally joined tables together by listing the tables to be joined in the FROM
clause and supplying criteria in the WHERE clause of the query to determine the join conditions. To join
two entities without using a relationship, use a range variable declaration for each entity in the FROM
clause.

The previous join example between the Employee and Department entities could also have been
written like this:

SELECT DISTINCT d
FROM Department d, Employee e
WHERE d = e.department

This style of query is usually used to compensate for the lack of an explicit relationship between two
entities in the domain model. For example, there is no association between the Department entity and
the Employee who is the manager of the department. We can use a join condition in the WHERE clause to
make this possible:

SELECT d, m

FROM Department d, Employee m

WHERE d = m.department AND
m.directs IS NOT EMPTY

In this example, we are using one of the special collection expressions, IS NOT EMPTY, to check that
the collection of direct reports to the employee is not empty. Any employee with a non-empty collection
of directs is by definition a manager.

Multiple Joins

More than one join can be cascaded if necessary. For example, the following query returns the distinct
set of projects belonging to employees who belong to a department:

SELECT DISTINCT p
FROM Department d JOIN d.employees e JOIN e.projects p

The query processor interprets the FROM clause from left to right. Once a variable has been
declared, it can be subsequently referenced by other JOIN expressions. In this case, the projects
relationship of the Employee entity is navigated once the employee variable has been declared.

Map Joins

A path expression that navigates across a collection-valued association implemented as a Map is a special
case. Unlike a normal collection, each item in a map corresponds to two pieces of information: the key
and the value. When working with JP QL, it is important to note that identification variables based on
maps refer to the value by default. For example, consider the case where the phones relationship of the
Employee entity is modeled as a map, where the key is the number type (work, cell, home, etc.) and the
value is the phone number. The following query enumerates the phone numbers for all employees:

SELECT e.name, p
FROM Employee e JOIN e.phones p

This behavior can be highlighted explicitly through the use of the VALUE keyword. For example, the
preceding query is functionally identical to the following:

SELECT e.name, VALUE(p)

CHAPTER 8 ! QUERY LANGUAGE

FROM Employee e JOIN e.phones p

To access the key instead of the value for a given map item, we can use the KEY keyword to override
the default behavior and return the key value for a given map item. The following example demonstrates
adding the phone type to the previous query:

SELECT e.name, KEY(p), VALUE(p)
FROM Employee e JOIN e.phones p
WHERE KEY(p) IN ('Work', 'Cell")

Finally, in the event that we want both the key and the value returned together in the form of a
java.util.Map.Entry object, we can specify the ENTRY keyword in the same fashion. Note that the
ENTRY keyword can only be used in the SELECT clause. The KEY and VALUE keywords can also be used
as part of conditional expressions in the WHERE and HAVING clauses of the query.

Note that in each of the map join examples we joined an entity against one of its Map attributes and
came out with a key, value or key-value pair (entry). However, when viewed from the perspective of the
tables, the join is only ever done at the level of the source entity primary key and the values in the Map.
No facility is currently available in JPA to join the source entity against the keys of the Map.

TIP The KEY, VALUE, and ENTRY keywords for map operations were introduced in JPA 2.0. In JPA 1.0, Maps
could only contain entities, and a path expression that resolved to a Map always referred to the entity values of
the Map.

Outer Joins

An outer join between two entities produces a domain in which only one side of the relationship is
required to be complete. In other words, the outer join of Employee to Department across the employee
department relationship returns all employees and the department to which the employee has been
assigned, but the department is returned only if it is available. This is in contrast with an inner join that
would return only those employees assigned to a department.

An outer join is specified using the following syntax: LEFT [OUTER] JOIN <path_expression> [AS]
<identifier>. The following query demonstrates an outer join between two entities:

SELECT e, d
FROM Employee e LEFT JOIN e.department d

If the employee has not been assigned to a department, the department object (the second element
of the Object array) will be null. If you are familiar with Oracle SQL, you will see that the previous query
would be equivalent to the following:

SELECT e.id, e.name, e.salary, e.manager_id, e.dept_id, e.address_id,
d.id, d.name

FROM emp e, dept d

WHERE e.dept id = d.id (+)

221

222

CHAPTER 8 "1 QUERY LANGUAGE

Fetch Joins

Fetch joins are intended to help application designers optimize their database access and prepare query
results for detachment. They allow queries to specify one or more relationships that should be navigated
and prefetched by the query engine so that they are not lazy loaded later at runtime.

For example, if we have an Employee entity with a lazy loading relationship to its address, the
following query can be used to indicate that the relationship should be resolved eagerly during query
execution:

SELECT e
FROM Employee e JOIN FETCH e.address

Note that no identification variable is set for the e.address path expression. This is because even
though the Address entity is being joined in order to resolve the relationship, it is not part of the result
type of the query. The result of executing the query is still a collection of Employee entity instances,
except that the address relationship on each entity will not cause a secondary trip to the database when
itis accessed. This also allows the address relationship to be accessed safely if the Employee entity
becomes detached. A fetch join is distinguished from a regular join by adding the FETCH keyword to the
JOIN operator.

In order to implement fetch joins, the provider needs to turn the fetched association into a regular
join of the appropriate type: inner by default or outer if the LEFT keyword was specified. The SELECT
expression of the query also needs to be expanded to include the joined relationship. Expressed in JP
QL, an equivalent provider interpretation of the previous fetch join example would look like:

SELECT e, a
FROM Employee e JOIN e.address a

The only difference is that the provider does not actually return the Address entities to the caller.
Because the results are processed from this query, the query engine creates the Address entity in
memory and assigns it to the Employee entity, but then drops it from the result collection that it builds for
the client. This eagerly loads the address relationship, which can then get accessed normally via the
Employee entity.

A consequence of implementing fetch joins in this way is that fetching a collection association
results in duplicate results. For example, consider a department query where the employees relationship
of the Department entity is eagerly fetched. The fetch join query, this time using an outer join to ensure
that departments without employees are retrieved, would be written as follows:

SELECT d
FROM Department d LEFT JOIN FETCH d.employees

Expressed in JP QL, the provider interpretation would replace the fetch with an outer join across the
employees relationship:

SELECT d, e
FROM Department d LEFT JOIN d.employees e

Once again, as the results are processed, the Employee entity is constructed in memory but dropped
from the result collection. Each Department entity now has a fully resolved employees collection, but the
client receives one reference to each department per employee. For example, if four departments with
five employees each were retrieved, the result would be a collection of 20 Department instances, with
each department duplicated 5 times. The actual entity instances all point back to the same managed
versions, but the results are somewhat odd at the very least.

To eliminate the duplicate values, either the DISTINCT operator must be used or the results must be
placed into a data structure such as a Set. Because it is not possible to write a SQL query that uses the
DISTINCT operator while preserving the semantics of the fetch join, the provider will have to eliminate

CHAPTER 8 ! QUERY LANGUAGE

duplicates in memory after the results have been fetched. This could have performance implications for
large result sets.

Given the somewhat peculiar results generated from a fetch join to a collection, it might not be the
most appropriate way to eagerly load related entities in all cases. If a collection requires eager fetching
on a regular basis, consider making the relationship eager by default. Some persistence providers also
offer batch reads as an alternative to fetch joins that issue multiple queries in a single batch and then
correlate the results to eagerly load relationships.

WHERE Clause

The WHERE clause of a query is used to specify filtering conditions to reduce the result set. In this
section, we will explore the features of the WHERE clause and the types of expressions that can be
formed to filter query results.

The definition of the WHERE clause is deceptively simple. It is simply the keyword WHERE, followed
by a conditional expression. However, as the following sections demonstrate, JP QL supports a powerful
set of conditional expressions to filter the most sophisticated of queries.

Input Parameters

Input parameters for queries can be specified using either positional or named notation. Positional
notation is defined by prefixing the variable number with a question mark. Consider the following query:

SELECT e
FROM Employee e
WHERE e.salary > ?1

Using the Query interface, any double value, or value that is type-compatible with the salary
attribute, can be bound into the first parameter in order to indicate the lower limit for employee salaries
in this query. The same positional parameter can occur more than once in the query. The value bound
into the parameter will be substituted for each of its occurrences.

Named parameters are specified using a colon followed by an identifier. Here is the same query, this
time using a named parameter:

SELECT e
FROM Employee e
WHERE e.salary > :sal

Input parameters were covered in detail in Chapter 7.

Basic Expression Form

Much of the conditional expression support in JP QL is borrowed directly from SQL. This is intentional
and helps to ease the transition for developers already familiar with SQL. The key difference between
conditional expressions in JP QL and SQL is that JP QL expressions can leverage identification variables
and path expressions to navigate relationships during expression evaluation.

Conditional expressions are constructed in the same style as SQL conditional expressions, using a
combination of logical operators, comparison expressions, primitive and function operations on fields,
and so on. Although a summary of the operators is provided later, the grammar for conditional
expressions is not repeated here. The JPA specification contains the grammar in Backus-Naur form
(BNF) and is the place to look for the exact rules about using basic expressions. The following sections

223

224

CHAPTER 8 "1 QUERY LANGUAGE

do, however, explain the higher-level operators and expressions, particularly those unique to JP QL, and
they provide examples for each.

Literal syntax is also similar to SQL (see the “Literals” section).

Operator precedence is as follows:

1. Navigation operator (.)

Unary +/-

Addition (+) and subtraction (-)

Comparison operators: =, >, >=, <, <=, <>, [NOT] BETWEEN, [NOT] LIKE, [NOT]
IN, IS [NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF]

6. Logical operators (AND, OR, NOT)

2
3. Multiplication (*) and division (/)
4
5

BETWEEN Expressions

The BETWEEN operator can be used in conditional expressions to determine whether the result of an
expression falls within an inclusive range of values. Numeric, string, and date expressions can be
evaluated in this way. Consider the following example:

SELECT e
FROM Employee e
WHERE e.salary BETWEEN 40000 AND 45000

Any employee making $40,000 to $45,000 inclusively is included in the results. This is identical to
the following query using basic comparison operators:

SELECT e
FROM Employee e
WHERE e.salary >= 40000 AND e.salary <= 45000

The BETWEEN operator can also be negated with the NOT operator.

LIKE Expressions

JP QL supports the SQL LIKE condition to provide for a limited form of string pattern matching. Each
LIKE expression consists of a string expression to be searched, and a pattern string and optional escape
sequence that defines the match conditions. The wildcard characters used by the pattern string are the
underscore (_) for single character wildcards and the percent sign (%) for multicharacter wildcards.

SELECT d
FROM Department d
WHERE d.name LIKE '_ Eng%'

We are using a prefix of two underscore characters to wildcard the first two characters of the string
candidates, so example department names to match this query would be “CAEngOtt” or “USEngCal”,
but not “CADocOtt”. Note that pattern matches are case-sensitive.

If the pattern string contains an underscore or percent sign that should be literally matched, the
ESCAPE clause can be used to specify a character that, when prefixing a wildcard character, indicates
that it should be treated literally:

SELECT d

CHAPTER 8 ! QUERY LANGUAGE

FROM Department d
WHERE d.name LIKE 'QA\ %' ESCAPE '\'

Escaping the underscore makes it a mandatory part of the expression. For example, “QA_East”
would match, but “QANorth” would not.

Subqueries

Subqueries can be used in the WHERE and HAVING clauses of a query. A subquery is a complete select
query inside a pair of parentheses that is embedded within a conditional expression. The results of
executing the subquery (which will be either a scalar result or a collection of values) are then evaluated
in the context of the conditional expression. Subqueries are a powerful technique for solving the most
complex query scenarios.

Consider the following query:

SELECT e

FROM Employee e

WHERE e.salary = (SELECT MAX(emp.salary)
FROM Employee emp)

This query returns the employee with the highest salary from among all employees. A subquery
consisting of an aggregate query (described later in this chapter) is used to return the maximum salary
value, and then this result is used as the key to filter the employee list by salary. A subquery can be used
in most conditional expressions and can appear on either the left or right side of an expression.

The scope of an identifier variable name begins in the query where it is defined and extends down
into any subqueries. Identifiers in the main query can be referenced by a subquery, and identifiers
introduced by a subquery can be referenced by any subquery that it creates. If a subquery declares an
identifier variable of the same name, it overrides the parent declaration and prevents the subquery from
referring to the parent variable. In the previous example, the declaration of the identification variable e
in the subquery overrides the same declaration from the parent query.

NOTE Overriding an identification variable name in a subquery is not guaranteed to be supported by all
providers. Unique names should be used to ensure portability.

The ability to refer to a variable from the main query in the subquery allows the two queries to be
correlated. Consider the following example:

SELECT e
FROM Employee e
WHERE EXISTS (SELECT 1
FROM Phone p
WHERE p.employee = e AND p.type = 'Cell')

This query returns all the employees who have a cell phone number. This is also an example of a
subquery that returns a collection of values. The EXISTS expression in this example returns true if any
results are returned by the subquery. Returning the literal 1 from the subquery is a standard practice
with EXISTS expressions because the actual results selected by the subquery do not matter; only the
number of results is relevant. Note that the WHERE clause of the subquery references the identifier
variable e from the main query and uses it to filter the subquery results. Conceptually, the subquery can

225

226

CHAPTER 8 "1 QUERY LANGUAGE

be thought of as executing once for each employee. In practice, many database servers will optimize
these types of queries into joins or inline views in order to maximize performance.

This query could also have been written using a join between the Employee and Phone entities with
the DISTINCT operator used to filter the results. The advantage in using the correlated subquery is that
the main query remains unburdened by joins to other entities. Quite often if a join is used only to filter
the results, there is an equivalent subquery condition that can alternately be used in order to remove
constraints on the join clause of the main query or even to improve query performance.

The FROM clause of a subquery can also create new identification variables out of path expressions
using an identification variable from the main query. For example, the previous query could also have
been written as follows:

SELECT e
FROM Employee e
WHERE EXISTS (SELECT 1
FROM e.phones p
WHERE p.type = 'Cell')

In this version of the query, the subquery uses the collection association path phones from the
Employee identification variable e in the subquery. This is then mapped to a local identification variable p
that is used to filter the results by phone type. Each occurrence of p refers to a single phone associated
with the employee.

To better illustrate how the translator handles this query, consider the equivalent query written in
SQL:

SELECT e.id, e.name, e.salary, e.manager_id, e.dept_id, e.address_id
FROM emp e
WHERE EXISTS (SELECT 1
FROM phone p
WHERE p.emp_id = e.id AND
p.type = 'Cell')

The expression e.phones is converted to the table mapped by the Phone entity. The WHERE clause
for the subquery then adds the necessary join condition to correlate the subquery to the primary query,
in this case the expression p.emp_id = e.id. The join criteria applied to the PHONE table results in all the
phones owned by the related employee.

IN Expressions

The IN expression can be used to check whether a single-valued path expression is a member of a
collection. The collection can be defined inline as a set of literal values or can be derived from a
subquery. The following query demonstrates the literal notation by selecting all the employees who live
in New York or California:

SELECT e
FROM Employee e
WHERE e.address.state IN ('NY', 'CA")

The subquery form of the expression is similar, replacing the literal list with a nested query. The
following query returns employees who work in departments that are contributing to projects beginning
with the prefix “QA”:

SELECT e
FROM Employee e
WHERE e.department IN (SELECT DISTINCT d
FROM Department d JOIN d.employees de JOIN de.projects p

CHAPTER 8 ! QUERY LANGUAGE

WHERE p.name LIKE 'QA%')

The IN expression can also be negated using the NOT operator. For example, the following query
returns all the Phone entities with a phone number other than office or home:

SELECT p
FROM Phone p
WHERE p.type NOT IN ('Office', 'Home')

Collection Expressions

The IS EMPTY operator is the logical equivalent of IS NULL for collections. Queries can use the IS
EMPTY operator or its negated form IS NOT EMPTY to check whether a collection association path
resolves to an empty collection or has at least one value. For example, the following query returns all
employees who are managers by virtue of having at least one direct report:

SELECT e
FROM Employee e
WHERE e.directs IS NOT EMPTY

Note that IS EMPTY expressions are translated to SQL as subquery expressions. The query translator
can make use of an aggregate subquery or use the SQL EXISTS expression. Therefore the following query
is equivalent to the previous one:

SELECT m
FROM Employee m
WHERE (SELECT COUNT(e)
FROM Employee e
WHERE e.manager = m) > 0

The MEMBER OF operator and its negated form NOT MEMBER OF are a shorthand way of checking
whether an entity is a member of a collection association path. The following query returns all managers
who are incorrectly entered as reporting to themselves:

SELECT e
FROM Employee e
WHERE e MEMBER OF e.directs

A more typical use of the MEMBER OF operator is in conjunction with an input parameter. For
example, the following query selects all employees who are assigned to a designated project:

SELECT e
FROM Employee e
WHERE :project MEMBER OF e.projects

Like the IS EMPTY expression, the MEMBER OF expression will be translated to SQL using either an
EXISTS expression or the subquery form of the IN expression. The previous example is equivalent to the
following query:

SELECT e
FROM Employee e
WHERE :project IN (SELECT p
FROM e.projects p)

227

228

CHAPTER 8 "1 QUERY LANGUAGE

EXISTS Expressions

The EXISTS condition returns true if a subquery returns any rows. Examples of EXISTS were
demonstrated earlier in the introduction to subqueries. The EXISTS operator can also be negated with
the NOT operator. The following query selects all employees who do not have a cell phone:

SELECT e
FROM Employee e
WHERE NOT EXISTS (SELECT p
FROM e.phones p
WHERE p.type = 'Cell")

ANY, ALL, and SOME Expressions

The ANY, ALL, and SOME operators can be used to compare an expression to the results of a subquery.
Consider the following example:

SELECT e
FROM Employee e
WHERE e.directs IS NOT EMPTY AND
e.salary < ALL (SELECT d.salary
FROM e.directs d)

This query returns all the managers who are paid less than all the employees who work for them.
The subquery is evaluated, and then each value of the subquery is compared to the left-hand expression,
in this case the manager salary. When the ALL operator is used, the comparison between the left side of
the equation and all subquery results must be true for the overall condition to be true.

The ANY operator behaves similarly, but the overall condition is true as long as at least one of the
comparisons between the expression and the subquery result is true. For example, if ANY were specified
instead of ALL in the previous example, the result of the query would be all the managers who were paid
less than at least one of their employees. The SOME operator is an alias for the ANY operator.

There is symmetry between IN expressions and the ANY operator. Consider the following variation
of the project department example used previously:

SELECT e

FROM Employee e

WHERE e.department = ANY (SELECT DISTINCT d
FROM Department d JOIN d.employees de JOIN de.projects p
WHERE p.name LIKE 'QA%")

Scalar Expressions

A scalar expression is a literal value, arithmetic sequence, function expression, type expression, or case
expression that resolves to a single scalar value. It can be used in the SELECT clause to format projected
fields in report queries or as part of conditional expressions in the WHERE or HAVING clause of a query.
Subqueries that resolve to scalar values are also considered scalar expressions, but can be used only
when composing criteria in the WHERE clause of a query. Subqueries can never be used in the SELECT
clause.

CHAPTER 8 ! QUERY LANGUAGE

TIP The option to place scalar expressions in the SELECT clause was introduced in JPA 2.0.

Literals

There are a number of different literal types that can be used in JP QL, including strings, numerics,
booleans, enums, entity types, and temporal types.

Throughout this chapter, we have seen many examples of string, integer, and boolean literals. Single
quotes are used to demarcate string literals and escaped within a string by prefixing the quote with
another single quote. Exact and approximate numerics can be defined according to the conventions of
the Java programming language or by using the standard SQL-92 syntax. Boolean values are represented
by the literals TRUE and FALSE.

Queries can reference Java enum types by specifying the fully qualified name of the enum class. The
following example demonstrates using an enum in a conditional expression, using the PhoneType enum
demonstrated in Listing 5-8 from Chapter 5:

SELECT e
FROM Employee e JOIN e.phoneNumbers p
WHERE KEY(p) = com.acme.PhoneType.Home

An entity type is just the entity name of some defined entity, and is valid only when used with the
TYPE operator. Quotes are not used. See the “Inheritance and Polymorphism” section for examples of
when to use an entity type literal.

Temporal literals are specified using the JDBC escape syntax, which defines that curly braces
enclose the literal. The first character in the sequence is either a “d” or a “t” to indicate that the literal is a
date or time, respectively. If the literal represents a timestamp, “ts” is used instead. Following the type
indicator is a space separator, and then the actual date, time, or timestamp information wrapped in
single quotes. The general forms of the three temporal literal types, with accompanying examples are as
follows:

d '2009-11-05"}
t '12-45-52"}
{ts '2009-11-05 12-45-52.325"}

{d "yyyy-mm-dd'} e.g.
{t 'hh-mm-ss'} e.g.
{ts 'yyyy-mm-dd hh-mm-ss.f'} e.g.

e

All the temporal information within single quotes is expressed as digits. The fractional part of the
timestamp (the “.f” part) can be multiple digits long and is optional.

When using any of these temporal literals remember that they are interpreted only by drivers that
support the JDBC escape syntax. The provider will not normally try to translate or preprocess temporal
literals.

TIP Support for Java enum literals, entity type literals and temporal literals was added in JPA 2.0.

229

230

CHAPTER 8 "1 QUERY LANGUAGE

Function Expressions

Scalar expressions can leverage functions that can be used to transform query results. Table 8-1
summarizes the syntax for each of the supported function expressions.

Table 8-1. Supported Function Expressions

Function

Description

ABS(number)

CONCAT (stringl, string2)
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
INDEX(identification variable)
LENGTH(string)

LOCATE(stringl, string2 [, start])

LOWER(string)

MOD (numberl, number2)
SIZE(collection)

SQRT (number)

SUBSTRING(string, start, end)

UPPER(string)

TRIM([[LEADING|TRAILING|BOTH]

[char] FROM] string)

The ABS function returns the unsigned version of the number
argument. The result type is the same as the argument type
(integer, float, or double).

The CONCAT function returns a new string that is the
concatenation of its arguments, stringl and string2.

The CURRENT_DATE function returns the current date as
defined by the database server.

The CURRENT_TIME function returns the current time as
defined by the database server.

The CURRENT_TIMESTAMP function returns the current
timestamp as defined by the database server.

The INDEX function returns the position of an entity within an
ordered list.

The LENGTH function returns the number of characters in the
string argument.

The LOCATE function returns the position of stringl in string2,
optionally starting at the position indicated by start. The result
is zero if the string cannot be found.

The LOWER function returns the lowercase form of the string
argument.

The MOD function returns the modulus of numeric arguments
numberl and number2 as an integer.

The SIZE function returns the number of elements in the
collection, or zero if the collection is empty.

The SQRT function returns the square root of the number
argument as a double.

The SUBSTRING function returns a portion of the input string,
starting at the index indicated by start up to length characters.
String indexes are measured starting from one.

The UPPER function returns the uppercase form of the string
argument.

The TRIM function removes leading and/or trailing characters
from a string. If the optional LEADING, TRAILING, or BOTH
keyword is not used, both leading and trailing characters are
removed. The default trim character is the space character.

CHAPTER 8 ! QUERY LANGUAGE

The SIZE function requires special attention because it is shorthand notation for an aggregate
subquery. For example, consider the following query that returns all departments with only two
employees:

SELECT d
FROM Department d
WHERE SIZE(d.employees) = 2

Like the collection expressions IS EMPTY and MEMBER OF, the SIZE function will be translated to
SQL using a subquery. The equivalent form of the previous example using a subquery is as follows:

SELECT d
FROM Department d
WHERE (SELECT COUNT(e)
FROM d.employees e) = 2

The use case for the INDEX function might not be obvious at first. When using ordered collections,
each element of the collection actually contains two pieces of information: the value stored in the
collection and its numeric position within the collection. Queries can use the INDEX function to
determine the numeric position of an element in a collection and then use that number for reporting or
filtering purposes. For example, if the phone numbers for an employee are stored in priority order, the
following query would return the first (and most important) number for each employee:

SELECT e.name, p.number
FROM Employee e JOIN e.phones p
WHERE INDEX(p) = 0

CASE Expressions

The JP QL case expression is an adaptation of the ANSI SQL-92 CASE expression taking into account the
capabilities of the JP QL language. Case expressions are powerful tools for introducing conditional logic
into a query, with the benefit that the result of a case expression can be used anywhere a scalar
expression is valid.

TIP CASE expressions were introduced in JPA 2.0.

Case expressions are available in four forms, depending on the flexibility required by the query. The
first and most flexible form is the general case expression. All other case expression types can be
composed in terms of the general case expression. It has the following form:

CASE {WHEN <cond_expr> THEN <scalar_expr>}+ ELSE <scalar_expr> END

The heart of the case expression is the WHEN clause, of which there must be at least one. The query
processor resolves the conditional expression of each WHEN clause in order until it finds one that is
successful. It then evaluates the scalar expression for that WHEN clause and returns it as the result of the
case expression. If none of the WHEN clause conditional expressions yields a true result, the scalar
expression of the ELSE clause is evaluated and returned instead. The following example demonstrates
the general case expression, enumerating the name and type of each project that has employees
assigned to it:

231

CHAPTER 8 "1 QUERY LANGUAGE

SELECT p.name,
CASE WHEN TYPE(p) = DesignProject THEN 'Development'
WHEN TYPE(p) = QualityProject THEN 'QA'
ELSE 'Non-Development’
END
FROM Project p
WHERE p.employees IS NOT EMPTY

Note the use of the case expression as part of the select clause. Case expressions are a powerful tool
for transforming entity data in report queries.

A slight variation on the general case expression is the simple case expression. Instead of checking a
conditional expression in each WHEN clause, it identifies a value and resolves a scalar expression in
each WHEN clause. The first to match the value triggers a second scalar expression that becomes the
value of the case expression. It has the following form:

CASE <value> {WHEN <scalar_expri> THEN <scalar_expr2>}+ ELSE <scalar_expr> END

The <value> in this form of the expression is either a path expression leading to a state field or a type
expression for polymorphic comparison. We can simplify the last example by converting it to a simple
case expression:

SELECT p.name,
CASE TYPE(p)
WHEN DesignProject THEN 'Development’
WHEN QualityProject THEN 'QA'
ELSE 'Non-Development'
END
FROM Project p
WHERE p.employees IS NOT EMPTY

The third form of the case expression is the coalesce expression. This form of the case expression
accepts a sequence of one or more scalar expressions. It has the following form:

COALESCE(<scalar_expr> {,<scalar_expr>}+)

The scalar expressions in the COALESCE expression are resolved in order. The first one to return a
non-null value becomes the result of the expression. The following example demonstrates this usage,
returning either the descriptive name of each department or the department identifier if no name has
been defined:

SELECT COALESCE(d.name, d.id)
FROM Department d

The fourth and final form of the case expression is somewhat unusual. It accepts two scalar
expressions and resolves both of them. If the results of the two expressions are equal, the result of the
expression is null. Otherwise it returns the result of the first scalar expression. This form of the case
expression is identified by the NULLIF keyword:

NULLIF(<scalar expril>, <scalar expr2>)

One useful trick with NULLIF is to exclude results from an aggregate function. For example, the
following query returns a count of all departments and a count of all departments not named ‘QA’:

SELECT COUNT(*), COUNT(NULLIF(d.name, 'QA'))
FROM Department d

232

CHAPTER 8 ! QUERY LANGUAGE

If the department name is ‘QA’, NULLIF will return NULL, which will then be ignored by the
COUNT function. Aggregate functions ignore NULL values, and are described later in the “Aggregate
Queries” section.

ORDER BY Clause

Queries can optionally be sorted using one or more expressions consisting of identification variables,
result variables, a path expression resolving to a single entity, or a path expression resolving to a
persistent state field. The optional keywords ASC or DESC after the expression can be used to indicate
ascending or descending sorts, respectively. The default sort order is ascending.

The following example demonstrates sorting by a single field:

SELECT e
FROM Employee e
ORDER BY e.name DESC

Multiple expressions can also be used to refine the sort order:

SELECT e, d
FROM Employee e JOIN e.department d
ORDER BY d.name, e.name DESC

A result variable can be declared in the SELECT clause for the purpose of specifying an item to be
ordered. A result variable is effectively an alias for its assigned selection item. It saves the ORDER BY
clause from having to duplicate path expressions from the SELECT clause and permits referencing
computed selection items and items that use aggregate functions. The following query defines two result
variables in the SELECT clause and then uses them to order the results in the ORDER BY clause:

SELECT e.name, e.salary * 0.05 AS bonus, d.name AS deptName
FROM Employee e JOIN e.department d
ORDER BY deptName, bonus DESC

If the SELECT clause of the query uses state field path expressions, the ORDER BY clause is limited
to the same path expressions used in the SELECT clause. For example, the following query is not legal:

SELECT e.name
FROM Employee e
ORDER BY e.salary DESC

Because the result type of the query is the employee name, which is of type String, the remainder of
the Employee state fields are no longer available for ordering.

Aggregate Queries

An aggregate query is a variation of a normal select query. An aggregate query groups results and applies
aggregate functions to obtain summary information about query results. A query is considered an
aggregate query if it uses an aggregate function or possesses a GROUP BY clause and/or a HAVING
clause. The most typical form of aggregate query involves the use of one or more grouping expressions
and aggregate functions in the SELECT clause paired with grouping expressions in the GROUP BY
clause. The syntax of an aggregate query is as follows:

SELECT <select_expression>
FROM <from_clause>
[WHERE <conditional expression>]

233

234

CHAPTER 8 "1 QUERY LANGUAGE

[GROUP BY <group_by clause>]
[HAVING <conditional expression>]
[ORDER BY <order by clause>]

The SELECT, FROM, and WHERE clauses behave much the same as previously described under
select queries, with the exception of some restrictions on how the SELECT clause is formulated.

The power of an aggregate query comes from the use of aggregate functions over grouped data.
Consider the following simple aggregate example:

SELECT AVG(e.salary)
FROM Employee e

This query returns the average salary of all employees in the company. AVG is an aggregate function
that takes a numeric state field path expression as an argument and calculates the average over the
group. Because there was no GROUP BY clause specified, the group here is the entire set of employees.
This was the only form of aggregate query supported by EJB QL as defined in the EJB 2.1 specification.

Now consider this variation, where the result has been grouped by the department name:

SELECT d.name, AVG(e.salary)
FROM Department d JOIN d.employees e
GROUP BY d.name

This query returns the name of each department and the average salary of the employees in that
department. The Department entity is joined to the Employee entity across the employees relationship and
then formed into a group defined by the department name. The AVG function then calculates its result
based on the employee data in this group.

This can be extended further to filter the data so that manager salaries are not included:

SELECT d.name, AVG(e.salary)

FROM Department d JOIN d.employees e
WHERE e.directs IS EMPTY

GROUP BY d.name

Finally, we can extend this one last time to return only the departments where the average salary is
greater than $50,000. Consider the following version of the previous query:

SELECT d.name, AVG(e.salary)

FROM Department d JOIN d.employees e
WHERE e.directs IS EMPTY

GROUP BY d.name

HAVING AVG(e.salary) > 50000

To understand this query better, let’s go through the logical steps that took place to execute it.
Databases use many techniques to optimize these types of queries, but conceptually the same process is
being followed. First, the following nongrouping query is executed:

SELECT d.name, e.salary
FROM Department d JOIN d.employees e
WHERE e.directs IS EMPTY

This will produce a result set consisting of all department name and salary value pairs. The query
engine then starts a new result set and makes a second pass over the data, collecting all the salary values
for each department name and handing them off to the AVG function. This function then returns the
group average, which is then checked against the criteria from the HAVING clause. If the average value is
greater than $50,000, the query engine generates a result row consisting of the department name and
average salary value.

CHAPTER 8 ! QUERY LANGUAGE

The following sections describe the aggregate functions available for use in aggregate queries and
the use of the GROUP BY and HAVING clauses.

Aggregate Functions

Five aggregate functions can be placed in the select clause of a query: AVG, COUNT, MAX, MIN, and
SUM.

AVG

The AVG function takes a state field path expression as an argument and calculates the average value of
that state field over the group. The state field type must be numeric, and the result is returned as a
Double.

COUNT

The COUNT function takes either an identification variable or a path expression as its argument. This
path expression can resolve to a state field or a single-valued association field. The result of the function
is a Long value representing the number of values in the group. The argument to the COUNT function
can optionally be preceded by the keyword DISTINCT, in which case duplicate values are eliminated
before counting.

The following query counts the number of phones associated with each employee as well as the
number of distinct number types (cell, office, home, and so on):

SELECT e, COUNT(p), COUNT(DISTINCT p.type)
FROM Employee e JOIN e.phones p
GROUP BY e

MAX

The MAX function takes a state field expression as an argument and returns the maximum value in the
group for that state field.

MIN

The MIN function takes a state field expression as an argument and returns the minimum value in the
group for that state field.

SUM

The SUM function takes a state field expression as an argument and calculates the sum of the values in
that state field over the group. The state field type must be numeric, and the result type must correspond
to the field type. For example, if a Double field is summed, the result will be returned as a Double. If a Long
field is summed, the response will be returned as a Long.

235

236

CHAPTER 8 "1 QUERY LANGUAGE

GROUP BY Clause

The GROUP BY clause defines the grouping expressions over which the results will be aggregated. A
grouping expression must either be a single-valued path expression (state field or single-valued
association field) or an identification variable. If an identification variable is used, the entity must not
have any serialized state or large object fields.

The following query counts the number of employees in each department:

SELECT d.name, COUNT(e)
FROM Department d JOIN d.employees e
GROUP BY d.name

Note that the same field expression used in the SELECT clause is repeated in the GROUP BY clause.
All non-aggregate expressions must be listed this way. More than one aggregate function can be applied
to the same GROUP BY clause:

SELECT d.name, COUNT(e), AVG(e.salary)
FROM Department d JOIN d.employees e
GROUP BY d.name

This variation of the query calculates the average salary of all employees in each department in
addition to counting the number of employees in the department.
Multiple grouping expressions can also be used to further break down the results:

SELECT d.name, e.salary, COUNT(p)
FROM Department d JOIN d.employees e JOIN e.projects p
GROUP BY d.name, e.salary

Because there are two grouping expressions, the department name and employee salary must be
listed in both the SELECT clause and GROUP BY clause. For each department, this query counts the
number of projects assigned to employees based on their salary.

In the absence of a GROUP BY clause, the entire query is treated as one group, and the SELECT list
can contain only aggregate functions. For example, the following query returns the number of
employees and their average salary across the entire company:

SELECT COUNT(e), AVG(e.salary)
FROM Employee e

HAVING Clause

The HAVING clause defines a filter to be applied after the query results have been grouped. It is
effectively a secondary WHERE clause, and its definition is the same: the keyword HAVING followed by a
conditional expression. The key difference with the HAVING clause is that its conditional expressions are
limited to state fields or single-valued association fields previously identified in the GROUP BY clause.

Conditional expressions in the HAVING clause can also make use of aggregate functions. In many
respects, the primary use of the HAVING clause is to restrict the results based on the aggregate result
values. The following query uses this technique to retrieve all employees assigned to two or more
projects:

SELECT e, COUNT(p)

FROM Employee e JOIN e.projects p
GROUP BY e

HAVING COUNT(p) >= 2

CHAPTER 8 ! QUERY LANGUAGE

Update Queries

Update queries provide an equivalent to the SQL UPDATE statement but with JP QL conditional
expressions. The form of an update query is the following:

UPDATE <entity name> [[AS] <identification variable>]
SET <update_statement> {, <update_statement>}*
[WHERE <conditional expression>]

Each UPDATE statement consists of a single-valued path expression, the assignment operator (=),
and an expression. Expression choices for the assignment statement are slightly restricted compared to
regular conditional expressions. The right side of the assignment must resolve to a literal, simple
expression resolving to a basic type, function expression, identification variable, or input parameter. The
result type of that expression must be compatible with the simple association path or persistent state
field on the left side of the assignment.

The following simple example demonstrates the update query by giving employees who make
$55,000 a year a raise to $60,000:

UPDATE Employee e
SET e.salary = 60000
WHERE e.salary = 55000

The WHERE clause of an UPDATE statement functions the same as a SELECT statement and can use
the identification variable defined in the UPDATE clause in expressions. A slightly more complex but
more realistic update query would be to award a $5,000 raise to employees who worked on a particular
project:

UPDATE Employee e
SET e.salary = e.salary + 5000
WHERE EXISTS (SELECT p
FROM e.projects p
WHERE p.name = 'Release2')

More than one property of the target entity can be modified with a single UPDATE statement. For
example, the following query updates the phone exchange for employees in the city of Ottawa and
changes the terminology of the phone type from “Office” to “Business”:

UPDATE Phone p
SET p.number = CONCAT('288', SUBSTRING(p.number, LOCATE(p.number, '-'), 4)),
p.type = 'Business’
WHERE p.employee.address.city = 'Ottawa’ AND
p.type = 'Office’

Delete Queries

The delete query provides the same capability as the SQL DELETE statement, but with JP QL conditional
expressions. The form of a delete query is the following:

DELETE FROM <entity name> [[AS] <identification variable>]
[WHERE <condition>]

The following example removes all employees who are not assigned to a department:

DELETE FROM Employee e
WHERE e.department IS NULL

237

238

CHAPTER 8 "1 QUERY LANGUAGE

The WHERE clause for a DELETE statement functions the same as it would for a SELECT statement.
All conditional expressions are available to filter the set of entities to be removed. If the WHERE clause is
not provided, all entities of the given type are removed.

Delete queries are polymorphic. Any entity subclass instances that meet the criteria of the delete
query will also be deleted. Delete queries do not honor cascade rules, however. No entities other than
the type referenced in the query and its subclasses will be removed, even if the entity has relationships to
other entities with cascade removes enabled.

Summary

In this chapter, we have given you a complete tour of the Java Persistence Query Language, looking at
the numerous query types and their syntax. We covered the history of the language, from its roots in the
EJB 2.0 specification to the major enhancements introduced by JPA.

In the section on select queries, we explored each query clause and incrementally built up more
complex queries as the full syntax was described. We discussed identification variables and path
expressions, which are used to navigate through the domain model in query expressions. We also looked
at the various conditional and scalar expressions supported by the language.

In our discussion of aggregate queries we introduced the additional grouping and filtering clauses
that extend select queries. We also demonstrated the various aggregate functions.

In the sections on update and delete queries, we described the full syntax for bulk update and delete
statements, whose runtime behavior was described in the previous chapter.

In the next chapter we will continue our exploration of JPA query facilities with an in-depth look at
the criteria API, a runtime API for constructing queries.

CHAPTER 9

Criteria API

In the last chapter, we looked in detail at the JP QL query language and the concepts that underlie the
JPA query model. In this chapter, we will look at an alternate method for constructing queries that uses a
Java programming language API instead of JP QL or native SQL.

We will begin with an overview of the JPA 2.0 criteria API and look at a common use case involving
constructing dynamic queries in an enterprise application. This will be followed by an in-depth
exploration of the criteria API and how it relates to JP QL.

A related feature of the criteria API is the JPA 2.0 metamodel API. We will conclude this chapter with
an overview of the metamodel API and look at how it can be used to create strongly typed queries using
the criteria APL

Note that this chapter assumes that you have read Chapter 8, and are familiar with all the concepts
and terminology that it introduces. Wherever possible, we will use the upper-case JP QL keywords to
highlight different elements of the JPA query model and demonstrate their equivalent behavior with the
criteria API. This chapter also assumes familiarity with Java generics, as the criteria and metamodel APIs
use them extensively.

Overview

Before languages like JP QL became standardized, the most common method for constructing queries in
many persistence providers was through a programming API. The query framework in EclipseLink, for
example, was the most effective way to truly unlock the full power of its query engine. And, even with the
advent of JP QL, programming APIs have still remained in use to give access to features not yet
supported by the standard query language.

JPA 2.0 introduced a new criteria API for constructing queries that standardizes many of the
programming features that exist in proprietary persistence products. More than just a literal translation
of JP QL to programming interface, it also adopts programming best practices of the proprietary models,
such as method chaining, and makes full use of the Java programming language features.

The following sections provide a high-level view of the criteria API, discussing how and when it is
appropriate to use. We also look at a more significant example with a use case that is common in many
enterprise settings.

239

240

CHAPTER 9 1 CRITERIA API

The Criteria API

Let’s begin with a simple example to demonstrate the syntax and usage of the criteria API. The following
JP QL query returns all the employees in the company with the name of “John Smith”:

SELECT e
FROM Employee e
WHERE e.name = 'John Smith'

And here is the equivalent query constructed using the criteria API:

CriteriaBuilder cb = em.getCrit