
Keith
Schincariol

JPA 2

Companion
eBook Available

Pro

Java™ EE 6
compliant

this print for content only—size & color not accurate

  CYAN
  MAGENTA

  YELLOW
  BLACK
  PANTONE 123 C

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro JPA 2: Mastering the Java™
Persistence API
Dear Reader,

It’s hard to believe that over 3 years have gone by since the initial 1.0 release of
the Java™ Persistence API. In that time we have seen it go from fledgling API
to mainstream persistence standard. Along the way, many of you cut your JPA
teeth using the first edition of this book, and we’re happy we were there to help!

JPA 2.0 includes a host of new features, such as additional object-relational
mappings, more object modeling flexibility, typed queries, and a brand-new
criteria API, to name a few. With so much to talk about, we were excited to
update the book and explain all the new features, but we also included some
hints and tips to help you use the API in practice.

If you already have experience with JPA 1.0 then you should benefit from
the version tips that point out when a feature was added in 2.0. These tips
were also designed to help users who are writing to a JPA 1.0 implementation,
and are not yet able to make use of the 2.0 features.

Those of you that are new to JPA can rest assured that you were not for-
gotten. We have remained true to our original intent to take someone from
having no JPA knowledge all the way to being an advanced JPA’er. You should
be able to quickly learn in the first two chapters what you need to know to get
started. (Veteran JPA programmers might want to start at Chapter 3!) Finally,
we want to thank you for making the previous edition of this book such a suc-
cess. We are pleased that it has become the primary resource for JPA develop-
ers, and hope that you will find this edition equally valuable.

Mike Keith, JPA 2.0 Expert Group Member, and Merrick Schincariol

Authors of

Pro EJB™ 3: Java™
Persistence API

US $49.99

Shelve in
Java Programming

User level:
Intermediate

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-1956-9

9 781430 219569

54999

RE
LA

TE
D

TI
TL

ES

Pro

JPA 2
Mastering the Java™ Persistence API

Mike Keith and Merrick Schincariol
Foreword by Linda DeMichiel, JPA Specification Lead

Create robust, data-driven applications with
this definitive guide to the new JPA 2

Java™ EE 6
compliant

THE EXPERT’S VOICE® IN JAVA™ TECHNOLOGY

Trim: 7.5 x 9.25 spine = 1.0" 536 page count

Keith
Schincariol

JPA 2
Companion

eBook Available

Pro

Java™ EE 6
compliant

this print for content only—size & color not accurate

  CYAN
  MAGENTA

  YELLOW
  BLACK
  PANTONE 123 C

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro JPA 2: Mastering the Java™
Persistence API
Dear Reader,

It’s hard to believe that over 3 years have gone by since the initial 1.0 release of
the Java™ Persistence API. In that time we have seen it go from fledgling API
to mainstream persistence standard. Along the way, many of you cut your JPA
teeth using the first edition of this book, and we’re happy we were there to help!

JPA 2.0 includes a host of new features, such as additional object-relational
mappings, more object modeling flexibility, typed queries, and a brand-new
criteria API, to name a few. With so much to talk about, we were excited to
update the book and explain all the new features, but we also included some
hints and tips to help you use the API in practice.

If you already have experience with JPA 1.0 then you should benefit from
the version tips that point out when a feature was added in 2.0. These tips
were also designed to help users who are writing to a JPA 1.0 implementation,
and are not yet able to make use of the 2.0 features.

Those of you that are new to JPA can rest assured that you were not for-
gotten. We have remained true to our original intent to take someone from
having no JPA knowledge all the way to being an advanced JPA’er. You should
be able to quickly learn in the first two chapters what you need to know to get
started. (Veteran JPA programmers might want to start at Chapter 3!) Finally,
we want to thank you for making the previous edition of this book such a suc-
cess. We are pleased that it has become the primary resource for JPA develop-
ers, and hope that you will find this edition equally valuable.

Mike Keith, JPA 2.0 Expert Group Member, and Merrick Schincariol

Authors of

Pro EJB™ 3: Java™
Persistence API

US $49.99

Shelve in
Java Programming

User level:
Intermediate

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-1956-9

9 781430 219569

54999

RE
LA

TE
D

TI
TL

ES
Pro

JPA 2
Mastering the Java™ Persistence API

Mike Keith and Merrick Schincariol
Foreword by Linda DeMichiel, JPA Specification Lead

Create robust, data-driven applications with
this definitive guide to the new JPA 2

Java™ EE 6
compliant

THE EXPERT’S VOICE® IN JAVA™ TECHNOLOGY

Trim: 7.5 x 9.25 spine = 1.0" 536 page count

i

Pro JPA 2
Mastering the Java™ Persistence API

■ ■ ■

Mike Keith and
Merrick Schnicariol

ii

Pro JPA 2

Copyright © 2009 by Mike Keith and Merrick Schincariol

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-1956-9

ISBN-13 (electronic): 978-1-4302-1957-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin, Tom Welsh
Technical Reviewer: Jim Farley
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank
Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Mary Tobin
Copy Editor: Nancy Sixsmith
Compositor: MacPS, LLC
Indexer: BIM Indexers and e-Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-
sbm.com, or visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to
answer questions pertaining to this book in order to successfully download the code.

mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

iii

To the memory of my father, who selflessly offered all that he had, and to my wife Darleen who has

devoted her life to helping children.—Mike

To Anthony, whose boundless creativity continues to inspire me. To Evan, whose boisterous enthusiasm

motivates me to take on new challenges. To Kate, who proves that size is no object when you have the

right attitude. I love you all.—Merrick

iv

Contents at a Glance

■Contents at a Glance .. iv
■Contents ..v
■Foreword... xx
■About the Author .. xxi
■About the Technical Reviewer... xxii
■Acknowledgments.. xxiii
■Preface ... xiv
■Chapter 1: Introduction ...1
■Chapter 2: Getting Started...17
■Chapter 3: Enterprise Applications ...33
■Chapter 4: Object-Relational Mapping ..69
■Chapter 5: Collection Mapping ..107
■Chapter 6: Entity Manager ..131
■Chapter 7: Using Queries...179
■Chapter 8: Query Language...207
■Chapter 9: Criteria API ..239
■Chapter 10: Advanced Object-Relational Mapping..273
■Chapter 11: Advanced Topics..315
■Chapter 12: XML Mapping Files ..371
■Chapter 13: Packaging and Deployment ...407
■Chapter 14: Testing ...429
■Chapter 15: Migration ...457
■Index ...481

v

Contents

■Contents at a Glance .. iv
■Contents ..v
■Foreword ... xx

■About the Author .. xxi
■About the Technical Reviewer... xxii
■Acknowledgments.. xxiii
■Preface ... xxiv

■Chapter 1: Introduction ...1
Object-Relational Mapping ... 2

The Impedance Mismatch..3
Class Representation ..3
Relationships ..5
Inheritance ..7

Java Support for Persistence.. 9
Proprietary Solutions..9
JDBC ..9
Enterprise JavaBeans ..10
Java Data Objects ..10

Why Another Standard? .. 11
The Java Persistence API.. 12

History of the Specification..12
EJB 3.0 and JPA 1.0..12
JPA 2.0 ..13
JPA and You ..13

Overview ..13
POJO Persistence..13
Nonintrusiveness ..14
Object Queries...14

■ CONTENTS

vi

Mobile Entities ..14
Simple Configuration...15
Integration and Testability ..15

Summary... 15
■Chapter 2: Getting Started...17

Entity Overview ... 17
Persistability ..17
Identity ...18
Transactionality..18
Granularity ...18

Entity Metadata... 19
Annotations ..19
XML ..19
Configuration by Exception ..19

Creating an Entity.. 20
Entity Manager.. 22

Obtaining an Entity Manager..23
Persisting an Entity ..24
Finding an Entity ..24
Removing an Entity ..25
Updating an Entity..26
Transactions ..26
Queries...27

Putting It All Together ... 28
Packaging It Up ... 30

Persistence Unit ...30
Persistence Archive ...31

Summary... 32
■Chapter 3: Enterprise Applications ...33

Application Component Models .. 33
Session Beans... 34

Stateless Session Beans..35
Defining a Stateless Session Bean ...35
Lifecycle Callbacks ...37
Remote Business Interfaces ...38

 ■ CONTENTS

vii

Stateful Session Beans ..39
Defining a Stateful Session Bean..39
Lifecycle Callbacks ...40

Singleton Session Beans..42
Defining a Singleton Session Bean ...42
Lifecycle Callbacks ...43
Singleton Concurrency..43

Message-Driven Beans ... 45
Defining a Message-Driven Bean...45

Servlets ... 46
Dependency Management .. 47

Dependency Lookup...47
Dependency Injection...49

Field Injection..49
Setter Injection..50

Declaring Dependencies ..51
Referencing a Persistence Context ...51
Referencing a Persistence Unit...52
Referencing Enterprise JavaBeans ...52
Referencing Server Resources..53

Transaction Management ... 53
Transaction Review..54
Enterprise Transactions in Java...54

Transaction Demarcation..55
Container-Managed Transactions...56
Bean-Managed Transactions ..58

Using Java EE Components .. 60
Using a Stateless Session Bean...60
Using a Stateful Session Bean ...60
Using a Singleton Session Bean ..62
Using a Message-Driven Bean ...62
Adding the Entity Manager...63

Putting It All Together ... 64
Defining the Component ..64
Defining the User Interface ..66
Packaging It Up ..66

■ CONTENTS

viii

Summary... 67
■Chapter 4: Object-Relational Mapping ..69

Persistence Annotations ... 69
Accessing Entity State .. 70

Field Access ...70
Property Access ...71
Mixed Access ...71

Mapping to a Table ... 73
Mapping Simple Types.. 74

Column Mappings ..75
Lazy Fetching ...76
Large Objects ...77
Enumerated Types ...78
Temporal Types..80
Transient State...80

Mapping the Primary Key.. 81
Overriding the Primary Key Column ...81
Primary Key Types ...81
Identifier Generation ..82

Automatic Id Generation..82
Id Generation Using a Table ..83
Id Generation Using a Database Sequence ...85
Id Generation Using Database Identity ..86

Relationships .. 87
Relationship Concepts ...87

Roles ...87
Directionality ...87
Cardinality ...88
Ordinality...89

Mappings Overview..90
Single-Valued Associations..90

Many-to-One Mappings ..90
Using Join Columns ..91
One-to-One Mappings...93
Bidirectional One-to-One Mappings..94

Collection-Valued Associations..95

 ■ CONTENTS

ix

One-to-Many Mappings ..95
Many-to-Many Mappings..97
Using Join Tables..99
Unidirectional Collection Mappings...100

Lazy Relationships ...101

Embedded Objects .. 102
Summary... 106

■Chapter 5: Collection Mapping ..107
Relationships and Element Collections... 107
Using Different Collection Types... 110

Sets or Collections ...111
Lists..111

Ordering By Entity or Element Attribute ..111
Persistently Ordered Lists ...112

Maps ..114
Keys and Values..115
Keying By Basic Type..115
Keying by Entity Attribute..118
Keying by Embeddable Type ...119
Keying by Entity ..123
Untyped Maps ...124
Rules for Maps ..125

Duplicates ..126
Null Values ...128

Best Practices ... 128
Summary... 129

■Chapter 6: Entity Manager ..131
Persistence Contexts .. 131
Entity Managers .. 132

Container-Managed Entity Managers ..132
Transaction-Scoped..132
Extended ...133

Application-Managed Entity Managers ..136

Transaction Management ... 138
JTA Transaction Management ...138

Transaction-Scoped Persistence Contexts ...139

■ CONTENTS

x

Extended Persistence Contexts...140
Application-Managed Persistence Contexts ...144

Resource-Local Transactions...147
Transaction Rollback and Entity State ...149

Choosing an Entity Manager ... 149
Entity Manager Operations ... 150

Persisting an Entity ..150
Finding an Entity ..151
Removing an Entity ..152
Cascading Operations ..153

Cascade Persist ..154
Cascade Remove...155

Clearing the Persistence Context ...156

Synchronization with the Database .. 156
Detachment and Merging ... 158

Detachment..159
Merging Detached Entities...160
Working with Detached Entities...164

Planning for Detachment ..166
Avoiding Detachment ..168
Merge Strategies...172

Summary... 177
■Chapter 7: Using Queries...179

Java Persistence Query Language.. 179
Getting Started ...180
Filtering Results ...180
Projecting Results ..181
Joins Between Entities...181
Aggregate Queries ...182
Query Parameters ..182

Defining Queries ... 183
Dynamic Query Definition...183
Named Query Definition ...185

Parameter Types... 187
Executing Queries ... 188

Working with Query Results...190

 ■ CONTENTS

xi

Untyped Results ..191
Optimizing Read-Only Queries ..191
Special Result Types...192

Query Paging..193
Queries and Uncommitted Changes...195
Query Timeouts ..198

Bulk Update and Delete .. 199
Using Bulk Update and Delete..199
Bulk Delete and Relationships ...201

Query Hints ... 202
Query Best Practices... 203

Named Queries ..203
Report Queries ...204
Vendor Hints...204
Stateless Session Beans..204
Bulk Update and Delete..205
Provider Differences ..205

Summary... 205
■Chapter 8: Query Language...207

Introduction... 207
Terminology ...208
Example Data Model ..208
Example Application...209

Select Queries... 211
SELECT Clause ...212

Path Expressions...212
Entities and Objects ..213
Combining Expressions...214
Constructor Expressions ...215
Inheritance and Polymorphism ...215

FROM Clause..216
Identification Variables ...216
Joins..216

WHERE Clause..223
Input Parameters ..223
Basic Expression Form..223

■ CONTENTS

xii

BETWEEN Expressions ..224
LIKE Expressions...224
Subqueries ..225
IN Expressions ..226
Collection Expressions ..227
EXISTS Expressions...228
ANY, ALL, and SOME Expressions ...228

Scalar Expressions...228
Literals ..229
Function Expressions ..230
CASE Expressions ...231

ORDER BY Clause...233

Aggregate Queries .. 233
Aggregate Functions ..235

AVG..235
COUNT ...235
MAX...235
MIN..235
SUM...235

GROUP BY Clause...236
HAVING Clause ...236

Update Queries ... 237
Delete Queries... 237
Summary... 238

■Chapter 9: Criteria API ..239
Overview ... 239

The Criteria API ..240
Parameterized Types ...241
Dynamic Queries ..241

Building Criteria API Queries... 244
Creating a Query Definition ..244
Basic Structure ..246
Criteria Objects and Mutability...246
Query Roots and Path Expressions ..247

Query Roots...247
Path Expressions...248

 ■ CONTENTS

xiii

The SELECT Clause ..249
Selecting Single Expressions ..249
Selecting Multiple Expressions ...250
Using Aliases...251

The FROM Clause...251
Inner and Outer Joins..252
Fetch Joins..253

The WHERE Clause...254
Building Expressions..254

Predicates ...257
Literals ..258
Parameters..258
Subqueries ..258
In Expressions...261
Case Expressions ..262
Function Expressions ..264

The ORDER BY Clause ..264
The GROUP BY and HAVING Clauses ..265

Strongly Typed Query Definitions.. 265
The Metamodel API ..265
Strongly Typed API Overview ...267
The Canonical Metamodel..268

Using the Canonical Metamodel ...269
Generating the Canonical Metamodel ...270

Choosing the Right Type of Query..271

Summary... 271
■Chapter 10: Advanced Object-Relational Mapping..273

Table and Column Names ... 273
Complex Embedded Objects ... 275

Advanced Embedded Mappings...275
Overriding Embedded Relationships ..276

Compound Primary Keys... 278
Id Class...278
Embedded Id Class...280

Derived Identifiers... 281
Basic Rules for Derived Identifiers...282

■ CONTENTS

xiv

Shared Primary Key ...283
Multiple Mapped Attributes..284
Using EmbeddedId ...286

Advanced Mapping Elements.. 288
Read-Only Mappings..288
Optionality ..289

Advanced Relationships.. 289
Using Join Tables...290
Avoiding Join Tables ..291
Compound Join Columns ...292
Orphan Removal...294
Mapping Relationship State ...295

Multiple Tables.. 297
Inheritance .. 300

Class Hierarchies ...300
Mapped Superclasses...301
Transient Classes in the Hierarchy ...303
Abstract and Concrete Classes ...303

Inheritance Models ..304
Single-Table Strategy ...304
Joined Strategy ...307
Table-per-Concrete-Class Strategy ..309

Mixed Inheritance ..311

Summary... 313
■Chapter 11: Advanced Topics..315

SQL Queries .. 315
Native Queries versus JDBC...316
Defining and Executing SQL Queries..318
SQL Result Set Mapping...320

Mapping Foreign Keys ..321
Multiple Result Mappings ...321
Mapping Column Aliases...321
Mapping Scalar Result Columns ...322
Mapping Compound Keys ...324
Mapping Inheritance ...325

Parameter Binding ...326

 ■ CONTENTS

xv

Lifecycle Callbacks ... 326
Lifecycle Events ...326

PrePersist and PostPersist ..326
PreRemove and PostRemove ..327
PreUpdate and PostUpdate ...327
PostLoad ...327

Callback Methods...327
Enterprise Contexts...329

Entity Listeners ..329
Attaching Entity Listeners to Entities ..329
Default Entity Listeners...331

Inheritance and Lifecycle Events ...331
Inheriting Callback Methods ...331
Inheriting Entity Listeners ...332
Lifecycle Event Invocation Order...332

Validation .. 335
Using Constraints ...336
Invoking Validation...337
Validation Groups ...338
Creating New Constraints ..340

Constraint Annotations..340
Constraint Implementation Classes ..341

Validation in JPA ..342
Enabling Validation ..343
Setting Lifecycle Validation Groups ...343

Concurrency.. 344
Entity Operations..344
Entity Access..345

Refreshing Entity State ... 345
Locking ... 348

Optimistic Locking ...348
Versioning ...349
Advanced Optimistic Locking Modes ..350
Recovering from Optimistic Failures...355

Pessimistic Locking ...358
Pessimistic Locking Modes...358
Pessimistic Scope...360

■ CONTENTS

xvi

Pessimistic Timeouts ..360
Recovering From Pessimistic Failures ..361

Caching ... 361
Sorting Through the Layers..361
Shared Cache...363

Static Configuration of the Cache ...365
Dynamic Cache Management ...366

Utility Classes.. 368
PersistenceUtil ...368
PersistenceUnitUtil...368

Summary... 369
■Chapter 12: XML Mapping Files ..371

The Metadata Puzzle... 372
The Mapping File .. 373

Disabling Annotations ..373
xml-mapping-metadata-complete ..374
metadata-complete...374

Persistence Unit Defaults...375
schema ...376
catalog ..376
delimited-identifiers..376
access...377
cascade-persist ..377
entity-listeners..378

Mapping File Defaults ..378
package ..379
schema ...379
catalog ..380
access...380

Queries and Generators ...381
sequence-generator..381
table-generator ...382
named-query...382
named-native-query ...383
sql-result-set-mapping ...384

Managed Classes and Mappings ...385

 ■ CONTENTS

xvii

Attributes ..385
Tables..386
Identifier Mappings ...387
Simple Mappings ..389
Relationship and Collection Mappings..391
Embedded Object Mappings ...398
Inheritance Mappings ...401
Lifecycle Events ..404
Entity Listeners ...404

Summary... 406
■Chapter 13: Packaging and Deployment ...407

Configuring Persistence Units... 407
Persistence Unit Name...408
Transaction Type..408
Persistence Provider ..408
Data Source ...409
Mapping Files...410
Managed Classes ...411

Local Classes ..411
Classes in Mapping Files ..412
Explicitly Listed Classes..412
Additional JARs of Managed Classes..413

Shared Cache Mode...413
Validation Mode ...414
Adding Vendor Properties ..414

Building and Deploying ... 415
Deployment Classpath ...415
Packaging Options ...416

EJB JAR...416
Web Archive ..418
Persistence Archive ..419

Persistence Unit Scope ..420

Outside the Server .. 420
Configuring the Persistence Unit ...421

Transaction Type...421
Data Source ..421
Providers ...422

■ CONTENTS

xviii

Listing the Entities ..422
Specifying Properties at Runtime ..423
System Classpath ..423

Schema Generation... 423
Unique Constraints...424
Null Constraints..425
String-Based Columns ...425
Floating Point Columns ..426
Defining the Column...426

Summary... 427
■Chapter 14: Testing ...429

Testing Enterprise Applications .. 429
Terminology ...430
Testing Outside the Server...431
Test Frameworks ...432

Unit Testing... 433
Testing Entities ..433
Testing Entities in Components ...434
The Entity Manager in Unit Tests ...436

Integration Testing.. 439
Using the Entity Manager...439

Test Setup and Teardown ...441
Switching Configurations for Testing..442
Minimizing Database Connections..444

Components and Persistence ..445
Transaction Management ...445
Container-Managed Entity Managers ...450
Other Services...452
Using an Embedded EJB Container for Integration Testing ..453

Best Practices ... 455
Summary... 455

■Chapter 15: Migration ...457
Migrating from CMP Entity Beans ... 457

Scoping the Challenge ...458
Entity Bean Conversion ..459

Converting the Business Interface ..459

 ■ CONTENTS

xix

Converting the Home Interface ...463

Migrating from JDBC... 467
Migrating from Other ORM Solutions .. 468
Leveraging Design Patterns .. 469

Transfer Object ..469
Fine-Grained Transfer Objects ..469
Coarse-Grained Transfer Objects..471

Session Façade..472
Data Access Object ..474
Business Object ...478
Fast Lane Reader ...479
Active Record ...479

Summary... 480
■Index ...481

■ CONTENTS

xx

Foreword

When the Java Persistence API was first released as part of Enterprise JavaBeans 3.0 in 2006, it was
quickly received as one of the most exciting technologies of Java EE 5. Like EJB 3.0, of which it was a part,
JPA 1.0 was focused on both function and ease of use, leveraging Java language annotations and sensible
defaulting to provide convenient configuration.

JPA 1.0, however, was not just a much-needed replacement for the heavy-weight entity “bean”
components of earlier EJB releases, although that was its initial reason for existence. As a more general-
purpose object-relational mapping facility, it was quickly recognized as such, and was expanded at the
request of the community to support use in Java SE environments as well as in the other Java EE
container types. As a “specification within a specification”, it had thus already outgrown its parent by the
time it was released.

Aside from its query language, there is very little in the core functionality of JPA that reveals its
origins as part of the EJB 3.0 work. The true origins of JPA, of course, lie in the world of object-relational
mapping products and projects, such as TopLink (now well past its tenth anniversary), Hibernate, and
JDO, many of whose lead architects—such as Mike Keith—were among the prime contributors to JPA.

However, JPA 1.0 represented only one facet of the work (and workload) of the EJB 3.0 expert group,
and, while it covered the core functionality needed for O/R mapping, it was not nearly as complete an
API as many of the products and projects which provided its first implementations.

The task of JPA 2.0 has been to solidify the standard, to expand its scope, and thus to provide
developers with greater portability for both simple and sophisticated applications. Like JPA 1.0, it has
been driven by experience from technology already in the field and steered by the requests from
members of the community.

The JPA 2.0 specification and APIs have more than doubled in size with this release. This reflects
additions to support many modeling constructs natural to Java developers, expansion of the
standardized mapping options, an object-based criteria query API, a metamodel API, support for
automatic validation, support for pessimistic locking, and much more.

In this book, Mike Keith and Merrick Schincariol present a comprehensive guide to the Java
Persistence API. As authors, they bring a depth of experience in O/R mapping technology that is rarely
equaled, as well as—in Mike’s case—years of experience in shaping JPA itself.

This book covers all aspects of the Java Persistence API. It is both thorough and accessible, and both
entertaining and exacting. It not only introduces the reader to all aspects of the API and discusses how to
use its constructs most effectively, it also explains what goes on under the covers and how to avoid
portability pitfalls when working with different vendor implementations. Throughout the book, the
authors provide carefully detailed explanations of the workings of object-relational mapping so that the
reader is left not only with a knowledge of the features of Java Persistence but also with a deeper
understanding of how it works. I hope you will enjoy it as much as I have.

Linda DeMichiel
Specification Lead, Java Persistence 2.0

Sun Microsystems
Santa Clara, California

 ■ CONTENTS

xxi

About the Author

■ Mike Keith was the co-specification lead for JPA 1.0 and an active member of the
JPA 2.0 expert group. He sits on a number of other Java Community Process expert
groups, including JSR 316, the Java EE 6 platform specification, and the Enterprise
Expert Group (EEG) in the OSGi Alliance. He holds a Masters degree in Computer
Science from Carleton University and has 20 years experience in persistence and
distributed systems research and practice. He has written papers and articles on JPA
and spoken at numerous conferences around the world. He is employed as an
architect at Oracle in Ottawa, Canada, and lives with his wife Darleen, their four kids,
and his wife’s dog.

■ Merrick Schincariol is a consulting engineer at Oracle, specializing in middleware
technologies. He has a Bachelor of Science degree in computer science from
Lakehead University and has more than a decade of experience in enterprise
software development. He spent some time consulting in the pre-Java enterprise and
business intelligence fields before moving on to write Java and J2EE applications. His
experience with large-scale systems and data warehouse design gave him a mature
and practiced perspective on enterprise software, which later propelled him
into doing EJB container implementation work. He was a lead engineer for Oracle’s
EJB 3.0 offering.

■ CONTENTS

xxii

About the Technical Reviewer

■ Jim Farley is a technology strategist, architect, manager and author. He currently
serves as a Director of Technology for Pearson Education, driving the development
of new educational service platforms.

Jim is also a lecturer in the computer science department of the Harvard Extension
School, and writes and speaks frequently on enterprise technology and other
strategic topics. He is the author of Practical JBoss Seam Projects (Apress), co-author
of Java Enterprise in a Nutshell (O’Reilly), and author of Java Distributed Computing
(O’Reilly).

 ■ CONTENTS

xxiii

Acknowledgments

Mike Keith
I would like to thank all of the friends and colleagues who offered to help in any way they could. You all
know who you are! Linda DeMichiel and Lance Andersen were very helpful going through the chapters
and finding bugs when it wasn’t necessarily convenient for them to be doing so. Jim Farley provided
great technical reviewing, and Tom Welsh always managed to have helpful suggestions in each and every
chapter. Richard Dal Porto and Mary Tobin were firm in trying to keep us to a schedule, but
understanding when the laws of physics couldn’t be broken. Michael O’Brien spent many long nights
translating our chapterware into running code, and probably got more than he bargained for! Thanks to
Doug Clarke and Shaun Smith for spreading the word that a JPA book was available, and to Dennis
Leung for offering his full support of my writing this book. Lastly, I thank my kids, Cierra, Ariana, Jeremy
and Emma, some of whom had to wait for a paragraph to be done before getting help with their
homework, and Darleen, who always did her best to take up the slack when her slacker couldn’t keep up.

Merrick Schincariol
I want to thank my wife, Natalie, and my children, Anthony, Evan and Kate for enduring through yet
another one of my little projects. It was far more than we bargained for, and their constant love and
support kept me going through it all. Mike was once again a fantastic partner for this project and
deserves special mention for his tireless efforts at the end. From Apress I'd like to thank Tom Welsh and
Mary Tobin for their efforts and valuable advice. Jim Farley provided insightful technical review and
Michael O'Brien proved to be exceptionally thorough in vetting our examples. At Oracle I'd like to thank
Rob Campbell and Dennis Leung for supporting efforts like this and the entire Ottawa middleware team
for taking such an interest in this work.

■ CONTENTS

xxiv

Preface

I can’t believe it has been three years since we published the first ever book on JPA 1.0, Pro EJB 3: Java
Persistence API. We received so many great remarks and compliments that before saying anything else
we would first like to thank all of you who communicated your comments to us. Your feedback on the
book was overwhelming, and we have been truly humbled by the response. We created this second
edition in the hopes that just as many will benefit from this one, too.

We have chosen to rename the book for the obvious reason that JPA is no longer a child of EJB, and
because JPA is all grown up and deserves its own title. However, it was not without some hesitation that
we did so. We didn’t want people to think that this book was only about JPA 2.0, or that someone
couldn’t pick it up and learn JPA from it. We have indeed tried to keep that aspect of it intact, and still
believe it to be a perfectly suitable book from which a novice can learn JPA. For those of you that are
more experienced, or that bought and read the last book, we have tried to maintain all of the material
from the first edition. We did reorganize it a little, however, to better align with the two new chapters and
additional feature discussions merged into the other chapters.

One of the goals of the last edition was to keep the book as short and concise as we could make it,
but no shorter. We tried very hard to size it so that we could say as much as we felt was worth saying, but
still ensure the book would comfortably fit in your carrying bag for reading on the bus or train. However,
to be able to keep as much of the material from the first edition as we could, but add two more chapters
and many more features, seemed like a tall order indeed. The annotation reference became a casualty of
that quest, since we couldn’t justify using the page space for something that you could just as easily find
online. We’re hoping that our bus and train readers, or any others that may be reading in offline mode,
won’t curse us later for removing it.

The JPA 1.0 specification took a long time to complete, but JPA 2.0 took even longer. We are not sure
if it was because in the first round we left out the features that were the hardest to standardize, or if it
was because we just didn’t work as efficiently in the second round. Whatever the reason, it was a long
road, but we have finally arrived with a specification that fills in many of the gaps that 1.0 left open. Now
comes the fun part, when people can start using it. We have enjoyed the challenge of deciding how best
to present JPA 2.0 to you and hope that you will also find enjoyment using it.

This Book Is For You

This book is for developers, architects, coders and dreamers. It is for instructors and teachers,
researchers and prototypers. It is for anyone who wants to use persistence in the enterprise, on their
desktop or anywhere the Java platform runs and supports applications. We do not assume that you have
experience with persistence products, although we do assume that you have some experience with Java,
as well as some exposure (although not necessarily any experience) to the Java EE or J2EE platform.

A persistence API that reads and stores objects in a database requires some basic amount of
database and SQL knowledge, although it does not need to be extensive. JDBC experience would also be
an asset, but is not strictly required.

Overall, if you have a couple of years experience in software development then you should be in fine
shape to read this book and understand the topics that are discussed.

 ■ CONTENTS

xxv

Code Examples
We have attempted to show code examples whenever possible because it is usually easier to illustrate
something through a code example than to spend two paragraphs explaining it. Of course, the
paragraphs will still be there, but the code will hopefully make it clearer.

The code examples tend not to be complete because we don’t want to clutter the demonstrative
code up with extraneous implementation details. You will often see comments with ellipses in them,
meaning we are leaving pieces out that we feel are unimportant to the issue. We have also tried to keep
the examples as short as possible so as to conserve valuable page real estate.

We used the Employee model in the first edition. Its simplicity and universality seemed to position it
as the right model for beginners and advanced users alike. For this reason (and because we didn’t see
any point in creating a whole new model just because the other one might have been a little dry) we have
carried the Employee model over to this edition. We didn’t get any complaints about it in the first
edition, so either it did its job, or it just put people to sleep and they were too dozy to complain.

The state fields in the examples are all defined to have private access, even though this is not
required by the specification. This was not a serious thing for us. It mostly resulted from the state fields
in one or two examples having been made private, and the rest of the examples ending up getting
changed for the sake of consistency.

We have been very careful to ensure that the book is agnostic with respect to the standard code
examples, but having said that, there are some cases when we required vendor-specific names or
features to explain vendor-specific behavior. Naturally, we used the Reference Implementations (RI) of
the Java EE 6 application server and the Java Persistence API. The Java EE 6 RI is called “Glassfish” and is
a fully featured open sourced application server that can be used under the Common Development and
Distribution License (CDDL). The RI for the Java Persistence API is called “EclipseLink”, and is an open
source and freely available Eclipse project derived from the commercially successful Oracle TopLink
product code base. Glassfish and EclipseLink can be downloaded together from java.net.

The examples are available for download from the Apress web site at . We recommend downloading
them and taking a look around to see how things work. Looking at and modifying examples is how you
are going to figure out that JPA 2.0 has gone even further toward complete modeling.

Contacting Us
We can be contacted at michael.keith@oracle.com and merrick.schincariol@oracle.com

■ PREFACE

mailto:keith@oracle.com
mailto:schincariol@oracle.com

■ CONTENTS

xxvi

C H A P T E R 1

■ ■ ■

1

Introduction

Enterprise applications are defined by their need to collect, transform, and report on vast amounts of
information. And, of course, that information has to be kept somewhere. Storing and retrieving data is
a multibillion dollar business, evidenced in part by the growth of the database market as well as the
emergence of off-site secure data storage and retrieval facilities. Despite all the available
technologies for data management, application designers still spend much of their time trying to
efficiently move their data to and from storage.

Many ways of persisting data have come and gone over the years, and no concept has had more
staying power than the relational database. It turns out that the vast majority of the world’s corporate
data is now stored in relational databases. They are the starting point for every enterprise application
and often have a lifespan that continues long after the application has faded away.

Understanding relational data is key to successful enterprise development. Developing
applications to work well with database systems is a commonly acknowledged hurdle of software
development. A good deal of Java’s success can be attributed to its widespread adoption for building
enterprise database systems. From consumer web sites to automated gateways, Java applications are
at the heart of enterprise application development.

Despite the success the Java platform has had in working with database systems, for a long time it
suffered from the same problem that has plagued other object-oriented programming languages.
Moving data back and forth between a database system and the object model of a Java application was
a lot harder than it needed to be. Java developers either wrote lots of code to convert row and column
data into objects, or found themselves tied to proprietary frameworks that tried to hide the database
from them.

Fortunately, a standard solution, the Java Persistence API (JPA), was introduced into the platform
to bridge the gap between object-oriented domain models and relational database systems.

In this book we will introduce the Java Persistence API and explore everything that it has to offer
developers. One of its strengths is that it can be slotted into whichever layer, tier, or framework an
application needs it to be in. Whether you are building client-server applications to collect form data
in a Swing application or building a web site using the latest application framework, JPA can help you
to provide persistence more effectively.

To set the stage for JPA, this chapter first takes a step back to show where we’ve been and what
problems we are trying to solve. From there we will look at the history of the specification and give you
a high-level view of what it has to offer.

CHAPTER 1 ■ INTRODUCTION

2

Object-Relational Mapping
“The domain model has a class. The database has a table. They look pretty similar. It should be simple
to convert one to the other automatically.” This is a thought we’ve probably all had at one point or
another while writing yet another Data Access Object (DAO) to convert Java Database Connectivity
(JDBC) result sets into something object-oriented. The domain model looks similar enough to the
relational model of the database that it seems to cry out for a way to make the two models talk to each
other.

The technique of bridging the gap between the object model and the relational model is known as
object-relational mapping, often referred to as O-R mapping or simply ORM. The term comes from the
idea that we are in some way mapping the concepts from one model onto another, with the goal of
introducing a mediator to manage the automatic transformation of one to the other.

Before going into the specifics of object-relational mapping, let’s define a brief manifesto of what
the ideal solution should be:

• Objects, not tables. Applications should be written in terms of the domain model,
not bound to the relational model. It must be possible to operate on and query
against the domain model without having to express it in the relational language
of tables, columns, and foreign keys.

• Convenience, not ignorance. Mapping tools should be used only by someone
familiar with relational technology. O-R mapping is not meant to save
developers from understanding mapping problems or to hide them altogether. It
is meant for those who have an understanding of the issues and know what they
need, but who don’t want to have to write thousands of lines of code to deal with
a problem that has already been solved.

• Unobtrusive, not transparent. It is unreasonable to expect that persistence be
transparent because an application always needs to have control of the objects
that it is persisting and be aware of the entity life cycle. The persistence solution
should not intrude on the domain model, however, and domain classes must not
be required to extend classes or implement interfaces in order to be persistable.

• Legacy data, new objects. It is far more likely that an application will target an
existing relational database schema than create a new one. Support for legacy
schemas is one of the most relevant use cases that will arise, and it is quite
possible that such databases will outlive every one of us.

• Enough, but not too much. Enterprise developers have problems to solve, and
they need features sufficient to solve those problems. What they don’t like is
being forced to eat a heavyweight persistence model that introduces large
overhead because it is solving problems that many do not even agree are
problems.

• Local, but mobile. A persistent representation of data does not need to be
modeled as a full-fledged remote object. Distribution is something that exists as
part of the application, not part of the persistence layer. The entities that contain
the persistent state, however, must be able to travel to whichever layer needs
them.

CHAPTER 1 ■ INTRODUCTION

3

This would appear to be a somewhat demanding set of requirements, but it is one born of both
practical experience and necessity. Enterprise applications have very specific persistence needs, and
this shopping list of items is a fairly specific representation of the experience of the enterprise
community.

The Impedance Mismatch
Advocates of object-relational mapping often describe the difference between the object model and
the relational model as the impedance mismatch between the two. This is an apt description because
the challenge of mapping one to the other lies not in the similarities between the two, but in the
concepts in each for which there is no logical equivalent in the other.

In the following sections, we will present some basic object-oriented domain models and a
variety of relational models to persist the same set of data. As you will see, the challenge in object-
relational mapping is not so much the complexity of a single mapping but that there are so many
possible mappings. The goal is not to explain how to get from one point to the other but to understand
the roads that may have to be taken to arrive at an intended destination.

Class Representation
Let’s begin this discussion with a simple class. Figure 1-1 shows an Employee class with four attributes:
employee id, employee name, date they started, and current salary.

Figure 1-1. The Employee class

Now consider the relational model shown in Figure 1-2. The ideal representation of this class in
the database corresponds to scenario (A). Each field in the class maps directly to a column in the table.
The employee number becomes the primary key. With the exception of some slight naming
differences, this is a straightforward mapping.

CHAPTER 1 ■ INTRODUCTION

4

Figure 1-2. Three scenarios for storing employee data

In scenario (B), we see that the start date of the employee is actually stored as three separate
columns, one each for the day, month, and year. Recall that the class used a Date object to represent this
value. Because database schemas are much harder to change, should the class be forced to adopt the
same storage strategy in order to remain consistent with the relational model? Also consider the
inverse of the problem, in which the class had used three fields, and the table used a single date
column. Even a single field becomes complex to map when the database and object model differ in
representation.

Salary information is considered commercially sensitive, so it may be unwise to place the salary
value directly in the EMP table, which may be used for a number of purposes. In scenario (C), the EMP
table has been split so that the salary information is stored in a separate EMP_SAL table. This allows the
database administrator to restrict SELECT access on salary information to those users who genuinely
require it. With such a mapping, even a single store operation for the Employee class now requires
inserts or updates to two different tables.

Clearly, even storing the data from a single class in a database can be a challenging exercise. We
concern ourselves with these scenarios because real database schemas in production systems were
never designed with object models in mind. The rule of thumb in enterprise applications is that the
needs of the database trump the wants of the application. In fact, there are usually many applications,
some object-oriented and some based on Structured Query Language (SQL), which retrieve from and
store data into a single database. The dependency of multiple applications on the same database
means that changing the database would affect every one of the applications, clearly an undesirable
and potentially expensive option. It’s up to the object model to adapt and find ways to work with the
database schema without letting the physical design overpower the logical application model.

CHAPTER 1 ■ INTRODUCTION

5

Relationships
Objects rarely exist in isolation. Just like relationships in a database, domain classes depend on and
associate themselves with other domain classes. Consider the Employee class introduced in Figure 1-1.
There are many domain concepts we could associate with an employee, but for now let’s introduce the
Address domain class, for which an Employee may have at most one instance. We say in this case that
Employee has a one-to-one relationship with Address, represented in the Unified Modeling Language
(UML) model by the 0..1 notation. Figure 1-3 demonstrates this relationship.

Figure 1-3. The Employee and Address relationship

We discussed different scenarios for representing the Employee state in the previous section, and
likewise there are several approaches to representing a relationship in a database schema. Figure 1-4
demonstrates three different scenarios for a one-to-one relationship between an employee and an
address.

The building block for relationships in the database is the foreign key. Each scenario involves
foreign key relationships between the various tables, but in order for there to be a foreign key
relationship, the target table must have a primary key. And so before we even get to associate
employees and addresses with each other we have a problem. The domain class Address does not have
an identifier, yet the table that it would be stored in must have one if it is to be part of relationships. We
could construct a primary key out of all of the columns in the ADDRESS table, but this is considered bad
practice. Therefore the ID column is introduced and the object relational mapping will have to adapt in
some way.

CHAPTER 1 ■ INTRODUCTION

6

Figure 1-4. Three scenarios for relating employee and address data

Scenario (A) of Figure 1-4 shows the ideal mapping of this relationship. The EMP table has a foreign
key to the ADDRESS table stored in the ADDRESS_ID column. If the domain class holds onto an instance of
the Address class, the primary key value for the address can be set during store operations.

And yet consider scenario (B), which is only slightly different yet suddenly much more complex. In
our domain model, Address did not hold onto the Employee instance that owned it, and yet the employee
primary key must be stored in the ADDRESS table. The object-relational mapping must either account for
this mismatch between domain class and table or a reference back to the employee will have to be
added for every address.

To make matters worse, scenario (C) introduces a join table to relate the EMP and ADDRESS tables.
Instead of storing the foreign keys directly in one of the domain tables, the join table instead holds
onto the pair of keys. Every database operation involving the two tables must now traverse the join
table and keep it consistent. We could introduce an EmployeeAddress association class into our domain
model to compensate, but that defeats the logical representation we are trying to achieve.

CHAPTER 1 ■ INTRODUCTION

7

Relationships present a challenge in any object-relational mapping solution. In this introduction
we covered only one-to-one relationships, and yet we have been faced with the need for primary keys
not in the object model and the possibility of having to introduce extra relationships into the model or
even association classes to compensate for the database schema.

Inheritance
A defining element of an object-oriented domain model is the opportunity to introduce generalized
relationships between like classes. Inheritance is the natural way to express these relationships and
allows for polymorphism in the application. Let’s revisit the Employee class shown in Figure 1-1 and
imagine a company that needs to distinguish between full-time and part-time employees. Part-time
employees work for an hourly rate, while full-time employees are assigned a salary. This is a good
opportunity for inheritance, moving wage information to the PartTimeEmployee and FullTimeEmployee
subclasses. Figure 1-5 shows this arrangement.

Figure 1-5. Inheritance relationships between full-time and part-time employees

Inheritance presents a genuine problem for object-relational mapping. We are no longer dealing
with a situation in which there is a natural mapping from a class to a table. Consider the relational
models shown in Figure 1-6. Once again we demonstrate three different strategies for persisting the
same set of data.

CHAPTER 1 ■ INTRODUCTION

8

Figure 1-6. Inheritance strategies in a relational model

Arguably the easiest solution for someone mapping an inheritance structure to a database would
be to put all of the data necessary for each class (including parent classes) into separate tables. This
strategy is demonstrated by scenario (A) in Figure 1-6. Note that there is no relationship between the
tables (i.e., each table is independent of the others). This means that queries against these tables are
now much more complicated if the user needs to operate on both full-time and part-time employees in
a single step.

An efficient but denormalized alternative is to place all the data required for every class in the
model in a single table. That makes it very easy to query, but note the structure of the table shown in
scenario (B) of Figure 1-6. There is a new column, TYPE, which does not exist in any part of the domain
model. The TYPE column indicates whether or not the employee is part-time or full-time. This
information must now be interpreted by an object-relational mapping solution to know what kind of
domain class to instantiate for any given row in the table.

Scenario (C) takes this one step further, this time normalizing the data into separate tables for
full-time and part-time employees. Unlike scenario (A), however, these tables are related by a
common EMP table that stores all of the data common to both employee types. It might seem like
overkill for a single column of extra data, but a real schema with many columns specific to each type of
employee would likely use this type of table structure. It presents the data in a logical form and also
simplifies querying by allowing the tables to be joined together. Unfortunately, what works well for

CHAPTER 1 ■ INTRODUCTION

9

the database does not necessarily work well for an object model mapped to such a schema. Even
without associations to other classes, the object-relational mapping of the domain class must now take
joins between multiple tables into account.

When you start to consider abstract superclasses or parent classes that are not persistent,
inheritance rapidly becomes a complex issue in object-relational mapping. Not only is there a
challenge with storage of the class data but the complex table relationships are also difficult to query
efficiently.

Java Support for Persistence
From the early days of the Java platform, programming interfaces have existed to provide gateways
into the database and to abstract away many of the domain-specific persistence requirements of
business applications. In the next few sections we will discuss current and past Java persistence
solutions and their role in enterprise applications.

Proprietary Solutions
It may come as a surprise to learn that object-relational mapping solutions have been around for a
long time; longer even than the Java language itself. Products such as Oracle TopLink got their start in
the Smalltalk world before making the switch to Java. A great irony in the history of Java persistence
solutions is that one of the first implementations of entity beans was actually demonstrated by adding
an additional entity bean layer over TopLink mapped objects.

The two most popular proprietary persistence APIs were TopLink in the commercial space and
Hibernate™ in the open source community. Commercial products like TopLink were available in the
earliest days of Java and were successful, but the techniques were just never standardized for the Java
platform. It was later, when upstart open source object-relational mapping solutions such as Hibernate
became popular, that changes around persistence in the Java platform came about, leading to a
convergence toward object-relational mapping as the preferred solution.

These two products and others could be easily integrated with all the major application servers
and provided applications with all the persistence features they needed. Application developers were
perfectly satisfied to use a third-party product for their persistence needs, especially given that there
were no common and equivalent standards in sight.

JDBC
The second release of the Java platform, Java Development Kit (JDK) 1.1, released in 1997, ushered in
the first major support for database persistence with JDBC. It was created as a Java-specific version of
its more generic predecessor, the Object Database Connectivity (ODBC) specification, a standard for
accessing any relational database from any language or platform. Offering a simple and portable
abstraction of the proprietary client programming interfaces offered by database vendors, JDBC
allows Java programs to fully interact with the database. This interaction is heavily reliant on SQL,
offering developers the chance to write queries and data manipulation statements in the language of
the database, but executed and processed using a simple Java programming model.

The irony of JDBC is that, although the programming interfaces are portable, the SQL language is
not. Despite the many attempts to standardize it, it is still rare to write SQL of any complexity that will
run unchanged on two major database platforms. Even where the SQL dialects are similar, each
database performs differently depending on the structure of the query, necessitating vendor-specific
tuning in most cases.

CHAPTER 1 ■ INTRODUCTION

10

There is also the issue of tight coupling between Java source and SQL text. Developers are
constantly tempted by the lure of ready-to-run SQL queries either dynamically constructed at runtime
or simply stored in variables or fields. This is a very attractive programming model until one day you
realize that the application has to support a new database vendor that doesn’t support the dialect of
SQL you have been using.

Even with SQL text relegated to property files or other application metadata, there comes a point
when working with JDBC not only feels wrong but also simply becomes a cumbersome exercise in
taking tabular row and column data and continuously having to convert it back and forth into objects.
The application has an object model—why does it have to be so hard to use with the database?

Enterprise JavaBeans
The first release of the Java 2 Enterprise Edition (J2EE) platform introduced a new solution for Java
persistence in the form of the entity bean, part of the Enterprise JavaBean (EJB) family of components.
Intended to fully insulate developers from dealing directly with persistence, it introduced an
interface-based approach, where the concrete bean class was never directly used by client code.
Instead, a specialized bean compiler generated an implementation of the bean interface to facilitate
such things as persistence, security, and transaction management, delegating the business logic to the
entity bean implementation. Entity beans were configured using a combination of standard and
vendor-specific XML deployment descriptors, which became notorious for their complexity and
verbosity.

It’s probably fair to say that entity beans were over-engineered for the problem they were trying
to solve, yet ironically the first release of the technology lacked many features necessary to
implement realistic business applications. Relationships between entities had to be managed by the
application, requiring foreign key fields to be stored and managed on the bean class. The actual
mapping of the entity bean to the database was done entirely using vendor-specific configurations, as
was the definition of finders (the entity bean term for queries). Finally, entity beans were modeled as
remote objects that used RMI and CORBA, introducing network overhead and restrictions that should
never have been added to a persistent object to begin with. The entity bean really began by solving
the distributed persistent component problem, a cure for which there was no disease, leaving behind
the common case of locally accessed lightweight persistent objects.

The EJB 2.0 specification solved many of the problems identified in the early releases. The notion
of container-managed entity beans was introduced, where bean classes became abstract and the
server was responsible for generating a subclass to manage the persistent data. Local interfaces and
container-managed relationships were introduced, allowing associations to be defined between
entity beans and automatically kept consistent by the server. This release also saw the introduction of
Enterprise JavaBeans Query Language (EJB QL), a query language designed to work with entities that
could be portably compiled to any SQL dialect.

Despite the improvements introduced with EJB 2.0, one major problem remained: excessive
complexity. The specification assumed that development tools would insulate the developer from the
challenge of configuring and managing the many artifacts required for each bean. Unfortunately,
these tools took too long to materialize, and so the burden fell squarely on the shoulders of developers,
even as the size and scope of EJB applications increased. Developers felt abandoned in a sea of
complexity without the promised infrastructure to keep them afloat.

Java Data Objects
Due in part to some of the failures of the EJB persistence model, and some frustration at not having a
satisfactory standardized persistence API, another persistence specification was attempted. Java Data
Objects (JDO) was inspired and supported primarily by the object-oriented database (OODB) vendors

CHAPTER 1 ■ INTRODUCTION

11

and never really got adopted by the mainstream programming community. It required vendors to
enhance the bytecode of domain objects to produce class files that were binary-compatible across all
vendors, and every compliant vendor’s products had to be capable of producing and consuming them.
JDO also had a query language that was decidedly object-oriented in nature, which did not sit well with
relational database users, who were in an overwhelming majority.

JDO reached the status of being an extension of the JDK, but never became an integrated part of
the enterprise Java platform. It had many good features and was adopted by a small community of
devoted users who stuck by it and tried desperately to promote it. Unfortunately, the major commercial
vendors did not share the same view of how a persistence framework should be implemented. Few
supported the specification, so JDO was talked about, but rarely used.

Some might argue that it was ahead of its time and that its reliance on bytecode enhancement
caused it to be unfairly stigmatized. This was probably true, and if it had been introduced three years
later, it might have been better accepted by a developer community that now thinks nothing of using
frameworks that make extensive use of bytecode enhancement. Once the EJB 3.0 persistence
movement was in motion, however, and the major vendors all signed up to be a part of the new
enterprise persistence standard, the writing was on the wall for JDO. People soon complained to Sun
that they now had two persistence specifications: one that was part of its enterprise platform and also
worked in Java SE, and one that was being standardized only for Java SE. Shortly thereafter, Sun
announced that JDO would be reduced to specification maintenance mode and that JPA would draw
from both JDO and the persistence vendors and become the single supported standard going forward.

Why Another Standard?
Software developers knew what they wanted, but many could not find it in the existing standards, so
they decided to look elsewhere. What they found was a range of proprietary persistence frameworks,
both commercial and open source. Many of the products that implemented these technologies adopted
a persistence model that did not intrude upon the domain objects. For these products, persistence was
nonintrusive to the business objects in that, unlike entity beans, they did not have to be aware of the
technology that was persisting them. They did not have to implement any type of interface or extend a
special class. The developer could simply treat the persistent object like any other Java object, and
then map it to a persistent store and use a persistence API to persist it. Because the objects were
regular Java objects, this persistence model came to be known as Plain Old Java Object (POJO)
persistence.

As Hibernate, TopLink, and other persistence APIs became ensconced in applications and met the
needs of the application perfectly well, the question was often asked, “Why bother updating the EJB
standard to match what these products already did? Why not just continue to use these products as has
already been done for years, or why not even just standardize on an open source product like
Hibernate?” There are actually many reasons why this could not be done and would be a bad idea
even if it could.

A standard goes far deeper than a product, and a single product (even a product as successful as
Hibernate or TopLink) cannot embody a specification, even though it can implement one. At its very
core, the intention of a specification is that it be implemented by different vendors and that it have
different products offer standard interfaces and semantics that can be assumed by applications without
coupling the application to any one product.

Binding a standard to an open source project like Hibernate would be problematic for the
standard and probably even worse for the Hibernate project. Imagine a specification that was based
on a specific version or checkpoint of the code base of an open source project, and how confusing that
would be. Now imagine an open source software (OSS) project that could not change or could change
only in discrete versions controlled by a special committee every two years, as opposed to the changes

CHAPTER 1 ■ INTRODUCTION

12

being decided by the project itself. Hibernate, and indeed any open source project, would likely be
suffocated.

Although standardization might not be valued by the consultant or the five-person software shop,
to a corporation it is huge. Software technologies are a big investment for most corporate IT shops, and
risk must be measured when large sums of money are involved. Using a standard technology reduces
that risk substantially and allows the corporation to be able to switch vendors if the initial choice turns
out not to have met the need.

Besides portability, the value of standardizing a technology is manifested in all sorts of other
areas as well. Education, design patterns, and industry communication are just some of the many
benefits that standards bring to the table.

The Java Persistence API
The Java Persistence API is a lightweight, POJO-based framework for Java persistence. Although
object-relational mapping is a major component of the API, it also offers solutions to the architectural
challenges of integrating persistence into scalable enterprise applications. In the following sections
we will look at the evolution of the specification and provide an overview of the major aspects of this
technology.

History of the Specification
The Java Persistence API is remarkable not only for what it offers developers but also for the way in
which it came to be. The following sections outline the prehistory of object-relational persistence
solutions and the genesis of JPA.

EJB 3.0 and JPA 1.0
After years of complaints about the complexity of building enterprise applications with Java, “ease of
development” was the theme for the Java EE 5 platform release. EJB 3.0 led the charge and found ways
to make Enterprise JavaBeans easier and more productive to use.

In the case of session beans and message-driven beans, solutions to usability issues were reached
by simply removing some of the more onerous implementation requirements and letting components
look more like plain Java objects.

In the case of entity beans, however, a more serious problem existed. If the definition of “ease of
use” is to keep implementation interfaces and descriptors out of application code and to embrace the
natural object model of the Java language, how do you make coarse-grained, interface-driven,
container-managed entity beans look and feel like a domain model?

The answer was to start over. Leave entity beans alone and introduce a new model for persistence.
The Java Persistence API was born out of recognition of the demands of practitioners and the existing
proprietary solutions that they were using to solve their problems. To ignore that experience would
have been folly.

Thus the leading vendors of object-relational mapping solutions came forward and standardized
the best practices represented by their products. Hibernate and TopLink were the first to sign on with
the EJB vendors, followed later by the JDO vendors.

Years of industry experience coupled with a mission to simplify development combined to produce
the first specification to truly embrace the new programming models offered by the Java SE 5 platform.
The use of annotations in particular resulted in a new way of using persistence in applications that
had never been seen before.

CHAPTER 1 ■ INTRODUCTION

13

The resulting EJB 3.0 specification ended up being divided into three distinct pieces and split
across three separate documents, the third of which was the Java Persistence API. It was a stand-alone
specification that described the persistence model in both the Java SE and Java EE environments.

JPA 2.0
By the time the first version of JPA was started, ORM persistence had already been evolving for a
decade. Unfortunately there was only a relatively short period of time available (approximately 2
years) in the specification development cycle to create the initial specification, so not every possible
feature that had been encountered could be included in the first release. Still, an impressive number of
features were specified, with the remainder being left for subsequent releases and for the vendors to
support in proprietary ways in the meantime.

The next release, JPA 2.0, actually did include a large number of the features that were not present
in the first release, specifically those that had been the most requested by users. By providing a more
complete set of persistence features, it is now less likely that an application will have to revert to
vendor additions.

Some of the features that made the 2.0 release included additional mapping capabilities, flexible
ways to determine the way the provider accessed the entity state, extensions to the Java Persistence
Query Language (JP QL), and an object-oriented Java criteria API for creating dynamic queries.
Throughout the book we have tried to distinguish the newly added features from those that were
present in the first release. This will hopefully help readers that are still using an old JPA 1.0
implementation and for whatever reason are not able to move up to 2.0.

JPA and You
In the end, there may still be some feature that you, or some other JPA user, might look for in the 2.0
standard that has not yet been included. If the feature turns out to be requested by a sufficient number
of users then it will eventually become part of the standard, but that partly depends upon you, the
developers. If you think a feature should be standardized, you should speak up and request it from your
JPA provider, as well as to the expert group of the next JPA version. The community helps to shape and
drive the standards, and it is you, the community, that must make your needs known.

Note, however, that there will always be a subset of seldom-used features that will likely never
make it into the standard simply because they are not mainstream enough to warrant being included.
The well-known philosophy of the “needs of the many” outweighing the “needs of the few” (don’t even
pretend that you don’t know the exact episode in which this philosophy was first expressed) must be
considered because each new feature adds some non-zero amount of complexity to the specification
rendering it that much bigger, and that much harder to understand, use, and implement. The lesson is
that even though we are asking you for your input, not all of it can possibly be incorporated into the
specification.

Overview
The model of JPA is simple and elegant, powerful and flexible. It is natural to use, and easy to learn,
especially if you have used any of the existing persistence products on the market today on which the
API was based. The main operational API that an application will be exposed to is contained within a
small number of classes.

CHAPTER 1 ■ INTRODUCTION

14

POJO Persistence
Perhaps the most important aspect of JPA is the fact that the objects are POJOs, meaning that there is
nothing special about any object that is made persistent. In fact, virtually any existing non-final
application object with a default constructor can be made persistable without so much as changing a
single line of code. Object-relational mapping with JPA is entirely metadata-driven. It can be done
either by adding annotations to the code or using externally defined XML. The objects that are
persisted are only as heavy as the data that is defined or mapped with them.

Nonintrusiveness
The persistence API exists as a separate layer from the persistent objects. The persistence API is called
by the application business logic and is passed the persistence objects and instructed to operate upon
them. So even though the application must be aware of the persistence API, because it has to call into it,
the persistent objects themselves need not be aware. Because the API does not intrude upon the code
in the persistent object classes, we call this non-intrusive persistence.
Some people are under the misconception that non-intrusive persistence means that objects
magically get persisted, the way that object databases of yesteryear used to do when a transaction got
committed. This is sometimes called transparent persistence and is an incorrect notion that is even
more irrational when you think about querying. You need to have some way of retrieving the objects
from the data store. This requires a separate API object and, in fact, some object databases used
separate Extent objects to issue queries. Applications absolutely need to manage their persistent
objects in very explicit ways, and they require a designated API to do it.

Object Queries
A powerful query framework offers the ability to query across entities and their relationships without
having to use concrete foreign keys or database columns. Queries may be expressed in Java
Persistence Query Language (JP QL), a query language that is derived from EJB QL and modeled after
SQL for its familiarity, but it is not tied to the database schema or defined using the criteria API.
Queries use a schema abstraction that is based on the entity model as opposed to the columns in which
the entity is stored. Java entities and their attributes are used as the query schema, so knowledge of the
database-mapping information is not required. The queries will eventually get translated by the JPA
implementation into SQL and executed on the database.

A query may be defined statically in metadata or created dynamically by passing query criteria
when constructing it. It is also possible to escape to SQL if a special query requirement exists that
cannot be met by the SQL generation from the persistence framework. These queries can all return
results that are entities and are valuable abstractions that enable querying across the Java domain
model instead of across database tables.

Mobile Entities
Client/server and web applications and other distributed architectures are clearly the most popular
types of applications in a connected world. To acknowledge this fact meant acknowledging that
persistent entities must be mobile in the network. Objects must be able to be moved from one virtual
machine to another and then back again, and must still be usable by the application.

CHAPTER 1 ■ INTRODUCTION

15

Objects that leave the persistence layer are called detached. A key feature of the persistence model
is the ability to change detached entities and then reattach them upon their return to the virtual
machine. The detachment model provides a way of reconciling the state of an entity being reattached,
with the state that it was in before it became detached. This allows entity changes to be made offline,
while still maintaining entity consistency in the face of concurrency.

Simple Configuration
There are a great number of persistence features that the specification has to offer and that we will
explain in the chapters of this book. All the features are configurable through the use of annotations,
XML, or a combination of the two. Annotations offer ease of use that is unparalleled in the history of
Java metadata. They are convenient to write and painless to read, and they make it possible for
beginners to get an application going quickly and easily. Configuration can also be done in XML for
those who like XML or want to externalize the metadata from the code.

Of greater significance than the metadata language is the fact that JPA makes heavy use of
defaults. This means that no matter which method is chosen, the amount of metadata that will be
required just to get running is the absolute minimum. In some cases, if the defaults are good enough,
almost no metadata will be required at all.

Integration and Testability
Multitier applications hosted on an application server have become the de facto standard for
application architectures. Testing on an application server is a challenge that few relish. It can bring
pain and hardship, and it is often prohibitive to unit testing and white box testing.

This is solved by defining the API to work outside as well as inside the application server. Although
it is not as common a use case, those applications that do run on two tiers (the application talking
directly to the database tier) can use the persistence API without the existence of an application server
at all. The more common scenario is for unit tests and automated testing frameworks that can be run
easily and conveniently in Java SE environments.

With the Java Persistence API it is now possible to write server-integrated persistence code and be
able to reuse it for testing outside the server. When running inside a server container, all the benefits
of container support and superior ease of use apply, but with a few changes and a little bit of test
framework support the same application can also be configured to run outside the container.

Summary
This chapter presented an introduction to the Java Persistence API. We began with an introduction to
the primary problem facing developers trying to use object-oriented domain models in concert with a
relational database: the impedance mismatch. To demonstrate the complexity bridging the gap, we
presented three small object models and nine different ways to represent the same information. We
explored them a little and discussed how mapping objects to different table configurations can cause
differences, not only in the way data evolves in the database but also how expensive the resulting
database operations are and how the application performs.

We then presented an overview of current standards for persistence, looking at JDBC, EJB, and
JDO. In each case, we looked at the evolution of the standard and where it fell short. We gained some
general insights on particular aspects of the persistence problem that were learned along the way.

CHAPTER 1 ■ INTRODUCTION

16

We concluded the chapter with a brief look at JPA. We looked at the history of the specification and
the vendors who came together to create it. We then looked at the role it plays in enterprise
application development and gave an introduction to some of the features offered by the specification.

In the next chapter, you will get your feet wet with JPA, taking a whirlwind tour of the basics and
building a simple application in the process.

C H A P T E R 2

■ ■ ■

17

Getting Started

One of the main goals of JPA was that it should be simple to use and easy to understand. Although its
problem domain cannot be trivialized or watered down, the technology that enables one to deal with it
can be straightforward and intuitive. In this chapter, we will show how effortless it can be to develop
and use entities.

We will start by describing the basic characteristics of entities. We’ll define what an entity is and
how to create, read, update, and delete it. We’ll also introduce entity managers and how they are
obtained and used. Then we’ll take a quick look at queries and how to specify and execute a query
using the EntityManager and Query objects. The chapter will conclude by showing a simple working
application that runs in a standard Java SE environment and that demonstrates all of the example code
in action.

Entity Overview
The entity is not a new thing in data management. In fact, entities have been around longer than
many programming languages and certainly longer than Java. They were first introduced by Peter
Chen in his seminal paper on entity-relationship modeling.1 He described entities as things that have
attributes and relationships. The expectation was that the attributes and relationships would be
persisted in a relational database.

Even now, the definition still holds true. An entity is essentially a noun, or a grouping of state
associated together as a single unit. It may participate in relationships to any number of other entities
in a number of standard ways. In the object-oriented paradigm, we would add behavior to it and call it
an object. In JPA, any application-defined object can be an entity, so the important question might be
this: What are the characteristics of an object that has been turned into an entity?

1Peter P. Chen, “The entity-relationship model—toward a unified view of data,” ACM Transactions on
Database Systems 1, no. 1 (1976): 9–36.

CHAPTER 2 ■ GETTING STARTED

18

Persistability
The first and most basic characteristic of entities is that they are persistable. This generally just means
that they can be made persistent. More specifically, it means that their state can be represented in a
data store and can be accessed at a later time, perhaps well after the end of the process that created it.

We could call them persistent objects, and many people do, but it is not technically correct. Strictly
speaking, a persistent object becomes persistent the moment it is instantiated in memory. If a
persistent object exists, then by definition it is already persistent.

An entity is persistable because it can be created in a persistent store. The difference is that it is
not automatically persisted, and that in order for it to have a durable representation the application
must actively invoke an API method to initiate the process. This is an important distinction because it
leaves control over persistence firmly in the hands of the application. The application has the
flexibility to manipulate data and perform business logic on the entity, making it persistent only when
the application decides it is the right time. The lesson is that entities may be manipulated without
necessarily being persisted, and it is the application that decides whether they are or not.

Identity
Like any other Java object, an entity has an object identity, but when it exists in the database it also has
a persistent identity. Persistent identity, or an identifier, is the key that uniquely identifies an entity
instance and distinguishes it from all the other instances of the same entity type. An entity has a
persistent identity when there exists a representation of it in the data store; that is, a row in a database
table. If it is not in the database then even though the in-memory entity may have its identity set in a
field, it does not have a persistent identity. The entity identifier, then, is equivalent to the primary key
in the database table that stores the entity state.

Transactionality
Entities are what we might call quasi-transactional. Although they can be created, updated, and deleted
in any context, these operations are normally done within the context of a transaction2 because a
transaction is required for the changes to be committed in the database. Changes made to the database
either succeed or fail atomically, so the persistent view of an entity should indeed be transactional.

In memory, it is a slightly different story in the sense that entities may be changed without the
changes ever being persisted. Even when enlisted in a transaction, they may be left in an undefined
or inconsistent state in the event of a rollback or transaction failure. The in-memory entities are
simple Java objects that obey all of the rules and constraints that are applied by the Java Virtual
Machine (JVM) to other Java objects.

Granularity
Finally, we can also learn something about what entities are by describing what they are not. They are
not primitives, primitive wrappers, or built-in objects with single-dimensional state. These are no

2 In most cases, this is a requirement, but in certain configurations the transaction may not be present
until later.

CHAPTER 2 ■ GETTING STARTED

19

more than scalars and do not have any inherent semantic meaning to an application. A string, for
example, is too fine-grained an object to be an entity because it does not have any domain-specific
connotation. Rather, a string is well-suited and very often used as a type for an entity attribute and
given meaning according to the entity attribute that it is typing.

Entities are meant to be fine-grained objects that have a set of aggregated state that is normally
stored in a single place, such as a row in a table, and typically have relationships to other entities. In
the most general sense, they are business domain objects that have specific meaning to the application
that accesses them.

While it is certainly true that entities may be defined in exaggerated ways to be as fine-grained as
storing a single string or coarse-grained enough to contain 500 columns’ worth of data, JPA entities
were definitely intended to be on the smaller end of the granularity spectrum. Ideally, entities
should be designed and defined as fairly lightweight objects of a size comparable to that of the average
Java object.

Entity Metadata
In addition to its persistent state, every entity has some associated metadata (even if a very small
amount) that describes it. This metadata may exist as part of the saved class file or it may be stored
external to the class, but it is not persisted in the database. It enables the persistence layer to
recognize, interpret, and properly manage the entity from the time it is loaded through to its runtime
invocation.

The metadata that is actually required for each entity is minimal, rendering entities easy to
define and use. However, like any sophisticated technology with its share of switches, levers, and
buttons, there is also the possibility to specify much, much more metadata than is required. It may be
extensive amounts, depending upon the application requirements, and may be used to customize
every detail of the entity configuration or state mappings.

Entity metadata may be specified in two ways: annotations or XML. Each is equally valid, but the
one that you use will depend upon your development preferences or process.

Annotations
Annotation metadata is a language feature introduced in Java SE 5 that allows structured and typed
metadata to be attached to the source code. Although annotations are not required by JPA, they are a
convenient way to learn and use the API. Because annotations co-locate the metadata with the
program artifacts, it is not necessary to escape to an additional file and a special language (XML) just
to specify the metadata.

Annotations are used throughout both the examples and the accompanying explanations in this
book. All the API annotations that are shown and described (except in Chapter 3, which talks about Java
EE annotations) are defined in the javax.persistence package. Example code snippets can be assumed
to have an implicit import of the form import javax.persistence.*;.

XML
For those who prefer to use traditional XML, this option is still available. It should be fairly
straightforward to switch to using XML descriptors after having learned and understood the
annotations because the XML has mostly been patterned after the annotations. Chapter 12 describes
how to use XML to specify or override entity mapping metadata.

CHAPTER 2 ■ GETTING STARTED

20

Configuration by Exception
The notion of configuration by exception means that the persistence engine defines defaults that apply
to the majority of applications and that users need to supply values only when they want to override
the default value. In other words, having to supply a configuration value is an exception to the rule, not
a requirement.

Configuration by exception is ingrained in JPA and contributes strongly to its usability. Most
configuration values have defaults, rendering the metadata that does have to be specified more
relevant and concise.

The extensive use of defaults and the ease of use that it brings to configuration come at a price,
however. When defaults are embedded into the API and do not have to be specified, then they are not
visible or obvious to users. This can make it possible for users to be unaware of the complexity of
developing persistence applications, making it harder to debug or to change the behavior when it
becomes necessary.

Defaults are not meant to shield users from the often complex issues surrounding persistence.
They are meant to allow a developer to get started easily and quickly with something that will work
and then iteratively improve and implement additional functionality as the complexity of their
application increases. Even though the defaults may be what you want to have happen most of the time,
it is still important for developers to be familiar with the default values that are being applied. For
example, if a table name default is being assumed, it is important to know what table the runtime is
expecting, or if schema generation is used, what table will be generated.

For each of the annotations we will also discuss the default value so that it is clear what will be
applied if the annotation is not specified. We recommend that you remember these defaults as you
learn them. After all, a default value is still part of the configuration of the application; it is just really
easy to configure!

Creating an Entity
Regular Java classes are easily transformed into entities simply by annotating them. In fact, by adding
a couple of annotations, virtually any class with a no-arg constructor can become an entity.

Let’s start by creating a regular Java class for an employee. Listing 2-1 shows a simple Employee
class.

Listing 2-1. Employee Class

public class Employee {
 private int id;
 private String name;
 private long salary;

 public Employee() {}
 public Employee(int id) { this.id = id; }

 public int getId() { return id; }
 public void setId(int id) { this.id = id; }
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 public long getSalary() { return salary; }
 public void setSalary (long salary) { this.salary = salary; }
}

CHAPTER 2 ■ GETTING STARTED

21

You may notice that this class resembles a JavaBean-style class with three properties: id, name, and
salary. Each of these properties is represented by a pair of accessor methods to get and set the
property, and is backed by a member field. Properties or member fields are the units of state within the
entity that we want to persist.

To turn Employee into an entity, we first need to annotate the class with @Entity. This is primarily
just a marker annotation to indicate to the persistence engine that the class is an entity.

The second annotation that we need to add is @Id. This annotates the particular field or property
that holds the persistent identity of the entity (the primary key) and is needed so the provider knows
which field or property to use as the unique identifying key in the table.

Adding these two annotations to our Employee class, we end up with pretty much the same class
that we had before, except that now it is an entity. Listing 2-2 shows the entity class.

Listing 2-2. Employee Entity

@Entity
public class Employee {
 @Id private int id;
 private String name;
 private long salary;

 public Employee() {}
 public Employee(int id) { this.id = id; }

 public int getId() { return id; }
 public void setId(int id) { this.id = id; }
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 public long getSalary() { return salary; }
 public void setSalary (long salary) { this.salary = salary; }
}

When we say that the @Id annotation is placed on the field or property, we mean that the user can
choose to annotate either the declared field or the getter method3 of a JavaBean-style property. Either
field or property strategy is allowed, depending on the needs and tastes of the entity developer. We
have chosen in this example to annotate the field because it is simpler; in general, this will be the
easiest and most direct approach. We will discuss the details of annotating persistent state using field
or property access in subsequent chapters.

The fields in the entity are automatically made persistable by virtue of their existence in the
entity. Default mapping and loading configuration values apply to these fields and enable them to be
persisted when the object is persisted. Given the questions that were brought up in the last chapter, one
might be led to ask, “How did the fields get mapped, and where do they get persisted to?”

To find the answer, we must first take a quick detour to dig inside the @Entity annotation and look
at an element called name that uniquely identifies the entity. The entity name may be explicitly
specified for any entity by using this name element in the annotation, as in @Entity(name="Emp"). In
practice, this is seldom specified because it gets defaulted to be the unqualified name of the entity class.
This is almost always both reasonable and adequate.

3 Annotations on setter methods will just be ignored.

CHAPTER 2 ■ GETTING STARTED

22

Now we can get back to the question about where the data gets stored. It turns out that the default
name of the table used to store any given entity of a particular entity type is the name of the entity. If
we have specified the name of the entity, that will be the default table name; if we have not, the default
value of the entity name will be used. We just stated that the default entity name was the unqualified
name of the entity class, so that is effectively the answer to the question of which table gets used. In the
Employee example, all entities of type Employee will get stored in a table called EMPLOYEE.

Each of the fields or properties has individual state in it and needs to be directed to a particular
column in the table. We know to go to the EMPLOYEE table, but we don’t know which column to use for
any given field or property. When no columns are explicitly specified, the default column is used for a
field or property, which is just the name of the field or property itself. So our employee id will get
stored in the ID column, the name in the NAME column, and the salary in the SALARY column of the
EMPLOYEE table.

Of course, these values can all be overridden to match an existing schema. We will discuss how to
override them when we get to Chapter 4 and discuss mapping in more detail.

Entity Manager
In the “Entity Overview” section, it was stated that a specific API call needs to be invoked before an
entity actually gets persisted to the database. In fact, separate API calls are needed to perform many of
the operations on entities. This API is implemented by the entity manager and encapsulated almost
entirely within a single interface called EntityManager. When all is said and done, it is to an entity
manager that the real work of persistence is delegated. Until an entity manager is used to actually
create, read, or write an entity, the entity is nothing more than a regular (nonpersistent) Java object.

When an entity manager obtains a reference to an entity, either by having it explicitly passed in
as an argument to a method call or because it was read from the database, that object is said to be
managed by the entity manager. The set of managed entity instances within an entity manager at any
given time is called its persistence context. Only one Java instance with the same persistent identity
may exist in a persistence context at any time. For example, if an Employee with a persistent identity (or
id) of 158 exists in the persistence context, then no other Employee object with its id set to 158 may exist
within that same persistence context.

Entity managers are configured to be able to persist or manage specific types of objects, read and
write to a given database, and be implemented by a particular persistence provider (or provider for
short). It is the provider that supplies the backing implementation engine for the entire Java
Persistence API, from the EntityManager through to implementation of the query classes and SQL
generation.

All entity managers come from factories of type EntityManagerFactory. The configuration for an
entity manager is templated from the EntityManagerFactory that created it, but it is defined separately
as a persistence unit. A persistence unit dictates either implicitly or explicitly the settings and entity
classes used by all entity managers obtained from the unique EntityManagerFactory instance bound to
that persistence unit. There is, therefore, a one-to-one correspondence between a persistence unit
and its concrete EntityManagerFactory.

Persistence units are named to allow differentiation of one EntityManagerFactory from another.
This gives the application control over which configuration or persistence unit is to be used for
operating on a particular entity.

CHAPTER 2 ■ GETTING STARTED

23

Figure 2-1. Relationships between JPA concepts

Figure 2-1 shows that for each persistence unit there is an EntityManagerFactory and that many
entity managers can be created from a single EntityManagerFactory. The part that may come as a
surprise is that many entity managers can point to the same persistence context. We have talked only
about an entity manager and its persistence context, but later on we will see that there may in fact be
multiple references to different entity managers all pointing to the same group of managed entities.
This will enable the control flow to traverse container components but continue to be able access the
same persistence context.

Obtaining an Entity Manager
An entity manager is always obtained from an EntityManagerFactory. The factory from which it was
obtained determines the configuration parameters that govern its operation. While there are shortcuts
that veil the factory from the user view when running in a Java EE application server environment, in
the Java SE environment we can use a simple bootstrap class called Persistence. The static
createEntityManagerFactory() method in the Persistence class returns the EntityManagerFactory for
the specified persistence unit name. The following example demonstrates creating an
EntityManagerFactory for the persistence unit named “EmployeeService”:
EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("EmployeeService");

The name of the specified persistence unit “EmployeeService” passed into the
createEntityManagerFactory() method identifies the given persistence unit configuration that
determines such things as the connection parameters that entity managers generated from this
factory will use when connecting to the database.

CHAPTER 2 ■ GETTING STARTED

24

Now that we have a factory, we can easily obtain an entity manager from it. The following
example demonstrates creating an entity manager from the factory that we acquired in the previous
example:

EntityManager em = emf.createEntityManager();

With this entity manager, we are now in a position to start working with persistent entities.

Persisting an Entity
Persisting an entity is the operation of taking a transient entity, or one that does not yet have any
persistent representation in the database, and storing its state so that it can be retrieved later. This is
really the basis of persistence—creating state that may outlive the process that created it. We are going
to start by using the entity manager to persist an instance of Employee. Here is a code example that
does just that:

Employee emp = new Employee(158);
em.persist(emp);

The first line in this code segment is simply creating an Employee instance that we want to persist. If
we ignore the sad fact that we seem to be employing a nameless individual and paying him nothing
(we are setting only the id, not the name or salary) the instantiated Employee is just a regular Java
object.

The next line uses the entity manager to persist the entity. Calling persist() is all that is required
to initiate it being persisted in the database. If the entity manager encounters a problem doing this,
then it will throw an unchecked PersistenceException. When the persist() call returns, emp will have
become a managed entity within the entity manager’s persistence context.

Listing 2-3 shows how to incorporate this into a simple method that creates a new employee and
persists it to the database.

Listing 2-3. Method for Creating an Employee

public Employee createEmployee(int id, String name, long salary) {
 Employee emp = new Employee(id);
 emp.setName(name);
 emp.setSalary(salary);
 em.persist(emp);
 return emp;
}

This method assumes the existence of an entity manager in the em field of the instance and uses it
to persist the Employee. Note that we do not need to worry about the failure case in this example. It will
result in a runtime PersistenceException being thrown, which will get propagated up to the caller.

Finding an Entity
Once an entity is in the database, the next thing one typically wants to do is find it again. In this
section, we will show how an entity can be found using the entity manager. There is really only one
line that we need to show:

Employee emp = em.find(Employee.class, 158);

CHAPTER 2 ■ GETTING STARTED

25

We are passing in the class of the entity that is being sought (in this example, we are looking for an
instance of Employee) and the id or primary key that identifies the particular entity (in our case we
want to find the entity that we just created). This is all the information needed by the entity manager
to find the instance in the database, and when the call completes, the employee that gets returned will
be a managed entity, meaning that it will exist in the current persistence context associated with the
entity manager. Passing in the class as a parameter also allows the find method to be parameterized
and return an object of same type that was passed in, saving the caller an extra cast.

What happens if the object has been deleted or if we supplied the wrong id by accident? In the
event that the object was not found, then the find() call simply returns null. We would need to ensure
that a null check is performed before the next time the emp variable is used.

The code for a method that looks up and returns the Employee with a given id is now trivial and
shown in Listing 2-4.

Listing 2-4. Method for Finding an Employee

public Employee findEmployee(int id) {
 return em.find(Employee.class, id);
}

In the case where no employee exists for the id that is passed in, then the method will return null
because that is what find() will return.

Removing an Entity
Removal of an entity from the database is not as common as you might think. Many applications never
delete objects, or if they do they just flag the data as being out of date or no longer valid and then just
keep it out of sight of clients. We are not talking about that kind of application-level logical removal,
where the data is not even removed from the database. We are talking about something that results in
a DELETE statement being made across one or more tables.

In order to remove an entity, the entity itself must be managed, meaning that it is present in the
persistence context. This means that the calling application should have already loaded or accessed the
entity and is now issuing a command to remove it. This is not normally a problem given that most
often the application will have caused it to become managed as part of the process of determining that
this was the object that it wanted to remove.

A simple example of removing an employee is the following:

Employee emp = em.find(Employee.class, 158);
em.remove(emp);

In this example, we are first finding the entity using the find() call, which returns a managed instance
of Employee, and then removing the entity using the remove() call on the entity manager. Of course, you
learned in the previous section that if the entity was not found, then the find() method will return
null. We would get a java.lang.IllegalArgumentException if it turned out that we passed null into the
remove() call because we forgot to include a null check before calling remove().

In our application method for removing an employee, we can fix the problem by checking for the
existence of the employee before we issue the remove() call, as shown in Listing 2-5.

Listing 2-5. Method for Removing an Employee

public void removeEmployee(int id) {
 Employee emp = em.find(Employee.class, id);
 if (emp != null) {

CHAPTER 2 ■ GETTING STARTED

26

 em.remove(emp);
 }
}

This method will ensure that the employee with the given id, provided the id is not null, is
removed from the database. It will return successfully whether the employee exists or not.

Updating an Entity
There are a few different ways of updating an entity, but for now we will illustrate the simplest and
most common case. This is where we have a managed entity and want to make changes to it. If we do
not have a reference to the managed entity, then we must first get one using find() and then perform
our modifying operations on the managed entity. This code adds $1,000 to the salary of the employee
with id 158:

Employee emp = em.find(Employee.class, 158);
emp.setSalary(emp.getSalary() + 1000);

Note the difference between this operation and the others. In this case we are not calling into the
entity manager to modify the object, but directly calling the object itself. For this reason it is important
that the entity be a managed instance; otherwise, the persistence provider will have no means of
detecting the change, and no changes will be made to the persistent representation of the employee.

Our method to raise the salary of a given employee will take the id and amount of the raise, find
the employee, and change the salary to the adjusted one. Listing 2-6 demonstrates this approach.

Listing 2-6. Method for Updating an Employee

public Employee raiseEmployeeSalary(int id, long raise) {
 Employee emp = em.find(Employee.class, id);
 if (emp != null) {
 emp.setSalary(emp.getSalary() + raise);
 }
 return emp;
}

If we can’t find the employee, we return null so the caller will know that no change could be made.
We indicate success by returning the updated employee.

Transactions
You may feel that the code so far seems inconsistent with what we said earlier about transactionality
when working with entities. There were no transactions in any of the preceding examples, even
though we said that changes to entities must be made persistent using a transaction.

In all the examples except the one that called only find(), we assume that a transaction enclosed
each method. The find() call is not a mutating operation, so it may be called any time, with or without
a transaction.

Once again, the key is the environment in which the code is being executed. The typical situation
when running inside the Java EE container environment is that the standard Java Transaction API
(JTA) is used. The transaction model when running in the container is to assume the application will
ensure that a transactional context is present when one is required. If a transaction is not present,
then either the modifying operation will throw an exception or the change will simply never be
persisted to the data store. We will come back to discussing transactions in the Java EE environment in

CHAPTER 2 ■ GETTING STARTED

27

more detail in
Chapter 3.

In our example in this chapter, though, we are not running in Java EE. We are in a Java SE
environment, and the transaction service that should be used in Java SE is the EntityTransaction
service. When executing in Java SE, we either need to begin and to commit the transaction in the
operational methods, or we need to begin and to commit the transaction before and after calling an
operational method. In either case, a transaction is started by calling getTransaction() on the entity
manager to get the EntityTransaction and then invoking begin() on it. Likewise, to commit the
transaction the commit() call is invoked on the EntityTransaction obtained from the entity manager.
For example, starting and committing before and after the method would produce code that creates an
employee the way it is done in Listing 2-7.

Listing 2-7. Beginning and Committing an EntityTransaction

em.getTransaction().begin();
createEmployee(158, "John Doe", 45000);
em.getTransaction().commit();

Further detail about resource-level transactions and the EntityTransaction API are contained in
Chapter 6.

Queries
In general, given that most developers have used a relational database at some point or another in
their lives, most of us pretty much know what a database query is. In JPA, a query is similar to a
database query, except that instead of using Structured Query Language (SQL) to specify the query
criteria, we are querying over entities and using a language called Java Persistence Query Language
(JP QL).

A query is implemented in code as a Query or TypedQuery object. They are constructed using the
EntityManager as a factory. The EntityManager interface includes a variety of API calls that return a
new Query or TypedQuery object. As a first-class object, a query can in turn be customized according to
the needs of the application.

A query can be defined either statically or dynamically. A static query is defined in either
annotation or XML metadata, and it must include the query criteria as well as a user-assigned name.
This kind of query is also called a named query, and it is later looked up by its name at the time it is
executed.

A dynamic query can be issued at runtime by supplying the JP QL query criteria, or a criteria object.
They may be a little more expensive to execute because the persistence provider cannot do any query
preparation beforehand, but JP QL queries are nevertheless very simple to use and can be issued in
response to program logic or even user logic.

CHAPTER 2 ■ GETTING STARTED

28

Following is an example showing how to create a dynamic query and then execute it to obtain all
the employees in the database. Of course, this may not be a very good query to execute if the database
is large and contains hundreds of thousands of employees, but it is nevertheless a legitimate example.
The simple query is as follows:

TypedQuery<Employee> query = em.createQuery("SELECT e FROM Employee e",
 Employee.class);
List<Employee> emps = query.getResultList();

We create a TypedQuery object by issuing the createQuery() call on the EntityManager and passing
in the JP QL string that specifies the query criteria. The JP QL string refers not to an EMPLOYEE database
table but to the Employee entity, so this query is selecting all Employee objects without filtering them any
further. You will be diving into queries in Chapter 7, JP QL in Chapters 7 and 8, and criteria queries in
Chapter 9. You will see that you can be far more discretionary about which objects you want to be
returned.

To execute the query we simply invoke getResultList() on it. This returns a List (a subinterface of
Collection) containing the Employee objects that matched the query criteria. We can easily create a
method that returns all of the employees, as shown in Listing 2-8.

Listing 2-8. Method for Issuing a Query

public List<Employee> findAllEmployees() {
 TypedQuery<Employee> query = em.createQuery("SELECT e FROM Employee e",
 Employee.class);
 return query.getResultList();
}

This example shows how simple queries are to create, execute, and process, but what this example
does not show is how powerful they are. In Chapter 7, we will examine many other extremely useful
and interesting ways of defining and using queries in an application.

Putting It All Together
We can now take all the methods that we have created and combine them into a class. The class will act
like a service class, which we will call EmployeeService and will allow us to perform operations on
employees. The code should be pretty familiar by now. Listing 2-9 shows the complete
implementation.

Listing 2-9. Service Class for Operating on Employee Entities

import javax.persistence.*;
import java.util.List;

public class EmployeeService {
 protected EntityManager em;

 public EmployeeService(EntityManager em) {
 this.em = em;
 }

 public Employee createEmployee(int id, String name, long salary) {
 Employee emp = new Employee(id);

CHAPTER 2 ■ GETTING STARTED

29

 emp.setName(name);
 emp.setSalary(salary);
 em.persist(emp);
 return emp;
 }

 public void removeEmployee(int id) {
 Employee emp = findEmployee(id);
 if (emp != null) {
 em.remove(emp);
 }
 }

 public Employee raiseEmployeeSalary(int id, long raise) {
 Employee emp = em.find(Employee.class, id);
 if (emp != null) {
 emp.setSalary(emp.getSalary() + raise);
 }
 return emp;
 }

 public Employee findEmployee(int id) {
 return em.find(Employee.class, id);
 }

 public List<Employee> findAllEmployees() {
 TypedQuery<Employee> query = em.createQuery(
 "SELECT e FROM Employee e", Employee.class);
 return query.getResultList();
 }
}

This is a simple yet fully functional class that can be used to issue the typical create, read, update,
and delete (CRUD) operations on Employee entities. This class requires that an entity manager is
created and passed into it by the caller and also that any required transactions are begun and
committed by the caller. It may seem strange at first, but decoupling the transaction logic from the
operation logic makes this class more portable to the Java EE environment. We will revisit this
example in the next chapter, in which we focus on Java EE applications.

A simple main program that uses this service and performs all the required entity manager
creation and transaction management is shown in Listing 2-10.

Listing 2-10. Using EmployeeService

import javax.persistence.*;
import java.util.List;

public class EmployeeTest {

 public static void main(String[] args) {
 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("EmployeeService");
 EntityManager em = emf.createEntityManager();
 EmployeeService service = new EmployeeService(em);

CHAPTER 2 ■ GETTING STARTED

30

 // create and persist an employee
 em.getTransaction().begin();
 Employee emp = service.createEmployee(158, "John Doe", 45000);
 em.getTransaction().commit();
 System.out.println("Persisted " + emp);

 // find a specific employee
 emp = service.findEmployee(158);
 System.out.println("Found " + emp);

 // find all employees
 List<Employee> emps = service.findAllEmployees();
 for (Employee e : emps)
 System.out.println("Found employee: " + e);

 // update the employee
 em.getTransaction().begin();
 emp = service.raiseEmployeeSalary(158, 1000);
 em.getTransaction().commit();
 System.out.println("Updated " + emp);

 // remove an employee
 em.getTransaction().begin();
 service.removeEmployee(158);
 em.getTransaction().commit();
 System.out.println("Removed Employee 158");

 // close the EM and EMF when done
 em.close();
 emf.close();
 }
}

Note that at the end of the program we use the close() methods to clean up the entity manager and
the factory that we used to create it. This ensures that all the resources they might have allocated are
properly released.

Packaging It Up
Now that you know the basic building blocks of JPA, we are ready to organize the pieces into an
application that runs in Java SE. The only thing left to discuss is how to put it together so that it runs.

Persistence Unit
The configuration that describes the persistence unit is defined in an XML file called persistence.xml.
Each persistence unit is named, so when a referencing application wants to specify the configuration
for an entity it needs only to reference the name of the persistence unit that defines that
configuration. A single persistence.xml file can contain one or more named persistence unit
configurations, but each persistence unit is separate and distinct from the others, and they can be
logically thought of as being in separate persistence.xml files.

CHAPTER 2 ■ GETTING STARTED

31

Many of the persistence unit elements in the persistence.xml file apply to persistence units that
are deployed within the Java EE container. The only ones that we need to specify for our example are
name, transaction-type, class, and properties. There are a number of other elements that can be
specified in the persistence unit configuration in the persistence.xml file, but they will be discussed in
more detail in Chapter 13. Listing 2-11 shows the relevant part of the persistence.xml file for this
example.

Listing 2-11. Elements in the persistence.xml File

<persistence>
 <persistence-unit name="EmployeeService"
 transaction-type="RESOURCE_LOCAL">
 <class>examples.model.Employee</class>
 <properties>
 <property name="javax.persistence.jdbc.driver"
 value="org.apache.derby.jdbc.ClientDriver"/>
 <property name="javax.persistence.jdbc.url"
 value="jdbc:derby://localhost:1527/EmpServDB;create=true"/>
 <property name="javax.persistence.jdbc.user" value="APP"/>
 <property name="javax.persistence.jdbc.password" value="APP"/>
 </properties>
 </persistence-unit>
</persistence>

The name attribute of the persistence-unit element indicates the name of our persistence unit and
is the string that we specify when we create the EntityManagerFactory. We have used
“EmployeeService” as the name. The transaction-type attribute indicates that our persistence unit
uses resource-level EntityTransaction instead of JTA transactions. The class element lists the entity
that is part of the persistence unit. Multiple class elements can be specified when there is more than
one entity. They would not normally be needed when deploying in a Java EE container because the
container will scan for entities automatically as part of the deployment process, but they are needed
for portable execution when running in Java SE. We have only a single Employee entity.

The last section is just a list of properties that can be standard or vendor-specific. The JDBC
database login parameters must be specified when running in a Java SE environment to tell the
provider what resource to connect to. Other provider properties, such as logging options, are vendor-
specific and might also be useful.

■ TIP The names of the four JDBC properties (javax.persistence.jdbc.*) were standardized in JPA 2.0.
Previous to that, a provider chose its own property names and documented what users needed to specify in order
to connect to a JDBC data source.

Persistence Archive
The persistence artifacts are packaged in what we will loosely call a persistence archive. This is really
just a JAR-formatted file that contains the persistence.xml file in the META-INF directory and normally
the entity class files.

derby://localhost:1527/EmpServDB

CHAPTER 2 ■ GETTING STARTED

32

Because we are running as a simple Java SE application, all we have to do is put the application
JAR, the persistence provider JARs, and the JPA JAR on the classpath when the program is executed.

Summary
This chapter discussed just enough of the basics of the Java Persistence API to develop and run a simple
application in a Java SE runtime.

We started out discussing the entity, how to define one, and how to turn an existing Java class into
one. We discussed entity managers and how they are obtained and constructed in the Java SE
environment.

The next step was to instantiate an entity instance and use the entity manager to persist it in the
database. After we inserted some new entities, we could retrieve them again and then remove them.
We also made some updates and ensured that the changes were written back to the database.

We talked about the resource-local transaction API and how to use it. We then went over some of
the different types of queries and how to define and execute them. Finally, we aggregated all these
techniques and combined them into a simple application that we can execute in isolation from an
enterprise environment.

In the next chapter, we will look at the impact of the Java EE environment when developing
enterprise applications using the Java Persistence API.

C H A P T E R 3

■ ■ ■

33

Enterprise Applications

No technology exists in a vacuum, and JPA is no different in this regard. Although the fat-client style of
application demonstrated in the previous chapter is a viable use of JPA, the majority of enterprise Java
applications are deployed to a Java EE application server. Therefore it is essential to understand the
components that make up a Java EE application and the role of JPA in this environment.

We will begin with an overview of the major Java EE technologies relevant to persistence. As part
of this overview, we will also detour into the EJB component model, demonstrating the basic syntax for
stateless, stateful, singleton, and message-driven beans. Even if you have experience with previous
versions of these components, you might find this section helpful to get up to speed with the changes in
EJB 3 and Java EE. As part of the ease-of-development initiative for Java EE 5, EJB underwent some
major revision and became considerably easier to implement.

Although this chapter is not a complete or detailed exploration of Java EE, it will hopefully serve as
a sufficient overview to the simplified programming interfaces. We will introduce features only briefly
and spend the bulk of the chapter focusing on the elements relevant to developing applications that
use persistence.

Next we will look at the other application server technologies that have had a major impact on
applications using JPA: transactions and dependency management. Transactions, of course, are a
fundamental element of any enterprise application that needs to ensure data integrity. The
dependency-management facilities of Java EE are also key to understanding how the entity manager
is acquired by enterprise components and how these components can be linked together.

Finally, we will demonstrate how to use the Java EE components described in this chapter, with a
focus on how persistence integrates into each component technology. We will also revisit the Java SE
application from the previous chapter and retarget it to the Java EE platform.

Application Component Models
The word component has taken on many meanings in software development, so let’s begin with a
definition. A component is a self-contained, reusable software unit that can be integrated into an
application. Clients interact with components via a well-defined contract. In Java, the simplest form of
software component is the JavaBean, commonly referred to as just a bean. Beans are components
implemented in terms of a single class whose contract is defined by the naming patterns of the
methods on the bean. The JavaBean naming patterns are so common now that it is easy to forget that
they were originally intended to give user-interface builders a standard way of dealing with third-
party components.

In the enterprise space, components focus more on implementing business services, with the
contract of the component defined in terms of the business operations that can be carried out by that
component. The standard component model for Java EE is the EJB model, which defines ways to

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

34

package, deploy, and interact with self-contained business services. The EJB’s type determines the
contract required to interact with it. Session beans use standard Java interfaces to define the set of
business methods that can be invoked on them, while message-driven bean behavior is determined by
the type and format of the messages the bean is designed to receive.

Choosing whether or not to use a component model in your application is largely a personal
preference. With some exceptions, most of the container services available to session beans are also
available to servlets. As a result, many web applications today sidestep EJBs entirely, going directly
from servlets to the database. Using components requires organizing the application into layers, with
business services living in the component model and presentation services layered on top of it.

Historically, one of the challenges in adopting components in Java EE was the complexity of
implementing them. With that problem largely solved, we are left with the benefits that a well-defined
set of business services brings to an application:

• Loose coupling. Using components to implement services encourages loose
coupling between layers of an application. The implementation of a component
can change without any impact to the clients or other components that depend
on it.

• Dependency management. Dependencies for a component can be declared in
metadata and automatically resolved by the container.

• Lifecycle management. The lifecycle of components is well defined and managed
by the application server. Component implementations can participate in
lifecycle operations to acquire and release resources, or perform other
initialization and shutdown behavior.

• Declarative container services. Business methods for components are intercepted
by the application server in order to apply services such as concurrency,
transaction management, security, and remoting.

• Portability. Components that comply to Java EE standards and that are deployed
to standards-based servers can be more easily ported from one compliant server
to another.

• Scalability and reliability. Application servers are designed to ensure that
components are managed efficiently with an eye to scalability. Depending on
the component type and server configuration, business operations implemented
using components can retry failed method calls or even fail over to another
server in a cluster.

One of the themes you will encounter as you read this book is the tendency for example code to be
written in terms of session beans. This is intentional. Not only are session beans easy to write and a
good way to organize application logic, but they are also a natural fit for interacting with JPA. In fact, as
web application frameworks continue to push application code farther away from the servlet, the
capability for session beans to seamlessly integrate and acquire the services of other components
makes them more valuable today than ever before.

Session Beans
Session beans are a component technology designed to encapsulate business services. The operations
supported by the service are usually defined using a regular Java interface, referred to as the business
interface of the session bean, that clients use to interact with the bean. The bean implementation is
little more than a regular Java class which implements the business interface if one is present. And

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

35

yet, by virtue of being part of the EJB component model, the bean has access to a wide array of
container services that it can leverage to implement the business service. The significance of the
name session bean has to do with the way in which clients access and interact with them. Once a client
acquires a reference to a session bean from the server, it starts a session with that bean and can
invoke business operations on it.

There are three types of session bean: stateless, stateful, and singleton.
Interaction with a stateless session bean begins at the start of a business method call and ends

when the method call completes. There is no state that carries over from one business operation to the
other. An interaction with stateful session beans becomes more of a conversation that begins from the
moment the client acquires a reference to the session bean and ends when the client explicitly
releases it back to the server. Business operations on a stateful session bean can maintain state on the
bean instance across calls. We will provide more detail on the implementation considerations of this
difference in interaction style as we describe each type of session bean.

Singleton session beans, introduced in EJB 3.1, can be considered a hybrid of stateless and stateful
session beans. All clients share the same singleton bean instance, so it becomes possible to share state
across method invocations, but singleton session beans lack the conversational contract and mobility
of stateful session beans. State on a singleton session bean also raises issues of concurrency that need
to be taken into consideration when deciding whether or not to use this style of session bean.

Clients never interact directly with a session bean instance. The client references and invokes an
implementation of the business interface provided by the server. This implementation class acts as a
proxy to the underlying bean implementation. This decoupling of client from bean allows the server to
intercept method calls in order to provide the services required by the bean, such as transaction
management. It also allows the server to optimize and reuse instances of the session bean class as
necessary.

In the following sections we will discuss session beans using synchronous business method
invocations. Asynchronous business methods, introduced in EJB 3.1, offer an alternative invocation
pattern involving futures, but are beyond the scope of this book.

Stateless Session Beans
As we mentioned, a stateless session bean sets out to complete an operation within the lifetime of a
single method. Stateless beans can implement many business operations, but each method cannot
assume that any other was invoked before it.

This might sound like a limitation of the stateless bean, but it is by far the most common form of
business service implementation. Unlike stateful session beans, which are good for accumulating state
during a conversation (such as the shopping cart of a retail application), stateless session beans are
designed to carry out independent operations very efficiently. Stateless session beans can scale to
large numbers of clients with minimal impact to overall server resources.

Defining a Stateless Session Bean
A session bean is defined in two parts:

• Zero or more business interfaces that define what methods a client can invoke
on the bean. When no interface is defined then the set of public methods on the
bean implementation class forms a logical client interface.

• A class that implements these interfaces, called the bean class, which is marked
with the @Stateless annotation.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

36

Most session beans have one business interface, but there is no restriction on the number of
interfaces that a session bean can expose to its clients. When the server encounters the @Stateless
annotation, it knows to treat the bean class as a session bean. It will configure the bean in the EJB
container and make it available for use by other components in the application. The @Stateless
annotation and other annotations described in this chapter are defined in either the javax.ejb or
javax.annotation package.

Let’s look at a complete implementation of a stateless session bean. Listing 3-1 shows the
business interface that will be supported by this session bean. In this example, the service consists of a
single method, sayHello(), which accepts a String argument corresponding to a person’s name and
returns a String response. There is no annotation or parent interface to indicate that this is a business
interface. When implemented by the session bean, it will be automatically treated as a local business
interface, meaning that it is accessible only to clients within the same application server. A second
type of business interface for remote clients is discussed later in the section “Remote Business
Interfaces.” To emphasize that an interface is a local business interface, the @Local annotation can be
optionally added to the interface.

Listing 3-1. The Business Interface for a Session Bean

public interface HelloService {
 public String sayHello(String name);
}

Now let’s consider the implementation, which is shown in Listing 3-2. This is a regular Java class
that implements the HelloService business interface. The only thing unique about this class is the
@Stateless annotation that marks it as a stateless session bean. The business method is implemented
without any special constraints or requirements. This is a regular class that just happens to be an EJB.

Listing 3-2. The Bean Class Implementing the HelloService Interface

@Stateless
public class HelloServiceBean implements HelloService {
 public String sayHello(String name) {
 return "Hello, " + name;
 }
}

The No-Interface View

The no-interface view was introduced in EJB 3.1 to make it simpler to define a local session bean and for clients
to access local session beans. To define the same HelloServiceBean with a no-interface view, the bean developer
creates only the implementation class without implementing any business interface:

@Stateless
public class HelloServiceBean {
 public String sayHello(String name) {
 return “Hello, “ + name;
 }
}

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

37

The logical interface of the session bean consists of its public methods; in this case, the sayHello() method.
Clients use the HelloServiceBean class as if it were an interface, and must disregard any nonpublic methods or
details of the implementation. Under the covers, the client will be interacting with a proxy that extends the bean
class and overrides the business methods to provide the standard container services.

The advantage of the no-interface view is one of simplicity. It removes the need to implement a redundant
business interface and goes one step further in making EJBs look and feel like regular JavaBean classes.
However, because the no-interface view is available only for local session beans, this chapter uses the traditional
style of a separate interface for stateless and stateful session beans to be consistent.

There are only a couple of caveats about the stateless session bean class definition. The first is
that it needs a no-arg constructor, but the compiler normally generates this automatically when no
other constructors are supplied. The second is that static fields should not be used, primarily because of
bean redeployment issues.

Many EJB containers create a pool of stateless session bean instances and then select an arbitrary
instance to service each client request. Therefore, there is no guarantee that the same state will be
used between calls, and hence it cannot be relied on. Any state placed on the bean class should be
restricted to factory classes that are inherently stateless, such as DataSource.

Lifecycle Callbacks
Unlike a regular Java class used in application code, the server manages the lifecycle of a stateless
session bean (which affects the implementation of a bean in two ways).

First, the server decides when to create and remove bean instances. The application has no
control over when or even how many instances of a particular stateless session bean are created or
how long they will stay around.

Second, the server has to initialize services for the bean after it is constructed, but before the
business logic of the bean is invoked. Likewise, the bean might have to acquire a resource such as a
JDBC data source before business methods can be used. However, in order for the bean to acquire a
resource, the server must first have completed initializing its services for the bean. This limits the
usefulness of the constructor for the class because the bean won’t have access to any resources until
server initialization has completed.

To allow both the server and the bean to achieve their initialization requirements, EJBs support
lifecycle callback methods that are invoked by the server at various points in the bean’s lifecycle. For
stateless session beans, there are two lifecycle callbacks: PostConstruct and PreDestroy. The server
will invoke the PostConstruct callback as soon as it has completed initializing all the container
services for the bean. In effect, this replaces the constructor as the location for initialization logic
because it is only here that container services are guaranteed to be available. The server invokes the
PreDestroy callback immediately before the server releases the bean instance to be garbage-
collected. Any resources acquired during PostConstruct that require explicit shutdown should be
released during PreDestroy.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

38

Listing 3-3 shows a stateless session bean that acquires a reference to a java.util.logging.Logger
instance during the PostConstruct callback. A bean can have at most one PostConstruct callback
method1 that is identified by the @PostConstruct marker annotation. Likewise, the PreDestroy callback
is identified by the @PreDestroy annotation.

Listing 3-3. Using the PostConstruct Callback to Acquire a Logger

@Stateless
public class LoggerBean implements Logger {
 private Logger logger;

 @PostConstruct
 public void init() {
 logger = Logger.getLogger("notification");
 }

 public void logMessage(String message) {
 logger.info(message);
 }
}

Remote Business Interfaces
So far, we have only discussed session beans that use a local business interface. Local in this case
means that a dependency on the session bean can be declared only by Java EE components that are
running together in the same application server instance. It is not possible to use a session bean with
a local interface from a remote client, for example.

To accommodate remote clients, session beans can mark their business interface with the @Remote
annotation to declare that it should be useable remotely. Listing 3-4 demonstrates this syntax for a
remote version of the HelloService interface shown in Listing 3-1. Marking an interface as being
remote is equivalent to having it extend the java.rmi.Remote interface. The reference to the bean that
gets acquired by a client is no longer a local reference on the server but a Remote Method Invocation
(RMI) stub that will invoke operations on the session bean from across the network. No special support
is required on the bean class to use remote interfaces.

Listing 3-4. A Remote Business Interface

@Remote
public interface HelloServiceRemote {
 public String sayHello(String name);
}

Making an interface remote has consequences both in terms of performance and how arguments
to business methods are handled. Remote business interfaces can be used locally within a running
server, but doing so might still result in network overhead if the method call is routed through the RMI
layer. Arguments to methods on remote interfaces are also passed by value instead of passed by

1 In inheritance situations, additional callback methods from parent classes can also be invoked.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

39

reference. This means that the argument is serialized even when the client is local to the session bean.
Local interfaces for local clients are generally a better approach. Local interfaces preserve the
semantics of regular Java method calls and avoid the costs associated with networking and RMI.

■ CAUTION Many application servers provide options to improve the performance of remote interfaces when
used locally. This might include the ability to disable serialization of method arguments or might sidestep RMI
entirely. Use caution when relying on these features in application code because they are not portable across
different application servers.

Stateful Session Beans
In our introduction to session beans we described the difference between stateless and stateful beans
as being based on the interaction style between client and server. In the case of stateless session
beans, that interaction started and ended with a single method call. Sometimes clients need to issue
multiple requests to a service and have each request be able to access or consider the results of
previous requests. Stateful session beans are designed to handle this scenario by providing a
dedicated service to a client that starts when the client obtains a reference to the bean and ends only
when the client chooses to end the conversation.

The quintessential example of the stateful session bean is the shopping cart of an e-commerce
application. The client obtains a reference to the shopping cart, starting the conversation. Over the
span of the user session, the client adds or removes items from the shopping cart, which maintains
state specific to the client. Then, when the session is complete, the client completes the purchase,
causing the shopping cart to be removed.

This is not unlike using a nonmanaged Java object in application code. We create an instance,
invoke operations on the object that accumulate state, and then dispose of the object when we no
longer need it. The only difference with the stateful session bean is that the server manages the actual
object instance and the client interacts with that instance indirectly through the business interface of
the bean.

Stateful session beans offer a superset of the functionality available in stateless session beans.
The features that we covered for stateless session beans such as remote interfaces apply equally to
stateful session beans.

Defining a Stateful Session Bean
Now that we have established the use case for a stateful session bean, let’s look at how to define one.
Similar to the stateless session bean, a stateful session bean is composed of one or more business
interfaces implemented by a single bean class. A sample local business interface for a shopping cart
bean is demonstrated in Listing 3-5.

Listing 3-5. Business Interface for a Shopping Cart

public interface ShoppingCart {
 public void addItem(String id, int quantity);
 public void removeItem(String id, int quantity);
 public Map<String,Integer> getItems();

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

40

 public void checkout(int paymentId);
 public void cancel();
}

Listing 3-6 shows the bean class that implements the ShoppingCart interface. The bean class has
been marked with the @Stateful annotation to indicate to the server that the class is a stateful session
bean.

Listing 3-6. Implementing a Shopping Cart Using a Stateful Session Bean

@Stateful
public class ShoppingCartBean implements ShoppingCart {
 private HashMap<String,Integer> items = new HashMap<String,Integer>();

 public void addItem(String item, int quantity) {
 Integer orderQuantity = items.get(item);
 if (orderQuantity == null) {
 orderQuantity = 0;
 }
 orderQuantity += quantity;
 items.put(item, orderQuantity);
 }

 // ...

 @Remove
 public void checkout(int paymentId) {
 // store items to database
 // ...
 }

 @Remove
 public void cancel() {
 }
}

There are two things different in this bean compared with the stateless session beans we have
been dealing with so far.

The first difference is that the bean class has state fields that are modified by the business methods
of the bean. This is allowed because the client that uses the bean effectively has access to a private
instance of the session bean on which to make changes.

The second difference is that there are methods marked with the @Remove annotation. These are
the methods that the client will use to end the conversation with the bean. After one of these methods
has been called, the server will destroy the bean instance, and the client reference will throw an
exception if any further attempt is made to invoke business methods. Every stateful session bean must
define at least one method marked with the @Remove annotation, even if the method doesn’t do
anything other than serve as an end to the conversation. In Listing 3-6, the checkout() method is
called if the user completes the shopping transaction, although cancel() is called if the user decides not
to proceed. The session bean is removed in either case.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

41

Lifecycle Callbacks
Like the stateless session bean, the stateful session bean also supports lifecycle callbacks in order to
facilitate bean initialization and cleanup. It also supports two additional callbacks to allow the bean to
gracefully handle passivation and activation of the bean instance. Passivation is the process by which
the server serializes the bean instance so that it can either be stored offline to free up resources or
replicated to another server in a cluster. Activation is the process of deserializing a passivated session
bean instance and making it active in the server once again. Because stateful session beans hold state
on behalf of a client and are not removed until the client invokes one of the remove methods on the
bean, the server cannot destroy a bean instance to free up resources. Passivation allows the server to
reclaim resources while preserving session state.

Before a bean is passivated, the server will invoke the PrePassivate callback. The bean uses this
callback to prepare the bean for serialization, usually by closing any live connections to other server
resources. The PrePassivate method is identified by the @PrePassivate marker annotation. After a bean
has been activated, the server will invoke the PostActivate callback. With the serialized instance
restored, the bean must then reacquire any connections to other resources that the business methods
of the bean might be depending on. The PostActivate method is identified by the @PostActivate marker
annotation. Listing 3-7 shows a session bean that makes full use of the lifecycle callbacks to maintain
a JDBC connection. Note that only the JDBC Connection is explicitly managed. As a resource
connection factory, the server automatically saves and restores the data source during passivation and
activation.

Listing 3-7. Using Lifecycle Callbacks on a Stateful Session Bean

@Stateful
public class OrderBrowserBean implements OrderBrowser {
 DataSource ds;
 Connection conn;

 @PostConstruct
 public void init() {
 // acquire the data source
 // ...

 acquireConnection();
 }

 @PrePassivate
 public void passivate() { releaseConnection(); }

 @PostActivate
 public void activate() { acquireConnection(); }

 @PreDestroy
 public void shutdown() { releaseConnection(); }

 private void acquireConnection() {
 try {
 conn = ds.getConnection();
 } catch (SQLException e) {
 throw new EJBException(e);
 }

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

42

 }

 private void releaseConnection() {
 try {
 conn.close();
 } catch (SQLException e) {
 }
 conn = null;
 }

 public Collection<Order> listOrders() {
 // ...
 }
}

Singleton Session Beans
Two of the most common criticisms of the stateless session bean have been the perceived overhead of
bean pooling and the inability to share state via static fields. The singleton session bean attempts to
provide a solution to both concerns, by providing a single shared bean instance that can both be
accessed concurrently and used as a mechanism for shared state. Singleton session beans share the
same lifecycle callbacks as a stateless session bean and server-managed resources such as persistence
contexts behave the same as if they were part of a stateless session bean. But the similarities end there
because singleton session beans have a different overall lifecycle than stateless session beans and
have the added complexity of developer-controlled locking for synchronization.

■ TIP Singleton session beans were introduced in EJB 3.1 and are not available in previous versions of EJB.

Unlike other session beans, the singleton can be created eagerly during application initialization
and exist until the application shuts down. Once created, it will continue to exist until the container
removes it, regardless of any exceptions that occur during business method execution. This is a key
difference from other session bean types because the bean instance will never be re-created in the
event of a system exception.

The long life and shared instance of the singleton session bean make it the ideal place to store
common application state, whether read-only or read-write. To safeguard access to this state, the
singleton session bean provides a number of concurrency options depending on the needs of the
application developer. Methods can be completely unsynchronized for performance, or automatically
locked and managed by the container. We will look at the concurrency options later in the section
“Singleton Concurrency.”

Defining a Singleton Session Bean
Following the pattern of stateless and stateful session beans, singleton session beans are defined
using the @Singleton annotation. Singleton session beans can include a local business interface or use
a no-interface view. Listing 3-8 shows a simple singleton session bean with a no-interface view to
track the number of visits to a web site.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

43

Listing 3-8. Implementing a Singleton Session Bean

@Singleton
public class HitCounter {
 int count;

 public void increment() { ++count; }

 public void getCount() { return count; }

 public void reset() { count = 0; }
}

If we compare the HitCounter bean in Listing 3-8 with the stateless and stateful session beans
defined earlier, we can see two immediate differences. Unlike the stateless session bean, there is state
in the form of a count field used to capture the visit count. But unlike the stateful session bean, there is
no @Remove annotation to identify the business method that will complete the session.

By default, the container will manage the synchronization of the business methods to ensure that
data corruption does not occur. In this example, that means all access to the bean is serialized so that
only one client is invoking a business method on the instance at any time.

The lifecycle of the singleton session bean is tied to the lifecycle of the overall application. The
container determines the point when the singleton instance gets created unless the bean includes the
@Startup annotation to force eager initialization when the application starts. The container can
create singletons that do not specify eager initialization lazily, but this is vendor-specific and cannot
be assumed.

When multiple singleton session beans depend on one another, the container needs to be
informed of the order in which they should be instantiated. This is accomplished via the @DependsOn
annotation on the bean class, which lists the names of other singleton session beans that must be
created first.

Lifecycle Callbacks
The lifecycle callbacks for singleton session beans are the same as for stateless session beans:
PostConstruct and PreDestroy. The container will invoke the PostConstruct callback after server
initialization of the bean instance and likewise invoke the PreDestroy callback prior to disposing of
the bean instance. The key difference here with respect to stateless session beans is that PreDestroy is
invoked only when the application shuts down as a whole. It will therefore be called only once,
whereas the lifecycle callbacks of stateless session beans are called frequently as bean instances are
created
and destroyed.

Singleton Concurrency
Singleton session beans can use container-managed or bean-managed concurrency. The default is
container-managed, which corresponds to a write lock on all business methods. All business method
invocations are serialized so that only one client can access the bean at any given time. The actual
implementation of the synchronization process is vendor-specific.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

44

Of course, not all business methods change the state of the bean. Those that do not can be safely
run in a concurrent fashion without affecting the overall integrity of the bean. If there is no danger of
corrupting the bean state through concurrent access, the @Lock(LockType.READ) annotation can be used
to declare that such access is safe and places a read lock on the method. If placed on the bean class,
@Lock(LockType.READ) switches the default business method behavior from write locks to read locks. If
placed on a business method, it overrides the class default. For beans that default to read locks,
@Lock(LockType.WRITE) can be used on business methods to override the default behavior and gain
write lock semantics. When container-managed concurrency is enabled, developers should always use
the @Lock annotation to control access and avoid Java primitives such as the synchronized keyword.

Although locking semantics are declared in terms of business methods, conceptually the bean can
be thought of as having a single lock on the instance. Business methods will acquire either read or
write access on this lock depending on their @Lock declaration or default value. In terms of semantics,
multiple readers are allowed to proceed concurrently, but as soon as a write lock is acquired, all other
clients block until the write operation completes.

Listing 3-9. A Singleton Session Bean with Explicit Locking

@Singleton
public class HitCounter {
 int count;

 public void increment() { ++count; }

 @Lock(LockType.READ)
 public void getCount() { return count; }

 public void reset() { count = 0; }
}

Listing 3-9 shows the HitCounter bean overriding the locking semantics for a business method. In
this case, the getCount() method has been marked @Lock(LockType.READ), indicating that multiple
clients can safely execute the method concurrently. The remaining methods are still defaulted to
@Lock(LockType.WRITE), and the container will ensure that read and write method invocations are
mutually exclusive.

For those who wish to have fine-grained control over concurrency, the singleton session bean can
be configured to use bean-managed concurrency via the
@ConcurrencyManagement(ConcurrencyManagementType.BEAN) annotation on the bean class. This
effectively disables the container-managed concurrency and relies on the developer to use the
appropriate Java concurrency primitives to ensure data safety. The @Lock annotation has no effect for
bean-managed concurrency.

There are a number of cases in which bean-managed concurrency might be preferable to
container-managed concurrency. If the singleton session bean has no state, or if state operations are
restricted to a small subset of methods, bean-managed concurrency will yield better performance.
When container-managed concurrency is enabled, all business methods involve a lock of some kind,
whether state operations are involved or not.

Multiple sets of mutually exclusive state on the bean are also a candidate for bean-managed
concurrency. With container-managed concurrency, only one write lock can be held at any time
across all business methods. But if there are sets of state that are mutually exclusive, it might be safe to
execute concurrent writes across different sets. Bean-managed concurrency with developer-
maintained locks will again yield better performance. Alternatively, refactoring the bean into
multiple singleton session beans each focused on a single type of state will also improve the
performance of container-managed concurrency.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

45

Message-Driven Beans
So far, we have been looking at components that are typically synchronous in nature. The client
invokes a method through the business interface, and the server completes that method invocation
before returning control to the client. For the majority of services, this is the most natural approach.
There are cases, however, in which it is not necessary for the client to wait for a response from the
server. We want the client to be able to issue a request and continue while the server processes the
request asynchronously.2

The message-driven bean (MDB) is the EJB component for asynchronous messaging. Clients issue
requests to the MDB using a messaging system such as Java Message Service (JMS). These requests are
queued and eventually delivered to the MDB by the server. The server invokes the business interface
of the MDB whenever it receives a message sent from a client. Although the component contract of a
session bean is defined by its business interface, the component contract of an MDB is defined by the
structure of the messages it is designed to receive.

Defining a Message-Driven Bean
When defining a session bean, the developer usually creates a business interface, and the bean class
implements it. In the case of message-driven beans, the bean class implements an interface specific to
the messaging system the MDB is based on. The most common case is JMS, but other messaging
systems are possible with the Java Connector Architecture (JCA). For JMS message-driven beans, the
business interface is javax.jms.MessageListener, which defines a single method: onMessage().

Listing 3-10 shows the basic structure of a message-driven bean. The @MessageDriven annotation
marks the class as an MDB. The activation configuration properties, defined using the
@ActivationConfigProperty annotations, tell the server the type of messaging system and any
configuration details required by that system. In this case, the MDB will be invoked only if the JMS
message has a property named RECIPIENT in which the value is ReportProcessor. Whenever the server
receives a message, it invokes the onMessage() method with the message as the argument. Because
there is no synchronous connection with a client, the onMessage() method does not return anything.
However, the MDB can use session beans, data sources, or even other JMS resources to process and
carry out an action based on the message.

Listing 3-10. Defining a JMS Message-Driven Bean

@MessageDriven(
 activationConfig = {
 @ActivationConfigProperty(propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(propertyName="messageSelector",
 propertyValue="RECIPIENT='ReportProcessor'")
})
public class ReportProcessorBean implements javax.jms.MessageListener {
 public void onMessage(javax.jms.Message message) {
 // ...

2 Although session beans can be invoked asynchronously, they do not offer the same quality of service
(QoS) guarantees as message driven beans.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

46

 }
}

Servlets
Servlets are a component technology designed to serve the needs of web developers who need to
respond to HTTP requests and generate dynamic content in return. Servlets are the oldest and most
popular technology introduced as part of the Java EE platform. They are the foundation for
technologies such as JavaServer Pages (JSP) and the backbone of web frameworks such as JavaServer
Faces (JSF).

Although you might have some experience with servlets, it is worth describing the impact that web
application models have had on enterprise application development. Because of its reliance on the
HTTP protocol, the Web is inherently a stateless medium. Much like the stateless session beans
described earlier, a client makes a request, the server triggers the appropriate service method in the
servlet, and content is generated and returned to the client. Each request is entirely independent from
the last.

This presents a challenge because many web applications involve some kind of conversation
between the client and the server in which the previous actions of the user influence the results
returned on subsequent pages. To maintain that conversational state, many early applications
attempted to dynamically embed context information into URLs. Unfortunately, not only does this
technique not scale very well but it also requires a dynamic element to all content generation that
makes it difficult for nondevelopers to write content for a web application.

Servlets solve the problem of conversational state with the session. Not to be confused with the
session bean, the HTTP session is a map of data associated with a session id. When the application
requests that a session be created, the server generates a new id and returns an HTTPSession object
that the application can use to store key/value pairs of data. It then uses techniques such as browser
cookies to link the session id with the client, tying the two together into a conversation. For web
applications, the client is largely ignorant of the conversational state that is tracked by the server.

Using the HTTP session effectively is an important element of servlet development. Listing 3-11
demonstrates the steps required to request a session and store conversational data in it. In this
example, assuming that the user has logged in, the servlet stores the user id in the session, making it
available for use in all subsequent requests by the same client. The getSession() call on the
HttpServletRequest object will either return the active session or create a new one if one does not
exist. Once obtained, the session acts like a map, with key/value pairs set and retrieved with the
setAttribute() and getAttribute() methods, respectively. As you see later in this chapter, the servlet
session, which stores unstructured data, is sometimes paired with a stateful session bean to manage
session information with the benefit of a well-defined business interface.

Listing 3-11. Maintaining Conversational State with a Servlet

public class LoginServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 String userId = request.getParameter("user");
 HttpSession session = request.getSession();
 session.setAttribute("user", userId);

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

47

 // ...
 }
}

The rise of application frameworks targeted to the Web has also changed the way in which we
develop web applications. Application code written in servlets is rapidly being replaced with
application code further abstracted from the base model using frameworks such as JSF. When working
in an environment such as this, basic application persistence issues, such as where to acquire and store
the entity manager and how to effectively use transactions quickly, become more challenging.

Although we will explore some of these issues, persistence in the context of a framework such as
JSF is beyond the scope of this book. As a general solution, we recommend adopting a session bean
component model in which to focus persistence operations. Session beans are easily accessible from
anywhere within a Java EE application, making them perfect neutral ground for business services. The
ability to exchange entities inside and outside of the session bean model means that the results of
persistence operations will be directly usable in web frameworks without having to tightly couple your
presentation code to the persistence API.

Dependency Management
The business logic of a Java EE component is not always self-contained. More often than not, the
implementation depends on other resources hosted by the application server. This might include
server resources such as a JDBC data source or JMS message queue, or application-defined resources
such as a session bean or entity manager for a specific persistence unit.

To manage these dependencies, Java EE components support the notion of references to resources
that are defined in metadata for the component. A reference is a named link to a resource that can be
resolved dynamically at runtime from within application code or resolved automatically by the
container when the component instance is created. We’ll cover each of these scenarios shortly.

A reference consists of two parts: a name and a target. The name is used by application code to
resolve the reference dynamically, whereas the server uses target information to find the resource the
application is looking for. The type of resource to be located determines the type of information
required to match the target. Each resource reference requires a different set of information specific to
the resource type it refers to.

A reference is declared using one of the resource reference annotations: @Resource, @EJB,
@PersistenceContext, or @PersistenceUnit. These annotations can be placed on a class, field, or setter
method. The choice of location determines the default name of the reference, and whether or not the
server resolves the reference automatically.

Dependency Lookup
The first strategy for resolving dependencies in application code that we will discuss is called
dependency lookup. This is the traditional form of dependency management in Java EE, in which the
application code is responsible for using the Java Naming and Directory Interface (JNDI) to look up a
named reference.

All the resource annotations support an attribute called name that defines the name of the
reference. When the resource annotation is placed on the class definition, this attribute is mandatory.
If the resource annotation is placed on a field or a setter method, the server will generate a default
name. When using dependency lookup, annotations are typically placed at the class level, and the
name is explicitly specified. Placing a resource reference on a field or setter method has other effects
besides generating a default name that we will discuss in the next section.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

48

The role of the name is to provide a way for the client to resolve the reference dynamically. Every
Java EE application server supports JNDI, and each component has its own locally scoped JNDI naming
context called the environment naming context. The name of the reference is bound into the
environment naming context, and when it is looked up using the JNDI API, the server resolves the
reference and returns the target of the reference.

Consider the DeptServiceBean session bean shown in Listing 3-12. It has declared a dependency
on a session bean using the @EJB annotation and given it the name “audit”. The beanInterface element
of the @EJB annotation references the business interface of the session bean that the client is
interested in. In the PostConstruct callback, the audit bean is looked up and stored in the audit field.
The Context and InitialContext interfaces are both defined by the JNDI API. The lookup() method of
the Context interface is the primary way to retrieve objects from a JNDI context. To find the reference
named “audit”, the application looks up the name “java:comp/env/audit” and casts the result to the
AuditService business interface. The prefix “java:comp/env/” that was added to the reference name
indicates to the server that the environment naming context should be searched to find the reference.
If the name is incorrectly specified, an exception will be thrown when the lookup fails.

Listing 3-12. Looking Up an EJB Dependency

@Stateless
@EJB(name="audit", beanInterface=AuditService.class)
public class DeptServiceBean implements DeptService {
 private AuditService audit;

 @PostConstruct
 public void init() {
 try {
 Context ctx = new InitialContext();
 audit = (AuditService) ctx.lookup("java:comp/env/audit");
 } catch (NamingException e) {
 throw new EJBException(e);
 }
 }

 // ...
}

Using the JNDI API to look up resource references from the environment naming context is
supported by all Java EE components. It is, however, a somewhat cumbersome method of finding a
resource because of the exception-handling requirements of JNDI. EJBs also support an alternative
syntax using the lookup() method of the EJBContext interface. The EJBContext interface (and
subinterfaces such as SessionContext and MessageDrivenContext) is available to any EJB and provides
the bean with access to runtime services such as the timer service. Listing 3-13 shows the same
example as Listing 3-12 using the lookup() method. The SessionContext instance in this example is
provided via a setter method. We will revisit this example later in the section called “Referencing
Server Resources” to see how it is invoked.

Listing 3-13. Using the EJBContext lookup() Method

@Stateless
@EJB(name="audit", beanInterface=AuditService.class)
public class DeptServiceBean implements DeptService {
 SessionContext context;
 AuditService audit;

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

49

 public void setSessionContext(SessionContext context) {
 this.context = context;
 }

 @PostConstruct
 public void init() {
 audit = (AuditService) context.lookup("audit");
 }

 // ...
}

The EJBContext lookup() method has two advantages over the JNDI API. The first is that the
argument to the method is the name exactly as it was specified in the resource reference. The second is
that only runtime exceptions are thrown from the lookup() method so the checked exception handling
of the JNDI API can be avoided. Behind the scenes, the exact same sequence of JNDI API calls from
Listing 3-12 is being made, but the JNDI exceptions are handled automatically.

Dependency Injection
When a resource annotation is placed on a field or setter method, two things occur. First, a resource
reference is declared just as if it had been placed on the bean class (similar to the example in Listing 3-
12), and the name for that resource will be bound into the environment naming context when the
component is created. Second, the server does the lookup automatically on your behalf and sets the
result into the instantiated class.

The process of automatically looking up a resource and setting it into the class is called
dependency injection because the server is said to inject the resolved dependency into the class. This
technique, one of several commonly referred to as inversion of control, removes the burden of
manually looking up resources from the JNDI environment context.

Dependency injection is considered a best practice for application development, not only because
it reduces the need for JNDI lookups (and the associated Service Locator3 pattern) but also because it
simplifies testing. Without any JNDI API code in the class that has dependencies on the application
server runtime environment, the bean class can be instantiated directly in a unit test. The developer
can then manually supply the required dependencies and test the functionality of the class in question
instead of worrying about how to work around the JNDI APIs.

Field Injection
The first form of dependency injection is called field injection. Injecting a dependency into a field
means that after the server looks up the dependency in the environment naming context, it assigns
the result directly into the annotated field of the class. Listing 3-14 revisits the example from Listing 3-
12 and demonstrates the @EJB annotation, this time by injecting the result into the audit field. All the

3 Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design Strategies,
Second Edition. Upper Saddle River, N.J.: Prentice Hall PTR, 2003.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

50

directory interface code we demonstrated before is gone, and the business methods of the bean can
assume that the audit field holds a reference to the AuditService bean.

Listing 3-14. Using Field Injection

@Stateless
public class DeptServiceBean implements DeptService {
 @EJB AuditService audit;

 // ...
}

Field injection is certainly the easiest to implement, and the examples in this book use this form
exclusively to conserve space. The only thing to consider with field injection is that if you are planning
on unit testing, you need either to add a setter method or make the field accessible to your unit tests to
manually satisfy the dependency. Private fields, although legal, require unpleasant hacks if there is no
accessible way to set their value. Consider package scope for field injection if you want to unit test
without having to add a setter.

We mentioned in the previous section that a name is automatically generated for the reference
when a resource annotation is placed on a field or setter method. For completeness, we will describe
the format of this name, but it is unlikely that you will find many opportunities to use it. The generated
name is the fully qualified class name, followed by a forward slash and then the name of the field or
property. This means that if the AuditService bean is located in the persistence.session package, the
injected EJB referenced in Listing 3-14 would be accessible in the environment naming context under
the name “persistence.session.AuditService/audit”. Specifying the name element for the resource
annotation will override this default value.

Setter Injection
The second form of dependency injection is called setter injection and involves annotating a setter
method instead of a class field. When the server resolves the reference, it will invoke the annotated
setter method with the result of the lookup. Listing 3-15 revisits Listing 3-12 for the last time to
demonstrate using setter injection.

Listing 3-15. Using Setter Injection

@Stateless
public class DeptServiceBean implements DeptService {
 private AuditService audit;

 @EJB
 public void setAuditService(AuditService audit) {
 this.audit = audit;
 }

 // ...
}

This style of injection allows for private fields, yet also works well with unit testing. Each test can
simply instantiate the bean class and manually perform the dependency injection by invoking the
setter method, usually by providing an implementation of the required resource that is tailored to
the test.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

51

Declaring Dependencies
The following sections describe some of the resource annotations defined by the Java EE and EJB
specifications. Each annotation has a name attribute for optionally specifying the reference name for
the dependency. Other attributes on the annotations are specific to the type of resource that needs to
be acquired.

Referencing a Persistence Context
In the previous chapter, we demonstrated how to create an entity manager for a persistence context
using an EntityManagerFactory returned from the Persistence class. In the Java EE environment, the
@PersistenceContext annotation can be used to declare a dependency on a persistence context and
have the entity manager for that persistence context acquired automatically.

Listing 3-16 demonstrates using the @PersistenceContext annotation to acquire an entity
manager through dependency injection. The unitName element specifies the name of the persistence
unit on which the persistence context will be based.

■ TIP If the unitName element is omitted, it is vendor-specific how the unit name for the persistence context is
determined. Some vendors can provide a default value if there is only one persistence unit for an application,
whereas others might require that the unit name be specified in a vendor-specific configuration file.

Listing 3-16. Injecting an EntityManager Instance

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 // ...
}

After the warnings about using a state field in a stateless session bean, you might be wondering
how this code is legal. After all, entity managers must maintain their own state to be able to manage a
specific persistence context. The good news is that the specification was designed with Java EE
integration in mind, so what actually gets injected in Listing 3-16 is not an entity manager instance
like the ones we used in the previous chapter. The value injected into the bean is a container-
managed proxy that acquires and releases persistence contexts on behalf of the application code. This
is a powerful feature of the Java Persistence API in Java EE and is covered extensively in Chapter 6. For
now, it is safe to assume that the injected value will “do the right thing.” It does not have to be disposed
of and works automatically with the transaction management of the application server.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

52

Referencing a Persistence Unit
The EntityManagerFactory for a persistence unit can be referenced using the @PersistenceUnit
annotation. Like the @PersistenceContext annotation, the unitName element identifies the persistence
unit for the EntityManagerFactory instance we want to access. If the persistent unit name is not
specified in the annotation, it is vendor-specific how the name is determined.

Listing 3-17 demonstrates injection of an EntityManagerFactory instance into a stateful session
bean. The bean then creates an EntityManager instance from the factory during the PostConstruct
lifecycle callback. An injected EntityManagerFactory instance can be safely stored on any component
instance. It is thread-safe and does not need to be disposed of when the bean instance is removed.

Listing 3-17. Injecting an EntityManagerFactory Instance

@Stateful
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceUnit(unitName="EmployeeService")
 private EntityManagerFactory emf;
 private EntityManager em;

 @PostConstruct
 public void init() {
 em = emf.createEntityManager();
 }

 // ...
}

The EntityManagerFactory for a persistence unit is not used very often in the Java EE environment
because injected entity managers are easier to acquire and use. As you will see in Chapter 6, there are
important differences between the entity managers returned from the factory and the ones provided
by the server in response to the @PersistenceContext annotation.

Referencing Enterprise JavaBeans
When a component needs to access an EJB, it declares a reference to that bean with the @EJB
annotation. The target of this reference type is typically a session bean. Message-driven beans have
no client interface, so they cannot be accessed directly and cannot be injected. We have already
demonstrated the beanInterface element for specifying the business interface of the session bean that
the client is interested in. The server will search through all deployed session beans to find the one
that implements the requested business interface.

In the rare case that two session beans implement the same business interface or if the client
needs to access a session bean located in a different EJB jar, then the beanName element can also be
specified to identify the session bean by its name. The name of a session bean defaults to the
unqualified class name of the bean class or it can be set explicitly by using the name element of the
@Stateless and @Stateful annotations.

Listing 3-18 revisits the example shown in Listing 3-14, this time specifying the beanName element
on the injected value. Sharing the same business interface across multiple bean implementations is
not recommended. The beanName element should almost never be required.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

53

Listing 3-18. Qualifying an EJB Reference Using the Bean Name

@Stateless
public class DeptServiceBean implements DeptService {
 @EJB(beanName="AuditServiceBean")
 AuditService audit;

 // ...
}

Referencing Server Resources
The @Resource annotation is the catchall reference for all resource types that don’t correspond to one
of the types described so far. It is used to define references to resource factories, message destinations,
data sources, and other server resources. The @Resource annotation is also the simplest to define
because the only additional element is resourceType, which allows you to specify the type of resource if
the server can’t figure it out automatically. For example, if the field you are injecting into is of type
Object, then there is no way for the server to know that you wanted a data source instead. The
resourceType element can be set to javax.sql.DataSource to make the need explicit.

One of the features of the @Resource annotation is that it is used to acquire logical resources
specific to the component type. This includes EJBContext implementations as well as services such as
the EJB timer service. Without defining it as such, we used setter injection to acquire the EJBContext
instance in Listing 3-13. To make that example complete, the @Resource annotation would be placed on
the setSessionContext() method. Listing 3-19 revisits the example from Listing 3-13, this time
demonstrating field injection to acquire a SessionContext instance.

Listing 3-19. Injecting a SessionContext instance

@Stateless
@EJB(name="audit", beanInterface=AuditService.class)
public class DeptServiceBean implements DeptService {
 @Resource SessionContext context;
 AuditService audit;

 @PostConstruct
 public void init() {
 audit = (AuditService) context.lookup("audit");
 }

 // ...
}

Transaction Management
More than any other type of enterprise application, applications that use persistence require careful
attention to issues of transaction management. When transactions start, when they end, and how the
entity manager participates in container-managed transactions are all essential topics for developers
using JPA. The following sections will lay out the foundation for transactions in Java EE and then
revisit this topic in detail again in Chapter 6 as we look at the entity manager and how it participates

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

54

in transactions. Advanced transaction topics are beyond the scope of this book. We recommend Java
Transaction Processing4 for an in-depth discussion on using and implementing transactions in Java,
and Principles of Transaction Processing5 for a look at transactions and transaction systems in general.

Transaction Review
A transaction is an abstraction that is used to group together a series of operations. Once grouped
together, the set of operations is treated as a single unit, and all of the operations must succeed or
none of them can succeed. The consequence of only some of the operations being successful would
produce an inconsistent view of the data that would be harmful or undesirable to the application. The
term used to describe whether the operations succeed together or not at all is called atomicity and is
arguably the most important of the four basic properties that are used to characterize how transactions
behave. Understanding these four properties is fundamental to understanding transactions. The
following list summarizes these properties:

• Atomicity: Either all the operations in a transaction are successful or none of
them is. The success of every individual operation is tied to the success of the
entire group.

• Consistency: The resulting state at the end of the transaction adheres to a set of
rules that define acceptability of the data. The data in the entire system is legal
or valid with respect to the rest of the data in the system.

• Isolation: Changes made within a transaction are visible only to the transaction
that is making the changes. Once a transaction commits the changes, they are
atomically visible to other transactions.

• Durability: The changes made within a transaction endure beyond the
completion of the transaction.

A transaction that meets all these requirements is said to be an ACID transaction (the familiar
ACID term being obtained by combining the first letter of each of the four properties).

Not all transactions are ACID transactions, and those that are often offer some flexibility in the
fulfillment of the ACID properties. For example, the isolation level is a common setting that can be
configured to provide either looser or tighter degrees of isolation than what was described earlier.
They are typically done for reasons of either increased performance or, on the other side of the
spectrum, if an application has more stringent data consistency requirements. The transactions that
we discuss in the context of Java EE are normally of the ACID variety.

4 Little, Mark, Jon Maron, and Greg Pavlik. Java Transaction Processing: Design and Implementation.
Upper Saddle River, N.J.: Prentice Hall PTR, 2004.
5 Bernstein, Philip A., and Eric Newcomer. Principles of Transaction Processing. Burlington, MA: Morgan
Kaufmann, 2009.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

55

Enterprise Transactions in Java
Transactions actually exist at different levels within the enterprise application server. The lowest and
most basic transaction is at the level of the resource, which in our discussion is assumed to be a
relational database fronted by a DataSource interface. This is called a resource-local transaction and is
equivalent to a database transaction. These types of transactions are manipulated by interacting
directly with the JDBC DataSource that is obtained from the application server. Resource-local
transactions are used much more infrequently than container transactions.

The broader container transaction uses the Java Transaction API (JTA) that is available in every
compliant Java EE application server. This is the typical transaction that is used for enterprise
applications and can involve or enlist a number of resources including data sources as well as other
types of transactional resources. Resources defined using Java Connector Architecture (JCA)
components can also be enlisted in the container transaction.

Containers typically add their own layer on top of the JDBC DataSource to perform functions such
as connection management and pooling that make more efficient use of the resources and provide a
seamless integration with the transaction-management system. This is also necessary because it is
the responsibility of the container to perform the commit or rollback operation on the data source
when the container transaction completes.

Because container transactions use JTA and because they can span multiple resources, they are
also called JTA transactions or global transactions. The container transaction is a central aspect of
programming within Java EE application servers.

Transaction Demarcation
Every transaction has a beginning and an end. Beginning a transaction will allow subsequent
operations to become a part of the same transaction until the transaction has completed. Transactions
can be completed in one of two ways. They can be committed, causing all of the changes to be persisted
to the data store, or rolled back, indicating that the changes should be discarded. The act of causing a
transaction to either begin or complete is termed transaction demarcation. This is a critical part of
writing enterprise applications, because doing transaction demarcation incorrectly is one of the most
common sources of performance degradation.

Resource-local transactions are always demarcated explicitly by the application, whereas
container transactions can either be demarcated automatically by the container or by using a JTA
interface that supports application-controlled demarcation. In the first case, when the container takes
over the responsibility of transaction demarcation, we call it container-managed transaction
management, but when the application is responsible for demarcation, we call it bean-managed
transaction management.

EJBs can use either container-managed transactions or bean-managed transactions. Servlets are
limited to the somewhat poorly named bean-managed transaction. The default transaction
management style for an EJB component is container-managed. To configure an EJB to have its
transactions demarcated one way or the other, the @TransactionManagement annotation should be
specified on the session or message-driven bean class. The TransactionManagementType enumerated
type defines BEAN for bean-managed transactions and CONTAINER for container-managed transactions.
Listing 3-20 demonstrates how to enable bean-managed transactions using this approach.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

56

Listing 3-20. Changing the Transaction Management Type of a Bean

@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class ProjectServiceBean implements ProjectService {
 // methods in this class manually control transaction demarcation
}

Because the default transaction management for a bean is container-managed, this annotation
needs to be specified only if bean-managed transactions are desired.

Container-Managed Transactions
The most common way to demarcate transactions is to use container-managed transactions (CMTs),
which spare the application the effort and code to begin and commit transactions explicitly.

Transaction requirements are determined by metadata on session and message-driven beans
and are configurable at the granularity of method execution. For example, a session bean can declare
that whenever any specific method on that bean gets invoked, the container must ensure that a
transaction is started before the method begins. The container would also be responsible for
committing the transaction after the completion of the method.

It is quite common for one bean to invoke another bean from one or more of its methods. In this
case, a transaction that can have been started by the calling method would not have been committed
because the calling method will not be completed until its call to the second bean has completed. This
is why we need settings to define how the container should behave when a method is invoked within a
specific transactional context.

For example, if a transaction is already in progress when a method is called, the container might
be expected to just make use of that transaction, whereas it might be directed to start a new one if no
transaction is active. These settings are called transaction attributes, and they determine exactly what
the container-managed transactional behavior is.

The defined transaction attributes choices are as follows:

• MANDATORY: If this attribute is specified for a method, a transaction is expected to
have already been started and be active when the method is called. If no
transaction is active, an exception is thrown. This attribute is seldom used, but
can be a development tool to catch transaction demarcation errors when it is
expected that a transaction should already have been started.

• REQUIRED: This attribute is the most common case in which a method is expected to
be in a transaction. The container provides a guarantee that a transaction is
active for the method. If one is already active, it is used; if one does not exist, a
new transaction is created for the method execution.

• REQUIRES_NEW: This attribute is used when the method always needs to be in its
own transaction; that is, the method should be committed or rolled back
independently of methods further up the call stack. It should be used with caution
because it can lead to excessive transaction overhead.

• SUPPORTS: Methods marked with supports are not dependent on a transaction, but
will tolerate running inside one if it exists. This is an indicator that no
transactional resources are accessed in the method.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

57

• NOT_SUPPORTED: A method marked to not support transactions will cause the
container to suspend the current transaction if one is active when the method is
called. It implies that the method does not perform transactional operations, but
might fail in other ways that could undesirably affect the outcome of a
transaction. This is not a commonly used attribute.

• NEVER: A method marked to never support transactions will cause the container to
throw an exception if a transaction is active when the method is called. This
attribute is very seldom used, but can be a development tool to catch transaction
demarcation errors when it is expected that transactions should already have
been completed.

Any time the container starts a transaction for a method, the container is assumed to also attempt
to commit the transaction at the end of the method. Each time the current transaction must be
suspended, the container is responsible for resuming the suspended transaction at the conclusion of
the method.

The transaction attribute for a method can be indicated by annotating a session or message-
driven bean class, or one of its methods that is part of the business interface, with the
@TransactionAttribute annotation. This annotation requires a single argument of the enumerated
type TransactionAttributeType, the values of which are defined in the preceding list. Annotating the
bean class will cause the transaction attribute to apply to all of the business methods in the class,
whereas annotating a method applies the attribute only to the method. If both class-level and method-
level annotations exist, the method-level annotation takes precedence. In the absence of class-level
or method-level @TransactionAttribute annotations, the default attribute of REQUIRED will be applied.

Listing 3-21 shows how the addItem() method from the shopping cart bean in Listing 3-6 might use
a transaction attribute. No transaction management setting was supplied, so container-managed
transactions will be used. No attribute was specified on the class, so the default behavior of REQUIRED
will apply to all the methods of the class. The exception is that the addItem() method has declared a
transaction attribute of SUPPORTS, which overrides the REQUIRED setting. Whenever a call to add an item
is made, that item will be added to the cart, but if no transaction was active none will need to be
started.

Listing 3-21. Specifying a Transaction Attribute

@Stateful
public class ShoppingCartBean implements ShoppingCart {

 @TransactionAttribute(TransactionAttributeType.SUPPORTS)
 public void addItem(String item, Integer quantity) {
 verifyItem(item, quantity);
 // ...
 }

 // ...
}

Furthermore, before the addItem() method adds the item to the cart, it does some validation in a
private method called verifyItem() that is not shown in the example. When this method is invoked
from verifyItem(), it will run in whatever transactional context addItem() was invoked.

Any bean wanting to cause a container-managed transaction to roll back can do so by invoking
the setRollbackOnly() method on the EJBContext object. Although this will not cause the immediate
rollback of the transaction, it is an indication to the container that the transaction should be rolled
back when the time comes. Note that entity managers will also cause the current transaction to be set

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

58

to roll back when an exception is thrown during an entity manager invocation or when the
transaction completes.

Bean-Managed Transactions
The other way of demarcating transactions is to use bean-managed transactions (BMTs). Declaring that
a bean is using bean-managed transactions means that the bean class is assuming the responsibility
to begin and commit the transactions whenever it deems it’s necessary. With this responsibility,
however, comes the expectation that the bean class will get it right. Beans that use BMT must ensure
that any time a transaction has been started, it must also be completed before returning from the
method that started it. Failure to do so will result in the container rolling back the transaction
automatically and an exception being thrown.

One penalty of transactions being managed by the application instead of by the container is that
they do not get propagated to methods called on another BMT bean. For example, if Bean A begins a
transaction and then calls Bean B, which is using bean-managed transactions, then the transaction
will not get propagated to the method in Bean B. Any time a transaction is active when a BMT method
is invoked, the active transaction will be suspended until control returns to the calling method.

BMT is not generally recommended for use in EJBs because it adds complexity to the application
and requires the application to do work that the server can already do for it. It is necessary, though,
when transactions must be initiated from the web tier, because it is the only supported way that non-
EJB components can use container transactions.

UserTransaction

To be able to manually begin and commit container transactions, the application must have an
interface that supports it. The UserTransaction interface is the designated object in the JTA that
applications can hold on to and invoke to manage transaction boundaries. An instance of
UserTransaction is not actually the current transaction instance; it is a sort of proxy that provides the
transaction API and represents the current transaction. A UserTransaction instance can be injected
into BMT components by using the @Resource annotation. When using dependency lookup, it is found
in the environment naming context using the reserved name “java:comp/UserTransaction”. The
UserTransaction interface is shown in Listing 3-22.

Listing 3-22. The UserTransaction Interface

public interface javax.transaction.UserTransaction {
 public abstract void begin();
 public abstract void commit();
 public abstract int getStatus();
 public abstract void rollback();
 public abstract void setRollbackOnly();
 public abstract void setTransactionTimeout(int seconds);
}

Each JTA transaction is associated with an execution thread, so it follows that no more than one
transaction can be active at any given time. So if one transaction is active, the user cannot start
another one in the same thread until the first one has committed or rolled back. Alternatively, the
transaction can time out, causing the transaction to roll back.

We discussed earlier that in certain CMT conditions the container will suspend the current
transaction. From the previous API, you can see that there is no UserTransaction method for
suspending a transaction. Only the container can do this using an internal transaction management

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

59

API. In this way, multiple transactions can be associated with a single thread, even though only one
can ever be active at a time.

Rollbacks can occur in several different scenarios. The setRollbackOnly() method indicates that
the current transaction cannot be committed, leaving rollback as the only possible outcome. The
transaction can be rolled back immediately by calling the rollback() method. Alternately, a time limit
for the transaction can be set with the setTransactionTimeout() method, causing the transaction to roll
back when the limit is reached. The only catch with transaction timeouts is that the time limit must be
set before the transaction starts and it cannot be changed once the transaction is in progress.

In JTA every thread has a transactional status that can be accessed through the getStatus() call.
The return value of this method is one of the constants defined on the java.transaction.Status
interface. If no transaction is active, for example, then the value returned by getStatus() will be the
STATUS_NO_TRANSACTION. Likewise, if setRollbackOnly() has been called on the current transaction, then
the status will be STATUS_MARKED_ROLLBACK until the transaction has begun rolling back.

Listing 3-23 shows a fragment from a servlet using the ProjectService bean to demonstrate using
UserTransaction to invoke multiple EJB methods within a single transaction. The doPost() method uses
the UserTransaction instance injected with the @Resource annotation to start and commit a transaction.
Note the try ... finally block required around the transaction operations to ensure that the
transaction is correctly cleaned up in the event of a failure.

Listing 3-23. Using the UserTransaction Interface

public class ProjectServlet extends HttpServlet {
 @Resource UserTransaction tx;
 @EJB ProjectService bean;

 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 // ...

 try {
 tx.begin();
 try {
 bean.assignEmployeeToProject(projectId, empId);
 bean.updateProjectStatistics();
 } finally {
 tx.commit();
 }
 } catch (Exception e) {
 // handle exceptions from UserTransaction methods
 // ...
 }

 // ...
 }
}

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

60

Using Java EE Components
Now that we have described how to define Java EE components and make use of services such as
transaction management that are provided by the application server, we can demonstrate how to put
these components to work. Once again we must caution that this is not an exhaustive overview of these
technologies, but is provided by way of introduction to Java EE to put the upcoming persistence
examples in context and for developers who might be new to the platform.

Using a Stateless Session Bean
A client of a stateless session bean is any Java EE component that can declare a dependency on the
bean. This includes other session beans, message-driven beans, and servlets. Two-tier access from a
remote client is also possible if the bean defines a remote business interface.

Consider the servlet shown in Listing 3-24, which uses the EJB from Listing 3-2 to obtain a
message and then generates a simple HTML page. As discussed earlier in the section on dependency
management, the @EJB annotation causes the HelloService bean to be automatically injected into the
servlet. Therefore, when the doGet() method is invoked, methods on the business interface can be
invoked without any extra steps.

Listing 3-24. A Servlet That Uses a Session Bean

public class HelloServlet extends HttpServlet {
 @EJB HelloService bean;

 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws IOException {
 String name = request.getParameter("name");
 String message = bean.sayHello(name);

 PrintWriter out = response.getWriter();
 out.println("<html>" +
 "<head><title>Hello</title></head>" +
 "<body><p>" + message + "</p></body>" +
 "</html>");
 }
}

In the case of session beans that depend on other session beans, note that it is always safe to
declare a reference to a stateless session bean and store it in a field on the bean. The bean reference
in the case of a stateless session bean is itself a stateless and thread-safe object.

Using a Stateful Session Bean
There are a few basic things to keep in mind when working with stateful session beans:

• When a client obtains a reference to a stateful session bean, a private instance
of that bean is created for the client. In other words, there is one bean instance
per client reference.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

61

• The bean does not go away until the client invokes a method annotated with
@Remove. If the client forgets or is unable to end the conversation with the bean, it
will hang around until the server can determine that it is safe to remove it.

• A reference to a stateful session bean cannot be shared between threads.

A consequence of these rules is that clients need to plan carefully when they need to start the
session and when it can be ended. It also means that using the @EJB annotation to inject a stateful
session bean is not a good solution. Servlets, stateless session beans, and message-driven beans are
all stateless components. As stated in the description of stateless session beans, any object placed on a
stateless component must also be stateless as well. A stateful session bean reference is itself stateful
because it references a private instance of the bean managed by the server. If @EJB were used to inject
a stateful session bean into a stateless session bean where the server had pooled 100 bean instances,
there would be 100 stateful session bean instances created as well. The only time it is ever safe to
inject a stateful session bean is into another stateful session bean.

Dependency lookup is the preferred method for acquiring a stateful session bean instance for a
stateless client. The EJBContext lookup() method is the easiest way to accomplish this, but JNDI will be
required if the client is a servlet. Listing 3-25 demonstrates a typical pattern for servlets using stateful
session beans. A reference is declared to the bean, it is looked up lazily when needed, and the result is
bound to the HTTP session. The stateful session bean and HTTP session have similar lifecycles,
making them good candidates to work together.

Listing 3-25. Creating and Using a Stateful Session Bean

@EJB(name="cart", beanInterface=ShoppingCart.class)
public class ShoppingCartServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 HttpSession session = request.getSession(true);
 ShoppingCart cart = (ShoppingCart) session.getAttribute("cart");
 if (cart == null) {
 try {
 Context ctx = new InitialContext();
 cart = (ShoppingCart) ctx.lookup("java:comp/env/cart");
 session.setAttribute("cart", cart);
 } catch (NamingException e) {
 throw new ServletException(e);
 }
 }

 if (request.getParameter("action").equals("add")) {
 String itemId = request.getParameter("item");
 String quantity = request.getParameter("quantity");
 cart.addItem(itemId, Integer.parseInt(quantity));
 }

 if (request.getParameter("action").equals("cancel")) {
 cart.cancel();
 session.removeAttribute("cart");
 }

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

62

 // ...
 }
}

When the server receives a request to look up a stateful session bean, it asks the EJB container to
create a new instance of the bean, which is then assigned a unique identifier. The reference to the
bean that is returned keeps track of this identifier and uses it when communicating with the server to
ensure that the right bean instance is used to invoke each business method.

Using a Singleton Session Bean
From the perspective of a client, using a singleton session bean is similar to using a stateless session
bean. It can be acquired via a context lookup or dependency injection and used without any extra steps.
Likewise, no special action is required to dispose of the bean. It will be disposed of automatically when
the application is shut down.

The concurrent nature of singleton session beans does have some side effects with respect to
clients. Business method calls on the singleton session bean can block if a write operation from
another thread is in progress. Singleton session beans with container-managed concurrency can also
specify a time limit for blocked method calls, resulting in a ConcurrentAccessTimeoutException being
thrown to the client if the time limit is exceeded.

Using a Message-Driven Bean
As an asynchronous component, clients of a message-driven bean can’t directly invoke business
operations. Instead they send messages, which are then delivered to the MDB by the messaging system
being used. The client needs to know only the format of the message that the MDB is expecting and the
messaging destination where the message must be sent. Listing 3-26 demonstrates sending a message
to the MDB defined in Listing 3-8. The ReportProcessor MDB expects an employee id as its message
format. Therefore, the session bean client in this example creates a text message with the employee id
and sends it through the JMS API. The same criteria that were specified on the MDB to filter the
messages are also specified here on the client.

Listing 3-26. Sending a Message to an MDB

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @Resource Queue destinationQueue;
 @Resource QueueConnectionFactory factory;

 public void generateReport() {
 try {
 QueueConnection connection = factory.createQueueConnection();
 QueueSession session =
 connection.createQueueSession(false, 0);
 QueueSender sender = session.createSender(destinationQueue);

 Message message = session.createTextMessage("12345");
 message.setStringProperty("RECIPIENT", "ReportProcessor");

 sender.send(message);

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

63

 sender.close();
 session.close();
 connection.close();
 } catch (JMSException e) {
 // ...
 }
 }

 // ...
}

Adding the Entity Manager
Using stateless session beans as components to manage persistence operations is the preferred
strategy for Java EE applications. Clients gain the benefit of working with a session façade that
presents a business interface that is decoupled from the specifics of the implementation. The bean can
leverage the dependency-management capabilities of the server to access the entity manager and can
make use of services such as container-managed transactions to precisely specify the transaction
requirements of each business operation. Finally, the POJO nature of entities allows them to be easily
returned from and passed as arguments to a session bean method.

Leveraging the stateless session bean for persistence is largely a case of injecting an entity
manager. Listing 3-27 demonstrates a typical session bean that injects an entity manager and uses it
to implement its business operations.

Listing 3-27. Using the Entity Manager with a Stateless Session Bean

@Stateless
public class DepartmentServiceBean {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 public void addEmployeeToDepartment(int empId, int deptId) {
 Employee emp = em.find(Employee.class, empId);
 Department dept = em.find(Department.class, deptId);
 dept.getEmployees().add(emp);
 emp.setDept(dept);
 }

 // ...
}

Stateful session beans are also well suited to managing persistence operations within an
application component model. The ability to store state on the session bean means that query criteria
or other conversational state can be constructed across multiple method calls before being acted upon.
The results of entity manager operations can also be cached on the bean instance in some situations.

Listing 3-28 revisits the shopping cart bean from Listing 3-6. In this example, Order and Item are
entities representing a sales transaction. The order is built up incrementally over the life of the
session and then persisted to the database using the injected entity manager when payment has been
confirmed.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

64

Listing 3-28. Using the Entity Manager with a Stateful Session Bean

@Stateful
public class ShoppingCartBean implements ShoppingCart {
 @PersistenceContext(unitName="order")
 private EntityManager em;
 private Order order = new Order();

 public void addItem(Item item, int quantity) {
 order.addItem(item, quantity);
 }

 // ...

 @Remove
 public void checkout(int paymentId) {
 order.setPaymentId(paymentId);
 em.persist(order);
 }
}

From the perspective of using the entity manager with message-driven beans, the main question
is whether the MDB should use the Java Persistence API directly or delegate to another component such
as a session bean. A common pattern in many applications is to treat the MDB as an asynchronous
façade for session beans in situations where the business logic does not produce results that are
customer-facing (that is, where the results of the business operation are stored in a database or
propagated to another messaging system). This is largely an issue of personal taste because message-
driven beans fully support injecting the entity manager and can leverage container-managed
transactions.

Putting It All Together
Now that we have discussed the application component model and services available as part of a Java
EE application server, we can revisit the EmployeeService example from the previous chapter and bring
it to the Java EE environment. Along the way, we’ll provide example code to show how the components
fit together and how they relate back to the Java SE example.

Defining the Component
To begin, let’s consider the definition of the EmployeeService class from Listing 2-9 in Chapter 2. The
goal of this class is to provide business operations related to the maintenance of employee data. In
doing so, it encapsulates all the persistence operations. To introduce this class into the Java EE
environment, we must first decide how it should be represented. The service pattern exhibited by the
class suggests the session bean as the ideal component. Because the business methods of the bean have
no dependency on each other, we can further decide that a stateless session bean is suitable. In fact,

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

65

this bean demonstrates a very typical design pattern called a session façade,6 in which a stateless
session bean is used to shield clients from dealing with a particular persistence API. Our first step is to
extract a business interface from the original bean. Listing 3-29 shows the EmployeeService business
interface.

Listing 3-29. The EmployeeService Business Interface

public interface EmployeeService {
 public Employee createEmployee(int id, String name, long salary);
 public void removeEmployee(int id);
 public Employee changeEmployeeSalary(int id, long newSalary);
 public Employee findEmployee(int id);
 public List<Employee> findAllEmployees();
}

In the Java SE example, the EmployeeService class must create and maintain its own entity
manager instance. We can replace this logic with dependency injection to acquire the entity manager
automatically. Having decided on a stateless session bean and dependency injection, the converted
stateless session bean is demonstrated in Listing 3-30. With the exception of how the entity manager is
acquired, the business methods are identical. This is an important feature of the Java Persistence API
because the same EntityManager interface can be used both inside and outside of the application
server.

Listing 3-30. The EmployeeService Session Bean

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="EmployeeService")
 protected EntityManager em;

 public EntityManager getEntityManager() {
 return em;
 }

 public Employee createEmployee(int id, String name, long salary) {
 Employee emp = new Employee(id);
 emp.setName(name);
 emp.setSalary(salary);
 getEntityManager().persist(emp);
 return emp;
 }

 public void removeEmployee(int id) {
 Employee emp = findEmployee(id);
 if (emp != null) {
 getEntityManager().remove(emp);
 }

6 Alur et al., Core J2EE Patterns.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

66

 }

 public Employee changeEmployeeSalary(int id, long newSalary) {
 Employee emp = findEmployee(id);
 if (emp != null) {
 emp.setSalary(newSalary);
 }
 return emp;
 }

 public Employee findEmployee(int id) {
 return getEntityManager().find(Employee.class, id);
 }

 public List<Employee> findAllEmployees() {
 TypedQuery query = getEntityManager().createQuery("SELECT e FROM Employee e",
Employee.class);
 return query.getResultList();
 }
}

Defining the User Interface
The next question to consider is how the bean will be accessed. A web interface is the standard
presentation method for modern enterprise applications. To demonstrate how this stateless session
bean might be used by a servlet, consider Listing 3-31. The request parameters are interpreted to
determine the action, which is then carried out by invoking methods on the injected EmployeeService
bean. Although only the first action is described, you can see how this could easily be extended to
handle each of the operations defined on the EmployeeService business interface.

Listing 3-31. Using the EmployeeService Session Bean from a Servlet

public class EmployeeServlet extends HttpServlet {
 @EJB EmployeeService bean;

 protected void doPost(HttpServletRequest request,
 HttpServletResponse response) {
 String action = request.getParameter("action");

 if (action.equals("create")) {
 String id = request.getParameter("id");
 String name = request.getParameter("name");
 String salary = request.getParameter("salary");
 bean.createEmployee(Integer.parseInt(id), name,
 Long.parseLong(salary));
 }

 // ...
 }
}

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

67

Packaging It Up
In the Java EE environment, many properties required in the persistence.xml file for Java SE can be
omitted. In Listing 3-32, you see the persistence.xml file from Listing 2-11 converted for deployment
as part of a Java EE application. Instead of JDBC properties for creating a connection, we now declare
that the entity manager should use the data source name “jdbc/EmployeeDS”. If the data source was
defined to be available in the application namespace instead of the local component naming context
then we might instead use the data source name of “java:app/jdbc/EmployeeDS”. The transaction-
type attribute has also been removed to allow the persistence unit to default to JTA. The application
server will automatically find entity classes, so even the list of classes has been removed. This
example represents the ideal minimum Java EE configuration.

Because the business logic that uses this persistence unit is implemented in a stateless session
bean, the persistence.xml file would typically be located in the META-INF directory of the corresponding
EJB JAR. We will fully describe the persistence.xml file and its placement within a Java EE application
in Chapter 13.

Listing 3-32. Defining a Persistence Unit in Java EE

<persistence>
 <persistence-unit name="EmployeeService">
 <jta-data-source>jdbc/EmployeeDS</jta-data-source>
 </persistence-unit>
</persistence>

Summary
It would be impossible to provide details on all of the features of the Java EE platform in a single
chapter. However, we cannot put JPA in context without explaining the application server
environment in which it will be used. So we have tried to introduce the technologies that are of the
most relevance to the developer using persistence in enterprise applications.

We began with an introduction to software component models and introduced the EJB model for
enterprise components. We argued that the use of components is more important than ever before and
identified some of the benefits that come from leveraging this approach.

In the section on session beans, we introduced the fundamentals and then looked in detail at
stateless, stateful, and singleton session beans. We learned about the difference in interaction style
between the session types and looked at the syntax for declaring beans. We also looked at the
difference between local and remote business interfaces.

We next looked at dependency management in Java EE application servers. We discussed the
reference annotation types and how to declare them. We also looked at the difference between
dependency lookup and dependency injection. In the case of injection, we looked at the difference
between field and setter injection. Finally, we explored each of the resource types, demonstrating how
to acquire server and JPA resources.

In the section on transaction management, we looked at JTA and its role in building data-centric
applications. We then looked at the difference between bean-managed transactions and container-
managed transactions for EJBs. We documented the different types of transaction attributes for CMT
beans and showed how to manually control bean-managed transactions.

Finally, we concluded the chapter by exploring how to use Java EE components in applications and
how they can leverage JPA. We also discussed an end-to-end example of the JPA in the Java EE
environment, converting the example application introduced in the previous chapter from a
command-line Java SE application to a web-based application running on an application server.

CHAPTER 3 ■ ENTERPRISE APPLICATIONS

68

Now that we have introduced JPA in both the Java SE and Java EE environments, it’s time to dive
into the specification in detail. In the next chapter we begin this journey with the central focus of JPA:
object-relational mapping.

C H A P T E R 4

■ ■ ■

69

Object-Relational Mapping

The largest part of an API that persists objects to a relational database ends up being the object-
relational mapping (ORM) component. The topic of ORM usually includes everything from how the
object state is mapped to the database columns to how to issue queries across the objects. We are
focusing this chapter primarily on how to define and map entity state to the database, emphasizing the
simple manner in which it can be done.

This chapter will introduce the basics of mapping fields to database columns and then go on to
show how to map and automatically generate entity identifiers. We will go into some detail about
different kinds of relationships and illustrate how they are mapped from the domain model to the
data model.

Persistence Annotations
We have shown in previous chapters how annotations have been used extensively both in the EJB and
JPA specifications. We will discuss persistence and mapping metadata in significant detail, and
because we use annotations to explain the concepts, it is worth reviewing a few things about the
annotations before we get started.

Persistence annotations can be applied at three different levels: class, method, and field. To
annotate any of these levels, the annotation must be placed in front of the code definition of the
artifact being annotated. In some cases, we will put them on the same line just before the class,
method, or field; in other cases, we will put them on the line above. The choice is based completely on
the preferences of the person applying the annotations, and we think it makes sense to do one thing in
some cases and the other in other cases. It depends on how long the annotation is and what the most
readable format seems to be.

The JPA annotations were designed to be readable, easy to specify, and flexible enough to allow
different combinations of metadata. Most annotations are specified as siblings instead of being nested
inside each other, meaning that multiple annotations can annotate the same class, field, or property
instead of having annotations embedded within other annotations. As with all trade-offs, the piper
must be paid however, and the cost of flexibility is that many possible permutations of top-level
metadata will be syntactically correct but semantically invalid. The compiler will be of no use, but the
provider runtime will often do some basic checking for improper annotation groupings. The nature of
annotations, however, is that when they are unexpected, they will often just not get noticed at all. This
is worth remembering when attempting to understand behavior that might not match what you thought
you specified in the annotations. It could be that one or more of the annotations are being ignored.

The mapping annotations can be categorized as being in one of two categories: logical
annotations and physical annotations. The annotations in the logical group are those that describe the
entity model from an object modeling view. They are tightly bound to the domain model and are the

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

70

sort of metadata that you might want to specify in UML or any other object modeling language or
framework. The physical annotations relate to the concrete data model in the database. They deal with
tables, columns, constraints, and other database-level artifacts that the object model might never be
aware of otherwise.

We will make use of both types of annotations throughout the examples and to demonstrate the
mapping metadata. Understanding and being able to distinguish between these two levels of
metadata will help you to make decisions about where to declare metadata, and where to use
annotations and XML. As you will see in Chapter 12, there are XML equivalents to all the mapping
annotations described in this chapter, giving you the freedom to use the approach that best suits your
development needs.

Accessing Entity State
The mapped state of an entity must be accessible to the provider at runtime, so that when it comes time
to write the data out, it can be obtained from the entity instance and stored in the database. Similarly,
when the state is loaded from the database, the provider runtime must be able to insert it into a new
entity instance. The way the state is accessed in the entity is called the access mode.

In Chapter 2, you learned that there are two different ways to specify persistent entity state: we
can either annotate the fields or annotate the JavaBean-style properties. The mechanism that we use
to designate the persistent state is the same as the access mode that the provider uses to access that
state. If we annotate fields, the provider will get and set the fields of the entity using reflection. If the
annotations are set on the getter methods of properties, those getter and setter methods will be
invoked by the provider to access and set the state.

Field Access
Annotating the fields of the entity will cause the provider to use field access to get and set the state of
the entity. Getter and setter methods might or might not be present, but if they are present, they are
ignored by the provider. All fields must be declared as either protected, package, or private. Public
fields are disallowed because it would open up the state fields to access by any unprotected class in the
VM. Doing so is not just an obviously bad practice but could also defeat the provider implementation.
Of course, the other qualifiers do not prevent classes within the same package or hierarchy from doing
the same thing, but there is an obvious trade-off between what should be constrained and what should
be recommended. Other classes must use the methods of an entity in order to access its persistent
state, and even the entity class itself should only really manipulate the fields directly during
initialization.

The example in Listing 4-1 shows the Employee entity being mapped using field access. The @Id
annotation indicates not only that the id field is the persistent identifier or primary key for the entity
but also that field access should be assumed. The name and salary fields are then defaulted to being
persistent, and they get mapped to columns of the same name.

Listing 4-1. Using Field Access

@Entity
public class Employee {
 @Id private int id;
 private String name;
 private long salary;

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

71

 public int getId() { return id; }
 public void setId(int id) { this.id = id; }

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }

 public long getSalary() { return salary; }
 public void setSalary(long salary) { this.salary = salary; }
}

Property Access
When property access mode is used, the same contract as for JavaBeans applies, and there must be
getter and setter methods for the persistent properties. The type of property is determined by the
return type of the getter method and must be the same as the type of the single parameter passed into
the setter method. Both methods must be either public or protected visibility. The mapping
annotations for a property must be on the getter method.

In Listing 4-2, the Employee class has an @Id annotation on the getId() getter method so the
provider will use property access to get and set the state of the entity. The name and salary properties
will be made persistent by virtue of the getter and setter methods that exist for them, and will be
mapped to NAME and SALARY columns, respectively. Note that the salary property is backed by the wage
field, which does not share the same name. This goes unnoticed by the provider because by specifying
property access, we are telling the provider to ignore the entity fields and use only the getter and
setter methods for naming.

Listing 4-2. Using Property Access

@Entity
public class Employee {
 private int id;
 private String name;
 private long wage;

 @Id public int getId() { return id; }
 public void setId(int id) { this.id = id; }

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }

 public long getSalary() { return wage; }
 public void setSalary(long salary) { this.wage = salary; }
}

Mixed Access
It is also possible to combine field access with property access within the same entity hierarchy, or
even within the same entity. This will not be a very common occurrence, but can be useful, for
example, when an entity subclass is added to an existing hierarchy that uses a different access type.
Adding an @Access annotation with a specified access mode on the subclass entity will cause the default
access type to be overridden for that entity subclass.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

72

The @Access annotation is also useful when you need to perform a simple transformation to the
data when reading from or writing to the database. Usually you will want to access the data through
field access, but in this case you will define a getter/setter method pair to perform the transformation
and use property access for that one attribute. In general, there are three essential steps to add a
persistent field or property to be accessed differently from the default access mode for that entity.

Consider an Employee entity that has a default access mode of FIELD, but the database column stores
the area code as part of the phone number, and we only want to store the area code in the entity
phoneNum field if it is not a local number. We can add a persistent property that transforms it
accordingly on reads and writes.

The first thing that must be done is to explicitly mark the default access mode for the class by
annotating it with the @Access annotation and indicating the access type. Unless this is done, it will be
undefined if both fields and properties are annotated. We would tag our Employee entity as having
FIELD access:

 @Entity
 @Access(AccessType.FIELD)
 public class Employee { … }

The next step is to annotate the additional field or property with the @Access annotation, but this
time specifying the opposite access type from what was specified at the class level. It might seem a little
redundant, for example, to specify the access type of AccessType.PROPERTY on a persistent property
because it is obvious by looking at it that it is a property, but doing so indicates that what you are doing
is not an oversight, but a conscious exception to the default case.

 @Access(AccessType.PROPERTY) @Column(name="PHONE")
 protected String getPhoneNumberForDb() { … }

The final thing to remember is that the corresponding field or property to the one being made
persistent must be marked as transient so that the default accessing rules do not cause the same state
to be persisted twice. For example, because we are adding a persistent property to an entity for which
the default access type is through fields, the field in which the persistent property state is being stored
in the entity must be annotated with @Transient:

 @Transient private String phoneNum;

Listing 4-3 shows the complete Employee entity class annotated to use property access for only one
property.

Listing 4-3. Using Combined Access

@Entity
@Access(AccessType.FIELD)
public class Employee {

 public static final String LOCAL_AREA_CODE = "613";

 @Id private int id;
 @Transient private String phoneNum;
 …
 public int getId() { return id; }
 public void setId(int id) { this.id = id; }

 public String getPhoneNumber() { return phoneNum; }
 public void setPhoneNumber(String num) { this.phoneNum = num; }

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

73

 @Access(AccessType.PROPERTY) @Column(name="PHONE")
 protected String getPhoneNumberForDb() {
 if (phoneNum.length() == 10)
 return phoneNum;
 else
 return LOCAL_AREA_CODE + phoneNum;
 }
 protected void setPhoneNumberForDb(String num) {
 if (num.startsWith(LOCAL_AREA_CODE))
 phoneNum = num.substring(3);
 else
 phoneNum = num;
 }
 …
}

■ TIP The @Access annotation and the ability to combine access modes were introduced in JPA 2.0.

Mapping to a Table
You saw in Chapter 2 that in the simplest case, mapping an entity to a table does not need any
mapping annotations at all. Only the @Entity and @Id annotations need to be specified to create and
map an entity to a database table.

In those cases, the default table name, which is just the unqualified name of the entity class, was
perfectly suitable. If it happens that the default table name is not the name that we like, or if a suitable
table that contains the state already exists in our database with a different name, we must specify the
name of the table. We do this by annotating the entity class with the @Table annotation and including
the name of the table using the name element. Many databases have terse names for tables. Listing 4-4
shows an entity that is mapped to a table that has a name different from its class name.

Listing 4-4. Overriding the Default Table Name

@Entity
@Table(name="EMP")
public class Employee { ... }

■ TIP Default names are not specified to be either uppercase or lowercase. Most databases are not
case-sensitive, so it won’t generally matter whether a vendor uses the case of the entity name or converts it
to uppercase. In Chapter 10, we discuss how to delimit database identifiers when the database is set to be
case-sensitive.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

74

The @Table annotation provides the ability to not only name the table that the entity state is being
stored in but also to name a database schema or catalog. The schema name is commonly used to
differentiate one set of tables from another and is indicated by using the schema element. Listing 4-5
shows an Employee entity that is mapped to the EMP table in the HR schema.

Listing 4-5. Setting a Schema

@Entity
@Table(name="EMP", schema="HR")
public class Employee { ... }

When specified, the schema name will be prepended to the table name when the persistence
provider goes to the database to access the table. In this case the HR schema will be prepended to the EMP
table each time the table is accessed.

■ TIP Some vendors might allow the schema to be included in the name element of the table without having to
specify the schema element—for example, @Table(name="HR.EMP"). Support for inlining the name of the schema
with the table name is nonstandard.

Some databases support the notion of a catalog. For these databases, the catalog element of the
@Table annotation can be specified. Listing 4-6 shows a catalog being explicitly set for the EMP table.

Listing 4-6. Setting a Catalog

@Entity
@Table(name="EMP", catalog="HR")
public class Employee { ... }

Mapping Simple Types
Simple Java types are mapped as part of the immediate state of an entity in its fields or properties. The
list of persistable types is quite lengthy and includes pretty much every type that you would want to
persist. They include the following:

• Primitive Java types: byte, int, short, long, boolean, char, float, double

• Wrapper classes of primitive Java types: Byte, Integer, Short, Long, Boolean,
Character, Float, Double

• Byte and character array types: byte[], Byte[], char[], Character[]

• Large numeric types: java.math.BigInteger, java.math.BigDecimal

• Strings: java.lang.String

• Java temporal types: java.util.Date, java.util.Calendar

• JDBC temporal types: java.sql.Date, java.sql.Time, java.sql.Timestamp

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

75

• Enumerated types: Any system or user-defined enumerated type

• Serializable objects: Any system or user-defined serializable type

Sometimes the type of the database column being mapped to is not exactly the same as the Java
type. In almost all cases, the provider runtime can convert the type returned by JDBC into the correct
Java type of the attribute. If the type from the JDBC layer cannot be converted to the Java type of the
field or property, an exception will normally be thrown, although it is not guaranteed.

■ TIP When the persistent type does not match the JDBC type, some providers might choose to take proprietary
action or make a best guess to convert between the two. In other cases, the JDBC driver might be performing the
conversion on its own.

When persisting a field or property, the provider looks at the type and ensures that it is one of the
persistable types listed earlier. If it is in the list, the provider will persist it using the appropriate JDBC
type and pass it through to the JDBC driver. At that point, if the field or property is not serializable, the
result is unspecified. The provider might choose to throw an exception or just try and pass the object
through to JDBC.

An optional @Basic annotation can be placed on a field or property to explicitly mark it as being
persistent. This annotation is mostly for documentation purposes and is not required for the field or
property to be persistent. Because of the annotation, we call mappings of simple types basic mappings.

Now that we have seen how we can persist either fields or properties and how they are virtually
equivalent in terms of persistence, we will just call them attributes. An attribute is a field or property
of a class, and we will use the term attribute from now on to avoid having to continually refer to fields
or properties in specific terms.

Column Mappings
Where the persistent attributes can be thought of as being logical mappings that indicate that a given
attribute is persistent, the physical annotation that is the companion annotation to the basic mapping
is the @Column annotation. Specifying @Column on the attribute indicates specific characteristics of the
physical database column that the object model is less concerned about. In fact, the object model might
never even need to know to which column it is mapped, and the column name and physical mapping
metadata can be located in a separate XML file.

A number of annotation elements can be specified as part of @Column, but most of them apply only
to schema generation and will be covered later in the book. The only one that is of consequence is the
name element, which is just a string that specifies the name of the column that the attribute has been
mapped to. This is used when the default column name is not appropriate or does not apply to the
schema being used. We can think of the name element of the @Column annotation as a means of
overriding the default column name that would have otherwise been applied.

The example in Listing 4-7 shows how we can override the default column name for an attribute.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

76

Listing 4-7. Mapping Attributes to Columns

@Entity
public class Employee {
 @Id
 @Column(name="EMP_ID")
 private int id;
 private String name;
 @Column(name="SAL")
 private long salary;
 @Column(name="COMM")
 private String comments;
 // ...
}

To put these annotations in context, let’s look at the full table mapping represented by this entity.
The first thing that we notice is that no @Table annotation exists on the class, so the default table name
of EMPLOYEE will be applied to it.

The next thing we see is that @Column can be used with @Id mappings as well as with basic
mappings. The id field is being overridden to map to the EMP_ID column instead of the default ID
column. The name field is not annotated with @Column, so the default column name NAME would be used
to store and retrieve the employee name. The salary and comments fields, however, are annotated to
map to the SAL and COMM columns, respectively. The Employee entity is therefore mapped to the table that
is shown in Figure 4-1.

Figure 4-1. EMPLOYEE entity table

Lazy Fetching
On occasion, we know that certain portions of an entity will be seldom accessed. In these situations,
we can optimize the performance when retrieving the entity by fetching only the data that we expect to
be frequently accessed. We would like the remainder of the data to be fetched only when or if it is
required. There are many names for this kind of feature, including lazy loading, deferred loading, lazy
fetching, on-demand fetching, just-in-time reading, indirection, and others. They all mean pretty
much the same thing, which is just that some data might not be loaded when the object is initially read
from the database, but will be fetched only when it is referenced or accessed.

The fetch type of a basic mapping can be configured to be lazily or eagerly loaded by specifying the
fetch element in the corresponding @Basic annotation. The FetchType enumerated type defines the
values for this element, which can be either EAGER or LAZY. Setting the fetch type of a basic mapping to
LAZY means that the provider might defer loading the state for that attribute until it is referenced. The
default is to load all basic mappings eagerly. Listing 4-8 shows an example of overriding a basic
mapping to be lazily loaded.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

77

Listing 4-8. Lazy Field Loading

@Entity
public class Employee {
 // ...
 @Basic(fetch=FetchType.LAZY)
 @Column(name="COMM")
 private String comments;
 // ...
}

We are assuming in this example that applications will seldom access the comments in an
employee record, so we mark it as being lazily fetched. Note that in this case the @Basic annotation is
not only present for documentation purposes but also required in order to specify the fetch type for the
field. Configuring the comments field to be fetched lazily will allow an Employee instance returned from
a query to have the comments field empty. The application does not have to do anything special to get it,
however. By simply accessing the comments field, it will be transparently read and filled in by the
provider if it was not already loaded.

Before you use this feature, you should be aware of a few pertinent points about lazy attribute
fetching. First and foremost, the directive to lazily fetch an attribute is meant only to be a hint to the
persistence provider to help the application achieve better performance. The provider is not required
to respect the request because the behavior of the entity is not compromised if the provider goes ahead
and loads the attribute. The converse is not true, though, because specifying that an attribute be
eagerly fetched might be critical to being able to access the entity state once the entity is detached
from the persistence context. We will discuss detachment more in Chapter 6 and explore the
connection between lazy loading and detachment.

Second, on the surface it might appear that this is a good idea for certain attributes of an entity, but
in practice it is almost never a good idea to lazily fetch simple types. There is little to be gained in
returning only part of a database row unless you are certain that the state will not be accessed in the
entity later on. The only times when lazy loading of a basic mapping should be considered are when
there are many columns in a table (for example, dozens or hundreds) or when the columns are large
(for example, very large character strings or byte strings). It could take significant resources to load the
data, and not loading it could save quite a lot of effort, time, and resources. Unless either of these two
cases is true, in the majority of cases lazily fetching a subset of object attributes will end up being more
expensive than eagerly fetching them.

Lazy fetching is quite relevant when it comes to relationship mappings, though, so we will be
discussing this topic later in the chapter.

Large Objects
A common database term for a character or byte-based object that can be very large (up to the gigabyte
range) is large object, or LOB for short. Database columns that can store these types of large objects
require special JDBC calls to be accessed from Java. To signal to the provider that it should use the LOB
methods when passing and retrieving this data to and from the JDBC driver, an additional annotation
must be added to the basic mapping. The @Lob annotation acts as the marker annotation to fulfill this
purpose and might appear in conjunction with the @Basic annotation, or it might appear when @Basic
is absent and implicitly assumed to be on the mapping.

Because the @Lob annotation is really just qualifying the basic mapping, it can also be
accompanied by a @Column annotation when the name of the LOB column needs to be overridden from
the assumed default name.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

78

LOBs come in two flavors in the database: character large objects, called CLOBs, and binary large
objects, or BLOBs. As their names imply, a CLOB column holds a large character sequence, and a BLOB
column can store a large byte sequence. The Java types mapped to BLOB columns are byte[], Byte[],
and Serializable types, while char[], Character[], and String objects are mapped to CLOB columns.
The provider is responsible for making this distinction based on the type of the attribute being
mapped.

An example of mapping an image to a BLOB column is shown in Listing 4-9. Here, the PIC column
is assumed to be a BLOB column to store the employee picture that is in the picture field. We have
also marked this field to be loaded lazily, a common practice applied to LOBs that do not get
referenced often.

Listing 4-9. Mapping a BLOB Column

@Entity
public class Employee {
 @Id
 private int id;
 @Basic(fetch=FetchType.LAZY)
 @Lob @Column(name="PIC")
 private byte[] picture;
 // ...
}

Enumerated Types
Another of the simple types that might be treated specially is the enumerated type. The values of an
enumerated type are constants that can be handled differently depending on the application needs.

As with enumerated types in other languages, the values of an enumerated type in Java have an
implicit ordinal assignment that is determined by the order in which they were declared. This ordinal
cannot be modified at runtime and can be used to represent and store the values of the enumerated
type in the database. Interpreting the values as ordinals is the default way that providers will map
enumerated types to the database, and the provider will assume that the database column is an integer
type.

Consider the following enumerated type:

public enum EmployeeType {
 FULL_TIME_EMPLOYEE,
 PART_TIME_EMPLOYEE,
 CONTRACT_EMPLOYEE
}

The ordinals assigned to the values of this enumerated type at compile time would be 0 for
FULL_TIME_EMPLOYEE, 1 for PART_TIME_EMPLOYEE, and 2 for CONTRACT_EMPLOYEE. In Listing 4-10, we define a
persistent field of this type.

Listing 4-10. Mapping an Enumerated Type Using Ordinals

@Entity
public class Employee {
 @Id private int id;
 private EmployeeType type;
 // ...
}

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

79

We can see that mapping EmployeeType is trivially easy to the point where we don’t actually have
to do anything at all. The defaults are applied, and everything will just work. The type field will get
mapped to an integer TYPE column, and all full-time employees will have an ordinal of 0 assigned to
them. Similarly the other employees will have their types stored in the TYPE column accordingly.

If an enumerated type changes, however, then we have a problem. The persisted ordinal data in
the database will no longer apply to the correct value. For example, if the company benefits policy
changed and we started giving additional benefits to part-time employees who worked more than 20
hours per week, we would want to differentiate between the two types of part-time employees. By
adding a PART_TIME_BENEFITS_EMPLOYEE value after PART_TIME_EMPLOYEE, we would be causing a new
ordinal assignment to occur, where our new value would get assigned the ordinal of 2 and
CONTRACT_EMPLOYEE would get 3. This would have the effect of causing all the contract employees on
record to suddenly become part-time employees with benefits, clearly not the result that we were
hoping for.

We could go through the database and adjust all the Employee entities to have their correct type, but
if the employee type is used elsewhere, then we would need to make sure that they were all fixed as
well. This is not a good maintenance situation to be in.

A better solution would be to store the name of the value as a string instead of storing the ordinal.
This would isolate us from any changes in declaration and allow us to add new types without having to
worry about the existing data. We can do this by adding an @Enumerated annotation on the attribute and
specifying a value of STRING.

The @Enumerated annotation actually allows an EnumType to be specified, and the EnumType is itself
an enumerated type that defines values of ORDINAL and STRING. While it is somewhat ironic that an
enumerated type is being used to indicate how the provider should represent enumerated types, it is
wholly appropriate. Because the default value of @Enumerated is ORDINAL, specifying
@Enumerated(ORDINAL) is useful only when you want to make this mapping explicit.

In Listing 4-11, we are storing strings for the enumerated values. Now the TYPE column must be a
string-based type, and all of the full-time employees will have the string “FULL_TIME_EMPLOYEE”
stored in their corresponding TYPE column.

Listing 4-11. Mapping an Enumerated Type Using Strings

@Entity
public class Employee {
 @Id
 private int id;
 @Enumerated(EnumType.STRING)
 private EmployeeType type;
 // ...
}

Note that using strings will solve the problem of inserting additional values in the middle of the
enumerated type, but it will leave the data vulnerable to changes in the names of the values. For
instance, if we wanted to change PART_TIME_EMPLOYEE to PT_EMPLOYEE, then we would be in trouble. This
is a less likely problem, though, because changing the names of an enumerated type would cause all
the code that uses the enumerated type to have to change also. This would be a bigger bother than
reassigning values in a database column.

In general, storing the ordinal will be the best and most efficient way to store enumerated types
as long as the likelihood of additional values inserted in the middle is not high. New values could still
be added on the end of the type without any negative consequences.

One final note about enumerated types is that they are defined quite flexibly in Java. In fact, it is
even possible to have values that contain state. There is currently no support within the JPA for
mapping state contained within enumerated values. Neither is there support for the compromise

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

80

position between STRING and ORDINAL of explicitly mapping each enumerated value to a dedicated
numeric value different from its compiler-assigned ordinal value. More extensive enumerated
support is being considered for future releases.

Temporal Types
Temporal types are the set of time-based types that can be used in persistent state mappings. The list
of supported temporal types includes the three java.sql types java.sql.Date, java.sql.Time, and
java.sql.Timestamp, and it includes the two java.util types java.util.Date and java.util.Calendar.

The java.sql types are completely hassle-free. They act just like any other simple mapping type
and do not need any special consideration. The two java.util types need additional metadata,
however, to indicate which of the JDBC java.sql types to use when communicating with the JDBC
driver. This is done by annotating them with the @Temporal annotation and specifying the JDBC type as
a value of the TemporalType enumerated type. There are three enumerated values of DATE, TIME, and
TIMESTAMP to represent each of the java.sql types.

Listing 4-12 shows how java.util.Date and java.util.Calendar can be mapped to date columns in
the database.

Listing 4-12. Mapping Temporal Types

@Entity
public class Employee {
 @Id
 private int id;
 @Temporal(TemporalType.DATE)
 private Calendar dob;
 @Temporal(TemporalType.DATE)
 @Column(name="S_DATE")
 private Date startDate;
 // ...
}

Like the other varieties of basic mappings, the @Column annotation can be used to override the
default column name.

Transient State
Attributes that are part of a persistent entity but not intended to be persistent can either be modified
with the transient modifier in Java or be annotated with the @Transient annotation. If either is
specified, the provider runtime will not apply its default mapping rules to the attribute on which it was
specified.

Transient fields are used for various reasons. One might be the case earlier on in the chapter
when we mixed the access mode and didn’t want to persist the same state twice. Another might be
when you want to cache some in-memory state that you don’t want to have to recompute, rediscover,
or reinitialize. For example, in Listing 4-13 we are using a transient field to save the correct locale-
specific word for Employee so that we print it correctly wherever it is being displayed. We have used the
transient modifier instead of the @Transient annotation so that if the Employee gets serialized from one
VM to another then the translated name will get reinitialized to correspond to the locale of the new
VM. In cases where the non-persistent value should be retained across serialization, the annotation
should be used instead of the modifier.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

81

Listing 4-13. Using a Transient Field

@Entity
public class Employee {
 @Id private int id;
 private String name;
 private long salary;
 transient private String translatedName;
 // ...

 public String toString() {
 if (translatedName == null) {
 translatedName =
 ResourceBundle.getBundle("EmpResources").getString("Employee");
 }
 return translatedName + ": " + id + " " + name;
 }
}

Mapping the Primary Key
Every entity that is mapped to a relational database must have a mapping to a primary key in the table.
You have already learned the basics of how the @Id annotation indicates the identifier of the entity. In
this section, we explore simple identifiers and primary keys in a little more depth and learn how we
can let the persistence provider generate unique identifier values for us.

Overriding the Primary Key Column
The same defaulting rules apply to id mappings as to basic mappings, which is that the name of the
column is assumed to be the same as the name of the attribute. Just as with basic mappings, the @Column
annotation can be used to override the column name that the id attribute is mapped to.

Primary keys are assumed to be insertable, but not nullable or updatable. When overriding a
primary key column the nullable and updatable elements should not be overridden. Only in the very
specific circumstance of mapping the same column to multiple fields/relationships (as described in
Chapter 10) should the insertable element be set to false.

Primary Key Types
Except for its special significance in designating the mapping to the primary key column, an id

mapping is almost the same as the basic mapping. The other main difference is that id mappings are
generally restricted to the following types:

• Primitive Java types: byte, int, short, long, char

• Wrapper classes of primitive Java types: Byte, Integer, Short, Long, Character

• String: java.lang.String

• Large numeric type: java.math.BigInteger

• Temporal types: java.util.Date, java.sql.Date

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

82

Floating point types such as float and double are permitted, as well as the Float and Double
wrapper classes and java.math.BigDecimal, but they are discouraged because of the nature of rounding
error and the untrustworthiness of the equals() operator when applied to them. Using floating types
for primary keys is a risky endeavor and definitely not recommended.

Identifier Generation
Sometimes applications do not want to be bothered with trying to define and ensure uniqueness in
some aspect of their domain model and are content to let the identifier values be automatically
generated for them. This is called id generation and is specified by the @GeneratedValue annotation.

When id generation is enabled, the persistence provider will generate an identifier value for
every entity instance of that type. Once the identifier value is obtained, the provider will insert it into
the newly persisted entity; however, depending on the way it is generated, it might not actually be
present in the object until the entity has been inserted in the database. In other words, the application
cannot rely on being able to access the identifier until after either a flush has occurred or the
transaction has completed.

Applications can choose one of four different id generation strategies by specifying a strategy in
the strategy element. The value can be any one of AUTO, TABLE, SEQUENCE, or IDENTITY enumerated
values of the GenerationType enumerated type.

Table and sequence generators can be specifically defined and then reused by multiple entity
classes. These generators are named and are globally accessible to all the entities in the persistence
unit.

Automatic Id Generation

If an application does not care what kind of generation is used by the provider but wants generation to
occur, it can specify a strategy of AUTO. This means that the provider will use whatever strategy it wants
to generate identifiers. Listing 4-14 shows an example of using automatic id generation. This will
cause an identifier value to be created by the provider and inserted into the id field of each Employee
entity that gets persisted.

Listing 4-14. Using Auto Id Generation

@Entity
public class Employee {
 @Id @GeneratedValue(strategy=GenerationType.AUTO)
 private int id;
 // ...
}

There is a catch to using AUTO, though. The provider gets to pick its own strategy to store the
identifiers, but it needs to have some kind of persistent resource in order to do so. For example, if it
chooses a table-based strategy, it needs to create a table; if it chooses a sequence-based strategy, it
needs to create a sequence. The provider can’t always rely on the database connection that it obtains
from the server to have permissions to create a table in the database. This is normally a privileged
operation that is often restricted to the DBA. There will need to be some kind of creation phase or
schema generation to cause the resource to be created before the AUTO strategy is able to function.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

83

The AUTO mode is really a generation strategy for development or prototyping. It works well as a
means of getting you up and running more quickly when the database schema is being generated. In
any other situation, it would be better to use one of the other generation strategies discussed in the
later sections.

Id Generation Using a Table

The most flexible and portable way to generate identifiers is to use a database table. Not only will it
port to different databases but it also allows for storing multiple different identifier sequences for
different entities within the same table.

An id generation table should have two columns. The first column is a string type used to identify
the particular generator sequence. It is the primary key for all the generators in the table. The second
column is an integer type that stores the actual id sequence that is being generated. The value stored
in this column is the last identifier that was allocated in the sequence. Each defined generator
represents a row in the table.

The easiest way to use a table to generate identifiers is to simply specify the generation strategy
to be TABLE in the strategy element:

@Id @GeneratedValue(strategy=GenerationType.TABLE)
private int id;

Because the generation strategy is indicated but no generator has been specified, the provider
will assume a table of its own choosing. If schema generation is used, it will be created; if not, the
default table assumed by the provider must be known and must exist in the database.

A more explicit approach would be to actually specify the table that is to be used for id storage. This
is done by defining a table generator that, contrary to what its name implies, does not actually
generate tables. Rather, it is an identifier generator that uses a table to store them. We can define one
by using a @TableGenerator annotation and then refer to it by name in the @GeneratedValue
annotation:

@TableGenerator(name="Emp_Gen")
@Id @GeneratedValue(generator="Emp_Gen")
private int id;

Although we are showing the @TableGenerator annotating the identifier attribute, it can actually be
defined on any attribute or class. Regardless of where it is defined, it will be available to the entire
persistence unit. A good practice would be to define it locally on the id attribute if only one class is
using it but to define it in XML, as described in Chapter 12, if it will be used for multiple classes.

The name element globally names the generator, which then allows us to reference it in
@GeneratedValue. This is functionally equivalent to the previous example where we simply said that we
wanted to use table generation but did not specify the generator. Now we are specifying the name of
the generator but not supplying any of the generator details, leaving them to be defaulted by the
provider.

A further qualifying approach would be to specify the table details, as in the following:

@TableGenerator(name="Emp_Gen",
 table="ID_GEN",
 pkColumnName="GEN_NAME",
 valueColumnName="GEN_VAL")

We have included some additional elements after the name of the generator. Following the name
are three elements table, pkColumnName, and valueColumnName which define the actual table that stores
the identifiers for “Emp_Gen”.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

84

The table element just indicates the name of the table. The pkColumnName element is the name of the
primary key column in the table that uniquely identifies the generator, and the valueColumnName
element is the name of the column that stores the actual id sequence value being generated. In this
case, our table is named “ID_GEN”, the name of the primary key column (the column that stores the
generator names) is named “GEN_NAME”, and the column that stores the id sequence values is named
“GEN_VAL”.

The name of the generator becomes the value stored in the pkColumnName column for that row and
is used by the provider to look up the generator to obtain its last allocated value.

In our example, we named our generator “Emp_Gen” so our table would look like the one in
Figure 4-2.

Figure 4-2. Table for identifier generation

We can see that the last allocated Employee identifier is 0, which tells us that no identifiers have
been generated yet. An initialValue element representing the last allocated identifier can be
specified as part of the generator definition, but the default setting of 0 will suffice in almost every
case. This setting is used only during schema generation when the table is created. During subsequent
executions, the provider will read the contents of the value column to determine the next identifier to
give out.

To avoid updating the row for every single identifier that gets requested, an allocation size is
used. This will cause the provider to preallocate a block of identifiers and then give out identifiers
from memory as requested until the block is used up. Once this block is used up, the next request for an
identifier triggers another block of identifiers to be preallocated, and the identifier value is
incremented by the allocation size. By default, the allocation size is set to 50. This value can be
overridden to be larger or smaller through the use of the allocationSize element when defining the
generator.

■ TIP The provider might allocate identifiers within the same transaction as the entity being persisted or in a
separate transaction. It is not specified, but you should check your provider documentation to see how it can avoid
the risk of deadlock when concurrent threads are creating entities and locking resources.

Listing 4-15 shows an example of defining a second generator to be used for Address entities but
that uses the same ID_GEN table to store the identifier sequence. In this case, we are actually explicitly
dictating the value we are storing in the identifier table’s primary key column by specifying the
pkColumnvalue element. This element allows the name of the generator to be different from the column
value, although doing so is rarely needed. The example shows an Address id generator named
“Address_Gen” but then defines the value stored in the table for Address id generation as “Addr_Gen”.
The generator also sets the initial value to 10000 and the allocation size to 100.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

85

Listing 4-15. Using Table Id Generation

@TableGenerator(name="Address_Gen",
 table="ID_GEN",
 pkColumnName="GEN_NAME",
 valueColumnName="GEN_VAL",
 pkColumnValue="Addr_Gen",
 initialValue=10000,
 allocationSize=100)
@Id @GeneratedValue(generator="Address_Gen")
private int id;

If both “Emp_Gen” and “Address_Gen” generators were defined, then on application startup the
ID_GEN table would look like Figure 4-3. As the application allocates identifiers, the values stored in the
GEN_VAL column will increase.

Figure 4-3. Table for generating Address and Employee identifiers

If you haven’t used the automatic schema generation feature (discussed in Chapter 13), the table
must already exist or be created in the database through some other means and be configured to be in
this state when the application starts up for the first time. The following SQL could be applied to create
and initialize this table:

CREATE TABLE id_gen (
 gen_name VARCHAR(80),
 gen_val INTEGER,
 CONSTRAINT pk_id_gen
 PRIMARY KEY (gen_name)
);
INSERT INTO id_gen (gen_name, gen_val) VALUES ('Emp_Gen', 0);
INSERT INTO id_gen (gen_name, gen_val) VALUES ('Addr_Gen', 10000);

Id Generation Using a Database Sequence
Many databases support an internal mechanism for id generation called sequences. A database
sequence can be used to generate identifiers when the underlying database supports them.

As we saw with table generators, if it is known that a database sequence should be used for
generating identifiers, and we are not concerned that it be any particular sequence, specifying the
generator type alone should be sufficient:

@Id @GeneratedValue(strategy=GenerationType.SEQUENCE)
private int id;

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

86

In this case, no generator is named, so the provider will use a default sequence object of its own
choosing. Note that if multiple sequence generators are defined but not named, it is not specified
whether they use the same default sequence or different ones. The only difference between using one
sequence for multiple entity types and using one for each entity would be the ordering of the sequence
numbers and possible contention on the sequence. The safer route would be to define a named
sequence generator and refer to it in the @GeneratedValue annotation:

@SequenceGenerator(name="Emp_Gen", sequenceName="Emp_Seq")
@Id @GeneratedValue(generator="Emp_Gen")
private int getId;

Unless schema generation is enabled, it would require that the sequence be defined and already
exist. The SQL to create such a sequence would be as follows:

CREATE SEQUENCE Emp_Seq
 MINVALUE 1
 START WITH 1
 INCREMENT BY 50

The initial value and allocation size can also be used in sequence generators and would need to
be reflected in the SQL to create the sequence. We can see that the default allocation size is 50, just as it
is with table generators. If schema generation is not being used, and the sequence is being manually
created, the INCREMENT BY clause would need to be configured to match the setting or default value of
the allocation size.

Id Generation Using Database Identity
Some databases support a primary key identity column, sometimes referred to as an autonumber
column. Whenever a row is inserted into the table, the identity column will get a unique identifier
assigned to it. It can be used to generate the identifiers for objects, but once again is available only
when the underlying database supports it. Identity is often used when database sequences are not
supported by the database or because a legacy schema has already defined the table to use identity
columns. They are generally less efficient for object-relational identifier generation because they
cannot be allocated in blocks and because the identifier is not available until after commit time.

To indicate that IDENTITY generation should occur, the @GeneratedValue annotation should specify
a generation strategy of IDENTITY. This will indicate to the provider that it must reread the inserted
row from the table after an insert has occurred. This will allow it to obtain the newly generated
identifier from the database and put it into the in-memory entity that was just persisted:

@Id @GeneratedValue(strategy=GenerationType.IDENTITY)
private int id;

There is no generator annotation for IDENTITY because it must be defined as part of the database
schema definition for the primary key column of the entity. Because each entity primary key column
defines its own identity characteristic, IDENTITY generation cannot be shared across multiple entity
types.

Another difference, hinted at earlier, between using IDENTITY and other id generation strategies
is that the identifier will not be accessible until after the insert has occurred. Although no guarantee is
made about the accessibility of the identifier before the transaction has completed, it is at least
possible for other types of generation to eagerly allocate the identifier. But when using identity, it is
the action of inserting that causes the identifier to be generated. It would be impossible for the
identifier to be available before the entity is inserted into the database, and because insertion of

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

87

entities is most often deferred until commit time, the identifier would not be available until after the
transaction has been committed.

Relationships
If entities contained only simple persistent state, the business of object-relational mapping would be a
trivial one, indeed. Most entities need to be able to reference, or have relationships with, other
entities. This is what produces the domain model graphs that are common in business applications.

In the following sections, we will explore the different kinds of relationships that can exist and
show how to define and map them using JPA mapping metadata.

Relationship Concepts
Before we go off and start mapping relationships, we should really take a quick tour through some of
the basic relationship concepts and terminology. Having a firm grasp on these concepts will make it
easier to understand the remainder of the relationship mapping sections.

Roles
There is an old adage that says every story has three sides: yours, mine, and the truth. Relationships
are kind of the same in that there are three different perspectives. The first is the view from one side of
the relationship, the second is from the other side, and the third is from a global perspective that knows
about both sides. The “sides” are called roles. In every relationship there are two entities that are
related to one another, and each entity is said to play a role in the relationship.

Relationships are everywhere, so examples are not hard to come by. An employee has a
relationship to the department that he or she works in. The Employee entity plays the role of working in
the department, while the Department entity plays the role of having an employee working in it.

Of course, the role a given entity is playing differs according to the relationship, and an entity
might be participating in many different relationships with many different entities. We can conclude,
therefore, that any entity might be playing a number of different roles in any given model. If we think
of an Employee entity, we realize that it does, in fact, play other roles in other relationships, such as the
role of working for a manager in its relationship with another Employee entity, working on a project in
its relationship with the Project entity, and so forth.

Unlike EJB 2.1, where the roles all had to be enumerated in metadata for every relationship, JPA
does not have metadata requirements to declare the role an entity is playing. Nevertheless, roles are
still helpful as a means of understanding the nature and structure of relationships.

Directionality
In order to have relationships at all, there has to be a way to create, remove, and maintain them. The
basic way this is done is by an entity having a relationship attribute that refers to its related entity in a
way that identifies it as playing the other role of the relationship. It is often the case that the other
entity, in turn, has an attribute that points back to the original entity. When each entity points to the
other, the relationship is bidirectional. If only one entity has a pointer to the other, the relationship is
said to be unidirectional.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

88

A relationship from an Employee to the Project that they work on would be bidirectional. The
Employee should know its Project, and the Project should point to the Employee working on it. A UML
model of this relationship is shown in Figure 4-4. The arrows going in both directions indicate the
bidirectionality of the relationship.

An Employee and its Address would likely be modeled as a unidirectional relationship because the
Address is not expected to ever need to know its resident. If it did, of course, then it would need to
become a bidirectional relationship. Figure 4-5 shows this relationship. Because the relationship is
unidirectional, the arrow points from the Employee to the Address.

Figure 4-4. Employee and Project in a bidirectional relationship

Figure 4-5. Employee in a unidirectional relationship with Address

As you will see later in the chapter, although they both share the same concept of directionality, the
object and data models each see it a little differently because of the paradigm difference. In some
cases, unidirectional relationships in the object model can pose a problem in the database model.

We can use the directionality of a relationship to help describe and explain a model, but when it
comes to actually discussing it in concrete terms, it makes sense to think of every bidirectional
relationship as a pair of unidirectional relationships. Instead of having a single bidirectional
relationship of an Employee working on a Project, we would have one unidirectional “project”
relationship where the Employee points to the Project they work on and another unidirectional
“worker” relationship where the Project points to the Employee that works on it. Each of these
relationships has an entity that is the source or referring role, and the side that is the target or
referred-to role. The beauty of this is that we can use the same terms no matter which relationship we
are talking about and no matter what the roles are in the relationship. Figure 4-6 shows how the two
relationships have source and target entities, and how from each relationship perspective the source
and target entities are different.

Figure 4-6. Unidirectional relationships between Employee and Project

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

89

Cardinality
It isn’t very often that a project has only a single employee working on it. We would like to be able to
capture the aspect of how many entities exist on each side of the same relationship instance. This is
called the cardinality of the relationship. Each role in a relationship will have its own cardinality,
which indicates whether there can be only one instance of the entity or many instances.

In our Employee and Department example, we might first say that one employee works in one
department, so the cardinality of both sides would be one. But chances are that more than one
employee works in the department, so we would make the relationship have a many cardinality on the
Employee or source side, meaning that many Employee instances could each point to the same
Department. The target or Department side would keep its cardinality of one. Figure 4-7 shows this
many-to-one relationship. The “many” side is marked with an asterisk (*).

Figure 4-7. Unidirectional many-to-one relationship

In our Employee and Project example, we have a bidirectional relationship, or two relationship
directions. If an employee can work on multiple projects, and a project can have multiple employees
working on it, then we would end up with cardinalities of “many” on the sources and targets of both
directions. Figure 4-8 shows the UML diagram of this relationship.

Figure 4-8. Bidirectional many-to-many relationship

A picture is worth a thousand words, and describing these relationships in text is quite a lot harder
than showing a picture. In words, though, this picture indicates the following:

• Each employee can work on a number of projects.

• Many employees can work on the same project.

• Each project can have a number of employees working on it.

• Many projects can have the same employee working on them.

Implicit in this model is the fact that there can be sharing of Employee and Project instances across
multiple relationship instances.

Ordinality
A role can be further specified by determining whether or not it might be present at all. This is called
the ordinality and serves to show whether the target entity needs to be specified when the source
entity is created. Because the ordinality is really just a Boolean value, we also refer to it as the
optionality of the relationship.

In cardinality terms, ordinality would be indicated by the cardinality being a range instead of a
simple value, and the range would begin with 0 or 1 depending on the ordinality. It is simpler, though,
to merely state that the relationship is either optional or mandatory. If optional, the target might not

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

90

be present; if mandatory, a source entity without a reference to its associated target entity is in an
invalid state.

Mappings Overview
Now that you know enough theory and have the conceptual background to be able to discuss
relationships, we can go on to explaining and using relationship mappings.

Each one of the mappings is named for the cardinality of the source and target roles. As shown in
the previous sections, we can view a bidirectional relationship as a pair of two unidirectional
mappings. Each of these mappings is really a unidirectional relationship mapping, and if we take the
cardinalities of the source and target of the relationship and combine them together in that order,
permuting them with the two possible values of “one” and “many”, we end up with the following
names given to the mappings:

1. Many-to-one

2. One-to-one

3. One-to-many

4. Many-to-many

These mapping names are also the names of the annotations that are used to indicate the
relationship types on the attributes that are being mapped. They are the basis for the logical
relationship annotations, and they contribute to the object modeling aspects of the entity.

Like basic mappings, relationship mappings can be applied to either fields or properties of
the entity.

Single-Valued Associations
An association from an entity instance to another entity instance (where the cardinality of the target
is “one”) is called a single-valued association. The many-to-one and one-to-one relationship
mappings fall into this category because the source entity refers to at most one target entity. We will
discuss these relationships and some of their variants first.

Many-to-One Mappings
In our cardinality discussion of the Employee and Department relationship (shown in Figure 4-7), we
first thought of an employee working in a department, so we just assumed that it was a one-to-one
relationship. However, when we realized that more than one employee works in the same department,
we changed it to a many-to-one relationship mapping. It turns out that many-to-one is the most
common mapping and is the one that is normally used when creating an association to an entity.

Figure 4-9 shows a many-to-one relationship between Employee and Department. Employee is the
“many” side and the source of the relationship, and Department is the “one” side and the target. Once
again, because the arrow points in only one direction, from Employee to Department, the relationship is
unidirectional. Note that in UML, the source class has an implicit attribute of the target class type if it
can be navigated to. For example, Employee has an attribute called department that will contain a
reference to a single Department instance.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

91

Figure 4-9. Many-to-one relationship from Employee to Department

A many-to-one mapping is defined by annotating the attribute in the source entity (the attribute
that refers to the target entity) with the @ManyToOne annotation. Listing 4-16 shows how the @ManyToOne
annotation is used to map this relationship. The department field in Employee is the source attribute that
is annotated.

Listing 4-16. Many-to-One Relationship from Employee to Department

@Entity
public class Employee {
 // ...
 @ManyToOne
 private Department department;
 // ...
}

We have included only the bits of the class that are relevant to our discussion, but you can see from
the previous example that the code was rather anticlimactic. A single annotation was all that was
required to map the relationship, and it turned out to be quite dull, really. Of course, when it comes to
configuration, dull is beautiful.

The same kinds of attribute flexibility and modifier requirements that were described for basic
mappings also apply to relationship mappings. The annotation can be present on either the field or
property, depending on the strategy used for the entity.

Using Join Columns
In the database, a relationship mapping means that one table has a reference to another table. The
database term for a column that refers to a key (usually the primary key) in another table is a foreign
key column. In JPA, we call them join columns, and the @JoinColumn annotation is the primary
annotation used to configure these types of columns.

■ NOTE Later in the chapter, we will talk about join columns that are present in other tables called join tables; in
Chapter 10, we’ll cover a more advanced case of using a join table for single-valued associations.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

92

Consider the EMPLOYEE and DEPARTMENT tables shown in Figure 4-10 that correspond to the Employee
and Department entities. The EMPLOYEE table has a foreign key column named DEPT_ID that references
the DEPARTMENT table. From the perspective of the entity relationship, DEPT_ID is the join column that
associates the Employee and Department entities.

Figure 4-10. EMPLOYEE and DEPARTMENT tables

In almost every relationship, independent of source and target sides, one of the two sides will
have the join column in its table. That side is called the owning side or the owner of the relationship.
The side that does not have the join column is called the non-owning or inverse side.

Ownership is important for mapping because the physical annotations that define the mappings to
the columns in the database (for example, @JoinColumn) are always defined on the owning side of the
relationship. If they are not there, the values are defaulted from the perspective of the attribute on the
owning side.

Many-to-one mappings are always on the owning side of a relationship, so if there is a
@JoinColumn to be found in the relationship that has a many-to-one side, that is where it will be located.
To specify the name of the join column, the name element is used. For example, the
@JoinColumn(name="DEPT_ID") annotation means that the DEPT_ID column in the source entity table is
the foreign key to the target entity table, whatever the target entity of the relationship happens to be.

If no @JoinColumn annotation accompanies the many-to-one mapping, a default column name will
be assumed. The name that is used as the default is formed from a combination of both the source and
target entities. It is the name of the relationship attribute in the source entity, which is department in
our example, plus an underscore character (_), plus the name of the primary key column of the target
entity. So if the Department entity were mapped to a table that had a primary key column named ID, the
join column in the EMPLOYEE table would be assumed to be named DEPARTMENT_ID. If this is not actually
the name of the column, the @JoinColumn annotation must be defined to override the default.

Going back to Figure 4-10, the foreign key column is named DEPT_ID instead of the defaulted
DEPARTMENT_ID column name. Listing 4-17 shows the @JoinColumn annotation being used to override the
join column name to be DEPT_ID.

Listing 4-17. Many-to-One Relationship Overriding the Join Column

@Entity
public class Employee {
 @Id private int id;
 @ManyToOne
 @JoinColumn(name="DEPT_ID")
 private Department department;
 // ...
}

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

93

Annotations allow us to specify @JoinColumn on either the same line as @ManyToOne or on a
separate line, above or below it. By convention, the logical mapping should appear first, followed by
the physical mapping. This makes the object model clear because the physical part is less important to
the object model.

One-to-One Mappings
If only one employee could work in a department, we would be back to the one-to-one association
again. A more realistic example of a one-to-one association, however, would be an employee who has
a parking space. Assuming that every employee got assigned his or her own parking space, we would
create a one-to-one relationship from Employee to ParkingSpace. Figure 4-11 shows this relationship.

Figure 4-11. One-to-one relationship from Employee to ParkingSpace

We define the mapping in a similar way to the way we define a many-to-one mapping, except that
we use the @OneToOne annotation instead of a @ManyToOne annotation on the parkingSpace attribute. Just
as with a many-to-one mapping, the one-to-one mapping has a join column in the database and needs
to override the name of the column in a @JoinColumn annotation when the default name does not apply.
The default name is composed the same way as for many-to-one mappings using the name of the
source attribute and the target primary key column name.

Figure 4-12 shows the tables mapped by the Employee and ParkingSpace entities. The foreign key
column in the EMPLOYEE table is named PSPACE_ID and refers to the PARKING_SPACE table.

Figure 4-12. EMPLOYEE and PARKING_SPACE tables

As it turns out, one-to-one mappings are almost the same as many-to-one mappings except that
only one instance of the source entity can refer to the same target entity instance. In other words, the
target entity instance is not shared among the source entity instances. In the database, this equates to
having a uniqueness constraint on the source foreign key column (that is, the foreign key column in
the source entity table). If there were more than one foreign key value that was the same, it would
contravene the rule that no more than one source entity instance can refer to the same target entity
instance.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

94

Listing 4-18 shows the mapping for this relationship. The @JoinColumn annotation has been used to
override the default join column name of PARKINGSPACE_ID to be PSPACE_ID.

Listing 4-18. One-to-One Relationship from Employee to ParkingSpace

@Entity
public class Employee {
 @Id private int id;
 private String name;
 @OneToOne
 @JoinColumn(name="PSPACE_ID")
 private ParkingSpace parkingSpace;
 // ...
}

Bidirectional One-to-One Mappings
The target entity of the one-to-one often has a relationship back to the source entity; for example,
ParkingSpace has a reference back to the Employee that uses it. When this is the case, we call it a
bidirectional one-to-one relationship. As you saw previously, we actually have two separate one-to-
one mappings, one in each direction, but we call the combination of the two a bidirectional one-to-one
relationship. To make our existing one-to-one employee and parking space example bidirectional, we
need only change the ParkingSpace to point back to the Employee. Figure 4-13 shows the bidirectional
relationship.

0..1 0..1

Employee

id: int
name: String
salary: long

ParkingSpace

id: int
lot: int
location: String

Figure 4-13. One-to-one relationship between Employee and ParkingSpace

You already learned that the entity table that contains the join column determines the entity that
is the owner of the relationship. In a bidirectional one-to-one relationship, both the mappings are
one-to-one mappings, and either side can be the owner, so the join column might end up being on one
side or the other. This would normally be a data modeling decision, not a Java programming decision,
and it would likely be decided based on the most frequent direction of traversal.

Consider the ParkingSpace entity class shown in Listing 4-19. This example assumes the table
mapping shown in Figure 4-12, and it assumes that Employee is the owning side of the relationship. We
now have to add a reference from ParkingSpace back to Employee. This is achieved by adding the
@OneToOne relationship annotation on the employee field. As part of the annotation, we must add a
mappedBy element to indicate that the owning side is the Employee, not the ParkingSpace. Because
ParkingSpace is the inverse side of the relationship, it does not have to supply the join column
information.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

95

Listing 4-19. Inverse Side of a Bidirectional One-to-One Relationship

@Entity
public class ParkingSpace {
 @Id private int id;
 private int lot;
 private String location;
 @OneToOne(mappedBy="parkingSpace")
 private Employee employee;
 // ...
}

The mappedBy element in the one-to-one mapping of the employee attribute of ParkingSpace is
needed to refer to the parkingSpace attribute in the Employee class. The value of mappedBy is the name of
the attribute in the owning entity that points back to the inverse entity.

The two rules, then, for bidirectional one-to-one associations are the following:

• The @JoinColumn annotation goes on the mapping of the entity that is mapped to
the table containing the join column, or the owner of the relationship. This might
be on either side of the association.

• The mappedBy element should be specified in the @OneToOne annotation in the
entity that does not define a join column, or the inverse side of the relationship.

It would not be legal to have a bidirectional association that had mappedBy on both sides, just as it
would be incorrect to not have it on either side. The difference is that if it were absent on both sides of
the relationship, the provider would treat each side as an independent unidirectional relationship.
This would be fine except that it would assume that each side was the owner and that each had a join
column.

Bidirectional many-to-one relationships are explained later as part of the discussion of
multivalued bidirectional associations.

Collection-Valued Associations
When the source entity references one or more target entity instances, a many-valued association or
associated collection is used. Both the one-to-many and many-to-many mappings fit the criteria of
having many target entities, and although the one-to-many association is the most frequently used,
many-to-many mappings are useful as well when there is sharing in both directions.

One-to-Many Mappings
When an entity is associated with a Collection of other entities, it is most often in the form of a one-to-
many mapping. For example, a department would normally have a number of employees. Figure 4-14
shows the Employee and Department relationship that we showed earlier in the section “Many-to-One
Mappings,” only this time the relationship is bidirectional in nature.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

96

Figure 4-14. Bidirectional Employee and Department relationship

When a relationship is bidirectional, there are actually two mappings, one for each direction. A
bidirectional one-to-many relationship always implies a many-to-one mapping back to the source, so
in our Employee and Department example there is a one-to-many mapping from Department to Employee
and a many-to-one mapping from Employee back to Department. We could just as easily say that the
relationship is bidirectional many-to-one if we were looking at it from the Employee perspective. They
are equivalent because bidirectional many-to-one relationships imply a one-to-many mapping back
from the target to source, and vice versa.

When a source entity has an arbitrary number of target entities stored in its collection, there is no
scalable way to store those references in the database table that it maps to. How would it store an
arbitrary number of foreign keys in a single row? Instead, it must let the tables of the entities in the
collection have foreign keys back to the source entity table. This is why the one-to-many association is
almost always bidirectional and never the owning side.

Furthermore, if the target entity tables have foreign keys that point back to the source entity table,
the target entities should have many-to-one associations back to the source entity object. Having a
foreign key in a table for which there is no association in the corresponding entity object model is not
in keeping with the data model and not supported by the API.

Let’s look at a concrete example of a one-to-many mapping based on the Employee and Department
example shown in Figure 4-15. The tables for this relationship are exactly the same as those shown in
Figure 4-10, which showed a many-to-one relationship. The only difference between the many-to-one
example and this one is that we are now implementing the inverse side of the relationship. Because
Employee has the join column and is the owner of the relationship, the Employee class is unchanged from
Listing 4-16.

On the Department side of the relationship, we need to map the employees collection of Employee
entities as a one-to-many association using the @OneToMany annotation. Listing 4-20 shows the
Department class that uses this annotation. Note that because this is the inverse side of the relationship,
we need to include the mappedBy element, just as we did in the bidirectional one-to-one relationship
example.

Listing 4-20. One-to-Many Relationship

@Entity
public class Department {
 @Id private int id;
 private String name;
 @OneToMany(mappedBy="department")
 private Collection<Employee> employees;
 // ...
}

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

97

There are a couple of noteworthy points to mention about this class. The first is that a generic
type-parameterized Collection is being used to store the Employee entities. This provides the strict
typing that guarantees that only objects of type Employee will exist in the Collection. This is quite
useful because it not only provides compile-time checking of our code but also saves us from having to
perform cast operations when we retrieve the Employee instances from the collection.

JPA assumes the availability of generics; however, it is still perfectly acceptable to use a Collection
that is not type-parameterized. We might just as well have defined the Department class without using
generics but defining only a simple Collection type, as we would have done in releases of standard
Java previous to Java SE 5 (except for JDK 1.0 or 1.1 when java.util.Collection was not even
standardized!). If we did, we would need to specify the type of entity that will be stored in the
Collection that is needed by the persistence provider. The code is shown in Listing 4-21 and looks
almost identical, except for the targetEntity element that indicates the entity type.

Listing 4-21. Using targetEntity

@Entity
public class Department {
 @Id private int id;
 private String name;
 @OneToMany(targetEntity=Employee.class, mappedBy="department")
 private Collection employees;
 // ...
}

There are two important points to remember when defining bidirectional one-to-many (or
many-to-one) relationships:

• The many-to-one side is the owning side, so the join column is defined on that
side.

• The one-to-many mapping is the inverse side, so the mappedBy element must be
used.

Failing to specify the mappedBy element in the @OneToMany annotation will cause the provider to
treat it as a unidirectional one-to-many relationship that is defined to use a join table (described
later). This is an easy mistake to make and should be the first thing you look for if you see a missing
table error with a name that has two entity names concatenated together.

Many-to-Many Mappings
When one or more entities are associated with a Collection of other entities, and the entities have
overlapping associations with the same target entities, we must model it as a many-to-many
relationship. Each of the entities on each side of the relationship will have a collection-valued
association that contains entities of the target type. Figure 4-15 shows a many-to-many relationship
between Employee and Project. Each employee can work on multiple projects, and each project can be
worked on by multiple employees.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

98

Figure 4-15. Bidirectional many-to-many relationship

A many-to-many mapping is expressed on both the source and target entities as a @ManyToMany
annotation on the collection attributes. For example, in Listing 4-22 the Employee has a projects
attribute that has been annotated with @ManyToMany. Likewise, the Project entity has an employees
attribute that has also been annotated with @ManyToMany.

Listing 4-22. Many-to-Many Relationship Between Employee and Project

@Entity
public class Employee {
 @Id private int id;
 private String name;
 @ManyToMany
 private Collection<Project> projects;
 // ...
}

@Entity
public class Project {
 @Id private int id;
 private String name;
 @ManyToMany(mappedBy="projects")
 private Collection<Employee> employees;
 // ...
}

There are some important differences between this many-to-many relationship and the one-to-
many relationship discussed earlier. The first is a mathematical inevitability: when a many-to-many
relationship is bidirectional, both sides of the relationship are many-to-many mappings.

The second difference is that there are no join columns on either side of the relationship. You will
see in the next section that the only way to implement a many-to-many relationship is with a separate
join table. The consequence of not having any join columns in either of the entity tables is that there is
no way to determine which side is the owner of the relationship. Because every bidirectional
relationship has to have both an owning side and an inverse side, we must pick one of the two entities
to be the owner. In this example, we picked Employee to be owner of the relationship, but we could have
just as easily picked Project instead. As in every other bidirectional relationship, the inverse side must
use the mappedBy element to identify the owning attribute.

Note that no matter which side is designated as the owner, the other side should include the
mappedBy element; otherwise, the provider will think that both sides are the owner and that the
mappings are separate unidirectional relationships.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

99

Using Join Tables
Because the multiplicity of both sides of a many-to-many relationship is plural, neither of the two
entity tables can store an unlimited set of foreign key values in a single entity row. We must use a
third table to associate the two entity types. We call this association table a join table, and each many-
to-many relationship must have one. They might be used for the other relationship types as well, but
are not required and are therefore less common.

A join table consists simply of two foreign key or join columns to refer to each of the two entity
types in the relationship. A collection of entities is then mapped as multiple rows in the table, each of
which associates one entity with another. The set of rows that contains the same value in the foreign
key column to an entity represents the associations that entity instance has with entity instances that
it is related to.

Figure 4-16 shows the EMPLOYEE and PROJECT tables for the Employee and Project entities and the
EMP_PROJ join table that associates them. The EMP_PROJ table contains only foreign key columns that
make up its compound primary key. The EMP_ID column refers to the EMPLOYEE primary key, while the
PROJ_ID column refers to the PROJECT primary key.

Figure 4-16. Join table for a many-to-many relationship

In order to map the tables described in Figure 4-16, we need to add some additional metadata to
the Employee class that we have designated as the owner of the relationship. Listing 4-23 shows the
many-to-many relationship with the accompanying join table annotations.

Listing 4-23. Using a Join Table

@Entity
public class Employee {
 @Id private int id;
 private String name;
 @ManyToMany
 @JoinTable(name="EMP_PROJ",
 joinColumns=@JoinColumn(name="EMP_ID"),
 inverseJoinColumns=@JoinColumn(name="PROJ_ID"))
 private Collection<Project> projects;
 // ...
}

The @JoinTable annotation is used to configure the join table for the relationship. The two join
columns in the join table are distinguished by means of the owning and inverse sides. The join
column to the owning side is described in the joinColumns element, while the join column to the
inverse side is specified by the inverseJoinColumns element. You can see from the previous example
that the values of these elements are actually @JoinColumn annotations embedded within the
@JoinTable annotation. This provides the ability to declare all of the information about the join
columns within the table that defines them. The names are plural for times when there might be

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

100

multiple columns for each foreign key (either the owning entity or the inverse entity has a multipart
primary key). This more complicated case will be discussed in Chapter 10.

In our example, we fully specified the names of the join table and its columns because this is the
most common case. But if we were generating the database schema from the entities, we would not
actually need to specify this information. We could have relied on the default values that would be
assumed and used when the persistence provider generates the table for us. When no @JoinTable
annotation is present on the owning side, then a default join table named <Owner>_<Inverse> is
assumed, where <Owner> is the name of the owning entity, and <Inverse> is the name of the inverse
or non-owning entity. Of course, the owner is basically picked at random by the developer, so these
defaults will apply according to the way the relationship is mapped and whichever entity is designated
as the owning side.

The join columns will be defaulted according to the join column defaulting rules that were
previously described in the section “Using Join Columns.” The default name of the join column that
points to the owning entity is the name of the attribute on the inverse entity that points to the owning
entity, appended by an underscore and the name of the primary key column of the owning entity
table. So in our example, the Employee is the owning entity, and the Project has an employees attribute
that contains the collection of Employee instances. The Employee entity maps to the EMPLOYEE table and
has a primary key column of ID, so the defaulted name of the join column to the owning entity would
be EMPLOYEES_ID. The inverse join column would be likewise defaulted to be PROJECTS_ID.

It is fairly clear that the defaulted names of a join table and the join columns within it are not
likely to match up with an existing table. This is why we mentioned that the defaults are really useful
only if the database schema being mapped to was generated by the provider.

Unidirectional Collection Mappings
When an entity has a one-to-many mapping to a target entity, but the @OneToMany annotation does not
include the mappedBy element, it is assumed to be in a unidirectional relationship with the target entity.
This means that the target entity does not have a many-to-one mapping back to the source entity.
Figure 4-17 shows a unidirectional one-to-many association between Employee and Phone.

Figure 4-17. Unidirectional one-to-many relationship

Consider the data model in Figure 4-18. There is no join column to store the association back from
Phone to Employee. Therefore, we have used a join table to associate the Phone entity with the Employee
entity.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

101

Figure 4-18. Join table for a unidirectional one-to-many relationship

Similarly, when one side of a many-to-many relationship does not have a mapping to the other, it
is a unidirectional relationship. The join table must still be used; the only difference is that only one of
the two entity types actually uses the table to load its related entities or updates it to store additional
entity associations.

In both of these two unidirectional collection-valued cases, the source code is similar to the earlier
examples, but there is no collection attribute in the target entity, and the mappedBy element will not be
present in the @OneToMany annotation on the source entity. The join table must now be specified as part
of the mapping. Listing 4-24 shows Employee with a one-to-many relationship to Phone using a join
table.

Listing 4-24. Unidirectional One-to-Many Relationship

@Entity
public class Employee {
 @Id private int id;
 private String name;
 @OneToMany
 @JoinTable(name="EMP_PHONE",
 joinColumns=@JoinColumn(name="EMP_ID"),
 inverseJoinColumns=@JoinColumn(name="PHONE_ID"))
 private Collection<Phone> phones;
 // ...
}

Note that when generating the schema, default naming for the join columns is slightly different in
the unidirectional case because there is no inverse attribute. The name of the join table would default
to EMPLOYEE_PHONE and would have a join column named EMPLOYEE_ID after the name of the Employee
entity and its primary key column. The inverse join column would be named PHONES_ID, which is
the concatenation of the phones attribute in the Employee entity and the ID primary key column of the
PHONE table.

Lazy Relationships
Previous sections showed how to configure an attribute to be loaded when it got accessed and not
necessarily before. We learned that lazy loading at the attribute level is not normally very beneficial.

At the relationship level, however, lazy loading can be a big boon to enhancing performance. It
can reduce the amount of SQL that gets executed, and speed up queries and object loading
considerably.

The fetch mode can be specified on any of the four relationship mapping types. When not specified
on a single-valued relationship, the related object is guaranteed to be loaded eagerly. Collection-
valued relationships default to be lazily loaded, but because lazy loading is only a hint to the provider,
they can be loaded eagerly if the provider decides to do so.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

102

In bidirectional relationship cases, the fetch mode might be lazy on one side but eager on the
other. This kind of configuration is actually quite common because relationships are often accessed in
different ways depending on the direction from which navigation occurs.

An example of overriding the default fetch mode is if we don’t want to load the ParkingSpace for an
Employee every time we load the Employee. Listing 4-25 shows the parkingSpace attribute configured to
use lazy loading.

Listing 4-25. Changing the Fetch Mode on a Relationship

@Entity
public class Employee {
 @Id private int id;
 @OneToOne(fetch=FetchType.LAZY)
 private ParkingSpace parkingSpace;
 // ...
}

■ TIP A relationship that is specified or defaulted to be lazily loaded might or might not cause the related object
to be loaded when the getter method is used to access the object. The object might be a proxy, so it might take
actually invoking a method on it to cause it to be faulted in.

Embedded Objects
An embedded object is one that is dependent on an entity for its identity. It has no identity of its own,
but is merely part of the entity state that has been carved off and stored in a separate Java object
hanging off of the entity. In Java, embedded objects appear similar to relationships in that they are
referenced by an entity and appear in the Java sense to be the target of an association. In the database,
however, the state of the embedded object is stored with the rest of the entity state in the database row,
with no distinction between the state in the Java entity and that in its embedded object.

If the database row contains all the data for both the entity and its embedded object, why have such
an object anyway? Why not just define the fields of the entity to reference all its persistence state
instead of splitting it up into one or more subobjects that are second-class persistent objects
dependent on the entity for their existence?

This brings us back to the object-relational impedance mismatch we talked about in Chapter 1.
Because the database record contains more than one logical type, it makes sense to make that
relationship explicit in the object model of the application even though the physical representation is
different. You could almost say that the embedded object is a more natural representation of the
domain concept than a simple collection of attributes on the entity. Furthermore, once we have

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

103

identified a grouping of entity state that makes up an embedded object, we can share the same
embedded object type with other entities that also have the same internal representation.1

An example of such reuse is address information. Figure 4-19 shows an EMPLOYEE table that
contains a mixture of basic employee information as well as columns that correspond to the home
address of the employee.

Figure 4-19. EMPLOYEE table with embedded address information

The STREET, CITY, STATE, and ZIP_CODE columns combine logically to form the address. In the object
model, this is an excellent candidate to be abstracted into a separate Address embedded type instead of
listing each attribute on the entity class. The entity class would then simply have an address attribute
pointing to an embedded object of type Address. Figure 4-20 shows the relationship between Employee
and Address. The UML composition association is used to denote that the Employee wholly owns the
Address, and that an instance of Address cannot be shared by any other object other than the Employee
instance that owns it.

Figure 4-20. Employee and Address relationship

With this representation, not only is the address information neatly encapsulated within an object
but if another entity such as Company also has address information, it can also have an attribute that
points to its own embedded Address object. We will describe this scenario in the next section.

1 Even though embedded types can be shared or reused, the instances cannot. An embedded object
instance belongs to the entity that references it; and no other entity instance, of that entity type or any
other, can reference the same embedded instance.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

104

An embedded type is marked as such by adding the @Embeddable annotation to the class definition.
This annotation serves to distinguish the class from other regular Java types. Once a class has been
designated as embeddable, then its fields and properties will be persistable as part of an entity. We
might also want to define the access type of the embeddable object so it is accessed the same way
regardless of which entity it is embedded in. Listing 4-26 shows the definition of the Address embedded
type.

Listing 4-26. Embeddable Address Type

@Embeddable @Access(AccessType.FIELD)
public class Address {
 private String street;
 private String city;
 private String state;
 @Column(name="ZIP_CODE")
 private String zip;
 // ...
}

To use this class in an entity, the entity needs to have only an attribute of the embeddable type.
The attribute is optionally annotated with the @Embedded annotation to indicate that it is an embedded
mapping. Listing 4-27 shows the Employee class using an embedded Address object.

Listing 4-27. Using an Embedded Object

@Entity
public class Employee {
 @Id private int id;
 private String name;
 private long salary;
 @Embedded private Address address;
 // ...
}

When the provider persists an instance of Employee, it will access the attributes of the Address
object just as if they were present on the entity instance itself. Column mappings on the Address type
really pertain to columns on the EMPLOYEE table, even though they are listed in a different type.

The decision to use embedded objects or entities depends on whether you think you will ever need
to create relationships to them or from them. Embedded objects are not meant to be entities, and as
soon as you start to treat them as entities you should probably make them first-class entities instead of
embedded objects if the data model permits it.

■ TIP It is not portable to define embedded objects as part of inheritance hierarchies. Once they begin to extend
one another, the complexity of embedding them increases, and the value for cost ratio decreases.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

105

Before we got to our example, we mentioned that an Address class could be reused in both Employee
and Company entities. Ideally we would like the representation shown in Figure 4-21. Even though both
the Employee and Company classes comprise the Address class, this is not a problem because each
instance of Address will be used by only a single Employee or Company instance.

Figure 4-21. Address shared by two entities

Given that the column mappings of the Address embedded type apply to the columns of the
containing entity, you might be wondering how sharing could be possible if the two entity tables have
different column names for the same fields. Figure 4-22 demonstrates this problem. The COMPANY table
matches the default and mapped attributes of the Address type defined earlier, but the EMPLOYEE table in
this example has been changed to match the address requirements of a person living in Canada. We
need a way for an entity to map the embedded object according to its own entity table needs, and we
have one in the @AttributeOverride annotation.

Figure 4-22. EMPLOYEE and COMPANY tables

We use an @AttributeOverride annotation for each attribute of the embedded object that we want
to override in the entity. We annotate the embedded field or property in the entity and specify in the
name element the field or property in the embedded object that we are overriding. The column element
allows us to specify the column that the attribute is being mapped to in the entity table. We indicate this
in the form of a nested @Column annotation. If we are overriding multiple fields or properties, we can
use the plural @AttributeOverrides annotation and nest multiple @AttributeOverride annotations
inside of it.

Listing 4-28 shows an example of using Address in both Employee and Company. The Company entity
uses the Address type without change, but the Employee entity specifies two attribute overrides to
map the state and zip attributes of the Address to the PROVINCE and POSTAL_CODE columns of the EMPLOYEE
table.

CHAPTER 4 ■ OBJECT-RELATIONAL MAPPING

106

Listing 4-28. Reusing an Embedded Object in Multiple Entities

@Entity
public class Employee {
 @Id private int id;
 private String name;
 private long salary;
 @Embedded
 @AttributeOverrides({
 @AttributeOverride(name="state", column=@Column(name="PROVINCE")),
 @AttributeOverride(name="zip", column=@Column(name="POSTAL_CODE"))
 })
 private Address address;
 // ...
}
@Entity
public class Company {
 @Id private String name;
 @Embedded
 private Address address;
 // ...

}

Summary
Mapping objects to relational databases is of critical importance to persistence applications. Dealing
with the impedance mismatch requires a sophisticated suite of metadata. The JPA not only provides this
metadata but also facilitates easy and convenient development.

In this chapter, we went through the process of mapping entity state that included simple Java
types, large objects, enumerated types, and temporal types. We also used the metadata to do meet-in-
the-middle mapping to specific table names and columns.

We explained how identifiers are generated and described four different strategies of generation.
You saw the different strategies in action and learned how to differentiate them from each other.

We then reviewed some of the relationship concepts and applied them to object-relational
mapping metadata. We used join columns and join tables to map single-valued and collection-valued
associations and went over some examples. We also discussed special types of objects called
embeddables that are mapped but can exist only within persistent entities.

The next chapter will discuss more of the intricacies of mapping collection-valued relationships,
as well as how to map collections of non-entity objects. We will delve into the different Collection
types and the ways that these types can be used and mapped, and see how they affect the database
tables that are being mapped to.

C H A P T E R 5

■ ■ ■

107

Collection Mapping

Sometimes a Collection is used like a milk crate: it’s just a simple container with no apparent order or
intended organization. Other cases demand some kind of system of order and arranging so the way
objects are retrieved from the collection has meaning. Whether the collection is of the first type or the
second, collections of objects require more effort to map than single objects, although in compensation
they offer greater flexibility.

In the last chapter, we began the journey of mapping collection-valued relationships, spooning out
only the basics of mapping collections of entities to the database. This chapter goes into more detail
about how you can map more sophisticated collection types, such as persistently ordered Lists, and
Maps with keys and values that are of various object types. We will even explore how to map collections of
objects that are not entities.

Relationships and Element Collections
When we speak of mapping collections, there are actually three kinds of objects that we can store in
mapped collections. We can map collections of entities, embeddables, or basic types, and each one
requires a certain level of understanding to be correctly mapped and efficiently used.

■ TIP Support for collections of embeddable and simple types was added in JPA 2.0.

We should clarify one potential point of confusion about these types of objects when they are stored
in collections. In the previous chapter, we introduced the concept of relationships from one entity type
to another, and you learned that when the source entity has a collection containing instances of the
target entity type it is called a multivalued relationship. However, collections of embeddable and basic
types are not relationships; they are simply collections of elements that are thus called element
collections. Relationships define associations between independent entities, whereas element
collections contain objects that are dependent upon the referencing entity, and can be retrieved only
through the entity that contains them.

A practical difference between relationships and element collections is the annotation that is used
to denote them. A relationship minimally requires the relationship annotation, either @OneToMany or
@ManyToMany, whereas an element collection is indicated by the @ElementCollection annotation.
Assuming the VacationEntry embeddable class in Listing 5-1, Listing 5-2 shows an example of an

CHAPTER 5 ■ COLLECTION MAPPING

108

element collection of embeddables in the vacationBookings attribute, as well as an element collection of
basic types (String) in the nickNames attribute.

Listing 5-1. VacationEntry embeddable

@Embeddable
public class VacationEntry {
 @Temporal(TemporalType.DATE)
 private Calendar startDate;

 @Column(name="DAYS")
 private int daysTaken;
 // …
}

Listing 5-2. Element collections of embeddables and basic types

@Entity
public class Employee {
 @Id private int id;
 private String name;
 private long salary;
 // ...

 @ElementCollection(targetClass=VacationEntry.class)
 private Collection vacationBookings;

 @ElementCollection
 private Set<String> nickNames;

 // ...
}

You can see from Listing 5-2 that, like the relationship annotations, the @ElementCollection
annotation includes a targetClass element that is used to specify the class if the Collection does not
define the type of element contained in it. It also includes a fetch element to indicate whether the
collection should be lazily loaded.

A more interesting aspect of the mappings in Listing 5-2 is the absence of any additional metadata.
Recall that the elements that are being stored in the collections are not entities, so they do not have any
mapped table. Embeddables are supposed to be stored in the same table as the entity that refers to
them, but if there is a collection of embeddables, how would it be possible to store a multiplicity of like-
mapped objects in a single row? Similarly for basic types, we could not map each nickname String to a
column in the EMPLOYEE table and expect to store multiple strings in a single row. For this reason,
element collections require a separate table called a collection table. Every collection table must have a
join column that refers to the containing entity table. Additional columns in the collection table are used
to map the attributes of the embeddable element, or the basic element state if the element is of a basic
type.

We can specify a collection table using an @CollectionTable annotation, which allows us to
designate the name of the table, as well as the join column. Default values will apply if the annotation or
specific elements within that annotation are not specified. The table name will default to the name of the
referencing entity, appended with an underscore and the name of the entity attribute that contains the
element collection. The join column default is similarly the name of the referencing entity, appended
with an underscore and the name of the primary key column of the entity table. Because no collection

CHAPTER 5 ■ COLLECTION MAPPING

109

tables were specified in either of the element collections in the vacationBookings and nickNames
attributes of the Employee entity defined in Listing 5-2, they are defaulted to use collection tables named
EMPLOYEE_VACATIONBOOKINGS and EMPLOYEE_NICKNAMES, respectively. The join column in each of the
collection tables will be EMPLOYEE_ID, which is just the name of the entity combined with the mapped
Employee primary key column.

We map the fields or properties of the embeddable type to the columns in the collection table
instead of to the primary table of the entity, with the usual column name defaulting rules applying.
When the element collection contains basic types, the values are also stored in a column in the
collection table, with the default column name being the name of the entity attribute. Applying this rule,
we would see that the nicknames will be stored in the NICKNAMES column. After all the defaults are
applied, the mapped tables would look like those in Figure 5-1.

Figure 5-1. EMPLOYEE entity table and mapped collection tables

When we first discussed embeddables, you saw how the attributes were mapped within the
embeddable object but could be overridden when embedded inside other entities or embeddables. We
used the @AttributeOverride annotation to override the column names. The same annotation can also
be used to override the embedded attributes in the elements of an element collection. In Listing 5-3, the
daysTaken attribute is being remapped, using @AttributeOverride, from being stored in the DAYS column
to being stored in the DAYS_ABS column. One important difference between using @AttributeOverride on
simple embedded mappings and using it to override the columns of embeddables in an element
collection is that in the latter case the column specified by @AttributeOverride actually applies to the
collection table, not to the entity table.

Listing 5-3. Overriding collection table columns

@Entity
public class Employee {
 @Id private int id;
 private String name;
 private long salary;
 // …

 @ElementCollection(targetClass=VacationEntry.class)
 @CollectionTable(
 name="VACATION",
 joinColumns=@JoinColumn(name="EMP_ID"))

CHAPTER 5 ■ COLLECTION MAPPING

110

 @AttributeOverride(name="daysTaken",
 column=@Column(name="DAYS_ABS"))
 private Collection vacationBookings;

 @ElementCollection
 @Column(name="NICKNAME")
 private Set<String> nickNames;
 // ...
}

In order to override the name of the column in which the nicknames are stored, we can use the
@Column annotation, remembering again that the name specifies a column in the collection table, not the
entity table. Figure 5-2 shows the mapped tables, including the overridden VACATION collection table
mapped by the vacationBookings collection.

Figure 5-2. EMPLOYEE entity table and mapped collection tables with overrides

Using Different Collection Types
We can use different types of collections to store multivalued entity associations and collections of
objects. Depending upon the needs of the application, any of Collection, Set, List, and Map might be
appropriate. There are rules corresponding to the type of collection, however, that guide its usage, so
before using a given collection type, you should be familiar with the rules that govern how that type can
be mapped and manipulated.

The first step is to define the collection to be any one of the interface types mentioned previously.
You then initialize the attribute with a concrete implementation class. This can be done in a constructor
or initialization method of the entity class and allows you to put objects in the implementation
collection of a new or unpersisted entity. Once the entity becomes managed or has been persisted by
means of an EntityManager.persist() call, the interface must always be used when operating on the
collection, whether it has been read in from the database or has been detached from the entity manager.
This is because the moment the entity becomes managed, the persistence provider can replace the
initial concrete instance with an alternate instance of a Collection implementation class of its own.

CHAPTER 5 ■ COLLECTION MAPPING

111

Sets or Collections
The most common collection type used in associations is the standard Collection superinterface. This is
used when it doesn’t matter which implementation is underneath and when the common Collection
methods are all that is required to access the entities stored in it.

A Set will prevent duplicate elements from being inserted and might be a simpler and more concise
collection model, while a vanilla Collection interface is the most generic. Neither of these interfaces
requires additional annotations beyond the original mapping annotation to further specify them. They
are used the same way as if they held non-persistent objects. An example of using a Set interface for an
element collection is in Listing 5-3.

Lists
Another common collection type is the List. A List is typically used when the entities or elements are to
be retrieved in some user-defined order. Because the notion of row order in the database is not
commonly defined, the task of determining the ordering must lie with the application.

There are two ways to determine the order of the List. The first is to map it so that it is ordered
according to state that exists in each entity or element in the List. This is the easiest method and is less
intrusive on the data model. The second involves maintaining the order of the List in an additional
database column. It is more Java-friendly in that it supports the traditional ordering semantics of a Java
List, but can be far less performant, as we will see in the following sections.

Ordering By Entity or Element Attribute
The most prevalent approach to ordering entities or elements in a List is to specify an ordering rule
based on the comparison of a particular attribute of the entity or element. If the List is a relationship,
the attribute is most often the primary key of the target entity.

We indicate the attribute to order by in the @OrderBy annotation. The value of the annotation is a
string that contains one or more comma-separated fields or properties of the object being ordered. Each
of the attributes can be optionally followed by an ASC or DESC keyword to define whether the attribute
should be ordered in ascending or descending order. If the direction is not specified, the property will be
ordered in ascending order.

If the List is a relationship and references entities, specifying @OrderBy with no fields or properties,
or not specifying it at all, will cause the List to be ordered by the primary keys of the entities in the List.
In the case of an element collection of basic types then the List will be ordered by the values of the
elements. Element collections of embeddable types will result in the List being defaulted to be in some
undefined order, typically in the order returned by the database in the absence of any ORDER BY clause.

The example back in Listing 4-20 of the previous chapter had a one-to-many relationship from
Department to Employee. If we want the employees to be in a particular order, we can use a List instead of
a Collection. By adding an @OrderBy annotation on the mapping, we can indicate that we want the
employees to be ordered in ascending alphabetical order by name. Listing 5-4 shows the updated
example.

CHAPTER 5 ■ COLLECTION MAPPING

112

Listing 5-4. One-to-Many Relationship Using a List

@Entity
public class Department {
 // ...
 @OneToMany(mappedBy="department")
 @OrderBy("name ASC")
 private List<Employee> employees;
 // ...
}

We needn’t have included the ASC in the @OrderBy annotations because it would be ascending by
default, but it is good style to include it.

We could have just as easily ordered the employee List by an embedded field of Employee. For
example, if name had been embedded in an embedded Employee field called info that was of embeddable
type EmployeeInfo, we would write the annotation as @OrderBy("info.name ASC").

We might also want to have suborderings using multiple attributes. We can do that by specifying
comma-separated <attribute name ASC/DESC> pairs in the annotation. For example, if Employee had a
status, we might have ordered by status and then by name by using an @OrderBy annotation of
@OrderBy("status DESC, name ASC"). Of course, the prerequisite for using an attribute in an @OrderBy
annotation is that the attribute type should be comparable, meaning that it supports comparison
operators.

If you were to simply switch the order of two employees in the List, it might appear that they were
assuming new positions in the List. However, if in a new persistence context you read the department
back in again and accessed its employees the List would come back in the order that it was in before you
manipulated it1. This is because the List order is based upon the collation order asserted by the
@OrderBy annotation. Simply changing the order of the items in a List in memory will not cause that
order to be stored in the database at commit time. In fact, the order specified in @OrderBy will be used
only when reading the List back into memory. As a rule of thumb, the List order should always be
maintained in memory to be consistent with the @OrderBy ordering rules.

Persistently Ordered Lists
Another example that calls for the order provided by List is a print queue that keeps a list of the print
jobs that are queued up at any given time. The PrintQueue is essentially a First In First Out (FIFO) queue
that, when the printer is available, takes the next PrintJob from the front of the queue and sends it to the
printer for printing. Assuming that PrintQueue and PrintJob are entities, we would have a one-to-many
relationship from PrintQueue to PrintJob and a many-to-one relationship back.

Given that we know how to map the relationships, and you just learned above how to map ordered
lists using @OrderBy, it would seem pretty straightforward to map this relationship using a List. The
PrintJob entity, in Listing 5-5, illustrates its many-to-one side of the bidirectional mapping.

1 Assuming that the collection was not returned from a second level shared cache.

CHAPTER 5 ■ COLLECTION MAPPING

113

Listing 5-5. PrintJob Entity

@Entity
public class PrintJob {
 @Id private int id;
 // ...
 @ManyToOne
 private PrintQueue queue;
 // ...
}

The problem arises when we discover that the PrintJob entity does not have an attribute that can be
used in @OrderBy. Because the order of the job does not really affect the actual PrintJob that gets
serviced, the decision was made to not store the order of a given job within the PrintJob entity. The
position of a particular PrintJob in the queue is determined simply by its position in the job List.

The PrintJob entities in the Java List cannot retain their order unless a designated database column
has been created to store it. We call this column the order column, and it provides a stronger persistent
ordering than @OrderBy. It is in the order column that the object’s order is stored and updated when it is
moved from one position to another within the same List. It is transparent to the user in that the user
does not need to manipulate it, or even necessarily be aware of it, in order to use the List. It does need
to be known and considered as part of the mapping process, though, and is declared by means of an
@OrderColumn annotation.

■ TIP The @OrderColumn annotation and the ability to do persistent ordering were introduced in JPA 2.0.

Using an @OrderColumn annotation precludes the use of @OrderBy, and vice versa. Listing 5-6 shows
how @OrderColumn can be used with our one-to-many relationship mapping in PrintQueue. The table
mappings are shown in Figure 5-3.

Listing 5-6. One-To-Many List from PrintQueue to PrintJob

@Entity
public class PrintQueue {
 @Id private String name;
 // ...
 @OneToMany(mappedBy="queue")
 @OrderColumn(name="PRINT_ORDER")
 private List<PrintJob> jobs;
 // ...
}

Figure 5-3. PRINTQUEUE table and target PRINTJOB table with order column

CHAPTER 5 ■ COLLECTION MAPPING

114

You probably noticed something different about the declaration of the order column on the one-to-
many side of the relationship. In the last chapter, we explained the practice of mapping the physical
columns on the owning side because that is the side that owns the table in which they apply. The order
column can be an exception to this rule when the relationship is bidirectional because the column is
always defined beside the List that it is ordering, even though it is in the table mapped by the owning
many-to-one entity side. So in Listing 5-6, the @OrderColumn annotation is on the PrintQueue side of the
relationship, but the column named PRINT_ORDER is referring to whatever table the PrintJob entity is
mapped to.

Although the @OrderColumn annotation must be present to enable the ordered position of the entity
to be stored in a database column, the elements of the annotation are optional. The name just defaults to
the name of the entity attribute, appended by the “_ORDER” string. So, if the name had not been
overridden in Listing 5-6 to be PRINT_ORDER, it would have defaulted to be JOBS_ORDER.

The table that the order column is stored in depends on the mapping that @OrderColumn is being
applied to. It is usually in the table that stores the entity or element being stored. As we mentioned, in
our bidirectional one-to-many relationship in Listing 5-6, the entity being stored is PrintJob, and the
order column would be stored in the PRINTJOB table. If the mapping were an element collection, the
order column would be stored in the collection table. In many-to-many relationships, the order column
is in the join table.

Some additional comments about using @OrderColumn are due because it is a feature that could
easily be misused. We said that the order column is transparent to the user of the list, but it turns out
that this transparency can have unexpected repercussions for a naïve user.

Consider a busy company with lots of people and lots of print jobs being submitted and printed.
When a job makes it to the first position, it gets removed from the queue and sent to the printer.
Meanwhile, another job inherits the “on deck” position. Every time a job gets serviced, every other
PrintJob remaining on the queue moves up by one position and is one step closer to being printed. In
other words, with each printed job, the order of each and every other PrintJob changes and must be
resaved to the database. In our case, the order column is being stored in the table in which PrintJob
entities are stored: the PRINTJOB table.

Needless to say, we are looking at a potentially large cost, further compounded as the queue gets
longer. For every job added to a queue of size n, there will be n additional SQL updates sent to the
database to change the order of that job before it even makes it to the printer. That could ring alarm bells
for a database administrator, especially a vigilant one with a penchant for perusing the SQL audits.

As a final comment on List usage, there is special support in JPA queries that allows ordered subsets
or individual items of a List to be accessed and returned. We will see how this can be achieved in
Chapter 8.

Maps
The Map is a very common collection that is used in virtually every application and offers the ability to
associate a key object with an arbitrary value object. The various underlying implementations are
expected to use fast hashing techniques to optimize direct access to the keys.

There is a great deal of flexibility with Map types in JPA, given that the keys and values can be any
combination of entities, basic types, and embeddables. Permuting the three types in the two key and
value positions renders nine distinct Map types. We will give detailed explanations of the most common
combinations in the following sections.

■ TIP In JPA 1.0, Maps could be used only in relationships (values could only be entities), and the keys had to be
an attribute of the entity value.

CHAPTER 5 ■ COLLECTION MAPPING

115

Keys and Values
Although basic types, embeddable types, or entity types can be Map keys, remember that if they are
playing the role of key, they must follow the basic rules for keys. They must be comparable and respond
appropriately to the hashCode() method, and equals() method when necessary2. They should also be
unique, at least within the domain of a particular collection instance, so that values are not lost or
overwritten in memory. Keys should not be changed, or more specifically, the parts of the key object that
are used in the hashCode() and equals() methods must not be changed while the object is acting as a key
in a Map.

When keys are basic or embeddable types, they are stored directly in the table being referred to.
Depending upon the type of mapping, it can be either the target entity table, join table, or collection
table. However, when keys are entities, only the foreign key is stored in the table because entities are
stored in their own table, and their identity in the database must be preserved.

It is always the type of the value object in the Map that determines what kind of mapping must be
used. If the values are entities, the Map must be mapped as a one-to-many or many-to-many
relationship, whereas if the values of the Map are either embeddable or basic types, the Map is mapped as
an element collection.

Even though the Map keys do not affect the type of mapping, they still require annotations, in
addition to the relationship or element collection annotations, to indicate the column(s) in which they
are stored. These annotations will be covered in the different use cases in the following sections.

Keying By Basic Type
We mentioned in the previous sections that element collections of basic types are stored in collection
tables, and basic keys are stored in the tables referred to by the mapping. If the mapping is an element
collection keyed by a basic type, the keys will be stored in the same collection table in which the Map
values are stored. Likewise, if it is a one-to-many relationship, and the foreign key is in the target entity
table, the keys will be in the target entity table. If the relationship mapping uses a join table, the keys will
be in the join table.

To show the collection table case, let’s look at an element collection example that maps the phone
numbers of an Employee. If we use a Map, we can key on the phone number type and store the phone
number as the value. So the key of each Map entry will be any of “Home”, “Work” or “Mobile”, as a
String, and the value will be the associated phone number String. Listing 5-7 shows the element
collection mapping code.

2 See the javadoc for java.util.Map for more details.

CHAPTER 5 ■ COLLECTION MAPPING

116

Listing 5-7. Element Collection of Strings with String Keys

@Entity
public class Employee {
 @Id private int id;
 private String name;
 private long salary;

 @ElementCollection
 @CollectionTable(name="EMP_PHONE")
 @MapKeyColumn(name="PHONE_TYPE")
 @Column(name="PHONE_NUM")
 private Map<String, String> phoneNumbers;
 // ...
}

The @ElementCollection and @CollectionTable annotations are nothing new, and Listing 5-3
showed that we can use the @Column annotation to override the name of the column that stores the
values in the Collection. Here we are doing the same thing, except that we are overriding the column in
which the Map values would be stored instead of the items in a generic Collection.

The only new annotation is @MapKeyColumn, which is used to indicate the column in the collection
table that stores the basic key. When the annotation is not specified, the key is stored in a column named
after the mapped collection attribute, appended with the “_KEY” suffix. In Listing 5-7, if we had not
specified @MapKeyColumn, the defaulting rule would have caused the key to be mapped to the
PHONENUMBERS_KEY column in the EMP_PHONE collection table.

Phone number values can be duplicated in the collection table (for example, multiple employees
living at the same home and having the same phone number), so the PHONE_NUM column obviously won’t
be unique in the table. The types of phone numbers have to be unique only within a given Map or
Employee instance, so the PHONE_TYPE column won’t be the primary key, either. In fact, because basic
types do not have identity, and in some cases the same key-value entries can be duplicated in multiple
source entities, the key-value columns can’t be the primary key columns on their own. Unique tuples in
the collection table must be the combination of the key column and the foreign key column that
references the source entity instance. In Figure 5-4, we see the resulting collection table, along with the
source EMPLOYEE entity table that it references. You can see the primary key constraint on the
EMPLOYEE_ID and PHONE_TYPE columns.

Figure 5-4. EMPLOYEE entity table and EMP_PHONE collection table

We should really improve our model, though, because using a String key to store something that is
constrained to be one of only three values (“Home”, “Mobile”, or “Work”), is not great style. An
appropriate improvement would be to use an enumerated type instead of String. We can define our
enumerated type as follows:

public enum PhoneType { Home, Mobile, Work }

CHAPTER 5 ■ COLLECTION MAPPING

117

Now we have the valid options as enumerated constants, and there is no chance of mistyping or
having invalid phone types. However, there is one further enhancement to consider. If we want to
protect ourselves from future changes to the enumerated type values, either by reordering existing
values or inserting additional ones, we should override the way the value is stored in the database.
Instead of relying on the default approach of storing the ordinal value of the enumerated element, we
want to store the String value, so we get the best of both worlds. The column will contain values that
correspond to phone type settings in a human readable way, and the Java Map will have a strongly
typed key.

The usual way of overriding the storage strategy for an enumerated type is to use the @Enumerated
annotation. However, if we were to put @Enumerated on our Map attribute, it would apply to the values of
the element collection, not the keys. That is why there is a special @MapKeyEnumerated annotation (see
Listing 5-8). There is also an equivalent @MapKeyTemporal to specify the temporal type when the key is of
type java.util.Date. Both @MapKeyEnumerated and @MapKeyTemporal are applicable to keys that are of a
basic type, regardless of whether it is an element collection or a relationship.

Listing 5-8. Element Collection of Strings with Enumerated Type Keys

@Entity
public class Employee {
 @Id private int id;
 private String name;
 private long salary;

 @ElementCollection
 @CollectionTable(name="EMP_PHONE")
 @MapKeyEnumerated(EnumType.STRING)
 @MapKeyColumn(name="PHONE_TYPE")
 @Column(name="PHONE_NUM")
 private Map<PhoneType, String> phoneNumbers;
 // ...
}

Listing 5-4 had a one-to-many relationship that used a List to hold all the employees in a given
department. Suppose that we change it to use a Map and keep track of which employee is working in any
given office or cubicle. By keying on the cubicle number (which can contain letters as well, so we will
represent them as a String), we can easily find which Employee works in that cubicle. Because this is a
bidirectional one-to-many relationship, it will be mapped as a foreign key to DEPARTMENT in the EMPLOYEE
table. The cubicle number keys will be stored in an additional column in the EMPLOYEE table, each one
stored in the row corresponding to the Employee associated with that cubicle. Listing 5-9 shows the one-
to-many mapping.

Listing 5-9. One-to-Many Relationship Using a Map with String Key

@Entity
public class Department {
 @Id private int id;

 @OneToMany(mappedBy="department")
 @MapKeyColumn(name="CUB_ID")
 private Map<String, Employee> employeesByCubicle;
 // ...
}

CHAPTER 5 ■ COLLECTION MAPPING

118

What if an employee could split his time between multiple departments? We would have to change
our model to a many-to-many relationship and use a join table. The @MapKeyColumn will be stored in the
join table that references the two entities. The relationship is mapped in Listing 5-10.

Listing 5-10. Many-to-Many Relationship Using a Map with String Keys

@Entity
public class Department {
 @Id private int id;
 private String name;

 @ManyToMany
 @JoinTable(name="DEPT_EMP",
 joinColumns=@JoinColumn(name="DEPT_ID"),
 inverseJoinColumns=@JoinColumn(name="EMP_ID"))
 @MapKeyColumn(name="CUB_ID")
 private Map<String, Employee> employeesByCubicle;
 // ...
}

If we did not override the key column with @MapKeyColumn, it would have been defaulted as the name
of the collection attribute suffixed by “_KEY”. This would have produced a dreadful-looking
EMPLOYEESBYCUBICLE_KEY column in the join table, which is not only ugly to read, but does not actually
indicate what the key really is. Figure 5-5 shows the resulting tables.

Figure 5-5. EMPLOYEE and DEPARTMENT entity tables and DEPT_EMP join table

■ NOTE You can use a Map on only one side of a many-to-many relationship; it makes no difference which side.

Keying by Entity Attribute
When a one-to-many or many-to-many relationship collection of entities is represented as a Map, it is
most often keyed by some attribute of the target entity type. Keying by entity attribute is actually a
special case of keying by basic type where the mapping is a relationship, and the basic type of the key is
the type of the attribute (that we are keying on) in the target entity. When this common case
occurs, the @MapKey annotation can be used to designate the attribute of the target entity that is being
keyed on.

If each department keeps track of the employees in it, as in our previous example in Listing 5-4, we
could use a Map and key on the Employee id for quick Employee lookup. The updated Department mapping
is shown in Listing 5-11.

CHAPTER 5 ■ COLLECTION MAPPING

119

Listing 5-11. One-to-Many Relationship Keyed by Entity Attribute

@Entity
public class Department {
 // ...
 @OneToMany(mappedBy="department")
 @MapKey(name="id")
 private Map<Integer, Employee> employees;
 // ...
}

The id attribute of Employee is also the identifier or primary key attribute, and it turns out that
keying on the identifier is the most common case of all. It is so common that when no name is specified
the entities will by default be keyed by their identifier attribute3. When the identifier attribute is
defaulted and not explicitly listed, you do need to know what the type of the identifier is so you can
correctly specify the first type parameter of the Map when using a parameterized Map.

One of the reasons why the identifier attribute is used for the key is because it fits the key criteria
nicely. It responds to the necessary comparison methods, hashCode() and equals(), and it is guaranteed
to be unique.

If another attribute is used as the key, it should also be unique, although it is not absolutely required
that it be unique across the entire domain of that entity type. It really needs to be unique only within the
scope of the relationship. For example, we could key on the employee name as long as we made sure
that the name would be unique within any department.

In the previous section, we stated that a basic key is stored in the table referred to by the mapping.
The special case of keying by entity attribute is an exception to that rule in that no additional column is
needed to store the key. It is already stored as part of the entity. That is why the @MapKeyColumn
annotation is never used when keying on an entity attribute. A provider can easily build the contents of a
one-to-many relationship Map by loading the entities that are associated with the source entity and
extracting the attribute being keyed on from each of the loaded entities. No additional columns need to
be read or extra joins performed.

Keying by Embeddable Type
Using embeddables as keys is not something that you should encounter very often. In fact, if you are
considering doing it at all, you should probably think twice before proceeding. Just because it’s possible
does not mean that it is a good idea.

The problem with embeddables is that they are not full-fledged entities. They are not queryable in
the sense that they can’t be discovered or returned except as an aggregate part of their enclosing entities.
Although this might not seem like a very severe limitation at the outset, it often becomes a problem later
on in the development cycle.

Identity of embeddables is not defined in general, but when they are used as keys in a Map there
must be some notion of uniqueness defined, applicable at least within the given Map. This means that the
uniqueness constraint, at least logically, is on the combination of the embedded attributes and the
foreign key column to the source entity.

3 The @MapKey annotation is still required, however; otherwise, the @MapKeyColumn defaults would apply.

CHAPTER 5 ■ COLLECTION MAPPING

120

Embeddable key types are similar to basic key types in that they are also stored in the table referred
to by the mapping, but with embeddable types there are multiple attributes to store, not just one value.
This results in multiple columns contributing to the primary key.

Sharing Embeddable Key Mappings with Values

The code example in Listing 5-11 showed a bidirectional one-to-many relationship from Department to
Employee that was keyed by the id attribute of Employee. What if we had wanted to key on multiple
attributes of Employee? For example, it might be desirable to look up employees by name in the Map,
assuming that the name is unique within a given department. If the name were split into two attributes,
one for the first name and one for the last name, as shown in Listing 5-12, then we would need a separate
object to combine them and act as the key object in the Map. An embeddable type, such as EmployeeName
in Listing 5-13, can be used for this purpose. Having an EmployeeName embeddable type also provides a
useful class for passing the encapsulated full name around the system.

Listing 5-12. Employee Entity

@Entity
public class Employee {
 @Id private int id;
 @Column(name="F_NAME")
 private String firstName;
 @Column(name="L_NAME")
 private String lastName;
 private long salary;
 // ...
}

Listing 5-13. EmployeeName Embeddable with Read-Only Mappings

@Embeddable
public class EmployeeName {
 @Column(name="F_NAME", insertable=false, updatable=false)
 private String first_Name;
 @Column(name="L_NAME", insertable=false, updatable=false)
 private String last_Name;
 // ...
}

Because the bidirectional one-to-many relationship from Department to Employee is stored in the
target entity table, the embeddable object key must also be stored there. However, it would be
redundant for the two name components to be stored twice in each row: once for the firstName and
lastName attributes of Employee and once for the first_Name and last_Name attributes of the EmployeeName
key object. With a bit of clever mapping we can just reuse the two columns mapped to the Employee
attributes and map them as read-only in the key (setting insertable and updatable to false). That is why
in Listing 5-13 we map the first_Name and last_Name attributes to the same columns as the firstName
and lastName attributes of Employee. From the Department perspective, the relationship in Listing 5-14
does not change much from Listing 5-11, except that the Map is keyed by EmployeeName instead of by
Integer, and @MapKey is not used because the key is an embeddable and not an attribute of Employee.

CHAPTER 5 ■ COLLECTION MAPPING

121

Listing 5-14. One-to-Many Relationship Keyed by Embeddable

@Entity
public class Department {
 // ...
 @OneToMany(mappedBy="department")
 private Map<EmployeeName, Employee> employees;
 // ...
}

Overriding Embeddable Attributes

Another modelling option is to combine the two name columns within the Employee entity and define an
embedded attribute of type EmployeeName, as shown in Listing 5-15.

Listing 5-15. Employee Entity with Embedded Attribute

@Entity
public class Employee {
 @Id private int id;

 @Embedded
 private EmployeeName name;
 private long salary;
 // ...
}

This time we are not sharing columns, so we must ensure that the mappings in EmployeeName are no
longer read-only, or else the name will never get written to the database. The updated EmployeeName
embeddable is in Listing 5-16.

Listing 5-16. EmployeeName Embeddable

@Embeddable
public class EmployeeName {
 @Column(name="F_NAME")
 private String first_Name;
 @Column(name="L_NAME")
 private String last_Name;
 // ...
}

For the purpose of illustration, let us go back to the many-to-many model that we described in
Listing 5-10, except that we will key on the EmployeeName embeddable instead of the cubicle id. Even
though the EmployeeName attributes are stored in the EMPLOYEE table for every Employee, the keys of the Map
must still be stored in the DEPT_EMP join table. This is a result of the key being an embeddable type.
Keying by either a single attribute of the entity or by a basic type would alleviate this denormalized data
scenario.

CHAPTER 5 ■ COLLECTION MAPPING

122

By default, the key attributes would be mapped to the column names from the mappings defined
within EmployeeName, but if the join table already exists and the columns in the join table do not have
those names, the names must be overridden. Listing 5-17 shows how the embeddable attribute
mappings of the Map key can be overridden from what they are defined to be in the embeddable class.

Listing 5-17. Many-to-Many Map Keyed by Embeddable Type with Overriding

@Entity
public class Department {
 @Id private int id;

 @ManyToMany
 @JoinTable(name="DEPT_EMP",
 joinColumns=@JoinColumn(name="DEPT_ID"),
 inverseJoinColumns=@JoinColumn(name="EMP_ID"))
 @AttributeOverrides({
 @AttributeOverride(
 name="first_Name",
 column=@Column(name="EMP_FNAME")),
 @AttributeOverride(
 name="last_Name",
 column=@Column(name="EMP_LNAME"))
 })
 private Map<EmployeeName, Employee> employees;
 // ...
}

The tables for the mapping are shown in Figure 5-6, with the embeddable attributes mapped to
the join table for the key state and in the EMPLOYEE table for the Employee state. If the mapping had
been an element collection, the embeddable attributes would be stored in a collection table instead of
a join table.

Figure 5-6. DEPARTMENT and EMPLOYEE entity tables and DEPT_EMP join table

As you can see from Listing 5-17, the mapping defaults for the key are being overridden through the
use of @AttributeOverride. If instead of a many-to-many relationship we had an @ElementCollection of
some embeddable type in a Map, we would have to differentiate between the key and the value. We would
do this by prefixing the attribute name with “key.” or “value.”, depending upon which of the
embeddable types we were overriding. An element collection of embedded EmployeeInfo types, with the
same key overrides as those in the relationship in Listing 5-17, would use the key prefixes:

 @ElementCollection
 @AttributeOverrides({
 @AttributeOverride(name="key.first_Name",
 column=@Column(name="EMP_FNAME")),

CHAPTER 5 ■ COLLECTION MAPPING

123

 @AttributeOverride(name="key.last_Name",
 column=@Column(name="EMP_LNAME"))
 })
 private Map<EmployeeName, EmployeeInfo> empInfos;

Keying by Entity
You might be reluctant to use entities as keys because intuition might lead you to think of this as a more
resource-intensive option, with higher load and management costs. While that might be true in some
cases, it is not necessarily always so. Quite often the entity you are considering keying on will already be
in memory, or needed anyway, and keying on it either just accesses a cached instance or causes the
instance to be loaded for later use.

One advantage of keying by entity type is that entity instances are globally unique (within the
persistence unit) so there will not be any identity problems to deal with across different relationships or
collections. A corollary of the basic identity property of entities is that only a foreign key needs to be
stored in the mapped table, leading to a more normalized design and data storage schema.

As with the other types of Map keys, the key (in this case, a foreign key to the entity being keyed on)
will be stored in the table referred to by the mapping.

Recall that the term used by JPA to represent a foreign key column is join column, and we use join
columns in many-to-one and one-to-one relationships, as well as in join tables of collection-valued
relationships. We now have a similar situation, except that instead of referring to the target of a
relationship, our join column is referring to the entity key in a Map entry. To differentiate join columns
that point to map keys from the ones used in relationships, a separate @MapKeyJoinColumn annotation
was created. This annotation is used to override the join column defaults for an entity key. When it is not
specified, the join column will have the same default column name as basic keys (the name of the
relationship or element collection attribute, appended with the string “_KEY”).

To illustrate the case of an entity being used as a key, we can add the notion of the seniority an
Employee has within a given Department. We want to have a loose association between an Employee and
his seniority; and the seniority has to be local to a Department. By defining an element collection Map in
Department, with the seniority as the values and Employee entities as the keys, the seniority any Employee
has in a given Department can be looked up by using the Employee instance as a key. The seniority is
stored in a collection table, and if an Employee changes departments none of the other Employee objects
needs to change. The indirection of the collection table; and the fact that the connections between the
Department, the Employee and the seniority value are all maintained by virtue of the Map, provide just the
right level of coupling. Only the entries in the collection table would need to be updated.

Listing 5-18 shows the element collection mapping, with the join column being overridden using
the @MapKeyJoinColumn annotation and the Map value column being overridden using the standard
@Column annotation.

Listing 5-18. Element Collection Map Keyed by EntityType

@Entity
public class Department {
 @Id private int id;
 private String name;
 // ...
 @ElementCollection
 @CollectionTable(name="EMP_SENIORITY")
 @MapKeyJoinColumn(name="EMP_ID")
 @Column(name="SENIORITY")
 private Map<Employee, Integer> seniorities;
 // ...

CHAPTER 5 ■ COLLECTION MAPPING

124

}

Figure 5-7 shows that the collection table is nothing more than the values of the Map (the seniority)
with a foreign key to the Department source entity table and another foreign key to the Employee entity
key table.

Figure 5-7. DEPARTMENT and EMPLOYEE entity tables with EMP_SENIORITY collection table

Untyped Maps
If we did not want to (or were not able to) use the typed parameter version of Map<KeyType, ValueType>,
we would define it using the non-parameterized style of Map shown in Listing 5-19.

Listing 5-19. One-to-Many Relationship Using a Non-parameterized Map

@Entity
public class Department {
 // ...
 @OneToMany(targetEntity=Employee.class, mappedBy="department")
 @MapKey
 private Map employees;
 // ...
}

The targetEntity element only ever indicates the type of the Map value. Of course, if the Map holds an
element collection and not a relationship, the targetClass element of @ElementCollection is used to
indicate the value type of the Map.

In Listing 5-19, the type of the Map key can be easily deduced because the mapping is an entity
relationship. The @MapKey default is to use the identifier attribute, id, of type int or Integer. If @MapKey
had been specified and dictated that the key be an attribute that was not an identifier attribute, the type
would still have been deducible because the entity attributes are all mapped with known types.
However, if the key isn’t an attribute of the target entity, @MapKeyClass might be used instead of @MapKey.
It indicates the type of the key class when the Map is not defined in a typed way using generics. It is also
used when the Map references an element collection instead of a relationship because basic or
embeddable types do not have identifier attributes, and basic types do not even have attributes.

To illustrate how @MapKeyClass is used, let’s take the element collection in Listing 5-7 and
assume that it does not define the type parameters on the Map. The typing is filled in through the use
of the @MapKeyClass annotation and the targetClass element in @ElementCollection, as shown in Listing
5-20.

Listing 5-20. Untyped Element Collection of Strings with String Keys

@Entity
public class Employee {
 @Id private int id;

CHAPTER 5 ■ COLLECTION MAPPING

125

 private String name;
 private long salary;

 @ElementCollection(targetClass=String.class)
 @CollectionTable(name="EMP_PHONE")
 @MapKeyColumn(name="PHONE_TYPE")
 @MapKeyClass(String.class)
 @Column(name="PHONE_NUM")
 private Map phoneNumbers;
 // ...
}

The @MapKeyClass annotation should be used whenever the key class cannot be deduced from the
attribute definition or the other mapping metadata.

Rules for Maps
Learning about the various Map variants can get kind of confusing given that we can choose any one of
three different kinds of key types and three different kinds of value types. Below are some of the basic
rules of using a Map.

• Use the @MapKeyClass and targetEntity/targetClass elements of the relationship
and element collection mappings to specify the classes when an untyped Map is
used.

• Use @MapKey with one-to-many or many-to-many relationship Map that is keyed on
an attribute of the target entity.

• Use @MapKeyJoinColumn to override the join column of the entity key.

• Use @Column to override the column storing the values of an element collection of
basic types.

• Use @MapKeyColumn to override the column storing the keys when keyed by a basic
type.

• Use @MapKeyTemporal and @MapKeyEnumerated if you need to further qualify a basic
key that is a temporal or enumerated type.

• Use @AttributeOverride with a “key.” or “value.” prefix to override the column of
an embeddable attribute type that is a Map key or a value, respectively.

Table 5-1 summarizes some of the different aspects of using a Map.

CHAPTER 5 ■ COLLECTION MAPPING

126

Table 5-1. Summary of Mapping a Map

Map Mapping Key Annotation Value Annotation

Map<Basic,Basic> @ElementCollection @MapKeyColumn,

@MayKeyEnumerated,

@MapKeyTemporal

@Column

Map<Basic,Embeddable> @ElementCollection @MapKeyColumn,

@MayKeyEnumerated,

@MapKeyTemporal

Mapped by
embeddable,

@AttributeOverride,

@AssociationOverride

Map<Basic,Entity> @OneToMany, @ManyToMany @MapKey,

@MapKeyColumn,

@MayKeyEnumerated,

@MapKeyTemporal

Mapped by entity

Map<Embeddable,Basic> @ElementCollection Mapped by embeddable,

@AttributeOverride

@Column

Map<Embeddable,Embeddable> @ElementCollection Mapped by embeddable,

@AttributeOverride

Mapped by
embeddable,

@AttributeOverride,

@AssociationOverride

Map<Embeddable,Entity> @OneToMany, @ManyToMany Mapped by embeddable Mapped by entity

Map<Entity,Basic> @ElementCollection @MapKeyJoinColumn @Column

Map<Entity,Embeddable> @ElementCollection @MapKeyJoinColumn Mapped by
embeddable,

@AttributeOverride,

@AssociationOverride

Map<Entity,Entity> @OneToMany, @ManyToMany @MapKeyJoinColumn Mapped by entity

Duplicates
When we were discussing the Set interface we mentioned that it was ideal for preventing duplicates.
What we meant was that the Set datatype in Java does not allow them. We didn’t really say anything

CHAPTER 5 ■ COLLECTION MAPPING

127

about duplicates in the database. In fact, the JPA specification does not say anything about whether
duplicates are allowed in collections, either in the database or in memory, and in most cases they will
not be supported. To get a feeling for why supporting duplicates is difficult, we need to go to the data
model and uncover some of the gory details. You might prefer to skip this section if duplicates are not
interesting to you. Read on, however, if you are in a situation where an external application can come in
behind your back and insert a duplicate record, for example.

The Collection interface is very general and allows for a multitude of Collection subinterfaces and
implementation classes. So it is very soft in its specification of whether duplicates are allowed, instead
allowing the subinterface or implementation class to decide what behavior best fits that Collection type.

For a Collection that does happen to allow duplicates, collection-valued relationship mappings use
either a foreign key in the target entity table or a join table. The first case will always be a one-to-many
mapping, and in that case there will be only one row for the target entity, and only one column in that
row to contain the foreign key to the source entity. That leaves no way to capture the fact that the target
entity is in the collection more than once.

In the join table case, each row stores a join column to the source entity and a join column to the
target entity, and the primary key of the join table is composed of the combination of the two. Only
duplicate rows in that model could link multiple instances of the target to the same source, and
duplicate rows in a relational database are highly frowned upon.

An element collection is in a similar situation, except that instead of a foreign key to the target entity
there are one or more columns in the collection table storing the basic or embeddable values. These
columns just combine with the foreign key to the source entity to make up the primary key, and once
again duplicate rows would be required to have duplicate values in a collection.

The persistently ordered List is a little different, however, because it adds an order column to the
mix. If the order column were to be included as part of the primary key, multiple relationship entries
could exist in the List each of their respective rows potentially having the same element value data and
foreign key reference, but differing only by the value of the order column. Thus, the uniqueness of a row
is identified not only by the source and target objects but also by its position in the List.

In the case of the foreign key in the target table, it would be bad practice indeed to include the order
column in the primary key of an entity table, so we won’t even explore that as an option. However, when
a join table or collection table is used, it is a perfectly reasonable thing to do, allowing duplicate values to
be inserted in a persistently ordered List. This is possible, though, only if the provider includes the order
column in the primary key of the table or gives you the option of configuring it in that way.

Before you rejoice that your provider might allow you to store duplicates, be aware that there is a
price to pay. This can be seen in the example of exchanging the order of two elements in the List. If the
order column were just a regular column, it wouldn’t be too much of a stretch for the provider to
optimize the database operations by simply updating the order columns of the two records with the
correct values. However, if the order column is part of the primary key, what you are really saying is that
the ordering of the contained object in the List is an integral part of the relationship between the
containing and contained objects. Assigning a new order to the contained object is not modifying an
aspect of the relationship, but effectively destroying the relationship and creating a new one with a
different ordering. That means deleting the two old rows and creating two new ones.

A Map has keys that must be unique, so duplicate keys clearly don’t make sense. It is similar to a List
when it comes to its values, however, because it has a key column that can be part of the primary key.
Once again, the case of the foreign key in the target table does not allow for multiple keys to point to the
same entity, so one-to-many relationships that are mapped that way simply do not permit the same
entity to be mapped to multiple keys in the same Map.

For join tables and collection tables, duplicates will be possible in the Map only if it is keyed by
something other than an attribute of the entity, or embeddable, and the key column is included in the
primary key. The trade-off in the case of the Map is similar to the one that we discussed with List, except
that the price of allowing duplicates in a Map is paid when you want to reassign an existing key to a
different value.

CHAPTER 5 ■ COLLECTION MAPPING

128

Null Values
It is probably even less common to insert null values in a collection than it is to have duplicates. This is
one reason why the JPA specification is not particularly clear on what happens when you insert null into
a collection. As with duplicates, the cases are a little complex and require individual consideration.

The Set, List, and Map interfaces join the Collection interface in being general enough to be wishy-
washy when it comes to specifying what happens when null is inserted. They simply delegate the
decision to the implementation, so an implementation class might choose to support inserting null
values or simply throw an exception. JPA does no better; it ends up falling to the particular vendor’s
proxy implementation to allow null or throw a NullPointerException when null is added. Note that you
cannot make your collection interface allow null simply by initializing it with an implementation
instance, such as HashSet, that allows null. The provider will replace the instance with one of its own
implementation classes the next time the object becomes managed, and the new implementation class
might or might not allow null values.

In order for a null value to exist in the database the value column or columns must be nullable. This
is the obvious part, but the corollary might be less evident, if a little repetitive. It claims once again that
only relationships and element collections that use a join table or collection table can have null values in
the collection. The proof is left for you to figure out, but (as a hint) try creating an entity that has all null
values, including the identifier, with no identifier generation.

There is a further limitation on null values when it comes to element collections of embeddable
objects. Entity references in a join table or element collections of basic types in a collection table are
single-column values or references. The problem in the embeddable case is that if a combination of
columns mapped to an embeddable are all null, there is no way for the provider to know whether it
signifies a null value or an empty embeddable object full of null values. Providers might assume that it is
an empty embedded object or they might have a controllable option to dictate whether the nulls get
treated one way or the other.

Maps are equally non-committal about allowing null keys, but it really doesn’t fit very well with the
model of key columns being primary key fields. Most databases do not even allow one of the primary key
fields to be nullable, and we would not recommend it even for the odd one that does.

Best Practices
With all the options and possibilities that have emerged, we would be cruel indeed if we did not offer at
least some measure of guidance to the lonely collections traveler. Of course, the reason why there are so
many options is because there are so many different cases to solve, so it is not really appropriate to come
up with hard and fast rules. However, some general guidelines will hopefully assist you in picking the
right mapping strategy for your specific application use case.

• When using a List, do not assume that it is ordered automatically if you have not
actually specified any ordering. The List order might be affected by the database
results, which are only partially deterministic with respect to how they are
ordered. There are no guarantees that such an ordering will be the same across
multiple executions.

• It will generally be possible to order the objects by one of their own attributes.
Using the @OrderBy annotation will always be the best approach when compared
to a persistent List that must maintain the order of the items within it by updating
a specific order column. Use the order column only when it is impossible to do
otherwise.

CHAPTER 5 ■ COLLECTION MAPPING

129

• Map types are very helpful, but they can be relatively complicated to properly
configure. Once you reach that stage, however, the modeling capabilities that they
offer and the loose association support that can be leveraged makes them ideal
candidates for various kinds of relationships and element collections.

• As with the List, the preferred and most efficient use of a Map is to use an attribute
of the target object as a key, making a Map of entities keyed by a basic attribute type
the most common and useful. It will often solve most of the problems you
encounter. A Map of basic keys and values can be a useful configuration for
associating one basic object with another.

• Avoid using embedded objects in a Map, particularly as keys, because their identity
is typically not defined. Embeddables in general should be treated with care and
used only when absolutely necessary.

• Support for duplicate or null values in collections is not guaranteed, and is not
recommended even when possible. They will cause certain types of operations on
the collection type to be slower and more database-intensive, sometimes
amounting to a combination of record deletion and insertion instead of simple
updates.

Summary
In this chapter, we took a more in-depth look at various ways of mapping collections to the database. We
looked at how the contents of the collection determine how it is mapped, and noted that there are many
flexible options for storing different kinds of objects in various types of collections.

We showed that the difference between relationships and element collections was whether entities
or basic/embeddable types were being stored in them. We went on to examine the different types of
collections, and how Collection and Set can be used for simple container purposes, while List can be
used to maintain ordered collections. We saw that there are two different approaches to using a List and
that maintaining a persistent List is possible, but not usually the best strategy.

We then elaborated on all the Map types, explaining how combinations of basic, embeddable, and
entity types can be used as keys and values. We experimented with and showed examples of using many
of the different combinations of key and value types, illustrating how each changed the way the
collection was mapped. We then outlined, in list form, the basic rules of using a Map type.

We finished off collections by looking at the corner cases of adding duplicates and null values to
collections and outlined the cases when support might be reasonable. Some best practices and practical
guidance to using collections followed.

The next chapter will discuss using entity managers and persistence contexts in more advanced
ways than we did previously, delving into the practices and nuances of injecting and using them in Java
EE and Java SE environments.

CHAPTER 5 ■ COLLECTION MAPPING

130

C H A P T E R 6

■ ■ ■

131

Entity Manager

Entities do not persist themselves when they are created. Nor do they remove themselves from the
database when they are garbage-collected. It is the logic of the application that must manipulate
entities to manage their persistent lifecycle. JPA provides the EntityManager interface for this purpose
in order to let applications manage and search for entities in the relational database.

At first, this might seem like a limitation of JPA. If the persistence runtime knows which objects are
persistent, why should the application have to be involved in the process? Rest assured that this design
is both deliberate and far more beneficial to the application than any transparent persistence
solution. Persistence is a partnership between the application and persistence provider. JPA brings a
level of control and flexibility that could not be achieved without the active participation of the
application.

In Chapter 2 we introduced the EntityManager interface and described some of the basic operations
that it provides for operating on entities. We extended that discussion in Chapter 3 to include an
overview of the Java EE environment and the types of services that impact persistence applications.
Finally, in Chapters 4 and 5 we described object-relational mapping, the key to building entities out of
objects. With that groundwork in place we are ready to revisit entity managers, persistence contexts,
and persistence units, and to begin a more in-depth discussion of these concepts.

Persistence Contexts
Let’s begin by reintroducing the core terms of JPA. A persistence unit is a named configuration of
entity classes. A persistence context is a managed set of entity instances. Every persistence context is
associated with a persistence unit, restricting the classes of the managed instances to the set defined
by the persistence unit. Saying that an entity instance is managed means that it is contained within a
persistence context and it can be acted upon by an entity manager. It is for this reason that we say that
an entity manager manages a persistence context.

Understanding the persistence context is the key to understanding the entity manager. An
entity’s inclusion or exclusion from a persistence context will determine the outcome of any persistent
operations on it. If the persistence context participates in a transaction, the in-memory state of the
managed entities will get synchronized to the database. Yet despite the important role that it plays, the
persistence context is never actually visible to the application. It is always accessed indirectly through
the entity manager and assumed to be there when we need it.

So far so good, but how does the persistence context get created and when does this occur? How
does the entity manager figure in the equation? This is where it starts to get interesting.

CHAPTER 6 ■ ENTITY MANAGER

132

Entity Managers
Up to this point, we have demonstrated only basic entity manager operations in both the Java SE and
Java EE environments. We have reached a point, however, where we can finally reveal the full range
of entity manager configurations. JPA defines no fewer than three different types of entity managers,
each of which has a different approach to persistence context management that is tailored to a
different application need. As we will see, the persistence context is just one part of the puzzle.

Container-Managed Entity Managers
In the Java EE environment, the most common way to acquire an entity manager is by using the
@PersistenceContext annotation to inject one. An entity manager obtained in this way is called
container-managed because the container manages the lifecycle of the entity manager, typically by
proxying the one that it gets from the persistence provider. The application does not have to create it
or close it. This is the style of entity manager we demonstrated in Chapter 3.

Container-managed entity managers come in two varieties. The style of a container-managed
entity manager determines how it works with persistence contexts. The first and most common style is
called transaction-scoped. This means that the persistence contexts managed by the entity manager
are scoped by the active JTA transaction, ending when the transaction is complete. The second style is
called extended. Extended entity managers work with a single persistence context that is tied to the
lifecycle of a stateful session bean and are scoped to the life of that stateful session bean, potentially
spanning multiple transactions.

Transaction-Scoped
All the entity manager examples that we have shown so far for the Java EE environment have been
transaction-scoped entity managers. A transaction-scoped entity manager is returned whenever the
reference created by the @PersistenceContext annotation is resolved. As we mentioned in Chapter 3, a
transaction-scoped entity manager is stateless, meaning that it can be safely stored on any Java EE
component. Because the container manages it for us, it is also basically maintenance-free.

Once again, let’s introduce a stateless session bean that uses a transaction-scoped entity
manager. Listing 6-1 shows the bean class for a session bean that manages project information. The
entity manager is injected into the em field using the @PersistenceContext annotation and is then used
in the business methods of the bean.

Listing 6-1. The ProjectService Session Bean

@Stateless
public class ProjectServiceBean implements ProjectService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 public void assignEmployeeToProject(int empId, int projectId) {
 Project project = em.find(Project.class, projectId);
 Employee employee = em.find(Employee.class, empId);
 project.getEmployees().add(employee);
 employee.getProjects().add(project);
 }

 // ...
}

CHAPTER 6 ■ ENTITY MANAGER

133

We described the transaction-scoped entity manager as stateless. If that is the case, how can it
work with a persistence context? The answer lies with the JTA transaction. All container-managed
entity managers depend on JTA transactions because they can use the transaction as a way to track
persistence contexts. Every time an operation is invoked on the entity manager, the container proxy
for that entity manager checks to see whether a persistence context is associated with the container
JTA transaction. If it finds one, the entity manager will use this persistence context. If it doesn’t find
one, it creates a new persistence context and associates it with the transaction. When the transaction
ends, the persistence context goes away.

Let’s walk through an example. Consider the assignEmployeeToProject() method from Listing 6-1.
The first thing the method does is search for the Employee and Project instances using the find()
operation. When the first find() method is invoked, the container checks for a transaction. By default,
the container will ensure that a transaction is active whenever a session bean method starts, so the
entity manager in this example will find one ready. It then checks for a persistence context. This is the
first time any entity manager call has occurred, so there isn’t a persistence context yet. The entity
manager creates a new one and uses it to find the project.

When the entity manager is used to search for the employee, it checks the transaction again and
this time finds the one it created when searching for the project. It then reuses this persistence context
to search for the employee. At this point, employee and project are both managed entity instances. The
employee is then added to the project, updating both the employee and project entities. When the
method call ends, the transaction is committed. Because the employee and project instances were
managed, the persistence context can detect any state changes in them, and it updates the database
during the commit. When the transaction is over, the persistence context goes away.

This process is repeated every time one or more entity manager operations are invoked within
a transaction.

Extended
In order to describe the extended entity manager, we must first talk a little about stateful session
beans. As you learned in Chapter 3, stateful session beans are designed to hold conversational state.
Once acquired by a client, the same bean instance is used for the life of the conversation until the
client invokes one of the methods marked @Remove on the bean. While the conversation is active, the
business methods of the client can store and access information using the fields of the bean.

Let’s try using a stateful session bean to help manage a department. Our goal is to create a
business object for a Department entity that provides business operations relating to that entity. Listing
6-2 shows our first attempt. The business method init() is called by the client to initialize the
department id. We then store this department id on the bean instance, and the addEmployee() method
uses it to find the department and make the necessary changes. From the perspective of the client, they
only have to set the department id once, and then subsequent operations always refer to the same
department.

Listing 6-2. First Attempt at Department Manager Bean

@Stateful
public class DepartmentManagerBean implements DepartmentManager {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;
 int deptId;

 public void init(int deptId) {
 this.deptId = deptId;
 }

CHAPTER 6 ■ ENTITY MANAGER

134

 public void setName(String name) {
 Department dept = em.find(Department.class, deptId);
 dept.setName(name);
 }

 public void addEmployee(int empId) {
 Department dept = em.find(Department.class, deptId);
 Employee emp = em.find(Employee.class, empId);
 dept.getEmployees().add(emp);
 emp.setDepartment(dept);
 }

 // ...

 @Remove
 public void finished() {
 }
}

The first thing that should stand out when looking at this bean is that it seems unnecessary to have
to search for the department every time. After all, we have the department id, so why not just store the
Department entity instance as well? Listing 6-3 revises our first attempt by searching for the
department once during the init() method and then reusing the entity instance for each business
method.

Listing 6-3. Second Attempt at Department Manager Bean

@Stateful
public class DepartmentManagerBean implements DepartmentManager {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;
 Department dept;

 public void init(int deptId) {
 dept = em.find(Department.class, deptId);
 }

 public void setName(String name) {
 dept.setName(name);
 }

 public void addEmployee(int empId) {
 Employee emp = em.find(Employee.class, empId);
 dept.getEmployees().add(emp);
 emp.setDepartment(dept);
 }

 // ...

 @Remove
 public void finished() {
 }
}

CHAPTER 6 ■ ENTITY MANAGER

135

This version looks better suited to the capabilities of a stateful session bean. It is certainly more
natural to reuse the Department entity instance instead of searching for it each time. But there is a
problem. The entity manager in Listing 6-3 is transaction-scoped. Assuming there is no active
transaction from the client, every method on the bean will start and commit a new transaction
because the default transaction attribute for each method is REQUIRED. Because there is a new
transaction for each method, the entity manager will use a different persistence context each time.

Even though the Department instance still exists, the persistence context that used to manage it
went away when the transaction associated with the init() call ended. We refer to the Department
entity in this case as being detached from a persistence context. The instance is still around and can be
used, but any changes to its state will be ignored. For example, invoking setName() will change the
name in the entity instance, but the changes will never be reflected in the database.

This is the situation that the extended entity manager is designed to solve. Designed specifically
for stateful session beans, it prevents entities from becoming detached when transactions end. Before
we go too much further, let’s introduce our third and final attempt at a department manager bean.
Listing 6-4 shows our previous example updated to use an extended persistence context.

Listing 6-4. Using an Extended Entity Manager

@Stateful
public class DepartmentManagerBean implements DepartmentManager {
 @PersistenceContext(unitName="EmployeeService",
 type=PersistenceContextType.EXTENDED)
 EntityManager em;
 Department dept;

 public void init(int deptId) {
 dept = em.find(Department.class, deptId);
 }

 public void setName(String name) {
 dept.setName(name);
 }

 public void addEmployee(int empId) {
 Employee emp = em.find(Employee.class, empId);
 dept.getEmployees().add(emp);
 emp.setDepartment(dept);
 }

 // ...

 @Remove
 public void finished() {
 }
}

As you can see, we changed only one line. The @PersistenceContext annotation that we introduced
in Chapter 3 has a special type attribute that can be set to either TRANSACTION or EXTENDED. These
constants are defined by the PersistenceContextType enumerated type. TRANSACTION is the default and
corresponds to the transaction-scoped entity managers we have been using up to now. EXTENDED
means that an extended entity manager should be used.

CHAPTER 6 ■ ENTITY MANAGER

136

With this change made, the department manager bean now works as expected. Extended entity
managers create a persistence context when a stateful session bean instance is created that lasts until
the bean is removed. Unlike the persistence context of a transaction-scoped entity manager, which
begins when the transaction begins and lasts until the end of a transaction, the persistence context of
an extended entity manager will last for the entire length of the conversation. Because the Department
entity is still managed by the same persistence context, whenever it is used in a transaction any
changes will be automatically written to the database.

The extended persistence context allows stateful session beans to be written in a way that is more
suited to their capabilities. Later we will discuss special limitations on the transaction management of
extended entity managers, but by and large they are well suited to the type of example we have
shown here.

The biggest limitation of the extended entity manager is that it requires a stateful session bean.
Despite having been available in the EJB specification for many years, stateful session beans are still
not widely used. Partly because of the poor quality of early vendor implementations, stateful session
beans gained a reputation for poor performance and poor scalability. Even though modern application
servers are very efficient in their management of stateful session beans, developer skepticism
remains. Given that the HTTP session offers similar capabilities and is readily available without
developing new beans, developers have traditionally preferred it to stateful session beans for
conversational data.

More importantly, many Java EE applications do not require the kind of conversational state that
stateful session beans provide. But that said, the extended persistence context is a significant feature
custom-tailored to stateful session beans, and as best practices emerge for this type of persistence
context they might see more use in the future.

Application-Managed Entity Managers
In Chapter 2 we introduced JPA with an example written using Java SE. The entity manager in that
example, and any entity manager that is created from the createEntityManager() call of an
EntityManagerFactory instance, is what we call an application-managed entity manager. This name
comes from the fact that the application, rather than the container, manages the lifecycle of the entity
manager. Note that all open entity managers, whether container-managed or application-managed,
are associated with an EntityManagerFactory instance. The factory used to create the entity manager
can be accessed from the getEntityManagerFactory() call on the EntityManager interface.

Although we expect the majority of applications to be written using container-managed entity
managers, application-managed entity managers still have a role to play. They are the only entity
manager type available in Java SE, and as we will see, they can be used in Java EE as well.

Creating an application-managed entity manager is simple enough. All you need is an
EntityManagerFactory to create the instance. What separates Java SE and Java EE for application-
managed entity managers is not how you create the entity manager but how you get the factory.
Listing 6-5 demonstrates use of the Persistence class to bootstrap an EntityManagerFactory instance
that is then used to create an entity manager.

Listing 6-5. Application-Managed Entity Managers in Java SE

public class EmployeeClient {
 public static void main(String[] args) {
 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("EmployeeService");
 EntityManager em = emf.createEntityManager();

 List<Employee> emps = em.createQuery("SELECT e FROM Employee e")

CHAPTER 6 ■ ENTITY MANAGER

137

 .getResultList();
 for (Employee e : emps) {
 System.out.println(e.getId() + ", " + e.getName());
 }

 em.close();
 emf.close();
 }
}

The Persistence class offers two variations of the same createEntityManager() method that can be
used to create an EntityManagerFactory instance for a given persistence unit name. The first,
specifying only the persistence unit name, returns the factory created with the default properties
defined in the persistence.xml file. The second form of the method call allows a map of properties to be
passed in, adding to, or overriding the properties specified in persistence.xml. This form is useful
when required JDBC properties might not be known until the application is started, perhaps with
information provided as command-line parameters. The set of active properties for an entity
manager can be determined via the getProperties() method on the EntityManager interface. We will
discuss persistence unit properties in Chapter 13.

The best way to create an application-managed entity manager in Java EE is to use the
@PersistenceUnit annotation to declare a reference to the EntityManagerFactory for a persistence unit.
Once acquired, the factory can be used to create an entity manager, which can be used just as it would
in Java SE. Listing 6-6 demonstrates injection of an EntityManagerFactory into a servlet and its use to
create a short-lived entity manager in order to verify a user id.

Listing 6-6. Application-Managed Entity Managers in Java EE

public class LoginServlet extends HttpServlet {
 @PersistenceUnit(unitName="EmployeeService")
 EntityManagerFactory emf;

 protected void doPost(HttpServletRequest request,
 HttpServletResponse response) {
 String userId = request.getParameter("user");

 // check valid user
 EntityManager em = emf.createEntityManager();
 try {
 User user = em.find(User.class, userId);
 if (user == null) {
 // return error page
 // ...
 }
 } finally {
 em.close();
 }

 // ...
 }
}

CHAPTER 6 ■ ENTITY MANAGER

138

One thing common to both of these examples is that the entity manager is explicitly closed with the
close() call when it is no longer needed. This is one of the lifecycle requirements of an entity
manager that must be performed manually in the case of application-managed entity managers, and
that is normally taken care of automatically by container-managed entity managers. Likewise, the
EntityManagerFactory instance must also be closed, but only in the Java SE application. In Java EE, the
container closes the factory automatically, so no extra steps are required.

In terms of the persistence context, the application-managed entity manager is similar to an
extended container-managed entity manager. When an application-managed entity manager is
created, it creates its own private persistence context that lasts until the entity manager is closed. This
means that any entities managed by the entity manager will remain that way, independent of any
transactions.

The role of the application-managed entity manager in Java EE is somewhat specialized. If
resource-local transactions are required for an operation, an application-managed entity manager is
the only type of entity manager that can be configured with that transaction type within the server. As
we will describe in the next section, the transaction requirements of an extended entity manager can
make them difficult to deal with in some situations. Application-managed entity managers can be
safely used on stateful session beans to accomplish similar goals.

Transaction Management
Developing a persistence application is as much about transaction management as it is about object-
relational mapping. Transactions define when new, changed, or removed entities are synchronized to
the database. Understanding how persistence contexts interact with transactions is a fundamental
part of working with JPA.

Note that we said persistence contexts, not entity managers. There are several different entity
manager types, but all use a persistence context internally. The entity manager type determines the
lifetime of a persistence context, but all persistence contexts behave the same way when they are
associated with a transaction.

There are two transaction-management types supported by JPA. The first is resource-local
transactions, which are the native transactions of the JDBC drivers that are referenced by a
persistence unit. The second transaction-management type is JTA transactions, which are the
transactions of the Java EE server, supporting multiple participating resources, transaction lifecycle
management, and distributed XA transactions.

Container-managed entity managers always use JTA transactions, while application-managed
entity managers can use either type. Because JTA is typically not available in Java SE applications, the
provider needs to support only resource-local transactions in that environment. The default and
preferred transaction type for Java EE applications is JTA. As we will describe in the next section,
propagating persistence contexts with JTA transactions is a major benefit to enterprise persistence
applications.

The transaction type is defined for a persistence unit and is configured using the persistence.xml
file. We will discuss this setting and how to apply it in Chapter 13.

JTA Transaction Management
In order to talk about JTA transactions, we must first discuss the difference between transaction
synchronization, transaction association, and transaction propagation. Transaction synchronization is
the process by which a persistence context is registered with a transaction so that the persistence
context can be notified when a transaction commits. The provider uses this notification to ensure that
a given persistence context is correctly flushed to the database. Transaction association is the act of

CHAPTER 6 ■ ENTITY MANAGER

139

binding a persistence context to a transaction. You can also think of this as the active persistence
context within the scope of that transaction. Transaction propagation is the process of sharing a
persistence context between multiple container-managed entity managers in a single transaction.

There can be only one persistence context associated with and propagated across a JTA
transaction. All container-managed entity managers in the same transaction must share the same
propagated persistence context.

Transaction-Scoped Persistence Contexts
As the name suggests, a transaction-scoped persistence context is tied to the lifecycle of the
transaction. It is created by the container during a transaction and will be closed when the transaction
completes. Transaction-scoped entity managers are responsible for creating transaction-scoped
persistence contexts automatically when needed. We say only when needed because transaction-
scoped persistence context creation is lazy. An entity manager will create a persistence context only
when a method is invoked on the entity manager and when there is no persistence context available.

When a method is invoked on the transaction-scoped entity manager, it must first see whether
there is a propagated persistence context. If one exists, the entity manager uses this persistence
context to carry out the operation. If one does not exist, the entity manager requests a new persistence
context from the persistence provider and then marks this new persistence context as the propagated
persistence context for the transaction before carrying out the method call. All subsequent
transaction-scoped entity manager operations, in this component or any other, will thereafter use this
newly created persistence context. This behavior works independently of whether container-
managed or bean-managed transaction demarcation has been used.

Propagation of the persistence context simplifies the building of enterprise applications. When an
entity is updated by a component inside of a transaction, any subsequent references to the same entity
will always correspond to the correct instance, no matter what component obtains the entity
reference. Propagating the persistence context gives developers the freedom to build loosely coupled
applications knowing that they will always get the right data even though they are not sharing the
same entity manager instance.

To demonstrate propagation of a transaction-scoped persistence context, we introduce an audit
service bean that stores information about a successfully completed transaction. Listing 6-7 shows the
complete bean implementation. The logTransaction() method ensures that an employee id is valid by
attempting to find the employee using the entity manager.

Listing 6-7. AuditService Session Bean

@Stateless
public class AuditServiceBean implements AuditService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 public void logTransaction(int empId, String action) {
 // verify employee number is valid
 if (em.find(Employee.class, empId) == null) {
 throw new IllegalArgumentException("Unknown employee id");
 }
 LogRecord lr = new LogRecord(empId, action);
 em.persist(lr);
 }
}

CHAPTER 6 ■ ENTITY MANAGER

140

Now consider the fragment from the EmployeeService session bean example shown in Listing 6-8.
After an employee is created, the logTransaction() method of the AuditService session bean is
invoked to record the “created employee” event.

Listing 6-8. Logging EmployeeService Transactions

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 @EJB AuditService audit;

 public void createEmployee(Employee emp) {
 em.persist(emp);
 audit.logTransaction(emp.getId(), "created employee");
 }

 // ...
}

Even though the newly created Employee is not yet in the database, the audit bean can find the
entity and verify that it exists. This works because the two beans are actually sharing the same
persistence context. The transaction attribute of the createEmployee() method is REQUIRED by default
because no attribute has been explicitly set. The container will guarantee that a transaction is started
before the method is invoked. When persist() is called on the entity manager, the container checks to
see whether a persistence context is already associated with the transaction. Let’s assume in this case
that this was the first entity manager operation in the transaction, so the container creates a new
persistence context and marks it as the propagated one.

When the logTransaction() method starts, it issues a find() call on the entity manager from the
AuditServiceBean. We are guaranteed to be in a transaction because the transaction attribute is also
REQUIRED, and the container-managed transaction from createEmployee() has been extended to this
method by the container. When the find() method is invoked, the container again checks for an active
persistence context. It finds the one created in the createEmployee() method and uses that persistence
context to search for the entity. Because the newly created Employee instance is managed by this
persistence context, it is returned successfully.

Now consider the case where logTransaction() has been declared with the REQUIRES_NEW
transaction attribute instead of the default REQUIRED. Before the logTransaction() method call starts,
the container will suspend the transaction inherited from createEmployee() and start a new
transaction. When the find() method is invoked on the entity manager, it will check the current
transaction for an active persistence context only to determine that one does not exist. A new
persistence context will be created starting with the find() call, and this persistence context will be the
active persistence context for the remainder of the logTransaction() call. Because the transaction
started in createEmployee() has not yet committed, the newly created Employee instance is not in the
database and therefore is not visible to this new persistence context. The find() method will return
null, and the logTransaction() method will throw an exception as a result.

The rule of thumb for persistence context propagation is that the persistence context propagates as
the JTA transaction propagates. Therefore, it is important to understand not only when transactions
begin and end, but also when a business method expects to inherit the transaction context from
another method and when doing so would be incorrect. Having a clear plan for transaction
management in your application is key to getting the most out of persistence context propagation.

CHAPTER 6 ■ ENTITY MANAGER

141

Extended Persistence Contexts
The lifecycle of an extended persistence context is tied to the stateful session bean to which it is bound.
Unlike a transaction-scoped entity manager that creates a new persistence context for each
transaction, the extended entity manager of a stateful session bean always uses the same persistence
context. The stateful session bean is associated with a single extended persistence context that is
created when the bean instance is created and closed when the bean instance is removed. This has
implications for both the association and propagation characteristics of the extended persistence
context.

Transaction association for extended persistence contexts is eager. In the case of container-
managed transactions, as soon as a method call starts on the bean, the container automatically
associates the persistence context with the transaction. Likewise, in the case of bean-managed
transactions; as soon as UserTransaction.begin() is invoked within a bean method, the container
intercepts the call and performs the same association.

Because a transaction-scoped entity manager will use an existing persistence context associated
with the transaction before it will create a new persistence context, it is possible to share an extended
persistence context with other transaction-scoped entity managers. As long as the extended
persistence context is propagated before any transaction-scoped entity managers are accessed, the
same extended persistence context will be shared by all components.

Similar to the auditing EmployeeServiceBean we demonstrated in Listing 6-8, consider the same
change made to a stateful session bean DepartmentManagerBean to audit when an employee is added to a
department. Listing 6-9 shows this example.

Listing 6-9. Logging Department Changes

@Stateful
public class DepartmentManagerBean implements DepartmentManager {
 @PersistenceContext(unitName="EmployeeService",
 type=PersistenceContextType.EXTENDED)
 EntityManager em;
 Department dept;
 @EJB AuditService audit;

 public void init(int deptId) {
 dept = em.find(Department.class, deptId);
 }

 public void addEmployee(int empId) {
 Employee emp = em.find(Employee.class, empId);
 dept.getEmployees().add(emp);
 emp.setDepartment(dept);
 audit.logTransaction(emp.getId(),
 "added to department " + dept.getName());
 }

 // ...
}

The addEmployee() method has a default transaction attribute of REQUIRED. Because the container
eagerly associates extended persistence contexts, the extended persistence context stored on the
session bean will be immediately associated with the transaction when the method call starts. This will
cause the relationship between the managed Department and Employee entities to be persisted to the

CHAPTER 6 ■ ENTITY MANAGER

142

database when the transaction commits. It also means that the extended persistence context will now
be shared by other transaction-scoped persistence contexts used in methods called from addEmployee().

The logTransaction() method in this example will inherit the transaction context from
addEmployee() because its transaction attribute is the default REQUIRED, and a transaction is active
during the call to addEmployee(). When the find() method is invoked, the transaction-scoped entity
manager checks for an active persistence context and will find the extended persistence context from
the DepartmentManagerBean. It will then use this persistence context to execute the operation. All the
managed entities from the extended persistence context become visible to the transaction-scoped
entity manager.

Persistence Context Collision

We said earlier that only one persistence context could be propagated with a JTA transaction. We also
said that the extended persistence context would always try to make itself the active persistence
context. This can quickly lead to situations in which the two persistence contexts collide with each
other. Consider, for example, that a stateless session bean with a transaction-scoped entity manager
creates a new persistence context and then invokes a method on a stateful session bean with an
extended persistence context. During the eager association of the extended persistence context, the
container will check to see whether there is already an active persistence context. If there is, it must be
the same as the extended persistence context that it is trying to associate, or an exception will be
thrown. In this example, the stateful session bean will find the transaction-scoped persistence context
created by the stateless session bean, and the call into the stateful session bean method will fail. There
can be only one active persistence context for a transaction.

While extended persistence context propagation is useful if a stateful session bean with an
extended persistence context is the first EJB to be invoked in a call chain, it limits the situations in
which other components can call into the stateful session bean if they are also using entity managers.
This might or might not be common depending on your application architecture, but it is something to
keep in mind when planning dependencies between components.

One way to work around this problem is to change the default transaction attribute for the stateful
session bean that uses the extended persistence context. If the default transaction attribute is
REQUIRES_NEW, any active transaction will be suspended before the stateful session bean method starts,
allowing it to associate its extended persistence context with the new transaction. This is a good
strategy if the stateful session bean calls in to other stateless session beans and needs to propagate the
persistence context. Note that excessive use of the REQUIRES_NEW transaction attribute can lead to
application performance problems because many more transactions than normal will be created, and
active transactions will be suspended and resumed.

If the stateful session bean is largely self-contained; that is, it does not call other session beans
and does not need its persistence context propagated, a default transaction attribute type of
NOT_SUPPORTED can be worth considering. In this case, any active transaction will be suspended before
the stateful session bean method starts, but no new transaction will be started. If there are some
methods that need to write data to the database, those methods can be overridden to use the
REQUIRES_NEW transaction attribute.

Listing 6-10 repeats the DepartmentManager bean, this time with some additional getter methods
and customized transaction attributes. We have set the default transaction attribute to REQUIRES_NEW to
force a new transaction by default when a business method is invoked. For the getName() method, we
don’t need a new transaction because no changes are being made, so it has been set to NOT_SUPPORTED.
This will suspend the current transaction, but won’t result in a new transaction being created. With
these changes, the DepartmentManager bean can be accessed in any situation, even if there is already an
active persistence context.

CHAPTER 6 ■ ENTITY MANAGER

143

Listing 6-10. Customizing Transaction Attributes to Avoid Collision

@Stateful
@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public class DepartmentManagerBean implements DepartmentManager {
 @PersistenceContext(unitName="EmployeeService",
 type=PersistenceContextType.EXTENDED)
 EntityManager em;
 Department dept;
 @EJB AuditService audit;

 public void init(int deptId) {
 dept = em.find(Department.class, deptId);
 }

 @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
 public String getName() { return dept.getName(); }
 public void setName(String name) { dept.setName(name); }

 public void addEmployee(int empId) {
 Employee emp = em.find(empId, Employee.class);
 dept.getEmployees().add(emp);
 emp.setDepartment(dept);
 audit.logTransaction(emp.getId(),
 "added to department " + dept.getName());
 }

 // ...
}

Finally, one last option to consider is using an application-managed entity manager instead of an
extended entity manager. If there is no need to propagate the persistence context, the extended entity
manager is not adding a lot of value over an application-managed entity manager. The stateful
session bean can safely create an application-managed entity manager, store it on the bean instance,
and use it for persistence operations without having to worry about whether an active transaction
already has a propagated persistence context. An example of this technique is demonstrated later in
the section “Application-Managed Persistence Contexts.”

Persistence Context Inheritance

The restriction of only one stateful session bean with an extended persistence context being able to
participate in a JTA transaction can cause difficulties in some situations. For example, the pattern we
followed earlier in this chapter for the extended persistence context was to encapsulate the behavior of
an entity behind a stateful session façade. In our example, clients worked with a DepartmentManager
session bean instead of the actual Department entity instance. Because a department has a manager, it
makes sense to extend this façade to the Employee entity as well.

Listing 6-11 shows changes to the DepartmentManager bean so that it returns an EmployeeManager
stateful session bean from the getManager() method in order to represent the manager of the
department. The EmployeeManager stateful session bean is injected and then initialized during the
invocation of the init() method.

CHAPTER 6 ■ ENTITY MANAGER

144

Listing 6-11. Creating and Returning a Stateful Session Bean

@Stateful
public class DepartmentManagerBean implements DepartmentManager {
 @PersistenceContext(unitName="EmployeeService",
 type=PersistenceContextType.EXTENDED)
 EntityManager em;
 Department dept;
 @EJB EmployeeManager manager;

 public void init(int deptId) {
 dept = em.find(Department.class, deptId);
 manager.init();
 }

 public EmployeeManager getManager() {
 return manager;
 }

 // ...
}

Should the init() method succeed or fail? So far based on what we have described, it looks like it
should fail. When init() is invoked on the DepartmentManager bean, its extended persistence context
will be propagated with the transaction. In the subsequent call to init() on the EmployeeManager bean,
it will attempt to associate its own extended persistence context with the transaction, causing a
collision between the two.

Perhaps surprisingly, this example actually works. When a stateful session bean with an extended
persistence context creates another stateful session bean that also uses an extended persistence
context, the child will inherit the parent’s persistence context. The EmployeeManager bean inherits the
persistence context from the DepartmentManager bean when it is injected into the DepartmentManager
instance. The two beans can now be used together within the same transaction.

Application-Managed Persistence Contexts
Like container-managed persistence contexts, application-managed persistence contexts can be
synchronized with JTA transactions. Synchronizing the persistence context with the transaction means
that a flush will occur if the transaction commits, but the persistence context will not be considered
associated by any container-managed entity managers. There is no limit to the number of
application-managed persistence contexts that can be synchronized with a transaction, but only one
container-managed persistence context will ever be associated. This is one of the most important
differences between application-managed and container-managed entity managers.

An application-managed entity manager participates in a JTA transaction in one of two ways. If
the persistence context is created inside the transaction, the persistence provider will automatically
synchronize the persistence context with the transaction. If the persistence context was created earlier
(outside of a transaction or in a transaction that has since ended), the persistence context can be
manually synchronized with the transaction by calling joinTransaction() on the EntityManager
interface. Once synchronized, the persistence context will automatically be flushed when the
transaction commits.

Listing 6-12 shows a variation of the DepartmentManagerBean from Listing 6-11 that uses an
application-managed entity manager instead of an extended entity manager.

CHAPTER 6 ■ ENTITY MANAGER

145

Listing 6-12. Using Application-Managed Entity Managers with JTA

@Stateful
public class DepartmentManagerBean implements DepartmentManager {
 @PersistenceUnit(unitName="EmployeeService")
 EntityManagerFactory emf;
 EntityManager em;
 Department dept;

 public void init(int deptId) {
 em = emf.createEntityManager();
 dept = em.find(Department.class, deptId);
 }

 public String getName() {
 return dept.getName();
 }

 public void addEmployee(int empId) {
 em.joinTransaction();
 Employee emp = em.find(Employee.class, empId);
 dept.getEmployees().add(emp);
 emp.setDepartment(dept);
 }

 // ...

 @Remove
 public void finished() {
 em.close();
 }
}

Instead of injecting an entity manager, we are injecting an entity manager factory. Prior to
searching for the entity, we manually create a new application-managed entity manager using the
factory. Because the container does not manage its lifecycle, we have to close it later when the bean is
removed during the call to finished(). Like the container-managed extended persistence context, the
Department entity remains managed after the call to init(). When addEmployee() is called, there is the
extra step of calling joinTransaction() to notify the persistence context that it should synchronize itself
with the current JTA transaction. Without this call, the changes to Department would not be flushed to
the database when the transaction commits.

Because application-managed entity managers do not propagate, the only way to share managed
entities with other components is to share the EntityManager instance. This can be achieved by passing
the entity manager around as an argument to local methods or by storing the entity manager in a
common place such as an HTTP session or singleton session bean. Listing 6-13 demonstrates a servlet
creating an application-managed entity manager and using it to instantiate the EmployeeService class
we defined in Chapter 2. In these cases, care must be taken to ensure that access to the entity manager
is done in a thread-safe manner. While EntityManagerFactory instances are thread-safe, EntityManager
instances are not. Also, application code must not call joinTransaction() on the same entity manager
in multiple concurrent transactions.

CHAPTER 6 ■ ENTITY MANAGER

146

Listing 6-13. Sharing an Application-Managed Entity Manager

public class EmployeeServlet extends HttpServlet {
 @PersistenceUnit(unitName="EmployeeService")
 EntityManagerFactory emf;
 @Resource UserTransaction tx;

 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 // ...
 int id = Integer.parseInt(request.getParameter("id"));
 String name = request.getParameter("name");
 long salary = Long.parseLong(request.getParameter("salary"));
 tx.begin();
 EntityManager em = emf.createEntityManager();
 try {
 EmployeeService service = new EmployeeService(em);
 service.createEmployee(id, name, salary);
 } finally {
 em.close();
 }
 tx.commit();
 // ...
 }
}

Listing 6-13 demonstrates an additional characteristic of the application-managed entity
manager in the presence of transactions. If the persistence context becomes synchronized with a
transaction, changes will still be written to the database when the transaction commits, even if the
entity manager is closed. This allows entity managers to be closed at the point where they are created,
removing the need to worry about closing them after the transaction ends. Note that closing an
application-managed entity manager still prevents any further use of the entity manager. It is only
the persistence context that continues until the transaction has completed.

There is a danger in mixing multiple persistence contexts in the same JTA transaction. This occurs
when multiple application-managed persistence contexts become synchronized with the transaction
or when application-managed persistence contexts become mixed with container-managed
persistence contexts. When the transaction commits, each persistence context will receive notification
from the transaction manager that changes should be written to the database. This will cause each
persistence context to be flushed.

What happens if an entity with the same primary key is used in more than one persistence
context? Which version of the entity gets stored? The unfortunate answer is that there is no way to
know for sure. The container does not guarantee any ordering when notifying persistence contexts of
transaction completion. As a result, it is critical for data integrity that entities never be used by more
than one persistence context in the same transaction. When designing your application, we
recommend picking a single persistence context strategy (container-managed or application-
managed) and sticking to that strategy consistently.

CHAPTER 6 ■ ENTITY MANAGER

147

Resource-Local Transactions
Resource-local transactions are controlled explicitly by the application. The application server, if
there is one, has no part in the management of the transaction. Applications interact with resource-
local transactions by acquiring an implementation of the EntityTransaction interface from the entity
manager. The getTransaction() method of the EntityManager interface is used for this purpose.

The EntityTransaction interface is designed to imitate the UserTransaction interface defined by
JTA, and the two behave very similarly. The main difference is that EntityTransaction operations are
implemented in terms of the transaction methods on the JDBC Connection interface. Listing 6-14
shows the complete EntityTransaction interface.

Listing 6-14. The EntityTransaction Interface

public interface EntityTransaction {
 public void begin();
 public void commit();
 public void rollback();
 public void setRollbackOnly();
 public boolean getRollbackOnly();
 public boolean isActive();
}

There are only six methods on the EntityTransaction interface. The begin() method starts a new
resource transaction. If a transaction is active, isActive() will return true. Attempting to start a new
transaction while a transaction is active will result in an IllegalStateException being thrown. Once
active, the transaction can be committed by invoking commit() or rolled back by invoking rollback().
Both operations will fail with an IllegalStateException if there is no active transaction. A
PersistenceException will be thrown if an error occurs during rollback, while a RollbackException will
be thrown if the commit fails.

If a persistence operation fails while an EntityTransaction is active, the provider will mark it for
rollback. It is the application’s responsibility to ensure that the rollback actually occurs by calling
rollback(). If the transaction is marked for rollback, and a commit is attempted, a RollbackException
will be thrown. To avoid this exception, the getRollbackOnly() method can be called to determine
whether the transaction is in a failed state. Until the transaction is rolled back, it is still active and will
cause any subsequent commit or begin operation to fail.

Listing 6-15 shows a Java SE application that uses the EntityTransaction API to perform a password
change for users who failed to update their passwords before they expired.

Listing 6-15. Using the EntityTransaction Interface

public class ExpirePasswords {
 public static void main(String[] args) {
 int maxAge = Integer.parseInt(args[0]);
 String defaultPassword = args[1];

 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("admin");
 try {
 EntityManager em = emf.createEntityManager();

 Calendar cal = Calendar.getInstance();

CHAPTER 6 ■ ENTITY MANAGER

148

 cal.add(Calendar.DAY_OF_YEAR, -maxAge);

 em.getTransaction().begin();
 Collection expired =
 em.createQuery("SELECT u FROM User u WHERE u.lastChange <= ?1")
 .setParameter(1, cal)
 .getResultList();
 for (Iterator i = expired.iterator(); i.hasNext();) {
 User u = (User) i.next();
 System.out.println("Expiring password for " + u.getName());
 u.setPassword(defaultPassword);
 }
 em.getTransaction().commit();
 em.close();
 } finally {
 emf.close();
 }
 }
}

Within the application server, JTA transaction management is the default and should be used by
most applications. One example use of resource-local transactions in the Java EE environment might
be for logging. If your application requires an audit log stored in the database that must be written
regardless of the outcome of any JTA transactions, a resource-local entity manager can be used to
persist data outside of the current transaction. Resource transactions can be freely started and
committed any number of times within a JTA transaction without impacting the state of the JTA
transactions.

Listing 6-16 shows an example of a stateless session bean that provides audit logging that will
succeed even if the active JTA transaction fails.

Listing 6-16. Using Resource-Local Transactions in the Java EE Environment

@Stateless
public class LogServiceBean implements LogService {
 @PersistenceUnit(unitName="logging")
 EntityManagerFactory emf;

 public void logAccess(int userId, String action) {
 EntityManager em = emf.createEntityManager();
 try {
 LogRecord lr = new LogRecord(userId, action);
 em.getTransaction().begin();
 em.persist(lr);
 em.getTransaction().commit();
 } finally {
 em.close();
 }
 }
}

Of course, you could make the argument that this is overkill for a simple logging bean. Direct JDBC
would probably work just as easily, but these same log records can have uses elsewhere in the
application. It is a trade-off in configuration (defining a completely separate persistence unit in order

CHAPTER 6 ■ ENTITY MANAGER

149

to enable the resource-local transactions) versus the convenience of having an object-oriented
representation of a log record.

Transaction Rollback and Entity State
When a database transaction is rolled back, all the changes made during the transaction are
abandoned. The database reverts to whatever state it was in before the transaction began. But as
mentioned in Chapter 2, the Java memory model is not transactional. There is no way to take a
snapshot of object state and revert to it later if something goes wrong. One of the harder parts of using
an object-relational mapping solution is that while we can use transactional semantics in our
application to control whether data is committed to the database, we can’t truly apply the same
techniques to the in-memory persistence context that manages our entity instances.

Any time we are working with changes that must be persisted to the database, we are working with
a persistence context synchronized with a transaction. At some point during the life of the transaction,
usually just before it commits, the changes we require will be translated into the appropriate SQL
statements and sent to the database. Whether we are using JTA transactions or resource-local
transactions is irrelevant. We have a persistence context participating in a transaction with changes
that need to be made.

If that transaction rolls back, two things happen. The first is that the database transaction will be
rolled back. The next thing that happens is that the persistence context is cleared, detaching all our
managed entity instances. If the persistence context was transaction-scoped, it is removed.

Because the Java memory model is not transactional, we are basically left with a bunch of
detached entity instances. More importantly, these detached instances reflect the entity state exactly
as it was at the point when the rollback occurred. Faced with a rolled-back transaction and detached
entities, you might be tempted to start a new transaction, merge the entities into the new persistence
context, and start over. The following issues need to be considered in this case:

• If there is a new entity that uses automatic primary key generation, there can be
a primary key value assigned to the detached entity. If this primary key was
generated from a database sequence or table, the operation to generate the
number might have been rolled back with the transaction. This means that the
same sequence number could be given out again to a different object. Clear the
primary key before attempting to persist the entity again, and do not rely on the
primary key value in the detached entity.

• If your entity uses a version field for locking purposes that is automatically
maintained by the persistence provider, it might be set to an incorrect value. The
value in the entity will not match the correct value stored in the database. We
will cover locking and versioning in Chapter 11.

If you need to reapply some of the changes that failed and are currently sitting in the detached
entities, consider selectively copying the changed data into new managed entities. This guarantees
that the merge operation will not be compromised by stale data left in the detached entity. To merge
failed entities into a new persistence context, some providers might offer additional options that avoid
some or all these issues. The safe and sure approach is to ensure the transaction boundaries are well
enough defined so in the event of a failure the transaction can be retried, including retrieving all
managed state and reapplying the transactional operations.

CHAPTER 6 ■ ENTITY MANAGER

150

Choosing an Entity Manager
With three different entity manager types, each with a different lifecycle and different rules about
transaction association and propagation, it can all be a little overwhelming. What style is right for
your application? Application-managed or container-managed? Transaction-scoped or extended?

Generally speaking, we believe that container-managed, transaction-scoped entity managers
are the best model for most applications. This is the design that originally inspired JPA and is the
model that commercial persistence providers have been using for years. The selection of this style to
be the default for Java EE applications was no accident. It offers the best combination of flexible
transaction propagation with easy-to-understand semantics.

Container-managed, extended persistence contexts offer a different programming model, with
entities remaining managed after commit, but they are tied to the lifecycle of a Java EE component in
this case, the stateful session bean. There are some interesting new techniques possible with the
extended persistence context (some of which we will describe later in this chapter), but they might not
apply to all applications.

In most enterprise applications, application-managed entity managers are unlikely to see much
use. There is rarely a need for persistence contexts that are not associated with a container
transaction and that remain isolated from the rest of the container-managed persistence contexts. The
lack of propagation means that application-managed entity managers must be passed around as
method arguments or stored in a shared object in order to share the persistence context. Evaluate
application-managed entity managers based on your expected transactional needs, and the size and
complexity of your application.

More than anything, we recommend that you try to be consistent in how entity managers are
selected and applied. Mixing all three entity manager types into an application is likely to be
frustrating because the different entity manager types can intersect in unexpected ways.

Entity Manager Operations
Armed with information about the different entity manager types and how they work with persistence
contexts, we can now revisit the basic entity manager operations we introduced in Chapter 2 and
reveal more of the details. The following sections describe the entity manager operations with respect
to the different entity manager and persistence context types. Locking modes and the locking variants
of the following operations will be discussed in Chapter 11.

Persisting an Entity
The persist() method of the EntityManager interface accepts a new entity instance and causes it to
become managed. If the entity to be persisted is already managed by the persistence context, it is
ignored. The contains() operation can be used to check whether an entity is already managed, but it is
very rare that this should be required. It should not come as a surprise to the application to find out
which entities are managed and which are not. The design of the application dictates when entities
become managed.

For an entity to be managed does not mean that it is persisted to the database right away. The
actual SQL to create the necessary relational data will not be generated until the persistence context is
synchronized with the database, typically only when the transaction commits. However, once a new
entity is managed, any changes to that entity can be tracked by the persistence context. Whatever state
exists on the entity when the transaction commits is what will be written to the database.

CHAPTER 6 ■ ENTITY MANAGER

151

When persist() is invoked outside of a transaction, the behavior depends on the type of entity
manager. A transaction-scoped entity manager will throw a TransactionRequiredException because
there is no persistence context available in which to make the entity managed. Application-managed
and extended entity managers will accept the persist request, causing the entity to become managed,
but no immediate action will be taken until a new transaction begins and the persistence context
becomes synchronized with the transaction. In effect, this queues up the change to happen at a later
time. It is only when the transaction commits that changes will be written out to the database.

The persist() operation is intended for new entities that do not already exist in the database. If
the provider immediately determines that it is not true, an EntityExistsException will be thrown. If the
provider does not make this determination (because it has deferred the existence check and the insert
until flush or commit time), and the primary key is in fact a duplicate, an exception will be thrown
when the persistence context is synchronized to the database.

Up to this point we have been discussing the persistence of entities only without relationships.
But, as we learned in Chapter 4, JPA supports a wide variety of relationship types. In practice, most
entities are in a relationship with at least one other entity. Consider the following sequence of
operations:

Department dept = em.find(Department.class, 30);
Employee emp = new Employee();
emp.setId(53);
emp.setName("Peter");
emp.setDepartment(dept);
dept.getEmployees().add(emp);
em.persist(emp);

Despite the brevity of this example, we have covered a lot of points relating to persisting a
relationship. We begin by retrieving a pre-existing Department instance. A new Employee instance is
then created, supplying the primary key and basic information about the Employee. We then assign the
employee to the department, by setting the department attribute of the Employee to point to the
Department instance we retrieved earlier. Because the relationship is bidirectional, we then add the
new Employee instance to the employees collection in the Department instance. Finally the new Employee
instance is persisted with the call to persist(). Assuming a transaction then commits, the new entity
will be stored in the database.

An interesting thing about this example is that the Department is a passive participant despite the
Employee instance being added to its collection. The Employee entity is the owner of the relationship
because it is in a many-to-one relationship with the Department. As we mentioned in Chapter 4, the
source side of the relationship is the owner, while the target is the inverse in this type of relationship.
When the Employee is persisted, the foreign key to the Department is written out to the table mapped by
the Employee, and no actual change is made to the Department entity’s physical representation. Had we
only added the employee to the collection and not updated the other side of the relationship, nothing
would have been persisted to the database.

Finding an Entity
The ever-present find() method is the workhorse of the entity manager. Whenever an entity needs to
be located by its primary key, find() is usually the best way to go. Not only does it have simple
semantics, but most persistence providers will also optimize this operation to use an in-memory cache
that minimizes trips to the database.

The find() operation returns a managed entity instance in all cases except when invoked outside
of a transaction on a transaction-scoped entity manager. In this case, the entity instance is returned
in a detached state. It is not associated with any persistence context.

CHAPTER 6 ■ ENTITY MANAGER

152

There exists a special version of find() that can be used in one particular situation. That situation
is when a relationship is being created between two entities in a one-to-one or many-to-one
relationship in which the target entity already exists and its primary key is well known. Because we
are only creating a relationship, it might not be necessary to fully load the target entity to create the
foreign key reference to it. Only its primary key is required. The getReference() operation can be used
for this purpose. Consider the following example:

Department dept = em.getReference(Department.class, 30);
Employee emp = new Employee();
emp.setId(53);
emp.setName("Peter");
emp.setDepartment(dept);
dept.getEmployees().add(emp);
em.persist(emp);

The only difference between this sequence of operations and the ones we demonstrated earlier is
that the find() call has been replaced with a call to getReference(). When the getReference() call is
invoked, the provider can return a proxy to the Department entity without actually retrieving it from the
database. As long as only its primary key is accessed, Department data does not need to be fetched.
Instead, when the Employee is persisted, the primary key value will be used to create the foreign key to
the corresponding Department entry. The getReference() call is effectively a performance optimization
that removes the need to retrieve the target entity instance.

There are some drawbacks to using getReference() that must be understood. The first is that if a
proxy is used, it might throw an EntityNotFoundException exception if it is unable to locate the real
entity instance when an attribute other than the primary key is accessed. The assumption with
getReference() is that you are sure the entity with the correct primary key exists. If, for some reason,
an attribute other than the primary key is accessed, and the entity does not exist, an exception will be
thrown. A corollary to this is that the object returned from getReference() might not be safe to use if it
is no longer managed. If the provider returns a proxy, it will be dependent on there being an active
persistence context to load entity state.

Given the very specific situation in which getReference() can be used, find() should be used in
virtually all cases. The in-memory cache of a good persistence provider is effective enough that the
performance cost of accessing an entity via its primary key will not usually be noticed. In the case of
EclipseLink, it has a fully integrated shared object cache, so not only is local persistence context
management efficient but also all threads on the same server can benefit from the shared contents of
the cache. The getReference() call is a performance optimization that should be used only when there
is evidence to suggest that it will actually benefit the application.

Removing an Entity
Removing an entity is not a complex task, but it can require several steps depending on the number of
relationships in the entity to be removed. At its most basic, removing an entity is simply a case of
passing a managed entity instance to the remove() method of an entity manager. As soon as the
associated persistence context becomes synchronized with a transaction and commits, the entity is
removed. At least that is what we would like to happen. As we will soon show, removing an entity
requires some attention to its relationships, or else the integrity of the database can be compromised
in the process.

Let’s walk through a simple example. Consider the Employee and ParkingSpace relationship that we
demonstrated in Chapter 4. The Employee has a unidirectional one-to-one relationship with the
ParkingSpace entity. Now imagine that we execute the following code inside a transaction, where empId
corresponds to an Employee primary key:

CHAPTER 6 ■ ENTITY MANAGER

153

Employee emp = em.find(Employee.class, empId);
em.remove(emp.getParkingSpace());

When the transaction commits, we see the DELETE statement for the PARKING_SPACE table get
generated, but then we get an exception containing a database error that shows that we have violated
a foreign key constraint. It turns out that a referential integrity constraint exists between the EMPLOYEE
table and the PARKING_SPACE table. The row was deleted from the PARKING_SPACE table, but the
corresponding foreign key in the EMPLOYEE table was not set to NULL. To correct the problem we have to
explicitly set the parkingSpace attribute of the Employee entity to null before the transaction commits:

Employee emp = em.find(Employee.class, empId);
ParkingSpace ps = emp.getParkingSpace();
emp.setParkingSpace(null);
em.remove(ps);

Relationship maintenance is the responsibility of the application. We will repeat this statement
over the course of this book, but it cannot be emphasized enough. Almost every problem related to
removing an entity always comes back to this issue. If the entity to be removed is the target of foreign
keys in other tables, those foreign keys must be cleared for the remove to succeed. The remove
operation will either fail as it did here or it will result in stale data being left in the foreign key
columns referring to the removed entity in the event that there is no referential integrity.

An entity can be removed only if it is managed by a persistence context. This means that a
transaction-scoped entity manager can be used to remove an entity only if there is an active
transaction. Attempting to invoke remove() when there is no transaction will result in a
TransactionRequiredException exception. Like the persist() operation we described earlier,
application-managed and extended entity managers can remove an entity outside of a transaction,
but the change will not take place in the database until a transaction involving the persistence context
is committed.

After the transaction has committed, all entities that were removed in that transaction are left in
the state that they were in before they were removed. A removed entity instance can be persisted
again with the persist() operation, but the same issues with generated state that we discussed in the
“Transaction Rollback and Entity State” section apply here as well.

Cascading Operations
By default, every entity manager operation applies only to the entity supplied as an argument to the
operation. The operation will not cascade to other entities that have a relationship with the entity that
is being operated on. For some operations, such as remove(), this is usually the desired behavior. We
wouldn’t want the entity manager to make incorrect assumptions about which entity instances should
be removed as a side effect from some other operation. But the same does not hold true for operations
such as persist(). Chances are that if we have a new entity and it has a relationship to another new
entity, the two must be persisted together.

Consider the sequence of operations in Listing 6-17 that are required to create a new Employee
entity with an associated Address entity and make the two persistent. The second call to persist() that
makes the Address entity managed is bothersome. An Address entity is coupled to the Employee entity
that holds on to it. Whenever a new Employee is created, it makes sense to cascade the persist()
operation to the Address entity if it is present. In Listing 6-17 we are manually cascading by means of
an explicit persist() call on the associated Address.

CHAPTER 6 ■ ENTITY MANAGER

154

Listing 6-17. Persisting Employee and Address Entities

Employee emp = new Employee();
emp.setId(2);
emp.setName("Rob");
Address addr = new Address();
addr.setStreet("645 Stanton Way");
addr.setCity("Manhattan");
addr.setState("NY");
emp.setAddress(addr);
em.persist(addr);
em.persist(emp);

Fortunately, JPA provides a mechanism to define when operations such as persist() should be
automatically cascaded across relationships. The cascade attribute, in all the logical relationship
annotations (@OneToOne, @OneToMany, @ManyToOne, and @ManyToMany), defines the list of entity manager
operations to be cascaded.

Entity manager operations are identified using the CascadeType enumerated type when listed as
part of the cascade attribute. The PERSIST, REFRESH, REMOVE, MERGE, and DETACH constants pertain to the
entity manager operation of the same name. The constant ALL is shorthand for declaring that all five
operations should be cascaded. By default, relationships have an empty cascade set.

The following sections will define the cascading behavior of the persist() and remove()
operations. We will introduce the detach() and merge() operations and their cascading behavior later
in this chapter in the section “Merging Detached Entities.” Likewise, we will introduce the refresh()
operation and its cascading behavior in Chapter 11.

Cascade Persist
To begin, let’s consider the changes required to make the persist() operation cascade from Employee
to Address. In the definition of the Employee class, there is a @ManyToOne annotation defined for the
address relationship. To enable the cascade, we must add the PERSIST operation to the list of cascading
operations for this relationship. Listing 6-18 shows a fragment of the Employee entity that
demonstrates this change.

Listing 6-18. Enabling Cascade Persist

@Entity
public class Employee {
 // ...
 @ManyToOne(cascade=CascadeType.PERSIST)
 Address address;
 // ...
}

To leverage this change, we need only ensure that the Address entity has been set on the Employee
instance before invoking persist() on it. As the entity manager encounters the Employee instance and
adds it to the persistence context, it will navigate across the address relationship looking for a new
Address entity to manage as well. In comparison with the approach in Listing 6-17, this change frees us
from having to persist the Address separately.

CHAPTER 6 ■ ENTITY MANAGER

155

Cascade settings are unidirectional. This means that they must be explicitly set on both sides of a
relationship if the same behavior is intended for both situations. For example, in Listing 6-18, we only
added the cascade setting to the address relationship in the Employee entity. If Listing 6-17 were
changed to persist only the Address entity, not the Employee entity, the Employee entity would not
become managed because the entity manager has not been instructed to navigate out from any
relationships defined on the Address entity.

Even though it is legal to do so, it is still unlikely that we would add cascading operations from the
Address entity to the Employee entity, because it is a child of the Employee entity. While causing the
Employee instance to become managed as a side effect of persisting the Address instance is harmless,
application code would not expect the same from the remove() operation, for example. Therefore we
must be judicious in applying cascades because there is an expectation of ownership in relationships
that influences what developers expect when interacting with these entities.

In the “Persisting an Entity” section, we mentioned that the entity instance is ignored if it is
already persisted. This is true, but the entity manager will still honor the PERSIST cascade in this
situation.
For example, consider our Employee entity again. If the Employee instance is already managed, and a
new Address instance is set in it, invoking persist() again on the Employee instance will cause the
Address instance to become managed. No changes will be made to the Employee instance because it
is already managed.

Because adding the PERSIST cascade is a very common and desirable behavior for relationships, it
is possible to make this the default cascade setting for all relationships in the persistence unit. We will
discuss this technique in Chapter 10.

Cascade Remove
At first glance, having the entity manager automatically cascade remove() operations might sound
attractive. Depending on the cardinality of the relationship, it could eliminate the need to explicitly
remove multiple entity instances. And yet, while we could cascade this operation in a number of
situations, this should be applied only in certain cases. There are really only two cases in which
cascading the remove() operation makes sense: one-to-one and one-to-many relationships, in which
there is a clear parent-child relationship. It can’t be blindly applied to all one-to-one and one-to-
many relationships because the target entities might also be participating in other relationships or
might make sense as stand-alone entities. Care must be taken when using the REMOVE cascade option.

With that warning given, let’s look at a situation in which cascading the remove() operation makes
sense. If an Employee entity is removed (hopefully an uncommon occurrence!), it might make sense to
cascade the remove() operation to both the ParkingSpace and Phone entities related to the Employee.
These are both cases in which the Employee is the parent of the target entities, meaning they are not
referenced by other entities in the system. Listing 6-19 demonstrates the changes to the Employee
entity class that enables this behavior. Note that we have added the REMOVE cascade in addition to the
existing PERSIST option. Chances are, if an owning relationship is safe to use REMOVE, it is also safe to
use PERSIST.

Listing 6-19. Enabling Cascade Remove

@Entity
public class Employee {
 // ...
 @OneToOne(cascade={CascadeType.PERSIST, CascadeType.REMOVE})
 ParkingSpace parkingSpace;
 @OneToMany(mappedBy="employee",
 cascade={CascadeType.PERSIST, CascadeType.REMOVE})

CHAPTER 6 ■ ENTITY MANAGER

156

 Collection<Phone> phones;
 // ...
}

Now let’s take a step back and look at what it means to cascade the remove() operation. As it
processes the Employee instance, the entity manager will navigate across the parkingSpace and phones
relationships and invoke remove() on those entity instances as well. Like the remove() operation on a
single entity, this is a database operation and has no effect at all on the in-memory links between the
object instances. When the Employee instance becomes detached, its phones collection will still contain
all the Phone instances that were there before the remove() operation took place. The Phone instances
are detached because they were removed as well, but the link between the two instances remains.

Because the remove() operation can be safely cascaded only from parent to child, it can’t help the
situation we encountered earlier in the “Removing an Entity” section. There is no setting that can be
applied to a relationship from one entity to another that will cause it to be removed from a parent
without also removing the parent in the process. For example, when trying to remove the ParkingSpace
entity, we hit an integrity constraint violation from the database unless the parkingSpace field in the
Employee entity is set to null. Setting the REMOVE cascade option on the @OneToOne annotation in the
ParkingSpace entity would not cause it to be removed from the Employee; instead, it would cause the
Employee instance itself to become removed. Clearly this is not the behavior we desire. There are no
shortcuts to relationship maintenance.

Clearing the Persistence Context
Occasionally, it might be necessary to clear a persistence context of its managed entities. This is
usually required only for application-managed and extended persistence contexts that are long-lived
and have grown too large. For example, consider an application-managed entity manager that issues
a query returning several hundred entity instances. After changes are made to a handful of these
instances and the transaction is committed, you have left in memory hundreds of objects that you have
no intention of changing any further. If you don’t want to close the persistence context, you need to be
able to clear out the managed entities, or else the persistence context will continue to grow over time.

The clear() method of the EntityManager interface can be used to clear the persistence context. In
many respects, this is semantically equivalent to a transaction rollback. All entity instances managed
by the persistence context become detached with their state left exactly as it was when the clear()
operation was invoked. If a transaction was started at this point and then committed, nothing would be
written out to the database because the persistence context is empty. The clear() operation is all or
nothing. Selectively cancelling the management of any particular entity instance while the
persistence context is still open is achieved via the detach() operation. We discuss this later in the
section “Detachment and Merging.”

Although technically possible, clearing the persistence context when there are uncommitted
changes is a dangerous operation. The persistence context is an in-memory structure, and clearing it
simply detaches the managed entities. If you are in a transaction and changes have already been
written to the database, they will not be rolled back when the persistence context is cleared. The
detached entities that result from clearing the persistence context also suffer from all the negative
effects caused by a transaction rollback even though the transaction is still active. For example,
identifier generation and versioning should be considered suspect for any entities detached as a
result of using the clear() operation.

CHAPTER 6 ■ ENTITY MANAGER

157

Synchronization with the Database
Any time the persistence provider generates SQL and writes it out to the database over a JDBC
connection, we say that the persistence context has been flushed. All pending changes that require a
SQL statement to become part of the transactional changes in the database have been written out and
will be made permanent when the database transaction commits. It also means that any subsequent
SQL operation that takes place after the flush will incorporate these changes. This is particularly
important for SQL queries that are executed in a transaction that is also changing entity data.

If there are managed entities with changes pending, a flush is guaranteed to occur in two
situations. The first is when the transaction commits. A flush of any required changes will occur before
the database transaction has completed. The only other time a flush is guaranteed to occur is when the
entity manager flush() operation is invoked. This method allows developers to manually trigger the
same process that the entity manager internally uses to flush the persistence context.

That said, a flush of the persistence context could occur at any time if the persistence provider
deems it necessary. An example of this is when a query is about to be executed and it depends on new
or changed entities in the persistence context. Some providers will flush the persistence context to
ensure that the query incorporates all pending changes. A provider might also flush the persistence
context often if it uses an eager-write approach to entity updates. Most persistence providers defer
SQL generation to the last possible moment for performance reasons, but this is not guaranteed.

Now that we have covered the circumstances in which a flush can occur, let’s look at exactly what it
means to flush the persistence context. A flush basically consists of three components: new entities
that need to be persisted, changed entities that need to be updated, and removed entities that need to
be deleted from the database. All this information is managed by the persistence context. It maintains
links to all the managed entities that will be created or changed as well as the list of entities that need
to be removed.

When a flush occurs, the entity manager first iterates over the managed entities and looks for new
entities that have been added to relationships with cascade persist enabled. This is logically
equivalent to invoking persist() again on each managed entity just before the flush occurs. The entity
manager also checks to ensure the integrity of all the relationships. If an entity points to another
entity that is not managed or has been removed, an exception can be thrown.

The rules for determining whether the flush fails in the presence of an unmanaged entity can be
complicated. Let’s walk through an example that demonstrates the most common issues. Figure 6-1
shows an object diagram for an Employee instance and some of the objects that it is related to. The emp
and ps entity objects are managed by the persistence context. The addr object is a detached entity from
a previous transaction, and the Phone objects are new objects that have not been part of any
persistence operation so far.

Figure 6-1. Links to unmanaged entities from a persistence context

CHAPTER 6 ■ ENTITY MANAGER

158

To determine the outcome of flushing the persistence context given the arrangement shown in
Figure 6-1, we must first look at the cascade settings of the Employee entity. Listing 6-20 shows the
relationships as implemented in the Employee entity. Only the phones relationship has the PERSIST
cascade option set. The other relationships are all defaulted so they will not cascade.

Listing 6-20. Relationship Cascade Settings for Employee

@Entity
public class Employee {
 // ...
 @OneToOne
 ParkingSpace parkingSpace;
 @OneToMany(mappedBy="employee", cascade=CascadeType.PERSIST)
 Collection<Phone> phones;
 @ManyToOne
 Address address;
 // ...
}

Starting with the emp object, let’s walk through the flush process as if we are the persistence
provider. The emp object is managed and has links to four other objects. The first step in the process is
to navigate the relationships from this entity as if we are invoking persist() on it. The first object we
encounter in this process is the ps object across the parkingSpace relationship. Because ps is also
managed, we don’t have to do anything further.

Next we navigate the phones relationship to the two Phone objects. These entities are new, and this
would normally cause an exception, but because the PERSIST cascade option has been set, we perform
the equivalent of invoking persist() on each Phone object. This makes the objects managed, making
them part of the persistence context. The Phone objects do not have any further relationships to cascade
the persist operation, so we are done here as well.

Next we reach the addr object across the address relationship. Because this object is detached, we
would normally throw an exception, but this particular relationship is a special case in the flush
algorithm. Any time a detached object that is the target of the one-to-one or many-to-one relationship
is encountered where the source entity is the owner, the flush will still proceed because the act of
persisting the owning entity does not depend on the target. The owning entity has the foreign key
column and needs to store only the primary key value of the target entity.

This completes the flush of the emp object. The algorithm then moves to the ps object and starts the
process again. Because there are no relationships from the ps object to any other, the flush process
completes. So in this example even though three of the objects pointed to from the emp object are not
managed, the overall flush completes successfully because of the cascade settings and rules of the flush
algorithm.

Ideally, during a flush all the objects pointed to by a managed entity will also be managed entities
themselves. If this is not the case, the next thing we need to be aware of is the PERSIST cascade setting. If
the relationship has this setting, target objects in the relationship will also be persisted, making them
managed before the flush completes. If the PERSIST cascade option is not set, an IllegalStateException
exception will be thrown whenever the target of the relationship is not managed, except in the special
case related to one-to-one and many-to-one relationships that we described previously.

In light of how the flush operation works, it is always safer to update relationships pointing to
entities that will be removed before carrying out the remove() operation. A flush can occur at any time,
so invoking remove() on an entity without clearing any relationships that point to the removed entity
could result in an unexpected IllegalStateException exception if the provider decides to flush the
persistence context before you get around to updating the relationships.

CHAPTER 6 ■ ENTITY MANAGER

159

In Chapter 7, we will also discuss techniques to configure the data integrity requirements of
queries so that the persistence provider is better able to determine when a flush of the persistence
context is really necessary.

Detachment and Merging
Simply put, a detached entity is one that is no longer associated with a persistence context. It was
managed at one point, but the persistence context might have ended or the entity might have been
transformed so that it has lost its association with the persistence context that used to manage it. The
persistence context, if there still is one, is no longer tracking the entity. Any changes made to the
entity won’t be persisted to the database, but all the state that was there on the entity when it was
detached can still be used by the application. A detached entity cannot be used with any entity
manager operation that requires a managed instance.

The opposite of detachment is merging. Merging is the process by which an entity manager
integrates detached entity state into a persistence context. Any changes to entity state that were made
on the detached entity overwrite the current values in the persistence context. When the transaction
commits, those changes will be persisted. Merging allows entities to be changed “offline” and then
have those changes incorporated later on.

The following sections will describe detachment and how detached entities can be merged back
into a persistence context.

Detachment
There are two views of detachment. On one hand, it is a powerful tool that can be leveraged by
applications in order to work with remote applications or to support access to entity data long after a
transaction has ended. On the other hand, it can be a frustrating problem when the domain model
contains lots of lazy-loading attributes and clients using the detached entities need to access this
information.

There are many ways in which an entity can become detached. Each of the following situations
will lead to detached entities:

• When the transaction that a transaction-scoped persistence context is associated
with commits, all the entities managed by the persistence context become
detached.

• If an application-managed persistence context is closed, all its managed entities
become detached.

• If a stateful session bean with an extended persistence context is removed, all its
managed entities become detached.

• If the clear() method of an entity manager is used, it detaches all the entities in
the persistence context managed by that entity manager.

• If the detach() method of an entity manager is used, it detaches a single entity
instance from the persistence context managed by that entity manager.

• When transaction rollback occurs, it causes all entities in all persistence contexts
associated with the transaction to become detached.

• When an entity is serialized, the serialized form of the entity is detached from its
persistence context.

CHAPTER 6 ■ ENTITY MANAGER

160

Some of these situations might be intentional and planned for, such as detachment after the end of
the transaction or serialization. Others might be unexpected, such as detachment because of rollback.

Explicit detachment of an entity is achieved through the detach() operation. Unlike the clear()
operation discussed earlier, if passed an entity instance as a parameter, the detach() operation will be
restricted to a single entity and its relationships. Like other cascading operations, the detach()
operation will also navigate across relationships that have the DETACH or ALL cascade options set,
detaching additional entities as appropriate. Note that passing a new or removed entity to detach()
has different behavior than a normal managed entity. The operation does not detach either new or
removed entities, but it will still attempt, when configured to cascade, to cascade across relationships
on removed entities and detach any managed entities that are the target of those relationships.

In Chapter 4, we introduced the LAZY fetch type that can be applied to any basic mapping or
relationship. This has the effect of hinting to the provider that the loading of a basic or relationship
attribute should be deferred until it is accessed for the first time. Although not commonly used on basic
mappings, marking relationship mappings to be lazy loaded is an important part of performance
tuning.

We need to consider, however, the impact of detachment on lazy loading. Consider the Employee
entity shown in Listing 6-21. The address relationship will eagerly load because many-to-one
relationships eagerly load by default. In the case of the parkingSpace attribute, which would also
normally eagerly load, we have explicitly marked the relationship as being lazy loading. The phones
relationship, as a one-to-many relationship, will also lazy load by default.

Listing 6-21. Employee with Lazy-Loading Mappings

@Entity
public class Employee {
 // ...
 @ManyToOne
 private Address address;
 @OneToOne(fetch=FetchType.LAZY)
 private ParkingSpace parkingSpace;
 @OneToMany(mappedBy="employee")
 private Collection<Phone> phones;
 // ...
}

As long as the Employee entity is managed, everything works as we expect. When the entity is
retrieved from the database, only the associated Address entity will be eagerly loaded. The provider
will fetch the necessary entities the first time the parkingSpace and phones relationships are accessed.

If this entity becomes detached, the outcome of accessing the parkingSpace and phones
relationships is suddenly a more complex issue. If the relationships were accessed while the entity was
still managed, the target entities can also be safely accessed while the Employee entity is detached. If
the relationships were not accessed while the entity was managed, we have a problem.

The behavior of accessing an unloaded attribute when the entity is detached is not defined. Some
vendors might attempt to resolve the relationship, while others might simply throw an exception or
leave the attribute uninitialized. If the entity was detached because of serialization, there is virtually
no hope of resolving the relationship. The only portable thing to do with attributes that are unloaded is
leave them alone. Of course, this implies that you know which attributes have been loaded, and that is
not always easy.

In the case where entities have no lazy-loading attributes, detachment is not a big deal. All the
entity state that was there in the managed version is still available and ready to use in the detached
version of the entity. In the presence of lazy-loading attributes, care must be taken to ensure that all
the information you need to access offline is available. When possible, try to define the set of detached

CHAPTER 6 ■ ENTITY MANAGER

161

entity attributes that can be accessed by the offline component. The supplier of the entities should treat
that set as a contract and honor it by triggering those attributes while the entity is still managed. Later
in the chapter we will demonstrate a number of strategies for planning for, and working with,
detached entities, including how to cause unloaded attributes to be loaded.

Merging Detached Entities
The merge() operation is used to merge the state of a detached entity into a persistence context. The
method is straightforward to use, requiring only the detached entity instance as an argument. There
are some subtleties to using merge() that make it different to use from other entity manager methods.
Consider the following example, which shows a session bean method that accepts a detached Employee
parameter and merges it into the current persistence context:

public void updateEmployee(Employee emp) {
 em.merge(emp);
 emp.setLastAccessTime(new Date());
}

Assuming that a transaction begins and ends with this method call, any changes made to the Employee
instance while it was detached will be written to the database. What will not be written, however, is the
change to the last access time. The argument to merge() does not become managed as a result of the
merge. A different managed entity (either a new instance or an existing managed version already in
the persistence context) is updated to match the argument, and then this instance is returned from the
merge() method. Therefore to capture this change, we need to use the return value from merge()
because it is the managed entity. The following example shows the correct implementation:

public void updateEmployee(Employee emp) {
 Employee managedEmp = em.merge(emp);
 managedEmp.setLastAccessTime(new Date());
}

Returning a managed instance other than the original entity is a critical part of the merge
process. If an entity instance with the same identifier already exists in the persistence context, the
provider will overwrite its state with the state of the entity that is being merged, but the managed
version that existed already must be returned to the client so that it can be used. If the provider did not
update the Employee instance in the persistence context, any references to that instance will become
inconsistent with the new state being merged in.

When merge() is invoked on a new entity, it behaves similarly to the persist() operation. It adds
the entity to the persistence context, but instead of adding the original entity instance, it creates a new
copy and manages that instance instead. The copy that is created by the merge() operation is persisted
as if the persist() method were invoked on it.

In the presence of relationships, the merge() operation will attempt to update the managed entity
to point to managed versions of the entities referenced by the detached entity. If the entity has a
relationship to an object that has no persistent identity, the outcome of the merge operation is
undefined. Some providers might allow the managed copy to point to the non-persistent object,
whereas others might throw an exception immediately. The merge() operation can be optionally
cascaded in these cases to prevent an exception from occurring. We will cover cascading of the merge()
operation later in this section. If an entity being merged points to a removed entity, an
IllegalArgumentException exception will be thrown.

Lazy-loading relationships are a special case in the merge operation. If a lazy-loading
relationship was not triggered on an entity before it became detached, that relationship will be
ignored when the entity is merged. If the relationship was triggered while managed and then set to

CHAPTER 6 ■ ENTITY MANAGER

162

null while the entity was detached, the managed version of the entity will likewise have the
relationship cleared during the merge.

To illustrate the behavior of merge() with relationships, consider the object diagram shown in
Figure 6-2. The detached emp object has relationships to three other objects. The addr and dept objects
are detached entities from a previous transaction, whereas the phone1 entity was recently created and
persisted using the persist() operation and is now managed as a result. Inside the persistence context
there is currently an Employee instance with a relationship to another managed Address. The existing
managed Employee instance does not have a relationship to the newly managed Phone instance.

Figure 6-2. Entity state prior to merge

Let’s consider the effect of invoking merge() on the emp object. The first thing that happens is that
the provider checks the persistence context for a pre-existing entity instance with the same identifier.
In this example, the emp1 object from the persistence context matches the identifier from the emp object
we are trying to merge. Therefore, the basic state of the emp object overwrites the state of the emp1
object in the persistence context, and the emp1 object will be returned from the merge() operation.

The provider next considers the Phone and Department entities pointed to from emp. The phone1
object is already managed, so the provider can safely update emp1 to point to this instance. In the case
of the dept object, the provider checks to see whether there is already a persistent Department entity
with the same identifier. In this case, it finds one in the database and loads it into the persistence
context. The emp1 object is then updated to point to this version of the Department entity. The detached
dept object does not become managed again.

CHAPTER 6 ■ ENTITY MANAGER

163

Finally, the provider checks the addr object referenced from emp. In this case, it finds a pre-existing
managed object addr1 with the same identifier. Because the emp1 object already points to the addr1
object, no further changes are made. At this point let’s look at the state of the object model after the
merge. Figure 6-3 shows these changes.

Figure 6-3. Entity state after merge

In Figure 6-3 we see that the emp1 object has been updated to reflect the state changes from emp.
The dept1 object is new to the persistence context after being loaded from the database. The emp1 object
now points to both the phone1 object and the dept1 object in order to match the relationships of the emp
object. The addr1 object has not changed at all. The fact that the addr1 object has not changed might
come as a surprise. After all, the addr object had pending changes and it was pointed to by the emp
object that was merged.

To understand why, we must return to the issue of cascading operations with the entity manager.
By default, no operations are cascaded when an entity manager operation is applied to an entity
instance. The merge() operation is no different in this regard. In order for the merge to be cascaded
across relationships from an Employee, the MERGE cascade setting must be set on the relationship
mappings. Otherwise, we would have to invoke merge() on each related object.

Looking back at our example, the problem with the updated Address entity was that the Employee
entity did not cascade the merge() operation to it. This had the unfortunate side effect of effectively
discarding the changes we had made to the Address entity in favor of the version already in the
persistence context. To obtain the behavior that we intended, we must either invoke merge() explicitly

CHAPTER 6 ■ ENTITY MANAGER

164

on the addr object or change the relationship mappings of the Employee entity to include the MERGE
cascade option. Listing 6-22 shows the changed Employee class.

Listing 6-22. Employee Entity with Merge Cascade Setting

@Entity
public class Employee {
 @Id private int id;
 private String name;
 private long salary;
 @ManyToOne(cascade=CascadeType.MERGE)
 private Address address;
 @ManyToOne
 private Department department;
 @OneToMany(mappedBy="employee", cascade=CascadeType.MERGE)
 private Collection<Phone> phones;
 // ...
}

With the Employee entity changed in this way, the merge operation will be cascaded to the Address
and Phone entities pointed to by any Employee instances. This is equivalent to invoking merge() on each
instance individually. Note that we did not cascade the merge operation to the Department entity. We
generally cascade operations only down from parent to child, not upward from child to parent. Doing
so is not harmful, but it requires more effort from the persistence provider to search out changes. If the
Department entity changes as well, it is better to cascade the merge from the Department to its associated
Employee instances and then merge only a single Department instance instead of multiple Employee
instances.

Merging detached entities with relationships can be a tricky operation. Ideally, we want to merge
the root of an object graph and have all related entities get merged in the process. This can work, but
only if the MERGE cascade setting has been applied to all relationships in the graph. If it hasn’t, you must
merge each instance that is the target of a non-cascaded relationship one at a time.

Before we leave the topic of merging, we must mention that locking and versioning plays a vital
role in ensuring data integrity in these situations. We will explore this topic in Chapter 11.

Working with Detached Entities
Let’s begin with a scenario that is very common with modern web applications. A servlet calls out to a
session bean to execute a query and receives a collection of entities in return. The servlet then places
these entities into the request map and forwards the request to a JSP for presentation. This pattern is
called Page Controller,1 a variation of the Front Controller2 pattern in which there is a single
controller for each view instead of one central controller for all views. In the context of the familiar
Model-View-Controller (MVC) architecture, the session bean provides the model, the JSP page is the
view, and the servlet is the controller.

1 Fowler, Martin. Patterns of Enterprise Application Architecture. Boston: Addison-Wesley, 2002.
2 Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design Strategies,
Second Edition. Upper Saddle River, N.J.: Prentice Hall PTR, 2003.

CHAPTER 6 ■ ENTITY MANAGER

165

First consider the session bean that will produce the results that will be rendered by the JSP page.
Listing 6-23 shows the bean implementation. In this example, we are looking at only the findAll()
method, which returns all the Employee instances stored in the database.

Listing 6-23. The EmployeeService Session Bean

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="EmployeeService")
 private EntityManager em;

 public List findAll() {
 return em.createQuery("SELECT e FROM Employee e")
 .getResultList();
 }

 // ...
}

Listing 6-24 shows the source code for a simple servlet that invokes the findAll() method of the
EmployeeService session bean to fetch all the Employee entities in the database. It then places the results
in the request map and delegates to the “listEmployees.jsp” JSP page to render the result.

Listing 6-24. The View Employees Servlet

public class EmployeeServlet extends HttpServlet {
 @EJB EmployeeService bean;

 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 List emps = bean.findAll();
 request.setAttribute("employees", emps);
 getServletContext().getRequestDispatcher("/listEmployees.jsp")
 .forward(request, response);
 }
}

Finally, Listing 6-25 shows the last part of our MVC architecture, the JSP page to render the results.
It uses the JavaServer Pages Standard Tag Library (JSTL) to iterate over the collection of Employee
instances and display the name of each employee as well as the name of the department to which that
employee is assigned. The employees variable accessed by the <c:forEach/> tag is the List of Employee
instances that was placed in the request map by the servlet.

Listing 6-25. JSP Page to Display Employee Information

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c"%>
<html>
 <head>
 <title>All Employees</title>
 </head>
 <body>
 <table>

http://java.sun.com/jsp/jstl/core

CHAPTER 6 ■ ENTITY MANAGER

166

 <thead>
 <tr>
 <th>Name</th>
 <th>Department</th>
 </tr>
 </thead>
 <tbody>
 <c:forEach items="${employees}" var="emp">
 <tr>
 <td><c:out value="${emp.name}"/></td>
 <td><c:out value="${emp.department.name}"/></td>
 </tr>
 </c:forEach>
 </tbody>
 </table>
 </body>
</html>

The findAll() method of the EmployeeService session bean uses REQUIRED container-managed
transactions by default. Because the servlet invoking the method has not started a transaction, the
container will start a new transaction before findAll() is invoked and commit the transaction after it
finishes executing. As a result, the results of the query become detached before they are returned to the
servlet.

This causes a problem. In this example, the department relationship of the Employee class has been
configured to use lazy fetching. As we learned previously in the section on detachment, the only
portable thing to do is leave them alone. In this example, however, we don’t want to leave them alone.
In order to display the department name for the employee, the JSP expression navigates to the
Department entity from the Employee entity. Because this is a lazy-loading relationship, the results are
unpredictable. It might work, but then again it might not.

This scenario forms the basis of our challenge. In the following sections we will look at a number
of strategies to either prepare the entities needed by the JSP page for detachment or avoid detachment
altogether.

Planning for Detachment
Knowing that the results of the findAll() method will be used to display employee information and
that the department name will be required as part of this process, we need to ensure that the
department relationship of the Employee entity has been resolved before the entities become detached.
There are several strategies that can be used to resolve lazy-loaded associations in preparation for
detachment. We will discuss two of them here, focusing on how to structure application code to plan for
detachment. A third strategy, for JP QL queries called fetch joins, will be discussed in Chapter 8.

Triggering Lazy Loading

The first strategy to consider in resolving lazy-loading associations is to simply trigger the lazy
loading behavior by accessing the field or relationship. It looks slightly odd in code because the return
values of the getter methods are discarded, but nevertheless it has the desired effect. Listing 6-26
shows an alternate implementation of the findAll() method of the EmployeeService session bean. In
this case, we iterate over the Employee entities, triggering the department relationship before returning
the original list from the method. Because findAll() is executed inside of a transaction, the

CHAPTER 6 ■ ENTITY MANAGER

167

getDepartment() call completes successfully, and the Department entity instance is guaranteed to be
available when the Employee instance is detached.

Listing 6-26. Triggering a Lazy-Loading Relationship

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="EmployeeService")
 private EntityManager em;

 public List findAll() {
 List<Employee> emps = (List<Employee>)
 em.createQuery("SELECT e FROM Employee e")
 .getResultList();
 for (Employee emp : emps) {
 Department dept = emp.getDepartment();
 if (dept != null) {
 dept.getName();
 }
 }
 return emps;
 }

 // ...
}

One thing that might look odd from Listing 6-26 is that we not only invoked getDepartment() on
the Employee instance but we also invoked getName() on the Address instance. If you recall from
Chapter 4, the entity returned from a lazy-loading relationship can actually be a proxy that waits until
a method is invoked on the proxy before the entity is faulted in. We have to invoke a method on the
entity to guarantee that it is actually retrieved from the database. If this were a collection-valued
relationship, the size() method of the Collection would be commonly used to force eager loading.

If lazy-loading basic mappings were used on either the Employee or Department entities, those
attributes would not be guaranteed to be present after detachment as well. This is another reason why
configuring basic mappings to use lazy loading is not recommended. Developers often expect that a
relationship is not eagerly loaded but can be caught off guard if a basic state field such as the name
attribute of the Employee instance is missing.

Configuring Eager Loading

When an association is continuously being triggered for detachment scenarios, at some point it is
worth revisiting whether the association should be lazy loaded in the first place. Carefully switching
some relationships to eager loading can avoid a lot of special cases in code that attempt to trigger the
lazy loading.

In this example, Employee has a many-to-one relationship with Department. The default fetch type
for a many-to-one relationship is eager loading, but the class was modeled by explicitly using lazy
loading. By removing the LAZY fetch type from the department relationship or by specifying the EAGER
fetch type explicitly, we ensure that the Department instance is always available to the Employee
instance.

CHAPTER 6 ■ ENTITY MANAGER

168

Collection-valued relationships lazy load by default, so the EAGER fetch type must be explicitly
applied to those mappings if eager loading is desired. Be judicious in configuring collection-valued
relationships to be eagerly loaded, however, because it might cause excessive database access in cases
where detachment is not a requirement.

Avoiding Detachment
The only complete solution to any detachment scenario is not to detach at all. If your code
methodically triggers every lazy-loaded relationship or has marked every association on an entity to
be eagerly loaded in anticipation of detachment, this is probably a sign that an alternative approach is
required.

Avoiding detachment boils down to just two approaches. Either we don’t work with entities in our
JSP page, or we must keep a persistence context open for the duration of the JSP rendering process so
that lazy-loading relationships can be resolved.

Not using entities means copying entity data into a different data structure that does not have the
same lazy-loading behavior. One approach would be to use the Transfer Object3 pattern, but that
seems highly redundant given the POJO nature of entities. A better approach, which we will discuss in
Chapters 7 and 8, is to use projection queries to retrieve only the entity state that will be displayed on
the JSP page instead of retrieving full entity instances.

Keeping a persistence context open requires additional planning but allows the JSP page to work
with entity data using the JavaBean properties of the entity class. In practical terms, keeping a
persistence context open means that there is either an active transaction for entities fetched from
transaction-scoped persistence contexts or that an application-managed or extended persistence
context is in use. This obviously isn’t an option when entities must be serialized to a separate tier or
remote client, but it suits the web application scenario we described earlier. We’ll cover each of these
strategies here.

Transaction View

The persistence context created by a transaction-scoped entity manager remains open only as long as
the transaction in which it was created has not ended. Therefore, in order to use a transaction-scoped
entity manager to execute a query and be able to render the query results while resolving lazy-
loading relationships, both operations must be part of the same transaction. When a transaction is
started in the web tier and includes both session bean invocation and JSP page rendering before it is
committed, we call this pattern a Transaction View.

The benefit of this approach is that any lazy-loading relationships encountered during the
rendering of the view will be resolved because the entities are still managed by a persistence context.
To implement this pattern in our example scenario, we start a bean-managed transaction before the
findAll() method is invoked and commit the transaction after the JSP page has rendered the results.
Listing 6-27 demonstrates this approach. Note that to save space we have omitted the handling of the
checked exceptions thrown by the UserTransaction operations. The commit() method alone throws no
fewer than six checked exceptions.

3 Ibid.

CHAPTER 6 ■ ENTITY MANAGER

169

Listing 6-27. Combining a Session Bean Method and JSP in a Single Transaction

public class EmployeeServlet extends HttpServlet {
 @Resource UserTransaction tx;
 @EJB EmployeeService bean;

 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 // ...
 try {
 tx.begin();
 List emps = bean.findAll();
 request.setAttribute("employees", emps);
 getServletContext().getRequestDispatcher("/listEmployees.jsp")
 .forward(request, response);
 } finally {
 tx.commit();
 }
 // ...
 }
}

With this solution in place, the lazy-loading relationships of the Employee entity do not have to be
eagerly resolved before the JSP page renders the results. The only downside to this approach is that the
servlet must now manage transactions and recover from transaction failures. A lot of logic also has to
be duplicated between all the servlet controllers that need this behavior.

One way to work around this duplication is to introduce a common superclass for servlets that use
the Transaction View pattern that encapsulates the transaction behavior. If, however, you are using
the Front Controller pattern and controller actions are implemented using the Command4 pattern,
this might become more difficult to manage, particularly if the page flow is complex and multiple
controllers collaborate to build a composite view. Then not only does each controller need to start
transactions but it also needs to be aware of any transactions that were started earlier in the
rendering sequence.

Another possible, though non-portable, solution is to move the transaction logic into a servlet
filter. It allows us to intercept the HTTP request before the first controller servlet is accessed and wrap
the entire request in a transaction. Such coarse-grained use of transactions is something that needs to
be managed carefully, however. If applied to all HTTP requests equally, it might also cause trouble for
requests that involve updates to the database. Assuming that these operations are implemented as
session beans, the REQUIRES_NEW transaction attribute might be required in order to isolate entity
updates and handle transaction failure without impacting the overriding global transaction.

4 Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Boston: Addison-Wesley, 1995.

CHAPTER 6 ■ ENTITY MANAGER

170

Entity Manager per Request

For applications that do not encapsulate their query operations behind session bean façades, an
alternative to the Transaction View pattern is to create a new application-managed entity manager to
execute reporting queries, closing it only after the JSP page has been rendered. Because the entities
returned from the query on the application-managed entity manager will remain managed until the
entity manager is closed, it offers the same benefits as the Transaction View pattern without requiring
an active transaction.

Listing 6-28 revisits our EmployeeServlet servlet again, this time creating an application-
managed entity manager to execute the query. The results are placed in the map as before, and the
entity manager is closed after the JSP page has finished rendering.

Listing 6-28. Using an Application-Managed Entity Manager for Reporting

public class EmployeeServlet extends HttpServlet {
 @PersistenceUnit(unitName="EmployeeService")
 EntityManagerFactory emf;

 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 EntityManager em = emf.createEntityManager();
 try {
 List emps = em.createQuery("SELECT e FROM Employee e")
 .getResultList();
 request.setAttribute("employees", emps);
 getServletContext().getRequestDispatcher("/listEmployees.jsp")
 .forward(request, response);
 } finally {
 em.close();
 }
 }
}

Unfortunately, we now have query logic embedded in our servlet implementation. The query is
also no longer reusable the way it was when it was part of a stateless session bean. There are a couple
of other options we can explore as a solution to this problem. Instead of executing the query directly,
we could create a POJO service class that uses the application-managed entity manager created by the
servlet to execute queries. This is similar to the first example we created in Chapter 2. We gain the
benefit of encapsulating the query behavior inside business methods while being decoupled from a
particular style of entity manager.

Alternatively we can place our query methods on a stateful session bean that uses an extended
entity manager. When a stateful session bean uses an extended entity manager, its persistence
context lasts for the lifetime of the session bean, which ends only when the user invokes a remove
method on the bean. If a query is executed against the extended persistence context of a stateful
session bean, the results of that query can continue to resolve lazy-loading relationships as long as the
bean is still available.

Let’s explore this option and see how it would look instead of the application-managed entity
manager we showed in Listing 6-28. Listing 6-29 introduces a stateful session bean equivalent to the
EmployeeService stateless session bean that we have been using so far. In addition to using the
extended entity manager, we have also set the default transaction type to be NOT_SUPPORTED. There is
no need for transactions because the results of the query will never be modified, only displayed.

CHAPTER 6 ■ ENTITY MANAGER

171

Listing 6-29. Stateful Session Bean with Query Methods

@Stateful
@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public class EmployeeQueryBean implements EmployeeQuery {
 @PersistenceContext(type=PersistenceContextType.EXTENDED,
 unitName="EmployeeService")
 EntityManager em;

 public List findAll() {
 return em.createQuery("SELECT e FROM Employee e")
 .getResultList();
 }

 // ...

 @Remove
 public void finished() {
 }
}

Using this bean is very similar to using the application-managed entity manager. We create an
instance of the bean, execute the query, and then remove the bean when the JSP page has finished
rendering. Listing 6-30 shows this approach.

Listing 6-30. Using an Extended Entity Manager for Reporting

@EJB(name="queryBean", beanInterface=EmployeeQuery.class)
public class EmployeeServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 EmployeeQuery bean = createQueryBean();
 try {
 List emps = bean.findAll();
 request.setAttribute("employees", emps);
 getServletContext().getRequestDispatcher("/listEmployees.jsp")
 .forward(request, response);
 } finally {
 bean.finished();
 }
 }

 private EmployeeQuery createQueryBean() throws ServletException {
 // look up queryBean
 // ...
 }
}

At first glance this might seem like an overengineered solution. We gain the benefit of decoupling
queries from the servlet, but we have introduced a new session bean just to accomplish this goal.
Furthermore, we are using stateful session beans with very short lifetimes. Doesn’t that go against the
accepted practice of how to use a stateful session bean?

CHAPTER 6 ■ ENTITY MANAGER

172

To a certain extent this is true, but the extended persistence context invites us to experiment with
new approaches. In practice, stateful session beans do not add a significant amount of overhead to an
operation, even when used for short durations. As we will see later in the section “Edit Session,”
moving the stateful session bean to the HTTP session instead of limiting it to a single request also
opens up new possibilities for web application design.

Merge Strategies
Creating or updating information is a regular part of most enterprise applications. Users typically
interact with an application via the Web, using forms to create or change data as required. The most
common strategy to handle these changes in a Java EE application that uses JPA is to place the results of
the changes into detached entity instances and merge the pending changes into a persistence context
so that they can be written to the database.

Let’s revisit our simple web application scenario again. This time, instead of simply viewing
Employee information, the user can select an Employee and update basic information about that
employee. The entities are queried for presentation in a form in one request and then updated in a
second request when the user submits the form with changes entered.

Using a Session Façade pattern, this operation is straightforward. The changed entity is updated
and handed off to a stateless session bean to be merged. The only complexity involved is making sure
that relationships properly merge by identifying cases where the MERGE cascade setting is required.

Similar to the question of whether we can avoid detaching entities to compensate for lazy loading
concerns, the long-lived nature of application-managed and extended persistence contexts suggests
that there might also be a way to apply a similar technique to this situation. Instead of querying
entities in one HTTP request and throwing the entity instances away after the view has been
rendered, we want to keep these entities around in a managed state so that they can be updated in a
subsequent HTTP request and persisted merely by starting and committing a new transaction.

In the following sections, we will revisit the traditional Session Façade approach to merging and
then look at new techniques possible with the extended entity manager that will keep entities
managed for the life of a user’s editing session.

Session Façade

To use a Session Façade pattern to capture changes to entities, we provide a business method that will
merge changes made to a detached entity instance. In our example scenario, this means accepting an
Employee instance and merging it into a transaction-scoped persistence context. Listing 6-31 shows an
implementation of this technique in our EmployeeService session bean.

Listing 6-31. Business Method to Update Employee Information

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="EmployeeService")
 private EntityManager em;

 public void updateEmployee(Employee emp) {
 if (em.find(Employee.class, emp.getId()) == null) {
 throw new IllegalArgumentException("Unknown employee id: " + emp.getId());
 }

CHAPTER 6 ■ ENTITY MANAGER

173

 em.merge(emp);
 }

 // ...
}

The updateEmployee() method in Listing 6-31 is straightforward. Given the detached Employee
instance, it first attempts to check whether a matching identifier already exists. If no matching
Employee is found, an exception is thrown because we don’t want to allow new Employee records to be
created. Then we use the merge() operation to copy the changes into the persistence context, which are
then saved when the transaction commits.

Using the façade from a servlet is a two-step approach. During the initial HTTP request to begin
an editing session, the Employee instance is queried (typically using a separate method on the same
façade) and used to create a web form on which the user can make desired changes. The detached
instance is then stored in the HTTP session so it can be updated when the user submits the form from
the browser. We need to keep the detached instance around in order to preserve any relationships or
other state that will remain unchanged by the edit. Creating a new Employee instance and supplying
only partial values could have many negative side effects when the instance is merged.

Listing 6-32 shows an EmployeeUpdateServlet servlet that collects the id, name, and salary
information from the request parameters and invokes the session bean method to perform the update.
The previously detached Employee instance is retrieved from the HTTP session and then the changes
indicated by the request parameters are set into it. We have omitted validation of the request
parameters to conserve space, but ideally this should happen before the business method on the
session bean is invoked.

Listing 6-32. Using a Session Bean to Perform Entity Updates

public class EmployeeUpdateServlet extends HttpServlet {
 @EJB EmployeeService bean;

 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 int id = Integer.parseInt(request.getParameter("id"));
 String name = request.getParameter("name");
 long salary = Long.parseLong(request.getParameter("salary"));
 HttpSession session = request.getSession();
 Employee emp = (Employee) session.getAttribute("employee.edit");
 emp.setId(id);
 emp.setName(name);
 emp.setSalary(salary);
 bean.updateEmployee(emp);
 // ...
 }
}

If the amount of information being updated is very small, we can avoid the detached object and
merge() operation entirely by locating the managed version and manually copying the changes into it.
Consider the following example:

public void updateEmployee(int id, String name, long salary) {
 Employee emp = em.find(Employee.class, id);
 if (emp == null) {
 throw new IllegalArgumentException("Unknown employee id: " + id);
 }

CHAPTER 6 ■ ENTITY MANAGER

174

 emp.setEmpName(name);
 emp.setSalary(salary);
}

The beauty of this approach is its simplicity, but that is also its primary limitation. Typical web
applications today offer the ability to update large amounts of information in a single operation. To
accommodate these situations with this pattern, there would either have to be business methods taking
large numbers of parameters or many business methods that would have to be invoked in sequence to
completely update all the necessary information. And, of course, once you have more than one method
involved, it becomes important to maintain a transaction across all the update methods so that the
changes are committed as a single unit.

As a result, despite the availability of this approach, the web tier still commonly collects changes
into detached entities or transfer objects and passes the changed state back to session beans to be
merged and written to the database.

Edit Session

With the introduction of the extended entity manager, we can take a different approach to building
web applications that update entities. As we have discussed in this chapter, entities associated with an
extended entity manager remain managed as long as the stateful session bean holding the extended
entity manager is not removed. By placing a stateful session bean in a central location such as the
HTTP session, we can operate on entities managed by the extended entity manager without having to
merge in order to persist changes. We will refer to this as the Edit Session pattern to reflect the fact that
the primary goal of this pattern is to encapsulate editing use cases using stateful session beans.

Listing 6-33 introduces a stateful session bean that represents an employee editing session.
Unlike the EmployeeService session bean that contains a number of reusable business methods, this
style of stateful session bean is targeted to a single application use case. In addition to using the
extended entity manager, we have also set the default transaction type to be NOT_SUPPORTED with the
exception of the save() method. There is no need for transactions for methods that simply access the
Employee instance because those methods only operate in memory. It is only when we want to persist
the changes to the database that we need a transaction, and that only happens in the save() method.

Listing 6-33. Stateful Session Bean to Manage an Employee Editing Session

@Stateful
@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public class EmployeeEditBean implements EmployeeEdit {
 @PersistenceContext(type=PersistenceContextType.EXTENDED,
 unitName="EmployeeService")
 EntityManager em;
 Employee emp;

 public void begin(int id) {
 emp = em.find(Employee.class, id);
 if (emp == null) {
 throw new IllegalArgumentException("Unknown employee id: " + id);
 }
 }

 public Employee getEmployee() {
 return emp;
 }

CHAPTER 6 ■ ENTITY MANAGER

175

 @Remove
 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 public void save() {}

 @Remove
 public void cancel() {}
}

Let’s start putting the operations of the EmployeeEdit bean in context. When the HTTP request
arrives and starts the editing session, we will create a new EmployeeEdit stateful session bean and
invoke begin() using the id of the Employee instance that will be edited. The session bean then loads
the Employee instance and caches it on the bean. The bean is then bound to the HTTP session so that it
can be accessed again in a subsequent request once the user has changed the Employee information.
Listing 6-34 shows the EmployeeEditServlet servlet that handles the HTTP request to begin a new
editing session.

Listing 6-34. Beginning an Employee Editing Session

@EJB(name="EmployeeEdit", beanInterface=EmployeeEdit.class)
public class EmployeeEditServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 int id = Integer.parseInt(request.getParameter("id"));
 EmployeeEdit bean = getBean();
 bean.begin(id);
 HttpSession session = request.getSession();
 session.setAttribute("employee.edit", bean);
 request.setAttribute("employee", bean.getEmployee());
 getServletContext().getRequestDispatcher("/editEmployee.jsp")
 .forward(request, response);
 }

 public EmployeeEdit getBean() throws ServletException {
 // lookup EmployeeEdit bean
 // ...
 }
}

Now let’s look at the other half of the editing session, in which we wish to commit the changes.
When the user submits the form that contains the necessary Employee changes, the
EmployeeUpdateServlet is invoked. It begins by retrieving the EmployeeEdit bean from the HTTP
session. The request parameters with the changed values are then copied into the Employee instance
obtained from calling getEmployee() on the EmployeeEdit bean. If everything is in order, the save()
method is invoked to write the changes to the database. Listing 6-35 shows the EmployeeUpdateServlet
implementation. Note that we need to remove the bean from the HTTP session once the editing
session has completed.

CHAPTER 6 ■ ENTITY MANAGER

176

Listing 6-35. Completing an Employee Editing Session

public class EmployeeUpdateServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 String name = request.getParameter("name");
 long salary = Long.parseLong(request.getParameter("salary"));
 HttpSession session = request.getSession();
 EmployeeEdit bean = (EmployeeEdit) session.getAttribute("employee.edit");
 session.removeAttribute("employee.edit");
 Employee emp = bean.getEmployee();
 emp.setName(name);
 emp.setSalary(salary);
 bean.save();
 // ...
 }
}

The pattern for using stateful session beans and extended entity managers in the web tier is as
follows:

1. For each application use case that modifies entity data, we create a stateful
session bean with an extended persistence context. This bean will hold onto
all entity instances necessary to make the desired changes.

2. The HTTP request that initiates the editing use case creates an instance of the
stateful session bean and binds it to the HTTP session. The entities are
retrieved at this point and used to populate the web form for editing.

3. The HTTP request that completes the editing use case obtains the previously
bound stateful session bean instance and writes the changed data from the
web form into the entities stored on the bean. A method is then invoked on the
bean to commit the changes to the database.

In our simple editing scenario, this might seem somewhat excessive, but the beauty of this
technique is that it can easily scale to accommodate editing sessions of any complexity. Department,
Project, and other information can all be edited in one or even multiple sessions with the results
accumulated on the stateful session bean until the application is ready to persist the results.

Another major benefit of this approach is that web application frameworks such as JSF can directly
access the bean bound in the HTTP session from within JSP pages. The entity can be accessed both to
display the form for editing and as the target of the form when the user submits the results. In this
scenario, the developer only has to ensure that the necessary save and cancel methods are invoked at
the correct point in the application page flow.

There are a couple of other points that we need to mention about this approach. Once bound to the
HTTP session, the session bean will remain there until it is explicitly removed or until the HTTP
session expires. It is therefore important to ensure that the bean is removed once the editing session is
complete, regardless of whether the changes will be saved or abandoned. The
HttpSessionBindingListener callback interface can be used by applications to track when the HTTP
session is destroyed and clean up corresponding session beans appropriately.

The HTTP session is not thread-safe, and neither are stateful session bean references. In some
circumstances, it might be possible for multiple HTTP requests from the same user to access the HTTP
session concurrently. This is mostly an issue when requests take a long time to process and an

CHAPTER 6 ■ ENTITY MANAGER

177

impatient user refreshes the page or abandons her editing session for another part of the web
application. In these circumstances, the web application will either have to deal with possible
exceptions occurring if the stateful session bean is accessed by more than one thread or proxy the
stateful session bean with a synchronized wrapper.

Summary
In this chapter, we have presented a thorough treatment of the entity manager and its interactions
with entities, persistence contexts, and transactions. As you have seen, the entity manager can be used
in many different ways to accommodate a wide variety of application requirements.

We began by reintroducing the core terminology of JPA and explored the persistence context.
We then covered the three different types of entity manager: transaction-scoped, extended, and
application-managed. We looked at how to acquire and use each type and the types of problems they
are designed to solve.

In the transaction management section, we looked at each of the entity manager types and how
they relate to container-managed JTA transactions and the resource-local transactions of the JDBC
driver. Transactions play an important role in all aspects of enterprise application development with
JPA.

Next we revisited the basic operations of the entity manager, this time armed with the full
understanding of the different entity manager types and transaction-management strategies. We
introduced the notion of cascading and looked at the impact of relationships on persistence.

In our discussion of detachment, we introduced the problem and looked at it both from the
perspective of mobile entities to remote tiers and the challenge of merging offline entity changes back
into a persistence context. We presented several strategies to minimize the impact of detachment and
merging on application design by adopting design patterns specific to JPA.

In the next chapter, we will turn our attention to the query facilities of JPA, showing how to create,
execute, and work with the results of query operations.

CHAPTER 6 ■ ENTITY MANAGER

178

C H A P T E R 7

■ ■ ■

179

Using Queries

For most enterprise applications, getting data out of the database is at least as important as the ability
to put new data in. From searching to sorting, analytics, and business intelligence, efficiently moving
data from the database to the application and presenting it to the user is a regular part of enterprise
development. Doing so requires the ability to issue bulk queries against the database and interpret the
results for the application. Although high-level languages and expression frameworks have in many
cases attempted to insulate developers from the task of dealing with database queries at the level of
SQL, it’s probably fair to say that most enterprise developers have worked with at least one SQL dialect
at some point in their career.

Object-relational mapping adds another level of complexity to this task. Most of the time, the
developer will want the results converted to entities so that the query results may be used directly by
application logic. Similarly, if the domain model has been abstracted from the physical model via
object-relational mapping, it makes sense to also abstract queries away from SQL, which is not only
tied to the physical model but also difficult to port between vendors. Fortunately, as we will see, JPA
can handle a diverse set of query requirements.

JPA supports two methods for expressing queries to retrieve entities and other persistent data
from the database: query languages and the criteria API. The primary query language is Java
Persistence Query Language (JP QL), a database-independent query language that operates on the
logical entity model as opposed to the physical data model. Queries may also be expressed in SQL to
take advantage of the underlying database. We will explore using SQL queries with JPA in Chapter 11.
The criteria API provides an alternative method for constructing queries based on Java objects instead
of query strings. Chapter 9 covers the criteria API in detail.

We will begin our discussion of queries with an introduction to JP QL, followed by an exploration
of the query facilities provided by the EntityManager and Query interfaces.

Java Persistence Query Language
Before discussing JP QL, we must first look to its roots in the EJB specification. The Enterprise
JavaBeans Query Language (EJB QL) was first introduced in the EJB 2.0 specification to allow
developers to write portable finder and select methods for container-managed entity beans. Based on
a small subset of SQL, it introduced a way to navigate across entity relationships both to select data
and to filter the results. Unfortunately, it placed strict limitations on the structure of the query, limiting
results to either a single entity or a persistent field from an entity. Inner joins between entities were
possible, but used an odd notation. The initial release didn’t even support sorting.

CHAPTER 7 ■ USING QUERIES

180

The EJB 2.1 specification tweaked EJB QL a little bit, adding support for sorting, and introduced
basic aggregate functions; but again the limitation of a single result type hampered the use of
aggregates. You could filter the data, but there was no equivalent to SQL GROUP BY and HAVING
expressions.

JP QL significantly extends EJB QL, eliminating many weaknesses of the previous versions while
preserving backward compatibility. The following features are available above and beyond EJB QL:

• Single and multiple value result types

• Aggregate functions, with sorting and grouping clauses

• A more natural join syntax, including support for both inner and outer joins

• Conditional expressions involving subqueries

• Update and delete queries for bulk data changes

• Result projection into non-persistent classes

The next few sections provide a quick introduction to JP QL intended for readers familiar with SQL
or EJB QL. A complete tutorial and reference for JP QL can be found in Chapter 8.

Getting Started
The simplest JP QL query selects all the instances of a single entity type. Consider the following query:

SELECT e
FROM Employee e

If this looks similar to SQL, it should. JP QL uses SQL syntax where possible in order to give
developers experienced with SQL a head start in writing queries. The key difference between SQL and
JP QL for this query is that instead of selecting from a table, an entity from the application domain
model has been specified instead. The SELECT clause of the query is also slightly different, listing only
the Employee alias e. This indicates that the result type of the query is the Employee entity, so executing
this statement will result in a list of zero or more Employee instances.

Starting with an alias, we can navigate across entity relationships using the dot (.) operator. For
example, if we want just the names of the employees, the following query will suffice:

SELECT e.name
FROM Employee e

Each part of the expression corresponds to a persistent field of the entity that is a simple or
embeddable type, or an association leading to another entity or collection of entities. Because the
Employee entity has a persistent field named name of type String, this query will result in a list of zero or
more String objects.

We can also select an entity we didn’t even list in the FROM clause. Consider the following
example:

SELECT e.department
FROM Employee e

An employee has a many-to-one relationship with her department named department, so the
result type of the query is the Department entity.

CHAPTER 7 ■ USING QUERIES

181

Filtering Results
Just like SQL, JP QL supports the WHERE clause to set conditions on the data being returned. The
majority of operators commonly available in SQL are available in JP QL, including basic comparison
operators; IN, LIKE, and BETWEEN expressions; numerous function expressions (such as SUBSTRING
and LENGTH); and subqueries. The key difference for JP QL is that entity expressions and not column
references are used. Listing 7-1 demonstrates filtering using entity expressions in the WHERE clause.

Listing 7-1. Filtering Criteria Using Entity Expressions

SELECT e
FROM Employee e
WHERE e.department.name = 'NA42' AND
 e.address.state IN ('NY','CA')

Projecting Results
For applications that need to produce reports, a common scenario is selecting large numbers of entity
instances, but using only a portion of that data. Depending on how an entity is mapped to the database,
this can be an expensive operation if much of the entity data is discarded. It would be useful to return
only a subset of the properties from an entity. The following query demonstrates selecting only the
name and salary of each Employee instance:

SELECT e.name, e.salary
FROM Employee e

Joins Between Entities
The result type of a select query cannot be a collection; it must be a single valued object such as an
entity instance or persistent field type. Expressions such as e.phones are illegal in the SELECT clause
because they would result in Collection instances (each occurrence of e.phones is a collection, not an
instance). Therefore, just as with SQL and tables, if we want to navigate along a collection association
and return elements of that collection, we must join the two entities together. Listing 7-2
demonstrates a join between Employee and Phone entities in order to retrieve all the cell phone
numbers for a specific department.

Listing 7-2. Joining Two Entities Together

SELECT p.number
FROM Employee e, Phone p
WHERE e = p.employee AND
 e.department.name = 'NA42' AND
 p.type = 'Cell'

In JP QL, joins may also be expressed in the FROM clause using the JOIN operator. The advantage
of this operator is that the join can be expressed in terms of the association itself, and the query engine
will automatically supply the necessary join criteria when it generates the SQL. Listing 7-3 shows the
same query rewritten to use the JOIN operator. Just as in the previous query, the alias p is of type Phone,
only this time it refers to each of the phones in the e.phones collection.

CHAPTER 7 ■ USING QUERIES

182

Listing 7-3. Joining Two Entities Together Using the JOIN Operator

SELECT p.number
FROM Employee e JOIN e.phones p
WHERE e.department.name = 'NA42' AND
 p.type = 'Cell'

JP QL supports multiple join types, including inner and outer joins, as well as a technique called
fetch joins for eagerly loading data associated to the result type of a query but not directly returned.
See the “Joins” section in Chapter 8 for more information.

Aggregate Queries
The syntax for aggregate queries in JP QL is very similar to that of SQL. There are five supported
aggregate functions (AVG, COUNT, MIN, MAX, and SUM), and results may be grouped in the GROUP
BY clause and filtered using the HAVING clause. Once again, the difference is the use of entity
expressions when specifying the data to be aggregated. Listing 7-4 demonstrates an aggregate query
with JP QL.

Listing 7-4. Query Returning Statistics for Departments with Five or More Employees

SELECT d, COUNT(e), MAX(e.salary), AVG(e.salary)
FROM Department d JOIN d.employees e
GROUP BY d
HAVING COUNT(e) >= 5

Query Parameters
JP QL supports two types of parameter binding syntax. The first is positional binding, where
parameters are indicated in the query string by a question mark followed by the parameter number.
When the query is executed, the developer specifies the parameter number that should be replaced.
Listing 7-5 demonstrates positional parameter syntax.

Listing 7-5. Positional Parameter Notation

SELECT e
FROM Employee e
WHERE e.department = ?1 AND
 e.salary > ?2

Named parameters may also be used and are indicated in the query string by a colon followed by
the parameter name. When the query is executed, the developer specifies the parameter name that
should be replaced. Listing 7-6 demonstrates named parameter syntax.

Listing 7-6. Named Parameter Notation

SELECT e
FROM Employee e
WHERE e.department = :dept AND
 e.salary > :base

CHAPTER 7 ■ USING QUERIES

183

Defining Queries
JPA provides the Query and TypedQuery interfaces to configure and execute queries. The Query interface
is used in cases when the result type is Object, and the TypedQuery interface is used in the typical case
when typed results are preferred. As TypedQuery extends Query, a strongly typed query can always be
treated as an untyped version, though not vice versa. An implementation of the appropriate interface
for a given query is obtained through one of the factory methods in the EntityManager interface. The
choice of factory method depends on the type of query (JP QL, SQL, or criteria object), whether the query
has been predefined and whether strongly typed results are desired. For now, we will restrict our
discussion to JP QL queries. SQL query definition is discussed in Chapter 11, and criteria queries are
discussed in Chapter 9.

■ NOTE The TypedQuery interface was introduced in JPA 2.0.

There are two approaches to defining a JP QL query. A query may either be dynamically specified
at runtime or configured in persistence unit metadata (annotation or XML) and referenced by name.
Dynamic queries are nothing more than strings, and therefore may be defined on the fly as the need
arises. Named queries, on the other hand, are static and unchangeable, but are more efficient to
execute because the persistence provider can translate the JP QL string to SQL once when the
application starts as opposed to every time the query is executed.

The following sections compare the two approaches and discuss when one should be used instead
of the other.

Dynamic Query Definition
A query may be defined dynamically by passing the JP QL query string and expected result type to the
createQuery() method of the EntityManager interface. The result type may be omitted to create an
untyped query. We will discuss this approach in the section “Working with Query Results.” There are
no restrictions on the query definition. All JP QL query types are supported, as well as the use of
parameters. The ability to build up a string at runtime and use it for a query definition is useful,
particularly for applications where the user may specify complex criteria and the exact shape of the
query cannot be known ahead of time. As noted earlier, in addition to dynamic string queries, JPA also
supports a criteria API to create dynamic queries using Java objects. We will discuss this approach in
Chapter 9.

An issue to consider with string dynamic queries, however, is the cost of translating the JP QL
string to SQL for execution. A typical query engine will have to parse the JP QL string into a syntax
tree, get the object-relational mapping metadata for each entity in each expression, and then generate
the equivalent SQL. For applications that issue many queries, the performance cost of dynamic query
processing can become an issue.

Many query engines will cache the translated SQL for later use, but this can easily be defeated if
the application does not use parameter binding and concatenates parameter values directly into
query strings. This has the effect of generating a new and unique query every time a query that
requires parameters is constructed.

Consider the session bean method shown in Listing 7-7 that searches for salary information given
the name of a department and the name of an employee. There are two problems with this example,
one performance-related and one security-related. Because the names are concatenated into the

CHAPTER 7 ■ USING QUERIES

184

string instead of using parameter binding, it is effectively creating a new and unique query each time.
One hundred calls to this method could potentially generate one hundred different query strings. This
not only requires excessive parsing of JP QL but also almost certainly makes it difficult for the
persistence provider if it attempts to build a cache of converted queries.

Listing 7-7. Defining a Query Dynamically

@Stateless
public class QueryServiceBean implements QueryService {

 @PersistenceContext(unitName="DynamicQueries")
 EntityManager em;

 public long queryEmpSalary(String deptName, String empName) {
 String query = "SELECT e.salary " +
 "FROM Employee e " +
 "WHERE e.department.name = '" + deptName +
 "' AND " +
 " e.name = '" + empName + "'";
 return em.createQuery(query, Long.class).getSingleResult();
 }
}

The second problem with this example is that it is vulnerable to injection attacks, where a
malicious user could pass in a value that alters the query to his advantage. Consider a case where the
department argument was fixed by the application but the user was able to specify the employee name
(the manager of the department is querying the salaries of his or her employees, for example). If the
name argument were actually the text '_UNKNOWN' OR e.name = 'Roberts', the actual query parsed by
the query engine would be as follows:

SELECT e.salary
FROM Employee e
WHERE e.department.name = 'NA65' AND
 e.name = '_UNKNOWN' OR
 e.name = 'Roberts'

By introducing the OR condition, the user has effectively given himself access to the salary value
for any employee in the company because the original AND condition has a higher precedence than
OR, and the fake employee name is unlikely to belong to a real employee in that department.

This type of problem may sound unlikely, but in practice many web applications take text
submitted over a GET or POST request and blindly construct queries of this sort without considering
side effects. One or two attempts that result in a parser stack trace displayed to the web page, and the
attacker will learn everything he needs to know about how to alter the query to his advantage.

Listing 7-8 shows the same method as in Listing 7-7, except that it uses named parameters instead.
This not only reduces the number of unique queries parsed by the query engine, but it also eliminates
the chance of the query being altered.

Listing 7-8. Using Parameters with a Dynamic Query

@Stateless
public class QueryServiceBean implements QueryService {
 private static final String QUERY =
 "SELECT e.salary " +
 "FROM Employee e " +

CHAPTER 7 ■ USING QUERIES

185

 "WHERE e.department.name = :deptName AND " +
 " e.name = :empName ";

 @PersistenceContext(unitName="DynamicQueries")
 EntityManager em;

 public long queryEmpSalary(String deptName, String empName) {
 return em.createQuery(QUERY, Long.class)
 .setParameter("deptName", deptName)
 .setParameter("empName", empName)
 .getSingleResult();
 }
}

The parameter binding approach shown in Listing 7-8 defeats the security threat described
previously because the original query string is never altered. The parameters are marshaled using the
JDBC API and handled directly by the database. The text of a parameter string is effectively quoted by
the database, so the malicious attack would actually end up producing the following query:

SELECT e.salary
FROM Employee e
WHERE e.department.name = 'NA65' AND
 e.name = '_UNKNOWN'' OR e.name = ''Roberts'

The single quotes used in the query parameter here have been escaped by prefixing them with an
additional single quote. This removes any special meaning from them, and the entire sequence is
treated as a single string value.

We recommend statically defined named queries in general, particularly for queries that are
executed frequently. If dynamic queries are a necessity, take care to use parameter binding instead of
concatenating parameter values into query strings in order to minimize the number of distinct query
strings parsed by the query engine.

Named Query Definition
Named queries are a powerful tool for organizing query definitions and improving application
performance. A named query is defined using the @NamedQuery annotation, which may be placed on the
class definition for any entity. The annotation defines the name of the query, as well as the query text.
Listing 7-9 shows how the query string used in Listing 7-8 would be declared as a named query.

Listing 7-9. Defining a Named Query

@NamedQuery(name="findSalaryForNameAndDepartment",
 query="SELECT e.salary " +
 "FROM Employee e " +
 "WHERE e.department.name = :deptName AND " +
 " e.name = :empName")

Named queries are typically placed on the entity class that most directly corresponds to the query
result, so the Employee entity would be a good location for this named query. Note the use of string
concatenation in the annotation definition. Formatting your queries visually aids in the readability of
the query definition. The garbage normally associated with repeated string concatenation will not
apply here because the annotation will be processed only once at startup time and be executed at
runtime in query form.

CHAPTER 7 ■ USING QUERIES

186

The name of the query is scoped to the entire persistence unit and must be unique within that
scope. This is an important restriction to keep in mind, as commonly used query names such as
"findAll" will have to be qualified for each entity. A common practice is to prefix the query name with
the entity name. For example, the "findAll" query for the Employee entity would be named
"Employee.findAll". It is undefined what should happen if two queries in the same persistence unit
have the same name, but it is likely that either deployment of the application will fail or one will
overwrite the other, leading to unpredictable results at runtime.

If more than one named query is to be defined on a class, they must be placed inside of a
@NamedQueries annotation, which accepts an array of one or more @NamedQuery annotations. Listing 7-
10 shows the definition of several queries related to the Employee entity. Queries may also be defined
(or redefined) using XML. This technique is discussed in Chapter 12.

Listing 7-10. Multiple Named Queries for an Entity

@NamedQueries({
 @NamedQuery(name="Employee.findAll",
 query="SELECT e FROM Employee e"),
 @NamedQuery(name="Employee.findByPrimaryKey",
 query="SELECT e FROM Employee e WHERE e.id = :id"),
 @NamedQuery(name="Employee.findByName",
 query="SELECT e FROM Employee e WHERE e.name = :name")
})

Because the query string is defined in the annotation, it cannot be altered by the application at
runtime. This contributes to the performance of the application and helps to prevent the kind of
security issues we discussed in the previous section. Due to the static nature of the query string, any
additional criteria that are required for the query must be specified using query parameters. Listing 7-
11 demonstrates using the createNamedQuery() call on the EntityManager interface to create and
execute a named query that requires a query parameter.

Listing 7-11. Executing a Named Query

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 public Employee findEmployeeByName(String name) {
 return em.createNamedQuery("Employee.findByName",
 Employee.class)
 .setParameter("name", name)
 .getSingleResult();
 }

 // ...
}

Named parameters are the most practical choice for named queries because they effectively self-
document the application code that invokes the queries. Positional parameters are still supported,
however, and may be used instead.

CHAPTER 7 ■ USING QUERIES

187

Parameter Types
As mentioned earlier, JPA supports both named and positional parameters for JP QL queries. The query
factory methods of the entity manager return an implementation of the Query interface. Parameter
values are then set on this object using the setParameter() methods of the Query interface.

There are three variations of this method for both named parameters and positional parameters.
The first argument is always the parameter name or number. The second argument is the object to be
bound to the named parameter. Date and Calendar parameters also require a third argument that
specifies whether the type passed to JDBC is a java.sql.Date, java.sql.Time, or java.sql.TimeStamp
value.

Consider the following named query definition, which requires two named parameters:

@NamedQuery(name="findEmployeesAboveSal",
 query="SELECT e " +
 "FROM Employee e " +
 "WHERE e.department = :dept AND " +
 " e.salary > :sal")

This query highlights one of the nice features of JP QL in that entity types may be used as
parameters. When the query is translated to SQL, the necessary primary key columns will be inserted
into the conditional expression and paired with the primary key values from the parameter. It is not
necessary to know how the primary key is mapped in order to write the query. Binding the parameters
for this query is a simple case of passing in the required Department entity instance as well as a long
representing the minimum salary value for the query. Listing 7-12 demonstrates how to bind the
entity and primitive parameters required by this query.

Listing 7-12. Binding Named Parameters

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 public List<Employee> findEmployeesAboveSal(Department dept,
 long minSal) {
 return em.createNamedQuery("findEmployeesAboveSal",
 Employee.class)
 .setParameter("dept", dept)
 .setParameter("sal", minSal)
 .getResultList();
 }

 // ...
}

Date and Calendar parameters are a special case because they represent both dates and times. In
Chapter 4, we discussed mapping temporal types by using the @Temporal annotation and the
TemporalType enumeration. This enumeration indicates whether the persistent field is a date, time, or
timestamp. When a query uses a Date or Calendar parameter, it must select the appropriate temporal
type for the parameter. Listing 7-13 demonstrates binding parameters where the value should be
treated as a date.

CHAPTER 7 ■ USING QUERIES

188

Listing 7-13. Binding Date Parameters

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 public List<Employee> findEmployeesHiredDuringPeriod(Date start,
 Date end) {
 return em.createQuery("SELECT e " +
 "FROM Employee e " +
 "WHERE e.startDate BETWEEN ?1 AND ?2",
 Employee.class)
 .setParameter(1, start, TemporalType.DATE)
 .setParameter(2, end, TemporalType.DATE)
 .getResultList();
 }

 // ...
}

One thing to keep in mind with query parameters is that the same parameter can be used multiple
times in the query string yet only needs to be bound once using the setParameter() method. For
example, consider the following named query definition, where the "dept" parameter is used twice in
the WHERE clause:

@NamedQuery(name="findHighestPaidByDepartment",
 query="SELECT e " +
 "FROM Employee e " +
 "WHERE e.department = :dept AND " +
 " e.salary = (SELECT MAX(e.salary) " +
 " FROM Employee e " +
 " WHERE e.department = :dept)")

To execute this query, the "dept" parameter needs to be set only once with setParameter(), as in
the following example:

public Employee findHighestPaidByDepartment(Department dept) {
 return em.createNamedQuery("findHighestPaidByDepartment",
 Employee.class)
 .setParameter("dept", dept)
 .getSingleResult();
}

Executing Queries
The Query and TypedQuery interfaces each provide three different ways to execute a query, depending
on whether or not the query returns results and how many results should be expected. For queries that
return values, the developer may choose to call either getSingleResult() if the query is expected to
return a single result or getResultList() if more than one result may be returned. The
executeUpdate() method is used to invoke bulk update and delete queries. We will discuss this method

CHAPTER 7 ■ USING QUERIES

189

later in the section “Bulk Update and Delete”. Note that both of the query interfaces define the same
set of methods and differ only in their return types. We will cover this issue in the next section.

The simplest form of query execution is via the getResultList() method. It returns a collection
containing the query results. If the query did not return any data, the collection is empty. The return
type is specified as a List instead of a Collection in order to support queries that specify a sort order. If
the query uses the ORDER BY clause to specify a sort order, the results will be put into the result list in
the same order. Listing 7-14 demonstrates how a query might be used to generate a menu for a
command-line application that displays the name of each employee working on a project as well as
the name of the department that the employee is assigned to. The results are sorted by the name of the
employee. Queries are unordered by default.

Listing 7-14. Iterating over Sorted Results

public void displayProjectEmployees(String projectName) {
 List<Employee> result = em.createQuery(
 "SELECT e " +
 "FROM Project p JOIN p.employees e "+
 "WHERE p.name = ?1 " +
 "ORDER BY e.name",
 Employee.class)
 .setParameter(1, projectName)
 .getResultList();
 int count = 0;
 for (Employee e : result) {
 System.out.println(++count + ": " + e.getName() + ", " +
 e.getDepartment().getName());
 }
}

The getSingleResult() method is provided as a convenience for queries that return only a single
value. Instead of iterating to the first result in a collection, the object is directly returned. It is
important to note, however, that getSingleResult() behaves differently from getResultList() in how it
handles unexpected results. Whereas getResultList() returns an empty collection when no results are
available, getSingleResult() throws a NoResultException exception. Therefore if there is a chance that
the desired result may not be found, then this exception needs to be handled.

If multiple results are available after executing the query instead of the single expected result,
getSingleResult() will throw a NonUniqueResultException exception. Again, this can be problematic for
application code if the query criteria may result in more than one row being returned in certain
circumstances. Although getSingleResult() is convenient to use, be sure that the query and its possible
results are well understood, otherwise application code may have to deal with an unexpected runtime
exception. Unlike other exceptions thrown by entity manager operations, these exceptions will not
cause the provider to roll back the current transaction, if there is one.

Any SELECT query that returns data via the getResultList() and getSingleResult() methods may
also specify locking constraints for the database rows impacted by the query. This facility is exposed
through the query interfaces via the setLockMode() method. We will defer discussion of the locking
semantics for queries until the full discussion of locking in Chapter 11.

Query and TypedQuery objects may be reused as often as needed so long as the same persistence
context that was used to create the query is still active. For transaction-scoped entity managers, this
limits the lifetime of the Query or TypedQuery object to the life of the transaction. Other entity manager
types may reuse them until the entity manager is closed or removed.

CHAPTER 7 ■ USING QUERIES

190

Listing 7-15 demonstrates caching a TypedQuery object instance on the bean class of a stateful
session bean that uses an extended persistence context. Whenever the bean needs to find the list of
employees who are currently not assigned to any project, it reuses the same unassignedQuery object
that was initialized during PostConstruct.

Listing 7-15. Reusing a Query Object

@Stateful
public class ProjectManagerBean implements ProjectManager {
 @PersistenceContext(unitName="EmployeeService",
 type=PersistenceContextType.EXTENDED)
 EntityManager em;

 TypedQuery<Employee> unassignedQuery;

 @PostConstruct
 public void init() {
 unassignedQuery =
 em.createQuery("SELECT e " +
 "FROM Employee e " +
 "WHERE e.projects IS EMPTY",
 Employee.class);
 }

 public List<Employee> findEmployeesWithoutProjects() {
 return unassignedQuery.getResultList();
 }

 // ...
}

Working with Query Results
The result type of a query is determined by the expressions listed in the SELECT clause of the query. If
the result type of a query is the Employee entity, then executing getResultList() will result in a
collection of zero or more Employee entity instances. There is a wide variety of results possible,
depending on the makeup of the query. The following are just some of the types that may result from JP
QL queries:

• Basic types, such as String, the primitive types, and JDBC types

• Entity types

• An array of Object

• User-defined types created from a constructor expression

For developers used to JDBC, the most important thing to remember when using the Query and
TypedQuery interfaces is that the results are not encapsulated in a JDBC ResultSet. The collection or
single result corresponds directly to the result type of the query.

Whenever an entity instance is returned, it becomes managed by the active persistence context. If
that entity instance is modified and the persistence context is part of a transaction, the changes will be
persisted to the database. The only exception to this rule is the use of transaction-scoped entity

CHAPTER 7 ■ USING QUERIES

191

managers outside of a transaction. Any query executed in this situation returns detached entity
instances instead of managed entity instances. To make changes on these detached entities, they must
first be merged into a persistence context before they can be synchronized with the database.

A consequence of the long-term management of entities with application-managed and extended
persistence contexts is that executing large queries will cause the persistence context to grow as it
stores all the managed entity instances that are returned. If many of these persistence contexts are
holding onto large numbers of managed entities for long periods of time, then memory use may
become a concern. The clear() method of the EntityManager interface may be used to clear
application-managed and extended persistence contexts, removing unnecessary managed entities.

Untyped Results
So far in this chapter we have been demonstrating the strongly typed versions of the query creation
methods. We have provided the expected result type and therefore received an instance of TypedQuery
that is bound to the expected type. By qualifying the result type in this way, the getResultList() and
getSingleResult() methods return the correct types without the need for casting.

In the event that the result type is Object, or the JP QL query selects multiple objects, you may use
the untyped versions of the query creation methods. Omitting the result type produces a Query instance
instead of a TypedQuery instance, which defines getResultList() to return an unbound List and
getSingleResult() to return Object. For an example of using untyped results see the code listings in the
“Special Result Types” section.

Optimizing Read-Only Queries
When the query results will not be modified, queries using transaction-scoped entity managers
outside of a transaction can be more efficient than queries executed within a transaction when the
result type is an entity. When query results are prepared within a transaction, the persistence provider
has to take steps to convert the results into managed entities. This usually entails taking a snapshot of
the data for each entity in order to have a baseline to compare against when the transaction is
committed. If the managed entities are never modified, the effort of converting the results into
managed entities is wasted.

Outside of a transaction, in some circumstances the persistence provider may be able to optimize
the case where the results will be detached immediately. Therefore it can avoid the overhead of
creating the managed versions. Note that this technique does not work on application-managed or
extended entity managers because their persistence context outlives the transaction. Any query result
from this type of persistence context may be modified for later synchronization to the database even if
there is no transaction.

When encapsulating query operations behind a stateless session façade, the easiest way to execute
nontransactional queries is to use the NOT_SUPPORTED transaction attribute for the session bean method.
This will cause any active transaction to be suspended, forcing the query results to be detached and
enabling this optimization. Listing 7-16 shows an example of this technique.

Listing 7-16. Executing a Query Outside of a Transaction

@Stateless
public class QueryServiceBean implements QueryService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 @TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)

CHAPTER 7 ■ USING QUERIES

192

 public List<Department> findAllDepartmentsDetached() {
 return em.createQuery("SELECT d FROM Department d",
 Department.class)
 .getResultList();
 }

 // ...
}

Special Result Types
Whenever a query involves more than one expression in the SELECT clause, the result of the query will
be a List of Object arrays. Common examples include projection of entity fields and aggregate queries
where grouping expressions or multiple functions are used. Listing 7-17 revisits the menu generator
from Listing 7-14 using a projection query instead of returning full Employee entity instances. Each
element of the List is cast to an array of Object that is then used to extract the employee and
department name information. We use an untyped query because the result has multiple elements in
it.

Listing 7-17. Handling Multiple Result Types

public void displayProjectEmployees(String projectName) {
 List result = em.createQuery(
 "SELECT e.name, e.department.name " +
 "FROM Project p JOIN p.employees e " +
 "WHERE p.name = ?1 " +
 "ORDER BY e.name")
 .setParameter(1, projectName)
 .getResultList();
 int count = 0;
 for (Iterator i = result.iterator(); i.hasNext();) {
 Object[] values = (Object[]) i.next();
 System.out.println(++count + ": " +
 values[0] + ", " + values[1]);
 }
}

Constructor expressions provide developers with a way to map array of Object result types to
custom objects. Typically this is used to convert the results into JavaBean-style classes that provide
getters for the different returned values. This makes the results easier to work with and makes it
possible to use the results directly in an environment such as JavaServer Faces without additional
translation.

A constructor expression is defined in JP QL using the NEW operator in the SELECT clause. The
argument to the NEW operator is the fully qualified name of the class that will be instantiated to hold
the results for each row of data returned. The only requirement on this class is that it has a constructor
with arguments matching the exact type and order that will be specified in the query. Listing 7-18
shows an EmpMenu class defined in the package example that could be used to hold the results of the query
that was executed in Listing 7-17.

CHAPTER 7 ■ USING QUERIES

193

Listing 7-18. Defining a Class for Use in a Constructor Expression

package example;

public class EmpMenu {
 private String employeeName;
 private String departmentName;

 public EmpMenu(String employeeName, String departmentName) {
 this.employeeName = employeeName;
 this.departmentName = departmentName;
 }

 public String getEmployeeName() { return employeeName; }
 public String getDepartmentName() { return departmentName; }
}

Listing 7-19 shows the same example as Listing 7-17 using the fully qualified EmpMenu class name
in a constructor expression. Instead of working with array indexes, each result is an instance of the
EmpMenu class and used like a regular Java object. We can also use typed queries again because there is
only one expression in the SELECT clause.

Listing 7-19. Using Constructor Expressions

public void displayProjectEmployees(String projectName) {
 List<EmpMenu> result =
 em.createQuery("SELECT NEW example.EmpMenu(" +
 "e.name, e.department.name) " +
 "FROM Project p JOIN p.employees e " +
 "WHERE p.name = ?1 " +
 "ORDER BY e.name",
 EmpMenu.class)
 .setParameter(1, projectName)
 .getResultList();
 int count = 0;
 for (EmpMenu menu : result) {
 System.out.println(++count + ": " +
 menu.getEmployeeName() + ", " +
 menu.getDepartmentName());
 }
}

Query Paging
Large result sets from queries are often a problem for many applications. In cases where it would be
overwhelming to display the entire result set, or if the application medium makes displaying many
rows inefficient (web applications, in particular), applications must be able to display ranges of a
result set and provide users with the ability to control the range of data that they are viewing. The most
common form of this technique is to present the user with a fixed-size table that acts as a sliding
window over the result set. Each increment of results displayed is called a page, and the process of
navigating through the results is called pagination.

CHAPTER 7 ■ USING QUERIES

194

Efficiently paging through result sets has long been a challenge for both application developers
and database vendors. Before support existed at the database level, a common technique was to first
retrieve all the primary keys for the result set and then issue separate queries for the full results using
ranges of primary key values. Later, database vendors added the concept of logical row number to
query results, guaranteeing that as long as the result was ordered, the row number could be relied on
to retrieve portions of the result set. More recently, the JDBC specification has taken this even further
with the concept of scrollable result sets, which can be navigated forward and backward as required.

The Query and TypedQuery interfaces provide support for pagination via the setFirstResult() and
setMaxResults() methods. These methods specify the first result to be received (numbered from zero)
and the maximum number of results to return relative to that point. Values set for these methods may
be likewise retrieved via the getFirstResult() and getMaxResults() methods. A persistence provider
may choose to implement support for this feature in a number of different ways because not all
databases benefit from the same approach. It’s a good idea to become familiar with the way your
vendor approaches pagination and what level of support exists in the target database platform for your
application.

■ CAUTION The setFirstResult() and setMaxResults() methods should not be used with queries that join
across collection relationships (one-to-many and many-to-many) because these queries may return duplicate
values. The duplicate values in the result set make it impossible to use a logical result position.

To better illustrate pagination support, consider the stateful session bean shown in Listing 7-20.
Once created, it is initialized with the name of a query to count the total results and the name of a
query to generate the report. When results are requested, it uses the page size and current page
number to calculate the correct parameters for the setFirstResult() and setMaxResults() methods.
The total number of results possible is calculated by executing the count query. By using the next(),
previous(), and getCurrentResults() methods, presentation code can page through the results as
required. If this session bean were bound into an HTTP session, it could be directly used by a JSP or
JavaServer Faces page presenting the results in a data table. The class in Listing 7-20 is a general
template for a bean that holds intermediate state for an application query from which the results are
processed in segments.

Listing 7-20. Stateful Session Report Pager

@Stateful
public class ResultPagerBean implements ResultPager {
 @PersistenceContext(unitName="QueryPaging")
 private EntityManager em;

 private String reportQueryName;
 private long currentPage;
 private long maxResults;
 private long pageSize;

 public long getPageSize() {
 return pageSize;
 }

CHAPTER 7 ■ USING QUERIES

195

 public long getMaxPages() {
 return maxResults / pageSize;
 }

 public void init(long pageSize, String countQueryName,
 String reportQueryName) {
 this.pageSize = pageSize;
 this.reportQueryName = reportQueryName;
 maxResults = em.createNamedQuery(countQueryName, Long.class)
 .getSingleResult();
 currentPage = 0;
 }

 public List getCurrentResults() {
 return em.createNamedQuery(reportQueryName)
 .setFirstResult(currentPage * pageSize)
 .setMaxResults(pageSize)
 .getResultList();
 }

 public void next() {
 currentPage++;
 }

 public void previous() {
 currentPage--;
 if (currentPage < 0) {
 currentPage = 0;
 }
 }

 public long getCurrentPage() {
 return currentPage;
 }

 public void setCurrentPage(long currentPage) {
 this.currentPage = currentPage;
 }

 @Remove
 public void finished() {}
}

Queries and Uncommitted Changes
Executing queries against entities that have been created or changed in a transaction is a topic that
requires special consideration. As we discussed in Chapter 6, the persistence provider will attempt to
minimize the number of times the persistence context must be flushed within a transaction. Optimally
this will occur only once, when the transaction commits. While the transaction is open and changes are
being made, the provider relies on its own internal cache synchronization to ensure that the right
version of each entity is used in entity manager operations. At most the provider may have to read

CHAPTER 7 ■ USING QUERIES

196

new data from the database in order to fulfill a request. All entity operations other than queries can be
satisfied without flushing the persistence context to the database.

Queries are a special case because they are executed directly as SQL against the database. Because
the database executes the query and not the persistence provider, the active persistence context cannot
usually be consulted by the query. As a result, if the persistence context has not been flushed and the
database query would be impacted by the changes pending in the persistence context, incorrect data is
likely to be retrieved from the query. The entity manager find() operation, on the other hand, queries
for a single entity with a given primary key. It can always check the persistence context before going
to the database, so incorrect data is not a concern.

The good news is that by default, the persistence provider will ensure that queries are able to
incorporate pending transactional changes in the query result. It might accomplish this by flushing the
persistence context to the database, or it might leverage its own runtime information to ensure the
results are correct.

And yet, there are times when having the persistence provider ensure query integrity is not
necessarily the behavior we need. The problem is that it is not always easy for the provider to
determine the best strategy to accommodate the integrity needs of a query. There is no practical way
the provider can logically determine at a fine-grained level which objects have changed and therefore
need to be incorporated into the query results. If the provider solution to ensuring query integrity is to
flush the persistence context to the database, then you might have a performance problem if this is a
frequent occurrence.

To put this issue in context, consider a message board application, which has modeled
conversation topics as Conversation entities. Each Conversation entity refers to one or more messages
represented by a Message entity. Periodically, conversations are archived when the last message added
to the conversation is more than 30 days old. This is accomplished by changing the status of the
Conversation entity from “ACTIVE” to “INACTIVE”. The two queries to obtain the list of active
conversations and the last message date for a given conversation are shown in Listing 7-21.

Listing 7-21. Conversation Queries

@NamedQueries({
 @NamedQuery(name="findActiveConversations",
 query="SELECT c " +
 "FROM Conversation c " +
 "WHERE c.status = 'ACTIVE'"),
 @NamedQuery(name="findLastMessageDate",
 query="SELECT MAX(m.postingDate) " +
 "FROM Conversation c JOIN c.messages m " +
 "WHERE c = :conversation")
})

Listing 7-22 shows the session bean method used to perform this maintenance, accepting a Date
argument that specifies the minimum age for messages in order to still be considered an active
conversation. In this example, we see that two queries are being executed. The
"findActiveConversations" query collects all the active conversations, while the
"findLastMessageDate" returns the last date that a message was added to a Conversation entity. As the
code iterates over the Conversation entities, it invokes the "findLastMessageDate" query for each one.
As these two queries are related, it is reasonable for a persistence provider to assume that the results
of the "findLastMessageDate" query will depend on the changes being made to the Conversation
entities. If the provider ensures the integrity of the "findLastMessageDate" query by flushing the
persistence context, this could become a very expensive operation if hundreds of active conversations
are being checked.

CHAPTER 7 ■ USING QUERIES

197

Listing 7-22. Archiving Conversation Entities

@Stateless
public class ConversationMaintenanceBean
 implements ConversationMaintenance {
 @PersistenceContext(unitName="MessageBoard")
 EntityManager em;

 public void archiveConversations(Date minAge) {
 List<Conversation> active =
 em.createNamedQuery("findActiveConversations",
 Conversation.class)
 .getResultList();
 TypedQuery<Date> maxAge =
 em.createNamedQuery("findLastMessageDate", Date.class);
 for (Conversation c : active) {
 maxAge.setParameter("conversation", c);
 Date lastMessageDate = maxAge.getSingleResult();
 if (lastMessageDate.before(minAge)) {
 c.setStatus("INACTIVE");
 }
 }
 }

 // ...
}

To give developers more control over the integrity requirements of queries, the EntityManager
and Query interfaces support a setFlushMode() method to set the flush mode, an indicator to the
provider how it should handle pending changes and queries. There are two possible flush mode
settings, AUTO and COMMIT, which are defined by the FlushModeType enumerated type. The default setting
is AUTO, which means that the provider should ensure that pending transactional changes are included
in query results. If a query might overlap with changed data in the persistence context, this setting will
ensure that the results are correct. The current flush mode setting may be retrieved via the
getFlushMode() method.

The COMMIT flush mode tells the provider that queries don’t overlap with changed data in the
persistence context, so it does not need to do anything in order to get correct results. Depending on
how the provider implements its query integrity support, this might mean that it does not have to flush
the persistence context before executing a query because you have indicated that there is no changed
data in memory that would affect the results of the database query.

Although the flush mode is set on the entity manager, the flush mode is really a property of the
persistence context. For transaction-scoped entity managers, that means the flush mode has to be
changed in every transaction. Extended and application-managed entity managers will preserve their
flush mode setting across transactions.

Setting the flush mode on the entity manager applies to all queries, while setting the flush mode
for a query limits the setting to that scope. Setting the flush mode on the query overrides the entity
manager setting as you would expect. If the entity manager setting is AUTO and one query has the
COMMIT setting, the provider will guarantee query integrity for all the queries other than the one with
the COMMIT setting. Likewise, if the entity manager setting is COMMIT and one query has an AUTO setting,
only the query with the AUTO setting is guaranteed to incorporate pending changes from the
persistence context.

CHAPTER 7 ■ USING QUERIES

198

Generally speaking, if you are going to execute queries in transactions where data is being
changed, AUTO is the right answer. If you are concerned about the performance implications of
ensuring query integrity, consider changing the flush mode to COMMIT on a per-query basis. Changing
the value on the entity manager, while convenient, can lead to problems if more queries are added to
the application later and they require AUTO semantics.

Coming back to the example at the start of this section, we can set the flush mode on the TypedQuery
object for the "findLastMessageDate" query to COMMIT because it does not need to see the changes being
made to the Conversation entities. The following fragment shows how this would be accomplished for
the archiveConversations() method shown in Listing 7-22:

public void archiveConversations(Date minAge) {
 // ...
 TypedQuery<Date> maxAge = em.createNamedQuery(
 "findLastMessageDate", Date.class);
 maxAge.setFlushMode(FlushModeType.COMMIT);
 // ...
}

Query Timeouts
Generally speaking, when a query executes it will block until the database query returns. In addition
to the obvious concern about runaway queries and application responsiveness, it may also be a
problem if the query is participating in a transaction and a timeout has been set on the JTA transaction
or on the database. The timeout on the transaction or database may cause the query to abort early, but
it will also cause the transaction to roll back, preventing any further work in the same transaction.

If an application needs to set a limit on query response time without using a transaction or
causing a transaction rollback, the javax.persistence.query.timeout property may be set on the query
or as part of the persistence unit. This property defines the number of milliseconds that the query
should be allowed to run before it is aborted. Listing 7-23 demonstrates how to set a timeout value for a
given query. This example uses the query hint mechanism, which we will discuss in more detail later in
the section “Query Hints.” Setting properties on the persistence unit is covered in Chapter 13.

Listing 7-23. Setting a Query Timeout

public Date getLastUserActivity() {
 TypedQuery<Date> lastActive =
 em.createNamedQuery("findLastUserActivity", Date.class);
 lastActive.setHint("javax.persistence.query.timeout", 5000);
 try {
 return lastActive.getSingleResult();
 } catch (QueryTimeoutException e) {
 return null;
 }
}

Unfortunately, setting a query timeout is not portable behavior. It may not be supported by all
database platforms nor is it a requirement to be supported by all persistence providers. Therefore,
applications that want to enable query timeouts must be prepared for three scenarios. The first is that
the property is silently ignored and has no effect. The second is that the property is enabled and any
select, update, or delete operation that runs longer than the specified timeout value is aborted, and a
QueryTimeoutException is thrown. This exception may be handled and will not cause any active
transaction to be marked for rollback. Listing 7-23 demonstrates one approach to handling this

CHAPTER 7 ■ USING QUERIES

199

exception. The third scenario is that the property is enabled, but in doing so the database forces a
transaction rollback when the timeout is exceeded. In this case a PersistenceException will be thrown
and the transaction marked for rollback. In general, if enabled the application should be written to
handle the QueryTimeoutException, but should not fail if the timeout is exceeded and the exception is not
thrown.

■ TIP The javax.persistence.query.timeout hint was introduced in JPA 2.0.

Bulk Update and Delete
Like their SQL counterparts, JP QL bulk UPDATE and DELETE statements are designed to make
changes to large numbers of entities in a single operation without requiring the individual entities to
be retrieved and modified using the entity manager. Unlike SQL, which operates on tables, JP QL
UPDATE and DELETE statements must take the full range of mappings for the entity into account.
These operations are challenging for vendors to implement correctly, and as a result, there are
restrictions on the use of these operations that must be well understood by developers.

The full syntax for UPDATE and DELETE statements is described in Chapter 8. The following
sections will describe how to use these operations effectively and the issues that may result when used
incorrectly.

Using Bulk Update and Delete
Bulk update of entities is accomplished with the UPDATE statement. This statement operates on a
single entity type and sets one or more single-valued properties of the entity (either a state field or a
single-valued association) subject to the conditions in the WHERE clause. In terms of syntax, it is
nearly identical to the SQL version with the exception of using entity expressions instead of tables and
columns. Listing 7-24 demonstrates using a bulk UPDATE statement. Note that the use of the
REQUIRES_NEW transaction attribute type is significant and will be discussed following the examples.

Listing 7-24. Bulk Update of Entities

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="BulkQueries")
 EntityManager em;

 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 public void assignManager(Department dept, Employee manager) {
 em.createQuery("UPDATE Employee e " +
 "SET e.manager = ?1 " +
 "WHERE e.department = ?2")
 .setParameter(1, manager)
 .setParameter(2, dept)
 .executeUpdate();
 }
}

CHAPTER 7 ■ USING QUERIES

200

Bulk removal of entities is accomplished with the DELETE statement. Again, the syntax is the same
as the SQL version, except that the target in the FROM clause is an entity instead of a table, and the
WHERE clause is composed of entity expressions instead of column expressions. Listing 7-25
demonstrates bulk removal of entities.

Listing 7-25. Bulk Removal of Entities

@Stateless
public class ProjectServiceBean implements ProjectService {
 @PersistenceContext(unitName="BulkQueries")
 EntityManager em;

 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 public void removeEmptyProjects() {
 em.createQuery("DELETE FROM Project p " +
 "WHERE p.employees IS EMPTY")
 .executeUpdate();
 }
}

The first issue for developers to consider when using these statements is that the persistence
context is not updated to reflect the results of the operation. Bulk operations are issued as SQL against
the database, bypassing the in-memory structures of the persistence context. Therefore, updating the
salary of all the employees will not change the current values for any entities managed in memory as
part of a persistence context. The developer can rely only on entities retrieved after the bulk
operation completes.

For developers using transaction-scoped persistence contexts, this means that the bulk operation
should either execute in a transaction all by itself or be the first operation in the transaction. Running
the bulk operation in its own transaction is the preferred approach because it minimizes the chance of
the developer accidentally fetching data before the bulk change occurs. Executing the bulk operation
and then working with entities after it completes is also safe because then any find() operation or
query will go to the database to get current results. The examples in Listing 7-24 and Listing 7-25 used
the REQUIRES_NEW transaction attribute to ensure that the bulk operations occurred within their own
transactions.

A typical strategy for persistence providers dealing with bulk operations is to invalidate any in-
memory cache of data related to the target entity. This forces data to be fetched from the database the
next time it is required. How much cached data gets invalidated depends on the sophistication of the
persistence provider. If the provider can detect that the update impacts only a small range of entities,
those specific entities may be invalidated, leaving other cached data in place. Such optimizations are
limited, however, and if the provider cannot be sure of the scope of the change, the entire cache must
be invalidated. This can have an impact on the performance of the application if bulk changes are a
frequent occurrence.

■ CAUTION Native SQL update and delete operations should not be executed on tables mapped by an entity.
The JP QL operations tell the provider what cached entity state must be invalidated in order to remain consistent
with the database. Native SQL operations bypass such checks and can quickly lead to situations where the in-
memory cache is out of date with respect to the database.

CHAPTER 7 ■ USING QUERIES

201

The danger present in bulk operations and the reason they must occur first in a transaction is that
any entity actively managed by a persistence context will remain that way, oblivious to the actual
changes occurring at the database level. The active persistence context is separate and distinct from
any data cache that the provider may use for optimizations. Consider the following sequence of
operations:

1. A new transaction starts.

2. Entity A is created by calling persist() to make the entity managed.

3. Entity B is retrieved from a find() operation and modified.

4. A bulk remove deletes entity A.

5. A bulk update changes the same properties on entity B that were modified in
step 3.

6. The transaction commits.

What should happen to entities A and B in this sequence? (Before you answer, recall that bulk
operations translate directly to SQL and bypass the persistence context!) In the case of entity A, the
provider has to assume that the persistence context is correct and so will still attempt to insert the new
entity even though it should have been removed. In the case of entity B, again the provider has to
assume that managed version is the correct version and will attempt to update the version in the
database, undoing the bulk update change.

This brings us to the issue of extended persistence contexts. Bulk operations and extended
persistence contexts are a particularly dangerous combination because the persistence context
survives across transaction boundaries, but the provider will never refresh the persistence context to
reflect the changed state of the database after a bulk operation has completed. When the extended
persistence context is next associated with a transaction, it will attempt to synchronize its current state
with the database. Because the managed entities in the persistence context are now out of date with
respect to the database, any changes made since the bulk operation could result in incorrect results
being stored. In this situation, the only option is to refresh the entity state or ensure that the data is
versioned in such a way that the incorrect change can be detected. Locking strategies and refreshing of
entity state are discussed in Chapter 11.

Bulk Delete and Relationships
In our discussion of the remove() operation in the previous chapter, we emphasized that relationship
maintenance is always the responsibility of the developer. The only time a cascading remove occurs is
when the REMOVE cascade option is set for a relationship. Even then, the persistence provider won’t
automatically update the state of any managed entities that refer to the removed entity. As we are
about to see, the same requirement holds true when using DELETE statements as well.

A DELETE statement in JP QL corresponds more or less to a DELETE statement in SQL. Writing the
statement in JP QL gives you the benefit of working with entities instead of tables, but the semantics
are exactly the same. This has implications for how applications must write DELETE statements in
order to ensure that they execute correctly and leave the database in a consistent state.

DELETE statements are applied to a set of entities in the database, unlike remove(), which applies
to a single entity in the persistence context. A consequence of this is that DELETE statements do not
cascade to related entities. Even if the REMOVE cascade option is set on a relationship, it will not be
followed. It is your responsibility to ensure that relationships are correctly updated with respect to the
entities that have been removed. The persistence provider also has no control over constraints in the

CHAPTER 7 ■ USING QUERIES

202

database. If you attempt to remove data that is the target of a foreign key relationship in another table,
you will get a referential integrity constraint violation in return.

Let’s look at an example that puts these issues in context. Suppose, for example, that a company
wishes to reorganize its department structure. We want to delete a number of departments and then
assign the employees to new departments. The first step is to delete the old departments, so the
following statement is to be executed:

DELETE FROM Department d
WHERE d.name IN ('CA13', 'CA19', 'NY30')

This is a straightforward operation. We want to remove the department entities that match the
given list of names using a DELETE statement instead of querying for the entities and using the
remove() operation to dispose of them. But when this query is executed, a PersistenceException
exception is thrown, reporting that a foreign key integrity constraint has been violated. Another table
has a foreign key reference to one of the rows we are trying to delete. Checking the database, we see
that the table mapped by the Employee entity has a foreign key constraint against the table mapped by
the Department entity. Because the foreign key value in the Employee table is not NULL, the parent key
from the Department table can’t be removed.

We first need to update the Employee entities in question to make sure they do not point to the
department we are trying to delete:

UPDATE Employee e
SET e.department = null
WHERE e.department.name IN ('CA13', 'CA19', 'NY30')

With this change the original DELETE statement will work as expected. Now consider what would
have happened if the integrity constraint had not been in the database. The DELETE operation would
have completed successfully, but the foreign key values would still be sitting in the Employee table. The
next time the persistence provider tried to load the Employee entities with dangling foreign keys, it
would be unable to resolve the target entity. The outcome of this operation is vendor-specific, but it
may lead to a PersistenceException exception being thrown, complaining of the invalid relationship.

Query Hints
Query hints are the JPA extension point for query features. A hint is simply a string name and object
value. Hints allow features to be added to JPA without introducing a new API. This includes standard
features such as the query timeouts we demonstrated earlier, as well as vendor-specific features. Note
that when not explicitly covered by the JPA specification, no assumptions can be made about the
portability of hints between vendors, even if the names are the same. Every query may be associated
with any number of hints, set either in persistence unit metadata as part of the @NamedQuery
annotation, or on the Query or TypedQuery interfaces using the setHint() method. The current set of
hints enabled for a query may be retrieved with the getHints() method, which returns a map of name
and value pairs.

In order to simplify portability between vendors, persistence providers are required to ignore
hints that they do not understand. Listing 7-26 demonstrates the "eclipselink.cache-usage" hint
supported by the Reference Implementation of JPA 2.0 to indicate that the cache should not be checked
when reading an Employee from the database. Unlike the refresh() method of the EntityManager
interface, this hint will not cause the query result to override the current cached value.

CHAPTER 7 ■ USING QUERIES

203

Listing 7-26. Using Query Hints

public Employee findEmployeeNoCache(int empId) {
 TypedQuery<Employee> q = em.createQuery(
 "SELECT e FROM Employee e WHERE e.id = :empId", Employee.class);
 // force read from database
 q.setHint("eclipselink.cache-usage", "DoNotCheckCache");
 q.setParameter("empId", empId);
 try {
 return q.getSingleResult();
 } catch (NoResultException e) {
 return null;
 }
}

If this query were to be executed frequently, a named query would be more efficient. The following
named query definition incorporates the cache hint used earlier:

@NamedQuery(name="findEmployeeNoCache",
 query="SELECT e FROM Employee e WHERE e.id = :empId",
 hints={@QueryHint(name="eclipselink.cache-usage",
 value="DoNotCheckCache")})

The hints element accepts an array of @QueryHint annotations, allowing any number of hints to be
set for a query.

Query Best Practices
The typical application using JPA will have many queries defined. It is the nature of enterprise
applications that information is constantly being queried from the database for everything from
complex reports to drop-down lists in the user interface. Therefore, efficiently using queries can have
a major impact on your application’s overall performance and responsiveness. As you carry out the
performance testing of your queries, we recommend you consider some of the discussion points in the
following sections.

Named Queries
First and foremost, we recommend named queries whenever possible. Persistence providers will often
take steps to precompile JP QL named queries to SQL as part of the deployment or initialization phase
of an application. This avoids the overhead of continuously parsing JP QL and generating SQL. Even
with a cache for converted queries, dynamic query definition will always be less efficient than using
named queries.

Named queries also enforce the best practice of using query parameters. Query parameters help to
keep the number of distinct SQL strings parsed by the database to a minimum. Because databases
typically keep a cache of SQL statements on hand for frequently accessed queries, this is an essential
part of ensuring peak database performance.

As we discussed in the “Dynamic Query Definition” section, query parameters also help to avoid
security issues caused by concatenating values into query strings. For applications exposed to the
Web, security has to be a concern at every level of an application. You can either spend a lot of effort

CHAPTER 7 ■ USING QUERIES

204

trying to validate input parameters, or you can use query parameters and let the database do the work
for you.

When naming queries, decide on a naming strategy early in the application development cycle,
with the understanding that the query namespace is global for each persistence unit. Collisions
between query names are likely to be a common source of frustration if there is no established
naming pattern. We find it convenient and recommend prefixing the name of the query with the name
of the entity that is being returned, separated by a dot.

Finally, using named queries allows for JP QL queries to be overridden with SQL queries or even
with vendor-specific languages and expression frameworks. For applications migrating from an
existing object-relational mapping solution, it is quite likely that the vendor will provide some support
for invoking their existing query solution using the named query facility in JPA. We will discuss SQL
named queries in Chapter 11.

Report Queries
If you are executing queries that return entities for reporting purposes and have no intention of
modifying the results, consider executing queries using a transaction-scoped entity manager but
outside of a transaction. The persistence provider may be able to detect the lack of a transaction and
optimize the results for detachment, often by skipping some of the steps required to create an interim
managed version of the entity results.

Likewise, if an entity is expensive to construct due to eager relationships or a complex table
mapping, consider selecting individual entity properties using a projection query instead of
retrieving the full entity result. If all you need is the name and office phone number for 500
employees, selecting only those 2 fields is likely to be far more efficient than fully constructing 1,000
entity instances.

Vendor Hints
It is likely that vendors will entice you with a variety of hints to enable different performance
optimizations for queries. Query hints may well be an essential tool in meeting your performance
expectations. If source code portability to multiple vendors is important, you should resist the urge to
embed vendor query hints in your application code. The ideal location for query hints is in an XML
mapping file (which we will be describing in Chapter 12) or at the very least as part of a named query
definition. Hints are often highly dependent on the target platform and may well have to be changed
over time as different aspects of the application impact the overall balance of performance. Keep hints
decoupled from your code if at all possible.

Stateless Session Beans
We have tried to demonstrate as many examples as possible in the context of a stateless session bean
method because we believe that this is the best way to organize queries in a Java EE application. Using
the stateless session bean has a number of benefits over simply embedding queries all over the place
in application code:

• Clients can execute queries by invoking an appropriately named business
method instead of relying on a cryptic query name or multiple copies of the same
query string.

CHAPTER 7 ■ USING QUERIES

205

• Stateless session bean methods can optimize their transaction usage depending
on whether or not the results need to be managed or detached.

• Using a transaction-scoped persistence context ensures that large numbers of
entity instances don’t remain managed long after they are needed.

• For existing EJB entity bean applications, the stateless session bean is the ideal
vehicle for migrating finder queries away from the entity bean home interface.
We will discuss this technique in Chapter 15.

This is not to say that other components are unsuitable locations for issuing queries, but stateless
session beans are a well-established best practice for hosting queries in the Java EE environment.

Bulk Update and Delete
If bulk update and delete operations must be used, ensure that they are executed only in an isolated
transaction where no other changes are being made. There are many ways in which these queries can
negatively impact an active persistence context. Interweaving these queries with other non-bulk
operations requires careful management by the application.

Entity versioning and locking requires special consideration when bulk update operations are
used. Bulk delete operations can have wide ranging ramifications depending on how well the
persistence provider can react and adjust entity caching in response. Therefore, we view bulk update
and delete operations as being highly specialized, to be used with care.

Provider Differences
Take time to become familiar with the SQL that your persistence provider generates for different JP QL
queries. Although understanding SQL is not necessary for writing JP QL queries, knowing what
happens in response to the various JP QL operations is an essential part of performance tuning. Joins
in JP QL are not always explicit, and you may find yourself surprised at the complex SQL generated for
a seemingly simple JP QL query.

The benefits of features such as query paging are also dependent on the approach used by your
persistence provider. There are a number of different techniques that can be used to accomplish
pagination, many of which suffer from performance and scalability issues. Because JPA can’t dictate a
particular approach that will work well in all cases, become familiar with the approach used by your
provider and whether or not it is configurable.

Finally, understanding the provider strategy for when and how often it flushes the persistence
context is necessary before looking at optimizations such as changing the flush mode. Depending on
the caching architecture and query optimizations used by a provider, changing the flush mode may or
may not make a difference to your application.

Summary
We began this chapter with an introduction to JP QL, the query language defined by JPA. We briefly
discussed the origins of JP QL and its role in writing queries that interact with entities. We also
provided an overview of major JP QL features for developers already experienced with SQL or EJB QL.

In the discussion on executing queries, we introduced the methods for defining queries both
dynamically at runtime and statically as part of persistence unit metadata. We looked at the Query and
TypedQuery interfaces and the types of query results possible using JP QL. We also looked at parameter

CHAPTER 7 ■ USING QUERIES

206

binding, strategies for handling large result sets and how to ensure that queries in transactions with
modified data complete successfully.

In the section on bulk update and delete we looked at how to execute these types of queries and
how to ensure that they are used safely by the application. We provided details on how persistence
providers deal with bulk operations and the impact that they have on the active persistence context.

We ended our discussion of query features with a look at query hints. We showed how to specify
hints and provided an example using hints supported by the JPA Reference Implementation.

Finally, we summarized our view of best practices relating to queries, looking at named queries,
different strategies for the various query types, as well as the implementation details that need to be
understood for different persistence providers.

In the next chapter, we will continue to focus on queries by examining JP QL in detail.

C H A P T E R 8

■ ■ ■

207

Query Language

The Java Persistence Query Language (JP QL) is the standard query language of JPA, but was actually
spun off from the EJB Query Language (EJBQL), first introduced in EJB 2.0. JP QL is a portable query
language designed to combine the syntax and simple query semantics of SQL with the expressiveness of
an object-oriented expression language. Queries written using this language can be portably compiled to
SQL on all major database servers.

In the last chapter, we looked at programming using the query interfaces and presented a brief
introduction to JP QL for users already experienced with SQL. This chapter will explore the query
language in detail, breaking the language down piece by piece with examples to demonstrate its
features.

Introduction
In order to describe what JP QL is, it is important to make clear what it is not. JP QL is not SQL. Despite
the similarities between the two languages in terms of keywords and overall structure, there are very
important differences. Attempting to write JP QL as if it were SQL is the easiest way to get frustrated with
the language. The similarities between the two languages are intentional (giving developers a feel for
what JP QL can accomplish), but the object-oriented nature of JP QL requires a different kind of
thinking.

If JP QL is not SQL, what is it? Put simply, JP QL is a language for querying entities. Instead of tables
and rows, the currency of the language is entities and objects. It provides us with a way to express
queries in terms of entities and their relationships, operating on the persistent state of the entity as
defined in the object model, not in the physical database model.

If JPA supports SQL queries, why introduce a new query language? There are a couple of important
reasons to consider JP QL over SQL. The first is portability. JP QL can be translated into the SQL dialects
of all major database vendors. The second is that queries are written against the domain model of
persistent entities, without any need to know exactly how those entities are mapped to the database. We
hope that the examples in this chapter will demonstrate the power present in even the simplest JP QL
expressions.

Adopting JP QL does not mean losing all the SQL features you have grown accustomed to using. A
broad selection of SQL features are directly supported, including subqueries, aggregate queries, update
and delete statements, numerous SQL functions, and more.

CHAPTER 8 ■ QUERY LANGUAGE

208

Terminology
Queries fall into one of four categories: select, aggregate, update, and delete. Select queries retrieve
persistent state from one or more entities, filtering results as required. Aggregate queries are variations
of select queries that group the results and produce summary data. Together, select and aggregate
queries are sometimes called report queries, since they are primarily focused on generating data for
reporting. Update and delete queries are used to conditionally modify or remove entire sets of entities.
You will find each query type described in detail in its own section of this chapter.

Queries operate on the set of entities and embeddables defined by a persistence unit. This set of
entities and embeddables is known as the abstract persistence schema, the collection of which defines
the overall domain from which results can be retrieved.

■ NOTE To allow this chapter to be used as a companion to the Query Language chapter of the Java Persistence
API specification, the same terminology is used where possible.

In query expressions, entities are referred to by name. If an entity has not been explicitly named
(using the name attribute of the @Entity annotation, for example), the unqualified class name is used by
default. This name is the abstract schema name of the entity in the context of a query.

Entities are composed of one or more persistence properties implemented as fields or JavaBean
properties. The abstract schema type of a persistent property on an entity refers to the class or primitive
type used to implement that property. For example, if the Employee entity has a property name of type
String, the abstract schema type of that property in query expressions is String as well. Simple
persistent properties with no relationship mapping comprise the persistent state of the entity and are
referred to as state fields. Persistent properties that are also relationships are called association fields.

As we saw in the last chapter, queries can be defined dynamically or statically. The examples in this
chapter will consist of queries that can be used either dynamically or statically, depending on the needs
of the application.

Finally, it is important to note that queries are not case-sensitive except in two cases: entity names
and property names must be specified exactly as they are named.

Example Data Model
Figure 8-1 shows the domain model for the queries in this chapter. Continuing the examples we have
been using throughout the book, it demonstrates many different relationship types, including
unidirectional, bidirectional, and self-referencing relationships. We have added the role names to this
diagram to make the relationship property names explicit.

CHAPTER 8 ■ QUERY LANGUAGE

209

Figure 8-1. Example application domain model

The object relational mappings for this model are not included in this chapter except where we
describe the SQL equivalent of a particular query. It is not necessary to know how an object is mapped in
order to write queries because the query language is based entirely on the object model and the logical
relationships between entities. It is the job of the query translator to take the object-oriented query
expressions and interpret the mapping metadata in order to produce the SQL required to execute the
query on the database.

Example Application
Learning a new language can be a challenging experience. It’s one thing to read through page after page
of text describing the features of the language, but it’s another thing completely to put these features
into practice. To get used to writing queries, consider using an application like the one shown in Listing
8-1. This simple application reads queries from the console and executes them against the entities from
a particular persistence unit.

Listing 8-1. Application for Testing Queries

package persistence;

import java.io.*;
import java.util.*;
import javax.persistence.*;
import org.apache.commons.lang.builder.*;

public class QueryTester {

CHAPTER 8 ■ QUERY LANGUAGE

210

 public static void main(String[] args) throws Exception {
 String unitName = args[0];

 EntityManagerFactory emf =
 Persistence.createEntityManagerFactory(unitName);
 EntityManager em = emf.createEntityManager();
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(System.in));

 for (;;) {
 System.out.print("JP QL> ");
 String query = reader.readLine();
 if (query.equals("quit")) {
 break;
 }
 if (query.length() == 0) {
 continue;
 }

 try {
 List result = em.createQuery(query).getResultList();
 if (result.size() > 0) {
 int count = 0;
 for (Object o : result) {
 System.out.print(++count + " ");
 printResult(o);
 }
 } else {
 System.out.println("0 results returned");
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 private static void printResult(Object result) throws Exception {
 if (result == null) {
 System.out.print("NULL");
 } else if (result instanceof Object[]) {
 Object[] row = (Object[]) result;
 System.out.print("[");
 for (int i = 0; i < row.length; i++) {
 printResult(row[i]);
 }
 System.out.print("]");
 } else if (result instanceof Long ||
 result instanceof Double ||
 result instanceof String) {
 System.out.print(result.getClass().getName() + ": " + result);
 } else {
 System.out.print(ReflectionToStringBuilder.toString(result, ➥
ToStringStyle.SHORT_PREFIX_STYLE));

CHAPTER 8 ■ QUERY LANGUAGE

211

 }
 System.out.println();
 }
}

The only requirement for using this application is the name of a persistence unit containing the
entities you want to query against. The application will read the persistence unit name from the
command line and attempt to create an EntityManagerFactory for that name. If initialization is
successful, queries can be typed at the JP QL> prompt. The query will be executed and the results printed
out. The format of each result is the class name followed by each of the properties for that class. This
example uses the Apache Jakarta Commons-Lang library to generate the object summary. Listing 8-2
demonstrates a sample session with the application.

Listing 8-2. Example Session with QueryTester

JP QL> SELECT p FROM Phone p WHERE p.type NOT IN ('office', 'home')
1 Phone[id=5,number=516-555-1234,type=cell,employee=Employee@13c0b53]
2 Phone[id=9,number=650-555-1234,type=cell,employee=Employee@193f6e2]
3 Phone[id=12,number=650-555-1234,type=cell,employee=Employee@36527f]
4 Phone[id=18,number=585-555-1234,type=cell,employee=Employee@bd6a5f]
5 Phone[id=21,number=650-555-1234,type=cell,employee=Employee@979e8b]
JP QL> SELECT d.name, AVG(e.salary) FROM Department d JOIN d.employees e ➥
GROUP BY d.name
1 [java.lang.String: QA
java.lang.Double: 52500.0
]
2 [java.lang.String: Engineering
java.lang.Double: 56833.333333333336
]
JP QL> quit

Select Queries
Select queries are the most significant type of query and facilitate the bulk retrieval of data from the
database. Not surprisingly, select queries are also the most common form of query used in applications.
The overall form of a select query is as follows:

SELECT <select_expression>
FROM <from_clause>
[WHERE <conditional_expression>]
[ORDER BY <order_by_clause>]

The simplest form of a select query consists of two mandatory parts: the SELECT clause and the
FROM clause. The SELECT clause defines the format of the query results, while the FROM clause defines
the entity or entities from which the results will be obtained. Consider the following complete query that
retrieves all the employees in the company:

SELECT e
FROM Employee e

The structure of this query is very similar to a SQL query, but with a couple of important differences.
The first difference is that the domain of the query defined in the FROM clause is not a table but an
entity; in this case, the Employee entity. As in SQL, it has been aliased to the identifier e. This aliased value

CHAPTER 8 ■ QUERY LANGUAGE

212

is known as an identification variable and is the key by which the entity will be referred to in the rest of
the select statement. Unlike queries in SQL, where a table alias is optional, the use of identification
variables is mandatory in JP QL.

The second difference is that the SELECT clause in this example does not enumerate the fields of the
table or use a wildcard to select all the fields. Instead, only the identification variable is listed in order to
indicate that the result type of the query is the Employee entity, not a tabular set of rows.

As the query processor iterates over the result set returned from the database, it converts the tabular
row and column data into a set of entity instances. The getResultList() method of the Query interface
will return a collection of zero or more Employee objects after evaluating the query.

Despite the differences in structure and syntax, every query is translatable to SQL. In order to
execute a query, the query engine first builds an optimal SQL representation of the JP QL query. The
resulting SQL query is what actually gets executed on the database. In this simple example, the SQL
might look something like this, depending upon the mapping metadata for the Employee entity:

SELECT id, name, salary, manager_id, dept_id, address_id
FROM emp

The SQL statement must read in all the mapped columns required to create the entity instance,
including foreign key columns. Even if the entity is cached in memory, the query engine will still
typically read all required data to ensure that the cached version is up to date. Note that, if the
relationships between the Employee and the Department or Address entities had required eager loading,
the SQL statement would either be extended to retrieve the extra data or multiple statements would have
been batched together in order to completely construct the Employee entity. Every vendor will provide
some method for displaying the SQL it generates from translating JP QL. For performance tuning in
particular, understanding how your vendor approaches SQL generation can help you write more
efficient queries.

Now that we have looked at a simple query and covered the basic terminology, the following
sections will move through each of the clauses of the select query, explaining the syntax and features
available.

SELECT Clause
The SELECT clause of a query can take several forms, including simple and complex path expressions,
scalar expressions, constructor expressions, aggregate functions, and sequences of these expression
types. The following sections introduce path expressions and discuss the different styles of SELECT
clauses and how they determine the result type of the query. We will defer discussion of scalar
expressions until exploring conditional expressions in the WHERE clause. They are fully described in the
section called “Scalar Expressions.” Aggregate functions are detailed later in the chapter in the section
called “Aggregate Queries.”

Path Expressions
Path expressions are the building blocks of queries. They are used to navigate out from an entity, either
across a relationship to another entity (or collection of entities) or to one of the persistent properties of
an entity. Navigation that results in one of the persistent state fields (either field or property) of an entity
is referred to as a state field path. Navigation that leads to a single entity is referred to as a single-valued
association path, whereas navigation to a collection of entities is referred to as a collection-valued
association path.

CHAPTER 8 ■ QUERY LANGUAGE

213

The dot operator (.) signifies path navigation in an expression. For example, if the Employee entity
has been mapped to the identification variable e, e.name is a state field path expression resolving to the
employee name. Likewise, the path expression e.department is a single-valued association from the
employee to the department to which he or she is assigned. Finally, e.directs is a collection-valued
association that resolves to the collection of employees reporting to an employee who is also a manager.

What makes path expressions so powerful is that they are not limited to a single navigation. Instead,
navigation expressions can be chained together to traverse complex entity graphs as long as the path
moves from left to right across single-valued associations. A path cannot continue from a state field or
collection-valued association. Using this technique, we can construct path expressions such as
e.department.name, which is the name of the department to which the employee belongs. Note that path
expressions can navigate into and across embedded objects as well as normal entities. The only
restriction on embedded objects in a path expression is that the root of the path expression must begin
with an entity.

Path expressions are used in every clause of a select query, determining everything from the result
type of the query to the conditions under which the results should be filtered. Experience with path
expressions is the key to writing effective queries.

Entities and Objects
The first and simplest form of the SELECT clause is a single identification variable. The result type for a
query of this style is the entity to which the identification variable is associated. For example, the
following query returns all the departments in the company:

SELECT d
FROM Department d

The keyword OBJECT can be used to indicate that the result type of the query is the entity bound to
the identification variable. It has no impact on the query, but it can be used as a visual clue:

SELECT OBJECT(d)
FROM Department d

The only problem with using OBJECT is that even though path expressions can resolve to an entity
type, the syntax of the OBJECT keyword is limited to identification variables. The expression
OBJECT(e.department) is illegal even though Department is an entity type. For that reason, we do not
recommend the OBJECT syntax. It exists primarily for compatibility with previous versions of the
language that required the OBJECT keyword on the assumption that a future revision to SQL would
include the same terminology.

A path expression resolving to a state field or single-valued association can also be used in the
SELECT clause. The result type of the query in this case becomes the type of the path expression, either
the state field type or the entity type of a single-valued association. The following query returns the
names for all employees:

SELECT e.name
FROM Employee e

The result type of the path expression in the SELECT clause is String, so executing this query using
getResultList() will produce a collection of zero or more String objects. Path expressions resolving in
state fields can also be used as part of scalar expressions, allowing the state field to be transformed in the
query results. We will discuss this technique later in the section called “Scalar Expressions.”

Entities reached from a path expression can also be returned. The following query demonstrates
returning a different entity as a result of path navigation:

SELECT e.department

CHAPTER 8 ■ QUERY LANGUAGE

214

FROM Employee e

The result type of this query is the Department entity because that is the result of traversing the
department relationship from Employee to Department. Executing the query will therefore result in a
collection of zero or more Department objects, including duplicates.

To remove the duplicates, the DISTINCT operator must be used:

SELECT DISTINCT e.department
FROM Employee e

The DISTINCT operator is functionally equivalent to the SQL operator of the same name. Once the
result set is collected, duplicate values (using entity identity if the query result type is an entity) are
removed so that only unique results are returned.

The result type of a select query is the type corresponding to each row in the result set produced by
executing the query. This can include entities, primitive types, and other persistent attribute types, but
never a collection type. The following query is illegal:

SELECT d.employees
FROM Department d

The path expression d.employees is a collection-valued path that produces a collection type.
Restricting queries in this way prevents the provider from having to combine successive rows from the
database into a single result object.

It is possible to select embeddable objects navigated to in a path expression. The following query
returns only the ContactInfo embeddable objects for all the employees:

SELECT e.contactInfo
FROM Employee e

The thing to remember about selecting embeddables is that the returned objects will not be
managed. If you issue a query to return employees (select e FROM Employee e) and then from the
results navigate to their ContactInfo embedded objects, you would be obtaining embeddables that were
managed. Changes to any one of those objects would be saved when the transaction committed.
Changing any of the ContactInfo object results returned from a query that selected the ContactInfo
directly, however, would have no persistent effect.

Combining Expressions
Multiple expressions can be specified in the same SELECT clause by separating them with commas. The
result type of the query in this case is an array of type Object, where the elements of the array are the
results of resolving the expressions in the order in which they appeared in the query.

Consider the following query that returns only the name and salary of an employee:

SELECT e.name, e.salary
FROM Employee e

When this is executed, a collection of zero or more instances of arrays of type Object will be
returned. Each array in this example has two elements, the first being a String containing the employee
name and the second being a Double containing the employee salary. The practice of reporting only a
subset of the state fields from an entity is called projection because the entity data is projected out from
the entity into tabular form.

CHAPTER 8 ■ QUERY LANGUAGE

215

Projection is a useful technique for web applications in which only a few pieces of information are
displayed from a large set of entity instances. Depending on how the entity has been mapped, it might
require a complex SQL query to fully retrieve the entity state. If only two fields are required, the extra
effort spent constructing the entity instance might have been wasted. A projection query that returns
only the minimum amount of data is more useful in these cases.

Constructor Expressions
A more powerful form of SELECT clause involving multiple expressions is the constructor expression,
which specifies that the results of the query are to be stored using a user-specified object type. Consider
the following query:

SELECT NEW example.EmployeeDetails(e.name, e.salary, e.department.name)
FROM Employee e

The result type of this query is the example.EmployeeDetails Java class. As the query processor
iterates over the results of the query, it instantiates new instances of EmployeeDetails using the
constructor that matches the expression types listed in the query. In this case, the expression types are
String, Double, and String, so the query engine will search for a constructor with those class types for
arguments. Each row in the resulting query collection is therefore an instance of EmployeeDetails
containing the employee name, salary, and department name.

The result object type must be referred to by using the fully qualified name of the object. The class
does not have to be mapped to the database in any way, however. Any class with a constructor
compatible with the expressions listed in the SELECT clause can be used in a constructor expression.

Constructor expressions are powerful tools for constructing coarse-grained data transfer objects or
view objects for use in other application tiers. Instead of manually constructing these objects, a single
query can be used to gather together view objects ready for presentation on a web page.

Inheritance and Polymorphism
JPA supports inheritance between entities. As a result, the query language supports polymorphic results
where multiple subclasses of an entity can be returned by the same query.

In the example model, Project is an abstract base class for QualityProject and DesignProject. If an
identification variable is formed from the Project entity, the query results will include a mixture of
QualityProject and DesignProject objects, and the results can be cast to these classes as necessary.
There is no special syntax to enable this behavior. The following query retrieves all projects with at least
one employee:

SELECT p
FROM Project p
WHERE p.employees IS NOT EMPTY

If we want to restrict the result of the query to a particular subclass, we can use that particular
subclass in the FROM clause instead of the root. However, if we want to restrict the results to more than
one subclass in the query but not all, we must instead use the type expression in the WHERE clause to
filter the results. A type expression consists of the keyword TYPE followed by an expression in
parentheses that resolves to an entity. The result of a type expression is the entity name, which can then
be used for comparison purposes. The advantage of a type expression is that we can distinguish between
types without relying on a discrimination mechanism in the domain model itself. The following example
demonstrates using a type expression to return only design and quality projects:

CHAPTER 8 ■ QUERY LANGUAGE

216

SELECT p
FROM Project p
WHERE TYPE(p) = DesignProject OR TYPE(p) = QualityProject

Note that there are no quotes around the DesignProject and QualityProject identifiers. These are
treated as entity names in JP QL, not as strings. Despite this distinction, input parameters can be used in
place of hard coded names in query strings. Input parameters are discussed later in the “Input
Parameters” section.

■ TIP The TYPE keyword was introduced in JPA 2.0.

The impact that inheritance between entities has on the generated SQL is important to understand
for performance reasons and will be described in Chapter 10.

FROM Clause
The FROM clause is used to declare one or more identification variables, optionally derived from joined
relationships, that form the domain over which the query should draw its results. The syntax of the
FROM clause consists of one or more identification variables and join clause declarations.

Identification Variables
The identification variable is the starting point for all query expressions. Every query must have at least
one identification variable defined in the FROM clause, and that variable must correspond to an entity
type. When an identification variable declaration does not use a path expression (that is, when it is a
single entity name), it is referred to as a range variable declaration. This terminology comes from set
theory as the variable is said to range over the entity.

Range variable declarations use the syntax <entity_name> [AS] <identifier>. We have been using
this syntax in all our earlier examples, but without the optional AS keyword. The identifier must follow
the standard Java naming rules and can be referenced throughout the query in a case-insensitive
manner. Multiple declarations can be specified by separating them with commas.

Path expressions can also be aliased to identification variables in the case of joins and subqueries.
The syntax for identification variable declarations in these cases will be covered in the next two sections.

Joins
A join is a query that combines results from multiple entities. Joins in JP QL queries is logically
equivalent to the SQL join. Ultimately, once the query is translated to SQL, it is quite likely that the joins
between entities will produce similar joins among the tables to which the entities are mapped.
Understanding when joins occur is therefore important to writing efficient queries.

CHAPTER 8 ■ QUERY LANGUAGE

217

Joins occur whenever any of the following conditions are met in a select query:

1. Two or more range variable declarations are listed in the FROM clause and
appear in the select clause.

2. The JOIN operator is used to extend an identification variable using a path
expression.

3. A path expression anywhere in the query navigates across an association field,
to the same or a different entity.

4. One or more where conditions compare attributes of different identification
variables.

The semantics of a join between entities are the same as SQL joins between tables. Most queries
contain a series of join conditions, which are expressions that define the rules for matching one entity to
another. Join conditions can be specified explicitly, such as using the JOIN operator in the FROM clause
of a query, or implicitly as a result of path navigation.

An inner join between two entities returns the objects from both entity types that satisfy all the join
conditions. Path navigation from one entity to another is a form of inner join. The outer join of two
entities is the set of objects from both entity types that satisfy the join conditions plus the set of objects
from one entity type (designated as the left entity) that have no matching join condition in the other.

In the absence of join conditions between two entities, queries will produce a Cartesian product.
Each object of the first entity type is paired with each object of the second entity type, squaring the
number of results1. Cartesian products are rare with JP QL queries given the navigation capabilities of
the language, but they are possible if two range variable declarations in the FROM clause are specified
without additional conditions specified in the WHERE clause.

Further discussion and examples of each join style are provided in the following sections.

Inner Joins

All the example queries so far have been using the simplest form of FROM clause, a single entity type
aliased to an identification variable. However, as a relational language, JP QL supports queries that draw
on multiple entities and the relationships between them.

Inner joins between two entities can be specified in one of the ways that were listed previously. The
first and preferred form, because it is explicit and obvious that a join is occurring, is the JOIN operator in
the FROM clause. Another form requires multiple range variable declarations in the FROM clause and
WHERE clause conditions to provide the join conditions.

JOIN Operator and Collection Association Fields

The syntax of an inner join using the JOIN operator is [INNER] JOIN <path_expression> [AS]
<identifier>. Consider the following query:

SELECT p
FROM Employee e JOIN e.phones p

1 The exact number of results will be M * N, where M is the number of entity instances of the first type
and N is the number of entity instances of the second type.

CHAPTER 8 ■ QUERY LANGUAGE

218

This query uses the JOIN operator to join the Employee entity to the Phone entity across the phones
relationship. The join condition in this query is defined by the object-relational mapping of the phones
relationship. No additional criteria need to be specified in order to link the two entities. By joining the
two entities together, this query returns all the Phone entity instances associated with employees in the
company.

The syntax for joins is similar to the JOIN expressions supported by ANSI SQL. For readers who
might not be familiar with this syntax, consider the equivalent SQL form of the previous query written
using the traditional join form:

SELECT p.id, p.phone_num, p.type, p.emp_id
FROM emp e, phone p
WHERE e.id = p.emp_id

The table mapping for the Phone entity replaces the expression e.phones. The WHERE clause also
includes the criteria necessary to join the two tables together across the join columns defined by the
phones mapping.

Note that the phones relationship has been mapped to the identification variable p. Even though the
Phone entity does not directly appear in the query, the target of the phones relationship is the Phone entity,
and this determines the identification variable type. This implicit determination of the identification
variable type can take some getting used to. Familiarity with how relationships are defined in the object
model is necessary to navigate through a written query.

Each occurrence of p outside of the FROM clause now refers to a single phone owned by an
employee. Even though a collection association field was specified in the JOIN clause, the identification
variable is really referring to entities reached by that association, not the collection itself. The variable
can now be used as if the Phone entity were listed directly in the FROM clause. For example, instead of
returning Phone entity instances, phone numbers can be returned instead:

SELECT p.number
FROM Employee e JOIN e.phones p

In the definition of path expressions earlier, it was noted that a path couldn’t continue from a state
field or collection association field. To work around this situation, the collection association field must
be joined in the FROM clause so that a new identification variable is created for the path, allowing it to
be the root for new path expressions.

IN versus JOIN

EJBQL as defined by the EJB 2.0 and EJB 2.1 specifications used a special operator IN in the FROM clause to map
collection associations to identification variables. Support for this operator was carried over to JP QL. The
equivalent form of the query used earlier in this section might be specified as

SELECT DISTINCT p
FROM Employee e, IN(e.phones) p

The IN operator is intended to indicate that the variable p is an enumeration of the phones collection. The JOIN
operator is a more powerful and expressive way to declare relationships and is the recommended operator for
queries.

CHAPTER 8 ■ QUERY LANGUAGE

219

JOIN Operator and Single-Valued Association Fields

The JOIN operator works with both collection-valued association path expressions and single-valued
association path expressions. Consider the following example:

SELECT d
FROM Employee e JOIN e.department d

This query defines a join from Employee to Department across the department relationship. This is
semantically equivalent to using a path expression in the SELECT clause to obtain the department for
the employee. For example, the following query should result in similar if not identical SQL
representations involving a join between the Employee and Department entities:

SELECT e.department
FROM Employee e

The primary use case for using a single-valued association path expression in the FROM clause
(rather than just using a path expression in the SELECT clause) is for outer joins. Path navigation is
equivalent to the inner join of all associated entities traversed in the path expression.

The possibility of implicit inner joins resulting from path expressions is something that developers
should be aware of. Consider the following example that returns the distinct departments based in
California that are participating in the “Release1” project:

SELECT DISTINCT e.department
FROM Project p JOIN p.employees e
WHERE p.name = 'Release1' AND
 e.address.state = 'CA'

There are actually four logical joins here, not two. The translator will treat the query as if it had been
written with explicit joins between the various entities. We will cover the syntax for multiple joins later in
the “Multiple Joins” section, but for now consider the following query that is equivalent to the previous
query, reading the join conditions from left to right:

SELECT DISTINCT d
FROM Project p JOIN p.employees e JOIN e.department d JOIN e.address a
WHERE p.name = 'Release1' AND
 a.state = 'CA'

We say four logical joins because the actual physical mapping might involve more tables. In this
case, the Employee and Project entities are related via a many-to-many association using a join table.
Therefore the actual SQL for such a query uses five tables, not four:

SELECT DISTINCT d.id, d.name
FROM project p, emp_projects ep, emp e, dept d, address a
WHERE p.id = ep.project_id AND
 ep.emp_id = e.id AND
 e.dept_id = d.id AND
 e.address_id = a.id AND
 p.name = 'Release1' AND
 a.state = 'CA'

The first form of the query is certainly easier to read and understand. However, during performance
tuning, it might be helpful to understand how many joins can occur as the result of seemingly trivial
path expressions.

CHAPTER 8 ■ QUERY LANGUAGE

220

Join Conditions in the WHERE Clause

SQL queries have traditionally joined tables together by listing the tables to be joined in the FROM
clause and supplying criteria in the WHERE clause of the query to determine the join conditions. To join
two entities without using a relationship, use a range variable declaration for each entity in the FROM
clause.

The previous join example between the Employee and Department entities could also have been
written like this:

SELECT DISTINCT d
FROM Department d, Employee e
WHERE d = e.department

This style of query is usually used to compensate for the lack of an explicit relationship between two
entities in the domain model. For example, there is no association between the Department entity and
the Employee who is the manager of the department. We can use a join condition in the WHERE clause to
make this possible:

SELECT d, m
FROM Department d, Employee m
WHERE d = m.department AND
 m.directs IS NOT EMPTY

In this example, we are using one of the special collection expressions, IS NOT EMPTY, to check that
the collection of direct reports to the employee is not empty. Any employee with a non-empty collection
of directs is by definition a manager.

Multiple Joins

More than one join can be cascaded if necessary. For example, the following query returns the distinct
set of projects belonging to employees who belong to a department:

SELECT DISTINCT p
FROM Department d JOIN d.employees e JOIN e.projects p

The query processor interprets the FROM clause from left to right. Once a variable has been
declared, it can be subsequently referenced by other JOIN expressions. In this case, the projects
relationship of the Employee entity is navigated once the employee variable has been declared.

Map Joins

A path expression that navigates across a collection-valued association implemented as a Map is a special
case. Unlike a normal collection, each item in a map corresponds to two pieces of information: the key
and the value. When working with JP QL, it is important to note that identification variables based on
maps refer to the value by default. For example, consider the case where the phones relationship of the
Employee entity is modeled as a map, where the key is the number type (work, cell, home, etc.) and the
value is the phone number. The following query enumerates the phone numbers for all employees:

SELECT e.name, p
FROM Employee e JOIN e.phones p

This behavior can be highlighted explicitly through the use of the VALUE keyword. For example, the
preceding query is functionally identical to the following:

SELECT e.name, VALUE(p)

CHAPTER 8 ■ QUERY LANGUAGE

221

FROM Employee e JOIN e.phones p

To access the key instead of the value for a given map item, we can use the KEY keyword to override
the default behavior and return the key value for a given map item. The following example demonstrates
adding the phone type to the previous query:

SELECT e.name, KEY(p), VALUE(p)
FROM Employee e JOIN e.phones p
WHERE KEY(p) IN ('Work', 'Cell')

Finally, in the event that we want both the key and the value returned together in the form of a
java.util.Map.Entry object, we can specify the ENTRY keyword in the same fashion. Note that the
ENTRY keyword can only be used in the SELECT clause. The KEY and VALUE keywords can also be used
as part of conditional expressions in the WHERE and HAVING clauses of the query.

Note that in each of the map join examples we joined an entity against one of its Map attributes and
came out with a key, value or key-value pair (entry). However, when viewed from the perspective of the
tables, the join is only ever done at the level of the source entity primary key and the values in the Map.
No facility is currently available in JPA to join the source entity against the keys of the Map.

■ TIP The KEY, VALUE, and ENTRY keywords for map operations were introduced in JPA 2.0. In JPA 1.0, Maps
could only contain entities, and a path expression that resolved to a Map always referred to the entity values of
the Map.

Outer Joins

An outer join between two entities produces a domain in which only one side of the relationship is
required to be complete. In other words, the outer join of Employee to Department across the employee
department relationship returns all employees and the department to which the employee has been
assigned, but the department is returned only if it is available. This is in contrast with an inner join that
would return only those employees assigned to a department.

An outer join is specified using the following syntax: LEFT [OUTER] JOIN <path_expression> [AS]
<identifier>. The following query demonstrates an outer join between two entities:

SELECT e, d
FROM Employee e LEFT JOIN e.department d

If the employee has not been assigned to a department, the department object (the second element
of the Object array) will be null. If you are familiar with Oracle SQL, you will see that the previous query
would be equivalent to the following:

SELECT e.id, e.name, e.salary, e.manager_id, e.dept_id, e.address_id,
 d.id, d.name
FROM emp e, dept d
WHERE e.dept_id = d.id (+)

CHAPTER 8 ■ QUERY LANGUAGE

222

Fetch Joins

Fetch joins are intended to help application designers optimize their database access and prepare query
results for detachment. They allow queries to specify one or more relationships that should be navigated
and prefetched by the query engine so that they are not lazy loaded later at runtime.

For example, if we have an Employee entity with a lazy loading relationship to its address, the
following query can be used to indicate that the relationship should be resolved eagerly during query
execution:

SELECT e
FROM Employee e JOIN FETCH e.address

Note that no identification variable is set for the e.address path expression. This is because even
though the Address entity is being joined in order to resolve the relationship, it is not part of the result
type of the query. The result of executing the query is still a collection of Employee entity instances,
except that the address relationship on each entity will not cause a secondary trip to the database when
it is accessed. This also allows the address relationship to be accessed safely if the Employee entity
becomes detached. A fetch join is distinguished from a regular join by adding the FETCH keyword to the
JOIN operator.

In order to implement fetch joins, the provider needs to turn the fetched association into a regular
join of the appropriate type: inner by default or outer if the LEFT keyword was specified. The SELECT
expression of the query also needs to be expanded to include the joined relationship. Expressed in JP
QL, an equivalent provider interpretation of the previous fetch join example would look like:

SELECT e, a
FROM Employee e JOIN e.address a

The only difference is that the provider does not actually return the Address entities to the caller.
Because the results are processed from this query, the query engine creates the Address entity in
memory and assigns it to the Employee entity, but then drops it from the result collection that it builds for
the client. This eagerly loads the address relationship, which can then get accessed normally via the
Employee entity.

A consequence of implementing fetch joins in this way is that fetching a collection association
results in duplicate results. For example, consider a department query where the employees relationship
of the Department entity is eagerly fetched. The fetch join query, this time using an outer join to ensure
that departments without employees are retrieved, would be written as follows:

SELECT d
FROM Department d LEFT JOIN FETCH d.employees

Expressed in JP QL, the provider interpretation would replace the fetch with an outer join across the
employees relationship:

SELECT d, e
FROM Department d LEFT JOIN d.employees e

Once again, as the results are processed, the Employee entity is constructed in memory but dropped
from the result collection. Each Department entity now has a fully resolved employees collection, but the
client receives one reference to each department per employee. For example, if four departments with
five employees each were retrieved, the result would be a collection of 20 Department instances, with
each department duplicated 5 times. The actual entity instances all point back to the same managed
versions, but the results are somewhat odd at the very least.

To eliminate the duplicate values, either the DISTINCT operator must be used or the results must be
placed into a data structure such as a Set. Because it is not possible to write a SQL query that uses the
DISTINCT operator while preserving the semantics of the fetch join, the provider will have to eliminate

CHAPTER 8 ■ QUERY LANGUAGE

223

duplicates in memory after the results have been fetched. This could have performance implications for
large result sets.

Given the somewhat peculiar results generated from a fetch join to a collection, it might not be the
most appropriate way to eagerly load related entities in all cases. If a collection requires eager fetching
on a regular basis, consider making the relationship eager by default. Some persistence providers also
offer batch reads as an alternative to fetch joins that issue multiple queries in a single batch and then
correlate the results to eagerly load relationships.

WHERE Clause
The WHERE clause of a query is used to specify filtering conditions to reduce the result set. In this
section, we will explore the features of the WHERE clause and the types of expressions that can be
formed to filter query results.

The definition of the WHERE clause is deceptively simple. It is simply the keyword WHERE, followed
by a conditional expression. However, as the following sections demonstrate, JP QL supports a powerful
set of conditional expressions to filter the most sophisticated of queries.

Input Parameters
Input parameters for queries can be specified using either positional or named notation. Positional
notation is defined by prefixing the variable number with a question mark. Consider the following query:

SELECT e
FROM Employee e
WHERE e.salary > ?1

Using the Query interface, any double value, or value that is type-compatible with the salary
attribute, can be bound into the first parameter in order to indicate the lower limit for employee salaries
in this query. The same positional parameter can occur more than once in the query. The value bound
into the parameter will be substituted for each of its occurrences.

Named parameters are specified using a colon followed by an identifier. Here is the same query, this
time using a named parameter:

SELECT e
FROM Employee e
WHERE e.salary > :sal

Input parameters were covered in detail in Chapter 7.

Basic Expression Form
Much of the conditional expression support in JP QL is borrowed directly from SQL. This is intentional
and helps to ease the transition for developers already familiar with SQL. The key difference between
conditional expressions in JP QL and SQL is that JP QL expressions can leverage identification variables
and path expressions to navigate relationships during expression evaluation.

Conditional expressions are constructed in the same style as SQL conditional expressions, using a
combination of logical operators, comparison expressions, primitive and function operations on fields,
and so on. Although a summary of the operators is provided later, the grammar for conditional
expressions is not repeated here. The JPA specification contains the grammar in Backus-Naur form
(BNF) and is the place to look for the exact rules about using basic expressions. The following sections

CHAPTER 8 ■ QUERY LANGUAGE

224

do, however, explain the higher-level operators and expressions, particularly those unique to JP QL, and
they provide examples for each.

Literal syntax is also similar to SQL (see the “Literals” section).
Operator precedence is as follows:

1. Navigation operator (.)

2. Unary +/–

3. Multiplication (*) and division (/)

4. Addition (+) and subtraction (–)

5. Comparison operators: =, >, >=, <, <=, <>, [NOT] BETWEEN, [NOT] LIKE, [NOT]
IN, IS [NOT] NULL, IS [NOT] EMPTY, [NOT] MEMBER [OF]

6. Logical operators (AND, OR, NOT)

BETWEEN Expressions
The BETWEEN operator can be used in conditional expressions to determine whether the result of an
expression falls within an inclusive range of values. Numeric, string, and date expressions can be
evaluated in this way. Consider the following example:

SELECT e
FROM Employee e
WHERE e.salary BETWEEN 40000 AND 45000

Any employee making $40,000 to $45,000 inclusively is included in the results. This is identical to
the following query using basic comparison operators:

SELECT e
FROM Employee e
WHERE e.salary >= 40000 AND e.salary <= 45000

The BETWEEN operator can also be negated with the NOT operator.

LIKE Expressions
JP QL supports the SQL LIKE condition to provide for a limited form of string pattern matching. Each
LIKE expression consists of a string expression to be searched, and a pattern string and optional escape
sequence that defines the match conditions. The wildcard characters used by the pattern string are the
underscore (_) for single character wildcards and the percent sign (%) for multicharacter wildcards.

SELECT d
FROM Department d
WHERE d.name LIKE '__Eng%'

We are using a prefix of two underscore characters to wildcard the first two characters of the string
candidates, so example department names to match this query would be “CAEngOtt” or “USEngCal”,
but not “CADocOtt”. Note that pattern matches are case-sensitive.

If the pattern string contains an underscore or percent sign that should be literally matched, the
ESCAPE clause can be used to specify a character that, when prefixing a wildcard character, indicates
that it should be treated literally:

SELECT d

CHAPTER 8 ■ QUERY LANGUAGE

225

FROM Department d
WHERE d.name LIKE 'QA_%' ESCAPE '\'

Escaping the underscore makes it a mandatory part of the expression. For example, “QA_East”
would match, but “QANorth” would not.

Subqueries
Subqueries can be used in the WHERE and HAVING clauses of a query. A subquery is a complete select
query inside a pair of parentheses that is embedded within a conditional expression. The results of
executing the subquery (which will be either a scalar result or a collection of values) are then evaluated
in the context of the conditional expression. Subqueries are a powerful technique for solving the most
complex query scenarios.

Consider the following query:

SELECT e
FROM Employee e
WHERE e.salary = (SELECT MAX(emp.salary)
 FROM Employee emp)

This query returns the employee with the highest salary from among all employees. A subquery
consisting of an aggregate query (described later in this chapter) is used to return the maximum salary
value, and then this result is used as the key to filter the employee list by salary. A subquery can be used
in most conditional expressions and can appear on either the left or right side of an expression.

The scope of an identifier variable name begins in the query where it is defined and extends down
into any subqueries. Identifiers in the main query can be referenced by a subquery, and identifiers
introduced by a subquery can be referenced by any subquery that it creates. If a subquery declares an
identifier variable of the same name, it overrides the parent declaration and prevents the subquery from
referring to the parent variable. In the previous example, the declaration of the identification variable e
in the subquery overrides the same declaration from the parent query.

■ NOTE Overriding an identification variable name in a subquery is not guaranteed to be supported by all
providers. Unique names should be used to ensure portability.

The ability to refer to a variable from the main query in the subquery allows the two queries to be
correlated. Consider the following example:

SELECT e
FROM Employee e
WHERE EXISTS (SELECT 1
 FROM Phone p
 WHERE p.employee = e AND p.type = 'Cell')

This query returns all the employees who have a cell phone number. This is also an example of a
subquery that returns a collection of values. The EXISTS expression in this example returns true if any
results are returned by the subquery. Returning the literal 1 from the subquery is a standard practice
with EXISTS expressions because the actual results selected by the subquery do not matter; only the
number of results is relevant. Note that the WHERE clause of the subquery references the identifier
variable e from the main query and uses it to filter the subquery results. Conceptually, the subquery can

CHAPTER 8 ■ QUERY LANGUAGE

226

be thought of as executing once for each employee. In practice, many database servers will optimize
these types of queries into joins or inline views in order to maximize performance.

This query could also have been written using a join between the Employee and Phone entities with
the DISTINCT operator used to filter the results. The advantage in using the correlated subquery is that
the main query remains unburdened by joins to other entities. Quite often if a join is used only to filter
the results, there is an equivalent subquery condition that can alternately be used in order to remove
constraints on the join clause of the main query or even to improve query performance.

The FROM clause of a subquery can also create new identification variables out of path expressions
using an identification variable from the main query. For example, the previous query could also have
been written as follows:

SELECT e
FROM Employee e
WHERE EXISTS (SELECT 1
 FROM e.phones p
 WHERE p.type = 'Cell')

In this version of the query, the subquery uses the collection association path phones from the
Employee identification variable e in the subquery. This is then mapped to a local identification variable p
that is used to filter the results by phone type. Each occurrence of p refers to a single phone associated
with the employee.

To better illustrate how the translator handles this query, consider the equivalent query written in
SQL:

SELECT e.id, e.name, e.salary, e.manager_id, e.dept_id, e.address_id
FROM emp e
WHERE EXISTS (SELECT 1
 FROM phone p
 WHERE p.emp_id = e.id AND
 p.type = 'Cell')

The expression e.phones is converted to the table mapped by the Phone entity. The WHERE clause
for the subquery then adds the necessary join condition to correlate the subquery to the primary query,
in this case the expression p.emp_id = e.id. The join criteria applied to the PHONE table results in all the
phones owned by the related employee.

IN Expressions
The IN expression can be used to check whether a single-valued path expression is a member of a
collection. The collection can be defined inline as a set of literal values or can be derived from a
subquery. The following query demonstrates the literal notation by selecting all the employees who live
in New York or California:

SELECT e
FROM Employee e
WHERE e.address.state IN ('NY', 'CA')

The subquery form of the expression is similar, replacing the literal list with a nested query. The
following query returns employees who work in departments that are contributing to projects beginning
with the prefix “QA”:

SELECT e
FROM Employee e
WHERE e.department IN (SELECT DISTINCT d
 FROM Department d JOIN d.employees de JOIN de.projects p

CHAPTER 8 ■ QUERY LANGUAGE

227

 WHERE p.name LIKE 'QA%')

The IN expression can also be negated using the NOT operator. For example, the following query
returns all the Phone entities with a phone number other than office or home:

SELECT p
FROM Phone p
WHERE p.type NOT IN ('Office', 'Home')

Collection Expressions
The IS EMPTY operator is the logical equivalent of IS NULL for collections. Queries can use the IS
EMPTY operator or its negated form IS NOT EMPTY to check whether a collection association path
resolves to an empty collection or has at least one value. For example, the following query returns all
employees who are managers by virtue of having at least one direct report:

SELECT e
FROM Employee e
WHERE e.directs IS NOT EMPTY

Note that IS EMPTY expressions are translated to SQL as subquery expressions. The query translator
can make use of an aggregate subquery or use the SQL EXISTS expression. Therefore the following query
is equivalent to the previous one:

SELECT m
FROM Employee m
WHERE (SELECT COUNT(e)
 FROM Employee e
 WHERE e.manager = m) > 0

The MEMBER OF operator and its negated form NOT MEMBER OF are a shorthand way of checking
whether an entity is a member of a collection association path. The following query returns all managers
who are incorrectly entered as reporting to themselves:

SELECT e
FROM Employee e
WHERE e MEMBER OF e.directs

A more typical use of the MEMBER OF operator is in conjunction with an input parameter. For
example, the following query selects all employees who are assigned to a designated project:

SELECT e
FROM Employee e
WHERE :project MEMBER OF e.projects

Like the IS EMPTY expression, the MEMBER OF expression will be translated to SQL using either an
EXISTS expression or the subquery form of the IN expression. The previous example is equivalent to the
following query:

SELECT e
FROM Employee e
WHERE :project IN (SELECT p
 FROM e.projects p)

CHAPTER 8 ■ QUERY LANGUAGE

228

EXISTS Expressions
The EXISTS condition returns true if a subquery returns any rows. Examples of EXISTS were
demonstrated earlier in the introduction to subqueries. The EXISTS operator can also be negated with
the NOT operator. The following query selects all employees who do not have a cell phone:

SELECT e
FROM Employee e
WHERE NOT EXISTS (SELECT p
 FROM e.phones p
 WHERE p.type = 'Cell')

ANY, ALL, and SOME Expressions
The ANY, ALL, and SOME operators can be used to compare an expression to the results of a subquery.
Consider the following example:

SELECT e
FROM Employee e
WHERE e.directs IS NOT EMPTY AND
 e.salary < ALL (SELECT d.salary
 FROM e.directs d)

This query returns all the managers who are paid less than all the employees who work for them.
The subquery is evaluated, and then each value of the subquery is compared to the left-hand expression,
in this case the manager salary. When the ALL operator is used, the comparison between the left side of
the equation and all subquery results must be true for the overall condition to be true.

The ANY operator behaves similarly, but the overall condition is true as long as at least one of the
comparisons between the expression and the subquery result is true. For example, if ANY were specified
instead of ALL in the previous example, the result of the query would be all the managers who were paid
less than at least one of their employees. The SOME operator is an alias for the ANY operator.

There is symmetry between IN expressions and the ANY operator. Consider the following variation
of the project department example used previously:

SELECT e
FROM Employee e
WHERE e.department = ANY (SELECT DISTINCT d
 FROM Department d JOIN d.employees de JOIN de.projects p
 WHERE p.name LIKE 'QA%')

Scalar Expressions
A scalar expression is a literal value, arithmetic sequence, function expression, type expression, or case
expression that resolves to a single scalar value. It can be used in the SELECT clause to format projected
fields in report queries or as part of conditional expressions in the WHERE or HAVING clause of a query.
Subqueries that resolve to scalar values are also considered scalar expressions, but can be used only
when composing criteria in the WHERE clause of a query. Subqueries can never be used in the SELECT
clause.

CHAPTER 8 ■ QUERY LANGUAGE

229

■ TIP The option to place scalar expressions in the SELECT clause was introduced in JPA 2.0.

Literals
There are a number of different literal types that can be used in JP QL, including strings, numerics,
booleans, enums, entity types, and temporal types.

Throughout this chapter, we have seen many examples of string, integer, and boolean literals. Single
quotes are used to demarcate string literals and escaped within a string by prefixing the quote with
another single quote. Exact and approximate numerics can be defined according to the conventions of
the Java programming language or by using the standard SQL-92 syntax. Boolean values are represented
by the literals TRUE and FALSE.

Queries can reference Java enum types by specifying the fully qualified name of the enum class. The
following example demonstrates using an enum in a conditional expression, using the PhoneType enum
demonstrated in Listing 5-8 from Chapter 5:

SELECT e
FROM Employee e JOIN e.phoneNumbers p
WHERE KEY(p) = com.acme.PhoneType.Home

An entity type is just the entity name of some defined entity, and is valid only when used with the
TYPE operator. Quotes are not used. See the “Inheritance and Polymorphism” section for examples of
when to use an entity type literal.

Temporal literals are specified using the JDBC escape syntax, which defines that curly braces
enclose the literal. The first character in the sequence is either a “d” or a “t” to indicate that the literal is a
date or time, respectively. If the literal represents a timestamp, “ts” is used instead. Following the type
indicator is a space separator, and then the actual date, time, or timestamp information wrapped in
single quotes. The general forms of the three temporal literal types, with accompanying examples are as
follows:

{d 'yyyy-mm-dd'} e.g. {d '2009-11-05'}
{t 'hh-mm-ss'} e.g. {t '12-45-52'}
{ts 'yyyy-mm-dd hh-mm-ss.f'} e.g. {ts '2009-11-05 12-45-52.325'}

All the temporal information within single quotes is expressed as digits. The fractional part of the
timestamp (the “.f” part) can be multiple digits long and is optional.

When using any of these temporal literals remember that they are interpreted only by drivers that
support the JDBC escape syntax. The provider will not normally try to translate or preprocess temporal
literals.

■ TIP Support for Java enum literals, entity type literals and temporal literals was added in JPA 2.0.

CHAPTER 8 ■ QUERY LANGUAGE

230

Function Expressions
Scalar expressions can leverage functions that can be used to transform query results. Table 8-1
summarizes the syntax for each of the supported function expressions.

Table 8-1. Supported Function Expressions

Function Description

ABS(number) The ABS function returns the unsigned version of the number
argument. The result type is the same as the argument type
(integer, float, or double).

CONCAT(string1, string2) The CONCAT function returns a new string that is the
concatenation of its arguments, string1 and string2.

CURRENT_DATE The CURRENT_DATE function returns the current date as
defined by the database server.

CURRENT_TIME The CURRENT_TIME function returns the current time as
defined by the database server.

CURRENT_TIMESTAMP The CURRENT_TIMESTAMP function returns the current
timestamp as defined by the database server.

INDEX(identification variable) The INDEX function returns the position of an entity within an
ordered list.

LENGTH(string) The LENGTH function returns the number of characters in the
string argument.

LOCATE(string1, string2 [, start]) The LOCATE function returns the position of string1 in string2,
optionally starting at the position indicated by start. The result
is zero if the string cannot be found.

LOWER(string) The LOWER function returns the lowercase form of the string
argument.

MOD(number1, number2) The MOD function returns the modulus of numeric arguments
number1 and number2 as an integer.

SIZE(collection) The SIZE function returns the number of elements in the
collection, or zero if the collection is empty.

SQRT(number) The SQRT function returns the square root of the number
argument as a double.

SUBSTRING(string, start, end) The SUBSTRING function returns a portion of the input string,
starting at the index indicated by start up to length characters.
String indexes are measured starting from one.

UPPER(string) The UPPER function returns the uppercase form of the string
argument.

TRIM([[LEADING|TRAILING|BOTH]
[char] FROM] string)

The TRIM function removes leading and/or trailing characters
from a string. If the optional LEADING, TRAILING, or BOTH
keyword is not used, both leading and trailing characters are
removed. The default trim character is the space character.

CHAPTER 8 ■ QUERY LANGUAGE

231

The SIZE function requires special attention because it is shorthand notation for an aggregate
subquery. For example, consider the following query that returns all departments with only two
employees:

SELECT d
FROM Department d
WHERE SIZE(d.employees) = 2

Like the collection expressions IS EMPTY and MEMBER OF, the SIZE function will be translated to
SQL using a subquery. The equivalent form of the previous example using a subquery is as follows:

SELECT d
FROM Department d
WHERE (SELECT COUNT(e)
 FROM d.employees e) = 2

The use case for the INDEX function might not be obvious at first. When using ordered collections,
each element of the collection actually contains two pieces of information: the value stored in the
collection and its numeric position within the collection. Queries can use the INDEX function to
determine the numeric position of an element in a collection and then use that number for reporting or
filtering purposes. For example, if the phone numbers for an employee are stored in priority order, the
following query would return the first (and most important) number for each employee:

SELECT e.name, p.number
FROM Employee e JOIN e.phones p
WHERE INDEX(p) = 0

CASE Expressions
The JP QL case expression is an adaptation of the ANSI SQL-92 CASE expression taking into account the
capabilities of the JP QL language. Case expressions are powerful tools for introducing conditional logic
into a query, with the benefit that the result of a case expression can be used anywhere a scalar
expression is valid.

■ TIP CASE expressions were introduced in JPA 2.0.

Case expressions are available in four forms, depending on the flexibility required by the query. The
first and most flexible form is the general case expression. All other case expression types can be
composed in terms of the general case expression. It has the following form:

CASE {WHEN <cond_expr> THEN <scalar_expr>}+ ELSE <scalar_expr> END

The heart of the case expression is the WHEN clause, of which there must be at least one. The query
processor resolves the conditional expression of each WHEN clause in order until it finds one that is
successful. It then evaluates the scalar expression for that WHEN clause and returns it as the result of the
case expression. If none of the WHEN clause conditional expressions yields a true result, the scalar
expression of the ELSE clause is evaluated and returned instead. The following example demonstrates
the general case expression, enumerating the name and type of each project that has employees
assigned to it:

CHAPTER 8 ■ QUERY LANGUAGE

232

SELECT p.name,
 CASE WHEN TYPE(p) = DesignProject THEN 'Development'
 WHEN TYPE(p) = QualityProject THEN 'QA'
 ELSE 'Non-Development'
 END
FROM Project p
WHERE p.employees IS NOT EMPTY

Note the use of the case expression as part of the select clause. Case expressions are a powerful tool
for transforming entity data in report queries.

A slight variation on the general case expression is the simple case expression. Instead of checking a
conditional expression in each WHEN clause, it identifies a value and resolves a scalar expression in
each WHEN clause. The first to match the value triggers a second scalar expression that becomes the
value of the case expression. It has the following form:

CASE <value> {WHEN <scalar_expr1> THEN <scalar_expr2>}+ ELSE <scalar_expr> END

The <value> in this form of the expression is either a path expression leading to a state field or a type
expression for polymorphic comparison. We can simplify the last example by converting it to a simple
case expression:

SELECT p.name,
 CASE TYPE(p)
 WHEN DesignProject THEN 'Development'
 WHEN QualityProject THEN 'QA'
 ELSE 'Non-Development'
 END
FROM Project p
WHERE p.employees IS NOT EMPTY

The third form of the case expression is the coalesce expression. This form of the case expression
accepts a sequence of one or more scalar expressions. It has the following form:

COALESCE(<scalar_expr> {,<scalar_expr>}+)

The scalar expressions in the COALESCE expression are resolved in order. The first one to return a
non-null value becomes the result of the expression. The following example demonstrates this usage,
returning either the descriptive name of each department or the department identifier if no name has
been defined:

SELECT COALESCE(d.name, d.id)
FROM Department d

The fourth and final form of the case expression is somewhat unusual. It accepts two scalar
expressions and resolves both of them. If the results of the two expressions are equal, the result of the
expression is null. Otherwise it returns the result of the first scalar expression. This form of the case
expression is identified by the NULLIF keyword:

NULLIF(<scalar_expr1>, <scalar_expr2>)

One useful trick with NULLIF is to exclude results from an aggregate function. For example, the
following query returns a count of all departments and a count of all departments not named ‘QA’:

SELECT COUNT(*), COUNT(NULLIF(d.name, 'QA'))
FROM Department d

CHAPTER 8 ■ QUERY LANGUAGE

233

If the department name is ‘QA’, NULLIF will return NULL, which will then be ignored by the
COUNT function. Aggregate functions ignore NULL values, and are described later in the “Aggregate
Queries” section.

ORDER BY Clause
Queries can optionally be sorted using one or more expressions consisting of identification variables,
result variables, a path expression resolving to a single entity, or a path expression resolving to a
persistent state field. The optional keywords ASC or DESC after the expression can be used to indicate
ascending or descending sorts, respectively. The default sort order is ascending.

The following example demonstrates sorting by a single field:

SELECT e
FROM Employee e
ORDER BY e.name DESC

Multiple expressions can also be used to refine the sort order:

SELECT e, d
FROM Employee e JOIN e.department d
ORDER BY d.name, e.name DESC

A result variable can be declared in the SELECT clause for the purpose of specifying an item to be
ordered. A result variable is effectively an alias for its assigned selection item. It saves the ORDER BY
clause from having to duplicate path expressions from the SELECT clause and permits referencing
computed selection items and items that use aggregate functions. The following query defines two result
variables in the SELECT clause and then uses them to order the results in the ORDER BY clause:

SELECT e.name, e.salary * 0.05 AS bonus, d.name AS deptName
FROM Employee e JOIN e.department d
ORDER BY deptName, bonus DESC

If the SELECT clause of the query uses state field path expressions, the ORDER BY clause is limited
to the same path expressions used in the SELECT clause. For example, the following query is not legal:

SELECT e.name
FROM Employee e
ORDER BY e.salary DESC

Because the result type of the query is the employee name, which is of type String, the remainder of
the Employee state fields are no longer available for ordering.

Aggregate Queries
An aggregate query is a variation of a normal select query. An aggregate query groups results and applies
aggregate functions to obtain summary information about query results. A query is considered an
aggregate query if it uses an aggregate function or possesses a GROUP BY clause and/or a HAVING
clause. The most typical form of aggregate query involves the use of one or more grouping expressions
and aggregate functions in the SELECT clause paired with grouping expressions in the GROUP BY
clause. The syntax of an aggregate query is as follows:

SELECT <select_expression>
FROM <from_clause>
[WHERE <conditional_expression>]

CHAPTER 8 ■ QUERY LANGUAGE

234

[GROUP BY <group_by_clause>]
[HAVING <conditional_expression>]
[ORDER BY <order_by_clause>]

The SELECT, FROM, and WHERE clauses behave much the same as previously described under
select queries, with the exception of some restrictions on how the SELECT clause is formulated.

The power of an aggregate query comes from the use of aggregate functions over grouped data.
Consider the following simple aggregate example:

SELECT AVG(e.salary)
FROM Employee e

This query returns the average salary of all employees in the company. AVG is an aggregate function
that takes a numeric state field path expression as an argument and calculates the average over the
group. Because there was no GROUP BY clause specified, the group here is the entire set of employees.
This was the only form of aggregate query supported by EJB QL as defined in the EJB 2.1 specification.

Now consider this variation, where the result has been grouped by the department name:

SELECT d.name, AVG(e.salary)
FROM Department d JOIN d.employees e
GROUP BY d.name

This query returns the name of each department and the average salary of the employees in that
department. The Department entity is joined to the Employee entity across the employees relationship and
then formed into a group defined by the department name. The AVG function then calculates its result
based on the employee data in this group.

This can be extended further to filter the data so that manager salaries are not included:

SELECT d.name, AVG(e.salary)
FROM Department d JOIN d.employees e
WHERE e.directs IS EMPTY
GROUP BY d.name

Finally, we can extend this one last time to return only the departments where the average salary is
greater than $50,000. Consider the following version of the previous query:

SELECT d.name, AVG(e.salary)
FROM Department d JOIN d.employees e
WHERE e.directs IS EMPTY
GROUP BY d.name
HAVING AVG(e.salary) > 50000

To understand this query better, let’s go through the logical steps that took place to execute it.
Databases use many techniques to optimize these types of queries, but conceptually the same process is
being followed. First, the following nongrouping query is executed:

SELECT d.name, e.salary
FROM Department d JOIN d.employees e
WHERE e.directs IS EMPTY

This will produce a result set consisting of all department name and salary value pairs. The query
engine then starts a new result set and makes a second pass over the data, collecting all the salary values
for each department name and handing them off to the AVG function. This function then returns the
group average, which is then checked against the criteria from the HAVING clause. If the average value is
greater than $50,000, the query engine generates a result row consisting of the department name and
average salary value.

CHAPTER 8 ■ QUERY LANGUAGE

235

The following sections describe the aggregate functions available for use in aggregate queries and
the use of the GROUP BY and HAVING clauses.

Aggregate Functions
Five aggregate functions can be placed in the select clause of a query: AVG, COUNT, MAX, MIN, and
SUM.

AVG
The AVG function takes a state field path expression as an argument and calculates the average value of
that state field over the group. The state field type must be numeric, and the result is returned as a
Double.

COUNT
The COUNT function takes either an identification variable or a path expression as its argument. This
path expression can resolve to a state field or a single-valued association field. The result of the function
is a Long value representing the number of values in the group. The argument to the COUNT function
can optionally be preceded by the keyword DISTINCT, in which case duplicate values are eliminated
before counting.

The following query counts the number of phones associated with each employee as well as the
number of distinct number types (cell, office, home, and so on):

SELECT e, COUNT(p), COUNT(DISTINCT p.type)
FROM Employee e JOIN e.phones p
GROUP BY e

MAX
The MAX function takes a state field expression as an argument and returns the maximum value in the
group for that state field.

MIN
The MIN function takes a state field expression as an argument and returns the minimum value in the
group for that state field.

SUM
The SUM function takes a state field expression as an argument and calculates the sum of the values in
that state field over the group. The state field type must be numeric, and the result type must correspond
to the field type. For example, if a Double field is summed, the result will be returned as a Double. If a Long
field is summed, the response will be returned as a Long.

CHAPTER 8 ■ QUERY LANGUAGE

236

GROUP BY Clause
The GROUP BY clause defines the grouping expressions over which the results will be aggregated. A
grouping expression must either be a single-valued path expression (state field or single-valued
association field) or an identification variable. If an identification variable is used, the entity must not
have any serialized state or large object fields.

The following query counts the number of employees in each department:

SELECT d.name, COUNT(e)
FROM Department d JOIN d.employees e
GROUP BY d.name

Note that the same field expression used in the SELECT clause is repeated in the GROUP BY clause.
All non-aggregate expressions must be listed this way. More than one aggregate function can be applied
to the same GROUP BY clause:

SELECT d.name, COUNT(e), AVG(e.salary)
FROM Department d JOIN d.employees e
GROUP BY d.name

This variation of the query calculates the average salary of all employees in each department in
addition to counting the number of employees in the department.

Multiple grouping expressions can also be used to further break down the results:

SELECT d.name, e.salary, COUNT(p)
FROM Department d JOIN d.employees e JOIN e.projects p
GROUP BY d.name, e.salary

Because there are two grouping expressions, the department name and employee salary must be
listed in both the SELECT clause and GROUP BY clause. For each department, this query counts the
number of projects assigned to employees based on their salary.

In the absence of a GROUP BY clause, the entire query is treated as one group, and the SELECT list
can contain only aggregate functions. For example, the following query returns the number of
employees and their average salary across the entire company:

SELECT COUNT(e), AVG(e.salary)
FROM Employee e

HAVING Clause
The HAVING clause defines a filter to be applied after the query results have been grouped. It is
effectively a secondary WHERE clause, and its definition is the same: the keyword HAVING followed by a
conditional expression. The key difference with the HAVING clause is that its conditional expressions are
limited to state fields or single-valued association fields previously identified in the GROUP BY clause.

Conditional expressions in the HAVING clause can also make use of aggregate functions. In many
respects, the primary use of the HAVING clause is to restrict the results based on the aggregate result
values. The following query uses this technique to retrieve all employees assigned to two or more
projects:

SELECT e, COUNT(p)
FROM Employee e JOIN e.projects p
GROUP BY e
HAVING COUNT(p) >= 2

CHAPTER 8 ■ QUERY LANGUAGE

237

Update Queries
Update queries provide an equivalent to the SQL UPDATE statement but with JP QL conditional
expressions. The form of an update query is the following:

UPDATE <entity name> [[AS] <identification variable>]
SET <update_statement> {, <update_statement>}*
[WHERE <conditional_expression>]

Each UPDATE statement consists of a single-valued path expression, the assignment operator (=),
and an expression. Expression choices for the assignment statement are slightly restricted compared to
regular conditional expressions. The right side of the assignment must resolve to a literal, simple
expression resolving to a basic type, function expression, identification variable, or input parameter. The
result type of that expression must be compatible with the simple association path or persistent state
field on the left side of the assignment.

The following simple example demonstrates the update query by giving employees who make
$55,000 a year a raise to $60,000:

UPDATE Employee e
SET e.salary = 60000
WHERE e.salary = 55000

The WHERE clause of an UPDATE statement functions the same as a SELECT statement and can use
the identification variable defined in the UPDATE clause in expressions. A slightly more complex but
more realistic update query would be to award a $5,000 raise to employees who worked on a particular
project:

UPDATE Employee e
SET e.salary = e.salary + 5000
WHERE EXISTS (SELECT p
 FROM e.projects p
 WHERE p.name = 'Release2')

More than one property of the target entity can be modified with a single UPDATE statement. For
example, the following query updates the phone exchange for employees in the city of Ottawa and
changes the terminology of the phone type from “Office” to “Business”:

UPDATE Phone p
SET p.number = CONCAT('288', SUBSTRING(p.number, LOCATE(p.number, '-'), 4)),
 p.type = 'Business'
WHERE p.employee.address.city = 'Ottawa' AND
 p.type = 'Office'

Delete Queries
The delete query provides the same capability as the SQL DELETE statement, but with JP QL conditional
expressions. The form of a delete query is the following:

DELETE FROM <entity name> [[AS] <identification variable>]
[WHERE <condition>]

The following example removes all employees who are not assigned to a department:

DELETE FROM Employee e
WHERE e.department IS NULL

CHAPTER 8 ■ QUERY LANGUAGE

238

The WHERE clause for a DELETE statement functions the same as it would for a SELECT statement.
All conditional expressions are available to filter the set of entities to be removed. If the WHERE clause is
not provided, all entities of the given type are removed.

Delete queries are polymorphic. Any entity subclass instances that meet the criteria of the delete
query will also be deleted. Delete queries do not honor cascade rules, however. No entities other than
the type referenced in the query and its subclasses will be removed, even if the entity has relationships to
other entities with cascade removes enabled.

Summary
In this chapter, we have given you a complete tour of the Java Persistence Query Language, looking at
the numerous query types and their syntax. We covered the history of the language, from its roots in the
EJB 2.0 specification to the major enhancements introduced by JPA.

In the section on select queries, we explored each query clause and incrementally built up more
complex queries as the full syntax was described. We discussed identification variables and path
expressions, which are used to navigate through the domain model in query expressions. We also looked
at the various conditional and scalar expressions supported by the language.

In our discussion of aggregate queries we introduced the additional grouping and filtering clauses
that extend select queries. We also demonstrated the various aggregate functions.

In the sections on update and delete queries, we described the full syntax for bulk update and delete
statements, whose runtime behavior was described in the previous chapter.

In the next chapter we will continue our exploration of JPA query facilities with an in-depth look at
the criteria API, a runtime API for constructing queries.

C H A P T E R 9

■ ■ ■

239

Criteria API

In the last chapter, we looked in detail at the JP QL query language and the concepts that underlie the
JPA query model. In this chapter, we will look at an alternate method for constructing queries that uses a
Java programming language API instead of JP QL or native SQL.

We will begin with an overview of the JPA 2.0 criteria API and look at a common use case involving
constructing dynamic queries in an enterprise application. This will be followed by an in-depth
exploration of the criteria API and how it relates to JP QL.

A related feature of the criteria API is the JPA 2.0 metamodel API. We will conclude this chapter with
an overview of the metamodel API and look at how it can be used to create strongly typed queries using
the criteria API.

Note that this chapter assumes that you have read Chapter 8, and are familiar with all the concepts
and terminology that it introduces. Wherever possible, we will use the upper-case JP QL keywords to
highlight different elements of the JPA query model and demonstrate their equivalent behavior with the
criteria API. This chapter also assumes familiarity with Java generics, as the criteria and metamodel APIs
use them extensively.

Overview
Before languages like JP QL became standardized, the most common method for constructing queries in
many persistence providers was through a programming API. The query framework in EclipseLink, for
example, was the most effective way to truly unlock the full power of its query engine. And, even with the
advent of JP QL, programming APIs have still remained in use to give access to features not yet
supported by the standard query language.

JPA 2.0 introduced a new criteria API for constructing queries that standardizes many of the
programming features that exist in proprietary persistence products. More than just a literal translation
of JP QL to programming interface, it also adopts programming best practices of the proprietary models,
such as method chaining, and makes full use of the Java programming language features.

The following sections provide a high-level view of the criteria API, discussing how and when it is
appropriate to use. We also look at a more significant example with a use case that is common in many
enterprise settings.

CHAPTER 9 ■ CRITERIA API

240

The Criteria API
Let’s begin with a simple example to demonstrate the syntax and usage of the criteria API. The following
JP QL query returns all the employees in the company with the name of “John Smith”:

SELECT e
FROM Employee e
WHERE e.name = 'John Smith'

And here is the equivalent query constructed using the criteria API:

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
Root<Employee> emp = c.from(Employee.class);
c.select(emp)
.where(cb.equal(emp.get("name"), "John Smith"));

There is a lot going on in just a few lines of code in this example, but right away you should see
parallels between the JP QL version and the criteria-based version. The JP QL keywords SELECT, FROM,
WHERE and LIKE have matching methods in the form of select(), from(), where(), and like(). The
Employee entity class takes the place of the entity name in the invocation of from(), and the name attribute
of Employee is still being accessed, but instead of the JP QL dot operator here we have the get() method.

As we progress through this chapter, we will explore each of these methods in detail, but for now we
will look at the bigger picture. First, we have the CriteriaBuilder interface, obtained here from the
EntityManager interface through the getCriteriaBuilder() method. The CriteriaBuilder interface is
our main gateway into the criteria API, acting as a factory for the various objects that link together to
form a query definition. The variable cb will be used in the examples in this chapter to represent the
CriteriaBuilder object.

The first use of the CriteriaBuilder interface in this example is to create an instance of
CriteriaQuery. The CriteriaQuery object forms the shell of the query definition and generally contains
the methods that match up with the JP QL query clauses. The second use of the CriteriaBuilder
interface in this example is to construct the conditional expressions in the where clause. All of the
conditional expression keywords, operators, and functions from JP QL are represented in some manner
on the CriteriaBuilder interface.

Given that background it is easy to see how the query comes together. The first step is to establish
the root of the query by invoking from() to get back a Root object. This is equivalent to declaring the
identification variable e in the JP QL example and the Root object will form the basis for path expressions
in the rest of the query. The next step establishes the SELECT clause of the query by passing the root into
the select() method. The last step is to construct the WHERE clause, by passing an expression
composed from CriteriaBuilder methods that represent JP QL condition expressions into the where()
method. When path expressions are needed, such as accessing the name attribute in this example, the
get() method on the Root object is used to create the path.

CHAPTER 9 ■ CRITERIA API

241

Parameterized Types
The preceding example demonstrated the use of Java generics in the criteria API. The API uses
parameterized types extensively: almost every interface and method declaration uses Java generics in
one form or another. The decision to use generics allows the compiler to detect many cases of
incompatible type usage and, like the Java collection API, removes the need for casting in most cases.

Any API that uses Java generics can also be used without type parameters, but when compiled the
code will emit compiler warnings. For example, code that uses a simple untyped (“raw”) List type will
generate a warning to the effect that a reference to a generic type should be parameterized. The
following line of code will generate two such warnings, one for using List and one for using ArrayList.

List list = new ArrayList();

The criteria API can similarly be used without binding the criteria objects to specific types, although
this clearly discards the typing benefits. The preceding example could be rewritten as:

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery c = cb.createQuery(Employee.class);
Root emp = c.from(Employee.class);
c.select(emp)
 .where(cb.equal(emp.get(“name”), "John Smith"));

This code is functionally identical to the original example, but just happens to be more prone to
errors during development. Nevertheless, some people may be willing to have less development-time
type safety but more code readability in the absence of “type clutter.” This is particularly understandable
considering that most people run at least minimal tests on a query before shipping the query code, and
once you get to the point of knowing that the query works then you are already as far ahead as you would
be with compile-time type checking.

If you are in the category of people who would rather the code were simpler to read and develop at
the cost of somewhat less compile-time safety then depending upon your tolerance for compiler
warnings you may want to disable them. This can be achieved by adding a
@SuppressWarnings("unchecked") annotation on your class. However, be warned (no pun intended!) that
this will cause all type checking warnings to be suppressed, not just the ones relating to the use of the
criteria API.

Dynamic Queries
To demonstrate a good potential use of the criteria API, we will look at a common use case in many
enterprise applications: crafting dynamic queries where the structure of the criteria is not known until
runtime.

In Chapter 7, we discussed how to create dynamic JP QL queries. You build up the query string at
runtime and then pass it to the createQuery() method of the EntityManager interface. The query engine
parses the query string and returns a Query object that you can use to get results. Creating dynamic
queries is required in situations where the output or criteria of a query varies depending on end-user
choices.

Consider a web application used to search for employee contact information. This is a common
feature in many large organizations that allows users to search by name, department, phone number, or
even location, either separately or using a combination of query terms. Listing 9-1 shows an example
implementation of a session bean that accepts a set of criteria and then builds up and executes a JP QL
query depending on which criteria parameters have been set. It does not use any of the functionality

CHAPTER 9 ■ CRITERIA API

242

introduced in JPA 2.0 so it can run in a JPA 1.0 implementation. This example and others in this chapter
use the data model described in Figure 8-1 in Chapter 8.

Listing 9-1. Employee Search Using Dynamic JP QL Query

@Stateless
public class SearchService {
 @PersistenceContext(unitName="EmployeeHR")
 EntityManager em;

 public List<Employee> findEmployees(String name, String deptName,
 String projectName, String city) {
 StringBuffer query = new StringBuffer();
 query.append("SELECT DISTINCT e ");
 query.append("FROM Employee e LEFT JOIN e.projects p ");

 query.append("WHERE ");
 List<String> criteria = new ArrayList<String>();
 if (name != null) { criteria.add("e.name = :name"); }
 if (deptName != null) { criteria.add("e.dept.name = :dept"); }
 if (projectName != null) { criteria.add("p.name = :project"); }
 if (city != null) { criteria.add("e.address.city = :city"); }
 if (criteria.size() == 0) {
 throw new RuntimeException("no criteria");
 }
 for (int i = 0; i < criteria.size(); i++) {
 if (i > 0) { query.append(" AND "); }
 query.append(criteria.get(i));
 }

 Query q = em.createQuery(query.toString());
 if (name != null) { q.setParameter("name", name); }
 if (deptName != null) { q.setParameter("dept", deptName); }
 if (projectName != null) { q.setParameter("project", projectName); }
 if (city != null) { q.setParameter("city", city); }
 return (List<Employee>)q.getResultList();
 }
}

The findEmployees() method in Listing 9-1 has to perform a number of tasks every time it is
invoked. It has to build up a query string with a variable set of criteria, create the query, bind parameters,
and then execute the query. It’s a fairly straightforward implementation, and will do the job, but every
time the query string is created the provider has to parse the JP QL and build up an internal
representation of the query before parameters can be bound and SQL generated. It would be nice if we
could avoid the parsing overhead and construct the various criteria options using Java API instead of
strings.

Listing 9-2. Employee Search Using Criteria API

@Stateless
public class SearchService {
 @PersistenceContext(unitName="EmployeeHR")
 EntityManager em;

CHAPTER 9 ■ CRITERIA API

243

 public List<Employee> findEmployees(String name, String deptName,
 String projectName, String city) {

 CriteriaBuilder cb = em.getCriteriaBuilder();
 CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
 Root<Employee> emp = c.from(Employee.class);
 c.select(emp);
 c.distinct(true);
 Join<Employee,Project> project =
 emp.join("projects", JoinType.LEFT);

 List<Predicate> criteria = new ArrayList<Predicate>();
 if (name != null) {
 ParameterExpression<String> p =
 cb.parameter(String.class, "name");
 criteria.add(cb.equal(emp.get("name"), p));
 }
 if (deptName != null) {
 ParameterExpression<String> p =
 cb.parameter(String.class, "dept");
 criteria.add(cb.equal(emp.get("dept").get("name"), p));
 }
 if (projectName != null) {
 ParameterExpression<String> p =
 cb.parameter(String.class, "project");
 criteria.add(cb.equal(project.get("name"), p));
 }
 if (city != null) {
 ParameterExpression<String> p =
 cb.parameter(String.class, "city");
 criteria.add(cb.equal(emp.get("address").get("city"), p));
 }

 if (criteria.size() == 0) {
 throw new RuntimeException("no criteria");
 } else if (criteria.size() == 1) {
 c.where(criteria.get(0));
 } else {
 c.where(cb.and(criteria.toArray(new Predicate[0])));
 }

 TypedQuery<Employee> q = em.createQuery(c);
 if (name != null) { q.setParameter("name", name); }
 if (deptName != null) { q.setParameter("dept", deptName); }
 if (project != null) { q.setParameter("project", projectName); }
 if (city != null) { q.setParameter("city", city); }
 return q.getResultList();
 }
}

Listing 9-2 shows the same EmployeeSearch service from Listing 9-1 redone using the criteria API.
This is a much larger example than our initial look at the criteria API, but once again you can see the
general pattern of how it is constructed. The basic query construction and clause methods of the

CHAPTER 9 ■ CRITERIA API

244

CriteriaBuilder and CriteriaQuery interfaces are present as before, but there are a few new elements in
this query we can explore. The first is the join between Employee and Project, here constructed using the
join() method on the Root object. The Join object that is returned can also be used to construct path
expressions such as the Root object. In this example we also see a path expression involving more than
one relationship, from Employee to Address to the city attribute.

The second new element in this query is the use of parameters. Unlike JP QL where parameters are
just an alias, in the criteria API parameters are strongly typed and created from the parameter() call. The
ParameterExpression object that is returned can then be used in other parts of the query such as the
WHERE or SELECT clauses. In terms of expressions, this example also includes the CriteriaBuilder
methods equal() and and(), equivalent to the JP QL predicates ‘=’ and ‘AND’. Note the somewhat odd
invocation of the and() method. Like many other criteria API methods, and() accepts a varying number
of arguments, which in turn can be represented as an array of the appropriate argument type.
Unfortunately, the designers of the Collection.toArray() method decided that, in order to avoid casting
the return type, an array to be populated should also be passed in as an argument or an empty array in
the case where we want the collection to create the array for us. The syntax in the example is shorthand
for the following code:

Predicate[] p = new Predicate[criteria.size()];
p = criteria.toArray(p);
c.where(cb.and(p));

The last feature in this query that we did not demonstrate previously is the execution of the query
itself. As we demonstrated in Chapter 7, the TypedQuery interface is used to obtain strongly typed query
results. Query definitions created with the criteria API have their result type bound using Java generics
and therefore always yield a TypedQuery object from the createQuery() method of the EntityManager
interface.

Building Criteria API Queries
Our high-level look at criteria API examples concluded, the following sections will look at each aspect of
creating a query definition in detail. Wherever possible, we try to highlight the similarity between JP QL
and criteria API concepts and terminology.

Creating a Query Definition
As we demonstrated in the previous sections, the heart of the criteria API is the CriteriaBuilder
interface, obtained from the EntityManager interface by calling the getCriteriaBuilder() method. The
CriteriaBuilder interface is large and serves several purposes within the criteria API. It is a factory with
which we create the query definition itself, an instance of the CriteriaQuery interface, as well as many of
various components of the query definition such as conditional expressions.

The CriteriaBuilder interface provides three methods for creating a new query definition with the
criteria API, depending on the desired result type of the query. The first and most common method is the
createQuery(Class<T>) method, passing in the class corresponding to the result of the query. This is the
approach we used in Listing 9-2. The second method is createQuery(), without any parameters, and
corresponds to a query with a result type of Object. The third method, createTupleQuery(), is used for
projection or report queries where the SELECT clause of the query contains more than one expression
and you wish to work with the result in a more strongly typed manner. It is really just a convenience
method that is equivalent to invoking createQuery(Tuple.class). Note that Tuple is a class that contains
an assortment of objects or data and applies typing to the aggregate parts. It can be used whenever
multiple items are returned and you want to combine them into a single typed object.

It is worth noting that, despite the name, a CriteriaQuery instance is not a Query object that may be
invoked to get results from the database. It is a query definition that may be passed to the createQuery()

CHAPTER 9 ■ CRITERIA API

245

method of the EntityManager interface in place of a JP QL string. The only real difference between a
criteria API query definition and a JP QL string is the method of building the query definition
(programming API versus text) and that criteria API queries are typically typed, so the result type does
not have to be specified when invoking createQuery() on EntityManager in order to obtain a TypedQuery
instance. You may also find it useful to think of a fully defined CriteriaQuery instance as being similar to
the internal representation of a JP QL query that a persistence provider might use after parsing the JP QL
string.

The criteria API is comprised of a number of interfaces that work together to model the structure of
a JPA query. As you progress through this chapter, you may find it useful to refer to the interface
relationships shown in Figure 9-1.

Figure 9-1. Criteria API Interfaces

CHAPTER 9 ■ CRITERIA API

246

Basic Structure
In the discussion of JP QL in Chapter 8, you learned that there are six possible clauses to be used in a
select query: SELECT, FROM, WHERE, ORDER BY, GROUP BY and HAVING. Each of these JP QL clauses
has an equivalent method on one of the criteria API query definition interfaces. Table 9-1 summarizes
these methods.

Table 9-1. Criteria API Query Clause Methods

JP QL Clause Criteria API Interface Method

SELECT CriteriaQuery select()

 Subquery select()

FROM AbstractQuery from()

WHERE AbstractQuery where()

ORDER BY CriteriaQuery orderBy()

GROUP BY AbstractQuery groupBy()

HAVING AbstractQuery having()

As we have demonstrated, there is a strong symmetry between the JP QL language and the criteria
API methods. Wherever possible, the same name has been used, making it easy to anticipate the name of
a criteria API method, even if you have not used it before. Over the next several sections, we look at each
of these clause methods in detail and how expressions are formed using the criteria API.

Criteria Objects and Mutability
Typical usage of the criteria API will result in many different objects being created. In addition to the
primary CriteriaBuilder and CriteriaQuery objects, every component of every expression is
represented by one object or another. Not all objects are created equal, however, and effective use of the
criteria API requires familiarity with the coding patterns assumed in its design.

The first issue we need to consider is one of mutability. The majority of objects created through the
criteria API are in fact immutable. There are no setter methods or mutating methods on these interfaces.
Almost all of the objects created from the methods on the CriteriaBuilder interface fall into this
category.

The use of immutable objects means that the arguments passed into the CriteriaBuilder methods
are rich in detail. All relevant information must be passed in so that the object can be complete at the
time of its creation. The advantage of this approach is that it facilitates chained invocations of methods.
Because no mutating methods have to be invoked on the objects returned from the methods used to
build expressions, control can immediately continue to the next component in the expression.

Only the CriteriaBuilder methods that create query definition objects produce truly mutable
results. The CriteriaQuery and Subquery objects are intended to be modified many times by invoking
methods such as select(), from(), and where(). But even here care must be taken as invoking methods
twice can have one of two different effects. In most cases, invoking a method twice replaces the contents

CHAPTER 9 ■ CRITERIA API

247

within the object with the argument being supplied. For example, invoking select() twice with two
different arguments results in only the argument from the second invocation actually remaining as part
of the query definition.

In some cases, however, invoking a method twice is in fact addition. Invoking from() twice with
different arguments results in multiple query roots being added to the query definition. While we refer to
these cases in the sections where they are described, you should be familiar with the Javadoc comments
on the criteria API as they also call out this behavior.

The second issue is the presence of getter methods on criteria API objects. These behave as
expected, returning information about the component of the query that each object represents. But it is
worth noting that such methods are primarily of interest to tool developers who wish to work with query
definitions in a truly generic way. In the vast majority of cases, and those that we demonstrate in this
chapter, you will not have to make use of the getter methods in the construction of your criteria API
queries.

Query Roots and Path Expressions
A newly created CriteriaQuery object is basically an empty shell. With the exception of defining the
result type of the query, no additional content has yet been added to fill out the query. As with JP QL
queries, the developer is responsible for defining the various clauses of the query necessary to fetch the
desired data from the database. Semantically speaking, there is no difference between JP QL and criteria
API query definitions. Both have SELECT, FROM, WHERE, GROUP BY, HAVING and ORDER clauses;
only the manner of defining them is different. Before we can fill in the various clauses of the query
definition, we must first revisit two key concepts defined in Chapter 8 and look at the equivalent criteria
API syntax for those concepts.

Query Roots
The first fundamental concept we need to revisit is the identification variable used in the FROM clause
of JP QL queries to alias declarations that cover entity, embeddable, and other abstract schema types. In
JP QL the identification variable takes on a central importance, as it is the key to tying the different
clauses of the query together. But with the criteria API we represent query components with objects and
therefore rarely have aliases with which to concern ourselves. Still, in order to define a FROM clause we
need a way to express which abstract schema types we are interested in querying against.

The AbstractQuery interface (parent of CriteriaQuery) provides the from() method to define the
abstract schema type that will form the basis for the query. This method accepts an entity type as a
parameter and adds a new root to the query. A root in a criteria query corresponds to an identification
variable in JP QL, which in turn corresponds to a range variable declaration or join expression. In Listing
9-2, we used the following code to obtain our query root:

CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
Root<Employee> emp = c.from(Employee.class);

The from() method returns an instance of Root corresponding to the entity type. The Root interface
is itself extended from the From interface, which exposes functionality for joins. The From interface
extends Path, which further extends Expression and then Selection, allowing the root to be used in other
parts of the query definition. The role of each of these interfaces will be described in later sections. Calls
to the from() method are additive. Each call adds another root to the query, resulting in a Cartesian
product when more than one root is defined if no further constraints are applied in the WHERE clause.
The following example from Chapter 8 demonstrates multiple query roots, replacing a conventional join
with the more traditional SQL approach:

SELECT DISTINCT d

CHAPTER 9 ■ CRITERIA API

248

FROM Department d, Employee e
WHERE d = e.department

To convert this query to the criteria API we need to invoke from() twice, adding both the Department
and Employee entities as query roots. The following example demonstrates this approach:

CriteriaQuery<Department> c = cb.createQuery(Department.class);
Root<Department> dept = c.from(Department.class);
Root<Employee> emp = c.from(Employee.class);
c.select(dept)
 .distinct(true)
 .where(cb.equal(dept, emp.get("department")));

Path Expressions
The second fundamental concept we need to revisit is the path expression. The path expression is the
key to the power and flexibility of the JP QL language, and it is likewise a central piece of the criteria API.
We discussed path expressions in detail in Chapter 8 so if you feel you need a refresher we recommend
going back to review that section.

We went over query roots in the previous section, and roots are actually just a special type of path
expression. Query roots in hand, we can now look at how to obtain and extend path expressions.
Consider the following basic JP QL query, which returns all the employees living in New York City:

SELECT e
FROM Employee e
WHERE e.address.city = 'New York'

Thinking in terms of the criteria API, the query root for this expression is the Employee entity. This query
also contains a path expression in the WHERE clause. To represent this path expression using the
criteria API, we would use the following expression:

emp.get("address").get("city")

The emp object in this example corresponds to the query root for Employee. The get() method is derived
from the Path interface extended by the Root interface and is equivalent to the dot operator used in JP QL
path expressions to navigate along a path. Because the get() method returns a Path object, the method
calls can be chained together, avoiding the unnecessary declaration of intermediate local variables. The
argument to get() is the name of the attribute we are interested in. Because the result of constructing a
path expression is an Expression object that we can use to build conditional expressions, we can then
express the complete query as follows:

CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
Root<Employee> emp = c.from(Employee.class);
c.select(emp)
 .where(cb.equal(emp.get("address").get("city"), "New York"));

Much like JP QL, path expressions may be used throughout the different clauses of the query
definition. With the criteria API it is necessary to hold onto the root object in a local variable and use it to
form path expressions where required. Once again it is worth emphasizing that the from() method of
AbstractQuery should never be invoked more than once for each desired root. Invoking it multiple times
will result in additional roots being created and a Cartesian product if not careful. Always store the root
objects locally and refer to them when necessary.

CHAPTER 9 ■ CRITERIA API

249

The SELECT Clause
There are several forms that the SELECT clause of a query may take. The simplest form involves a single
expression, while others involve multiple expressions or the use of a constructor expression to create
new object instances. Each form is expressed differently in the criteria API.

Selecting Single Expressions
The select() method of the CriteriaQuery interface is used to form the SELECT clause in a criteria API
query definition. All forms of the SELECT clause may be represented via the select() method, although
convenience methods also exist to simplify coding. The select() method requires an argument of type
Selection, an interface extended by Expression as well as CompoundSelection to handle the case where
the result type of a query is a Tuple or array of results.

■ NOTE Some vendors may allow the call to select() to be omitted in the case where there is a single query
root and it matches the declared result type for the query. This is non-portable behavior.

Thus far, we have been passing in a query root to the select() method, therefore indicating that we
want the entity to be the result of the query. We could also supply a single-valued expression such as
selecting an attribute from an entity or any compatible scalar expression. The following example
demonstrates this approach by selecting the name attribute of the Employee entity:

CriteriaQuery<String> c = cb.createQuery(String.class);
Root<Employee> emp = c.from(Employee.class);
c.select(emp.<String>get("name"));

This query will return all employee names, including any duplicates. Duplicate results from a query may
be removed by invoking distinct(true) from the AbstractQuery interface. This is identical in behavior
to the DISTINCT keyword in a JP QL query.

Also note the unusual syntax we used to declare that the “name” attribute was of type String. The
type of the expression provided to the select() method must be compatible with the result type used to
create the CriteriaQuery object. For example, if the CriteriaQuery object was created by invoking
createQuery(Project.class) on the CriteriaBuilder interface, then it will be an error to attempt to set
an expression resolving to the Employee entity using the select() method. When a method call such as
select() uses generic typing in order to enforce a compatibility constraint, the type may be prefixed to
the method name in order to qualify it in cases where the type could not otherwise be automatically
determined. We need to use that approach in this case because the select() method has been declared
as follows:

CriteriaQuery<T> select(Selection<? extends T> selection);

The argument to select() must be a type that is compatible with the result type of the query
definition. The get() method returns a Path object, but that Path object is always of type Path<Object>
because the compiler cannot infer the correct type based on the attribute name. To declare that the
attribute is really of type String, we need to qualify the method invocation accordingly. This syntax has
to be used whenever the Path is being passed as an argument for which the parameter has been strongly
typed, such as the argument to the select() method and certain CriteriaBuilder expression methods.
We have not had to use them so far in our examples because we have been using them in methods like

CHAPTER 9 ■ CRITERIA API

250

equal(), where the parameter was declared to be of type Expression<?>. Because the type is wildcarded,
it is valid to pass in an argument of type Path<Object>. Later in the chapter, we will look at the strongly
typed versions of the criteria API methods that remove this requirement.

Selecting Multiple Expressions
When defining a SELECT clause that involves more than one expression, the criteria API approach
required depends on how the query definition was created. If the result type is Tuple, then a
CompoundSelection<Tuple> object must be passed to select(). If the result type is a non-persistent class
that will be created using a constructor expression, then the argument must be a
CompoundSelection<[T]> object, where [T] is the class type of the non-persistent class. Finally, if the
result type is an array of objects, then a CompoundSelection<Object[]> object must be provided. These
objects are created with the tuple(), construct() and array() methods of the CriteriaBuilder interface,
respectively. The following example demonstrates how to provide multiple expressions to a Tuple query:

CriteriaQuery<Tuple> c= cb.createTupleQuery();
Root<Employee> emp = c.from(Employee.class);
c.select(cb.tuple(emp.get("id"), emp.get("name")));

As a convenience, the multiselect() method of the CriteriaQuery interface may also be used to set
the SELECT clause. The multiselect() method will create the appropriate argument type given the
result type of the query. This can take three forms depending on how the query definition was created.

The first form is for queries that have Object or Object[] as their result type. The list of expressions
that make up each result are simply passed to the multiselect() method.

CriteriaQuery<Object[]> c = cb.createQuery(Object[].class);
Root<Employee> emp = c.from(Employee.class);
c.multiselect(emp.get("id"), emp.get("name"));

Note that, if the query result type is declared as Object instead of Object[], the behavior of
multiselect() in this form changes slightly. The result is always an instance of Object, but if multiple
arguments are passed into multiselect() then the result must be cast to Object[] in order to access any
particular value. If only a single argument is passed into multiselect(), then no array is created and the
result may be cast directly from Object to the desired type. In general, it is more convenient to be explicit
about the query result type. If you want to work with an array of results, then declaring the query result
type to be Object[] avoids casting later and makes the shape of the result more explicit if the query is
invoked separately from the code that creates it.

The second form is a close relative of the first form, but for queries that result in Tuple. Again, the list
of expressions is passed into the multiselect() call.

CriteriaQuery<Tuple> c = cb.createTupleQuery();
Root<Employee> emp = c.from(Employee.class);
c.multiselect(emp.get("id"), emp.get("name"));

The third and final form is for queries with constructor expressions that result in non-persistent
types. The multiselect() method is again invoked with a list of expressions, but it uses the type of the
query to figure out and automatically create the appropriate constructor expression, in this case a data
transfer object of type EmployeeInfo.

CriteriaQuery<EmployeeInfo> c = cb.createQuery(EmployeeInfo.class);
Root<Employee> emp = c.from(Employee.class);
c.multiselect(emp.get("id"), emp.get("name"));

This is equivalent to the following:

CHAPTER 9 ■ CRITERIA API

251

CriteriaQuery<EmployeeInfo> c = cb.createQuery(EmployeeInfo.class);
Root<Employee> emp = c.from(Employee.class);
c.select(cb.construct(EmployeeInfo.class,
 emp.get("id"),
 emp.get("name")));

As convenient as the multiselect() method is for constructor expressions, there are still cases
where you will need to use the construct() method from the CriteriaBuilder interface. For example, if
the result type of the query is Object[] and it also includes a constructor expression for only part of the
results, the following would be required:

CriteriaQuery<Object[]> c = cb.createQuery(Object[].class);
Root<Employee> emp = c.from(Employee.class);
c.multiselect(emp.get("id"),
 cb.construct(EmployeeInfo.class,
 emp.get("id"),
 emp.get("name")));

Using Aliases
Like JP QL, aliases may also be set on expressions in the SELECT clause, which will then be included in
the resulting SQL statement. They are of little use from a programming perspective as we construct the
ORDER BY clause through the use of the Selection objects used to construct the SELECT clause.

Aliases are useful when the query has a result type of Tuple. The aliases will be available through the
resulting Tuple objects. To set an alias, the alias() method of the Selection interface (parent to
Expression) must be invoked. The following example demonstrates this approach:

CriteriaQuery<Tuple> c= cb.createTupleQuery();
Root<Employee> emp = c.from(Employee.class);
c.multiselect(emp.get("id").alias("id"), emp.get("name").alias("fullName"));

This example actually demonstrates two facets of the alias() method. The first is that it returns
itself, so it can be invoked as part of the call to select() or multiselect(). The second is, once again, that
it returns itself, and is therefore mutating what should be an otherwise immutable object. The alias()
method is an exception to the rule that only the query definition interfaces, CriteriaQuery and Subquery,
contain mutating operations. Invoking alias() changes the original Selection object and returns it from
the method invocation. It is invalid to set the alias of a Selection object more than once.

Making use of the alias when iterating over the query results is as simple as requesting the
expression by name. Executing the previous query would allow it to be processed as follows:

TypedQuery<Tuple> q = em.createQuery(c);
for (Tuple t : q.getResultList()) {
 String id = t.get("id", String.class);
 String fullName = t.get("fullName", String.class);
 // ...
}

The FROM Clause
In the “Query Roots” section, we covered the from() method of the AbstractQuery interface and the role
of query roots in forming the query definition. We will now elaborate on that discussion and look at how
joins are expressed using the criteria API.

CHAPTER 9 ■ CRITERIA API

252

Inner and Outer Joins
Join expressions are created using the join() method of the From interface, which is extended both by
Root, which we covered earlier, and Join, which is the object type returned by creating join expressions.
This means that any query root may join, and that joins may chain with one another. The join() method
requires a path expression argument and optionally an argument to specify the type of join,
JoinType.INNER or JoinType.LEFT, for inner and outer joins respectively.

■ TIP The JoinType.RIGHT enumerated value specifies that a right outer join should be applied. Support for this
option is not required by the specification so applications that make use of it will not be portable.

When joining across a collection type (except for Map, which we will discuss later in this chapter),
the join will have two parameterized types: the type of the source and the type of the target. This
maintains the type safety on both sides of the join, and makes it clear what types are being joined.

The join() method is additive, so each call results in a new join being created; therefore, the Join
instance returned from invoking the method should be retained in a local variable for forming path
expressions later. Because Join also extends Path, it behaves like Root objects when defining paths.

In Listing 9-2, we demonstrated an outer join from Employee to Project.

Join<Employee,Project> project = emp.join("projects", JoinType.LEFT);

Had the JoinType.LEFT argument been omitted, the join type would have defaulted to be an inner join.
Just as in JP QL, multiple joins may be associated with the same From instance. For example, to navigate
across the directs relationship of Employee and then to both the Department and Project entities would
require the following, which assumes inner joining:

Join<Employee,Employee> directs = emp.join("directs");
Join<Employee,Project> projects = directs.join("projects");
Join<Employee,Department> dept = directs.join("dept");

Joins may also be cascaded in a single statement. The resulting join will be typed by the source and
target of the last join in the statement:

Join<Employee,Project> project = dept.join("employees").join("projects");

Joins across collection relationships that use Map are a special case. JP QL uses the KEY and VALUE
keywords to extract the key or value of a Map element for use in other parts of the query. In the criteria
API, these operators are handled by the key() and value() methods of the MapJoin interface. Consider
the following example assuming a Map join across the phones relationship of the Employee entity:

SELECT e.name, KEY(p), VALUE(p)
FROM Employee e JOIN e.phones p

To create this query using the criteria API, we need to capture the result of the join as a MapJoin in this
case using the joinMap() method. The MapJoin object has three type parameters: the source type, key
type, and value type. It can look a little more daunting, but makes it explicit what types are involved.

CriteriaQuery<Object> c = cb.createQuery();
Root<Employee> emp = c.from(Employee.class);
MapJoin<Employee,String,Phone> phone = emp.joinMap("phones");
c.multiselect(emp.get("name"), phone.key(), phone.value());

CHAPTER 9 ■ CRITERIA API

253

We need to use the joinMap() method in this case because there is no way to overload the join()
method to return a Join object or MapJoin object when all we are passing in is the name of the attribute.
Collection, Set, and List relationships are likewise handled with the joinCollection(), joinSet(), and
joinList() methods for those cases where a specific join interface must be used. The strongly typed
version of the join() method, which we will demonstrate later, is able to handle all join types though the
single join() call.

Fetch Joins
As with JP QL, the criteria API supports the fetch join, a query construct that allows data to be prefetched
into the persistence context as a side effect of a query that returns a different, but related, entity. The
criteria API builds fetch joins through the use of the fetch() method on the FetchParent interface. It is
used instead of join() in cases where fetch semantics are required and accepts the same argument
types.

Consider the following example we used in the previous chapter to demonstrate fetch joins of
single-valued relationships:

SELECT e
FROM Employee e JOIN FETCH e.address

To re-create this query with the criteria API, we use the fetch() method.

CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
Root<Employee> emp = c.from(Employee.class);
emp.fetch("address");
c.select(emp);

Note that when using the fetch() method the return type is Fetch, not Join. Fetch objects are not paths
and may not be extended or referenced anywhere else in the query.

Collection-valued fetch joins are also supported and use similar syntax. In the following example,
we demonstrate how to fetch the Phone entities associated with each Employee, using an outer join to
prevent Employee entities from being skipped if they don’t have any associated Phone entities. We use the
distinct() setting to remove any duplicates.

CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
Root<Employee> emp = c.from(Employee.class);
emp.fetch("phones", JoinType.LEFT);
c.select(emp)
 .distinct(true);

CHAPTER 9 ■ CRITERIA API

254

The WHERE Clause
As we have seen in Table 9-1 and demonstrated in several examples, the WHERE clause of a query in the
criteria API is set through the where() method of the AbstractQuery interface. The where() method
accepts either zero or more Predicate objects, or a single Expression<Boolean> argument. Each call to
where() will render any previously set WHERE expressions to be discarded and replaced with the newly
passed-in ones.

Building Expressions
The key to building up expressions with the criteria API is the CriteriaBuilder interface. This interface
contains methods for all of the predicates, expressions, and functions supported by the JP QL language
as well as other features specific to the criteria API. Table 9-2, Table 9-3, Table 9-4, and Table 9-5
summarize the mapping between JP QL operators, expressions, and functions to their equivalent
methods on the CriteriaBuilder interface. Note that in some cases there is no direct equal to a method
and a combination of CriteriaBuilder methods is required to get the same result. In other cases, the
equivalent criteria method is actually on a class other than CriteriaBuilder.

Table 9-2. JP QL to CriteriaBuilder Predicate Mapping

JP QL Operator CriteriaBuilder Method

AND and()

OR or()

NOT not()

= equal()

<> notEqual()

> greaterThan(), gt()

>= greaterThanOrEqualTo(), ge()

< lessThan(), lt()

<= lessThanOrEqualTo(), le()

BETWEEN between()

IS NULL isNull()

IS NOT NULL isNotNull()

EXISTS exists()

NOT EXISTS not(exists())

CHAPTER 9 ■ CRITERIA API

255

JP QL Operator CriteriaBuilder Method

IS EMPTY isEmpty()

IS NOT EMPTY isNotEmpty()

MEMBER OF isMember()

NOT MEMBER OF isNotMember()

LIKE like()

NOT LIKE notLike()

IN in()

NOT IN not(in())

Table 9-3. JP QL to CriteriaBuilder Scalar Expression Mapping

JP QL Expression CriteriaBuilder Method

ALL all()

ANY any()

SOME some()

- neg(), diff()

+ sum()

* prod()

/ quot()

COALESCE coalesce()

NULLIF nullif()

CASE selectCase()

CHAPTER 9 ■ CRITERIA API

256

Table 9-4. JP QL to CriteriaBuilder Function Mapping

JP QL Function CriteriaBuilder Method

ABS abs()

CONCAT concat()

CURRENT_DATE currentDate()

CURRENT_TIME currentTime()

CURRENT_TIMESTAMP currentTimestamp()

LENGTH length()

LOCATE locate()

LOWER lower()

MOD mod()

SIZE size()

SQRT sqrt()

SUBSTRING substring()

UPPER upper()

TRIM trim()

Table 9-5. JP QL to CriteriaBuilder Aggregate Function Mapping

JP QL Aggregate Function CriteriaBuilder Method

AVG avg()

SUM sum(), sumAsLong(), sumAsDouble()

MIN min(), least()

MAX max(), greatest()

COUNT count()

COUNT DISTINCT countDistinct()

In addition to the straight translation of JP QL operators, expressions, and functions, there are some
techniques specific to the criteria API that need to be considered when developing expressions. The
following sections will look at these techniques in detail and explore those parts of the criteria API that
have no equivalent in JP QL.

CHAPTER 9 ■ CRITERIA API

257

Predicates
In Listing 9-2, we passed an array of Predicate objects to the and() method. This has the behavior of
combining all of the expressions with the AND operator. Equivalent behavior for the OR operator exists
via the or() method. One shortcut that works for AND operators is to pass all of the expressions as
arguments to the where() method. Passing multiple arguments to where() implicitly combines the
expressions using AND operator semantics.

The criteria API also offers a different style of building AND and OR expressions for those who wish
to build things incrementally rather than as a list. The conjunction() and disjunction() methods of the
CriteriaBuilder interface create Predicate objects that always resolve to true and false respectively.
Once obtained, these primitive predicates can then be combined with other predicates to build up
nested conditional expressions in a tree-like fashion. Listing 9-3 rewrites the predication construction
portion of the example from Listing 9-2 using the conjunction() method. Note how each conditional
statement is combined with its predecessor using an and() call.

Listing 9-3. Predication Construction Using Conjunction

Predicate criteria = cb.conjunction();
if (name != null) {
 ParameterExpression<String> p =
 cb.parameter(String.class, "name");
 criteria = cb.and(criteria, cb.equal(emp.get("name"), p));
}
if (deptName != null) {
 ParameterExpression<String> p =
 cb.parameter(String.class, "dept");
 criteria = cb.and(criteria,
 cb.equal(emp.get("dept").get("name"), p));
}
if (projectName != null) {
 ParameterExpression<String> p =
 cb.parameter(String.class, "project");
 criteria = cb.and(criteria, cb.equal(project.get("name"), p));
}
if (city != null) {
 ParameterExpression<String> p =
 cb.parameter(String.class, "city");
 criteria = cb.and(criteria,
 cb.equal(emp.get("address").get("city"), p));
}

if (criteria.getExpressions().size() == 0) {
 throw new RuntimeException("no criteria");
}

With respect to other predicate concerns, in Table 9-2 it should be noted that there are two sets of
methods available for relative comparisons. For example, there is greaterThan() and gt(). The two-
letter forms are specific to numeric values and are strongly typed to work with number types. The long
forms must be used for all other cases.

CHAPTER 9 ■ CRITERIA API

258

Literals
Literal values may require special handling when expressed with the criteria API. In all the cases that we
have encountered, methods are overloaded to work with both Expression objects and Java literals.
However, there may be some cases where only an Expression object is accepted (in cases where it is
assumed you would never pass in a literal value or when any of a number of types would be acceptable).
If you encounter this situation then, to use these expressions with Java literals, the literals must be
wrapped using the literal() method. NULL literals are created from the nullLiteral() method, which
accepts a class parameter and produces a typed version of NULL to match the passed-in class. This is
necessary to extend the strong typing of the API to NULL values.

Parameters
Parameter handling for criteria API queries is different from JP QL. Whereas JP QL strings simply prefix
string names with a colon to denote a parameter alias, this technique will not work in the criteria API.
Instead, we must explicitly create a ParameterExpression of the correct type that can be used in
conditional expressions. This is achieved through the parameter() method of the CriteriaBuilder
interface. This method requires a class type (to set the type of the ParameterExpression object) and an
optional name for use with named parameters. Listing 9-4 demonstrates this method.

Listing 9-4. Creating Parameter Expressions

CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
Root<Employee> emp = c.from(Employee.class);
c.select(emp);
ParameterExpression<String> deptName =
 cb.parameter(String.class, "deptName");
c.where(cb.equal(emp.get("dept").get("name"), deptName));

If the parameter will not be reused in other parts of the query, it can be embedded directly in the
predicate expression to make the overall query definition more concise. The following code revises the
Listing 9-4 to use this technique:

CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
Root<Employee> emp = c.from(Employee.class);
c.select(emp)
 .where(cb.equal(emp.get("dept").get("name"),
 cb.parameter(String.class, "deptName")));

Subqueries
The AbstractQuery interface provides the subquery() method for creation of subqueries. Subqueries may
be correlated (meaning that they reference a root, path, or join from the parent query) or non-correlated.
The criteria API supports both correlated and non-correlated subqueries, again using query roots to tie
the various clauses and expressions together. The argument to subquery() is a class instance
representing the result type of the subquery. The return value is an instance of Subquery, which is itself
an extension of AbstractQuery. With the exception of restricted methods for constructing clauses, the
Subquery instance is a complete query definition like CriteriaQuery that may be used to create both
simple and complex queries.

CHAPTER 9 ■ CRITERIA API

259

To demonstrate subquery usage, let’s look at a more significant example, modifying Listing 9-2 to
use subqueries instead of the distinct() method to eliminate duplicates. According to the data model
shown in Figure 8-1, the Employee entity has relationships with four other entities: single-valued
relationships with Department and Address, and collection-valued relationships with Phone and Project.
Whenever we join across a collection-valued relationship, we have the potential to return duplicate
rows; therefore, we need to change the criteria expression for Project to use a subquery. Listing 9-5
shows the code fragment required to make this change.

Listing 9-5. Modified Employee Search With Subqueries

@Stateless
public class SearchService {
 @PersistenceContext(unitName="EmployeeHR")
 EntityManager em;

 public List<Employee> findEmployees(String name, String deptName,
 String projectName, String city) {
 CriteriaBuilder cb = em.getCriteriaBuilder();
 CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
 Root<Employee> emp = c.from(Employee.class);
 c.select(emp);

 // ...

 if (projectName != null) {
 Subquery<Employee> sq = c.subquery(Employee.class);
 Root<Project> project = sq.from(Project.class);
 Join<Project,Employee> sqEmp = project.join("employees");
 sq.select(sqEmp)
 .where(cb.equal(project.get("name"),
 cb.parameter(String.class, "project")));
 criteria.add(cb.in(emp).value(sq));
 }

 // ...
}

Listing 9-5 contains a couple of significant changes to the example first presented in Listing 9-2.
First, the distinct() method call has been removed as well as the join to the Project entity. We have also
introduced a new non-correlated subquery against Project. Because the subquery from Listing 9-5
declares its own root and does not reference anything from the parent query, it runs independently and
is therefore non-correlated. The equivalent JP QL query with only Project criteria would be:

SELECT e
FROM Employee e
WHERE e IN (SELECT emp
 FROM Project p JOIN p.employees emp
 WHERE p.name = :project)

Whenever we write queries that use subqueries, there is often more than one way to achieve a
particular result. For example, we could rewrite the previous example to use EXISTS instead of IN and
shift the conditional expression into the WHERE clause of the subquery.

CHAPTER 9 ■ CRITERIA API

260

if (projectName != null) {
 Subquery<Project> sq = c.subquery(Project.class);
 Root<Project> project = sq.from(Project.class);
 Join<Project,Employee> sqEmp = project.join("employees");
 sq.select(project)
 .where(cb.equal(sqEmp, emp),
 cb.equal(project.get("name"),
 cb.parameter(String.class,"project")));
 criteria.add(cb.exists(sq));
}

By referencing the Employee root from the parent query in the WHERE clause of the subquery, we now
have a correlated subquery. This time the query takes the following form in JP QL:

SELECT e
FROM Employee e
WHERE EXISTS (SELECT p
 FROM Project p JOIN p.employees emp
 WHERE emp = e AND
 p.name = :name)

We can still take this example further and reduce the search space for the subquery by moving the
reference to the Employee root to the FROM clause of the subquery and joining directly to the list of
projects specific to that employee. In JP QL, we would write this as follows:

SELECT e
FROM Employee e
WHERE EXISTS (SELECT p
 FROM e.projects p
 WHERE p.name = :name)

In order to re-create this query using the criteria API, we are confronted with a dilemma. We need to
base the query on the Root object from the parent query but the from() method only accepts a persistent
class type. The solution is the correlate() method from the Subquery interface. It performs a similar
function to the from() method of the AbstractQuery interface, but does so with Root and Join objects
from the parent query. The following example demonstrates how to use correlate() in this case:

if (projectName != null) {
 Subquery<Project> sq = c.subquery(Project.class);
 Root<Employee> sqEmp = sq.correlate(emp);
 Join<Employee,Project> project = sqEmp.join("projects");
 sq.select(project)
 .where(cb.equal(project.get("name"),
 cb.parameter(String.class,"project")));
 criteria.add(cb.exists(sq));
}

Before we leave subqueries in the criteria API, there is one more corner case with correlated
subqueries that we need to explore: referencing a join expression from the parent query in the FROM
clause of a subquery. Consider the following example that returns projects containing managers with
direct reports earning an average salary higher than a user-defined threshold:

SELECT p
FROM Project p JOIN p.employees e
WHERE TYPE(p) = DesignProject AND
 e.directs IS NOT EMPTY AND

CHAPTER 9 ■ CRITERIA API

261

 (SELECT AVG(d.salary)
 FROM e.directs) >= :value

When creating the criteria API query definition for this query, we must correlate the employees attribute
of Project and then join it to the direct reports in order to calculate the average salary. This example also
demonstrates the use of the type() method of the Path interface in order to do a polymorphic
comparison of types:

CriteriaQuery<Project> c = cb.createQuery(Project.class);
Root<Project> project = c.from(Project.class);
Join<Project,Employee> emp = project.join("employees");
Subquery<Number> sq = c.subquery(Number.class);
Join<Project,Employee> sqEmp = sq.correlate(emp);
Join<Employee,Employee> directs = sqEmp.join("directs");
c.select(project)
 .where(cb.equal(project.type(), DesignProject.class),
 cb.isNotEmpty(emp.<Collection>get("directs")),
 cb.ge(sq, cb.parameter(Number.class, "value")));

In Expressions
Unlike other operators, the IN operator requires some special handling in the criteria API. The in()
method of the CriteriaBuilder interface only accepts a single argument, the single-valued expression
that will be tested against the values of the IN expression. In order to set the values of the IN expression,
we must use the CriteriaBuilder.In object returned from the in() method.

Consider the following JP QL query:

SELECT e
FROM Employee e
WHERE e.address.state IN ('NY', 'CA')

To convert this query to the criteria API, we must invoke the value() method of the CriteriaBuilder.In
interface to set the state identifiers we are interested in querying:

CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
Root<Employee> emp = c.from(Employee.class);
c.select(emp)
 .where(cb.in(emp.get("address")
 .get("state")).value("NY").value("CA"));

Note the chained invocation of the value() method in order to set multiple values into the IN
expression. The argument to in() is the expression to search for against the list of values provided via
the value() method.

In cases where there are a large number of value() calls to chain together that are all of the same
type, the Expression interface offers a shortcut for creating IN expressions. The in() methods of this
interface allow one or more values to be set in a single call:

CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
Root<Employee> emp = c.from(Employee.class);
c.select(emp)
 .where(emp.get("address")
 .get("state").in("NY","CA"));

In this case, the call to in() is suffixed to the expression rather than prefixed as was the case in the
previous example. Note the difference in argument type between the CriteriaBuilder and Expression

CHAPTER 9 ■ CRITERIA API

262

interface versions of in(). The Expression version of in() accepts the values to be searched, not the
expression to search for. The in() method of the CriteriaBuilder interface allows more typing options,
but for the most part it is largely a case of personal preference when deciding which approach to use.

IN expressions that use subqueries are written using a similar approach. For a more complex
example, in the previous chapter, we demonstrated a JP QL query using an IN expression in which the
department of an employee is tested against a list generated from a subquery. The example is
reproduced here.

SELECT e
FROM Employee e
WHERE e.department IN
 (SELECT DISTINCT d
 FROM Department d JOIN d.employees de JOIN de.project p
 WHERE p.name LIKE 'QA%')

We can convert this example to the Criteria API as shown in Listing 9-6.

Listing 9-6. IN Expression Using a Subquery

CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
Root<Employee> emp = c.from(Employee.class);
Subquery<Department> sq = c.subquery(Department.class);
Root<Department> dept = sq.from(Department.class);
Join<Employee,Project> project =
 dept.join("employees").join("projects");
sq.select(dept)
 .distinct(true)
 .where(cb.like(project.<String>get("name"), "QA%"));
c.select(emp)
 .where(cb.in(emp.get("dept")).value(sq));

The subquery is created separately and then passed into the value() method as the expression to search
for the Department entity. This example also demonstrates using an attribute expression as a value in the
search list.

Case Expressions
Like the IN expression, building CASE expressions with the criteria API requires the use of a helper
interface. In this example we will convert the examples used in Chapter 8 to the criteria API,
demonstrating general and simple case expressions, as well as COALESCE.

■ TIP Although case statements are required by JPA providers, they may not be supported by all databases. The
use of a case statement on a database platform that does not support case expressions is undefined.

We will begin with the general form of the CASE expression, the most powerful but also the most
complex.

SELECT p.name,
 CASE WHEN TYPE(p) = DesignProject THEN 'Development'

CHAPTER 9 ■ CRITERIA API

263

 WHEN TYPE(p) = QualityProject THEN 'QA'
 ELSE 'Non-Development'
 END
FROM Project p
WHERE p.employees IS NOT EMPTY

The selectCase() method of the CriteriaBuilder interface is used to create the CASE expression.
For the general form it takes no arguments and returns a CriteriaBuilder.Case object that we may use
to add the conditional expressions to the CASE statement. The following example demonstrates this
approach:

CriteriaQuery<Object[]> c = cb.createQuery(Object[].class);
Root<Project> project = c.from(Project.class);
c.multiselect(project.get("name"),
 cb.selectCase()
 .when(cb.equal(project.type(), DesignProject.class),
 "Development")
 .when(cb.equal(project.type(), QualityProject.class),
 "QA")
 .otherwise("Non-Development"))
 .where(cb.isNotEmpty(project.<List<Employee>>get("employees")));

The when() and otherwise() methods correspond to the WHEN and ELSE keywords from JP QL.
Unfortunately, “else” is already a keyword in Java so “otherwise” must be used as a substitute.

The next example simplifies the previous example down to the simple form of the case statement.

SELECT p.name,
 CASE TYPE(p)
 WHEN DesignProject THEN 'Development'
 WHEN QualityProject THEN 'QA'
 ELSE 'Non-Development'
 END
FROM Project p
WHERE p.employees IS NOT EMPTY

In this case, we pass the primary expression to be tested to the selectCase() method and use the
when() and otherwise() methods of the CriteriaBuilder.SimpleCase interface. Rather than a predicate
or boolean expression, these methods now accept single-valued expressions that are compared to the
base expression of the CASE statement.

CriteriaQuery<Object[]> c = cb.createQuery(Object[].class);
Root<Project> project = c.from(Project.class);
c.multiselect(project.get("name"),
 cb.selectCase(project.type())
 .when(DesignProject.class, "Development")
 .when(QualityProject.class, "QA")
 .otherwise("Non-Development"))
 .where(cb.isNotEmpty(project.<List<Employee>>("employees")));

The last example we will cover in this section concerns the JP QL COALESCE expression:

SELECT COALESCE(d.name, d.id)
FROM Department d

Building a COALESCE expression with the criteria API requires a helper interface like the other examples
we have looked at in this section, but it is closer in form to the IN expression than the CASE expressions.

CHAPTER 9 ■ CRITERIA API

264

Here we invoke the coalesce() method without arguments to get back a CriteriaBuilder.Coalesce
object that we then use the value() method of to add values to the COALESCE expression. The following
example demonstrates this approach:

CriteriaQuery<Object> c = cb.createQuery();
Root<Department> dept = c.from(Department.class);
c.select(cb.coalesce()
 .value(dept.get("name"))
 .value(dept.get("id")));

Convenience versions of the coalesce() method also exist for the case where only two expressions
are being compared.

CriteriaQuery<Object> c = cb.createQuery();
Root<Department> dept = c.from(Department.class);
c.select(cb.coalesce(dept.get("name"),
 dept.get("id")));

A final note about case expressions is that they are another exception to the rule that the
CriteriaBuilder methods are non-mutating. Each when() method causes another conditional
expression to be added incrementally to the case expression, and each value() method adds an
additional value to the coalesce list.

Function Expressions
Not to be confused with the built-in functions of JP QL, function expressions are a feature unique to the
criteria API that allows native SQL stored functions to be mixed with other criteria API expressions. They
are intended for cases where a limited amount of native SQL is required to satisfy some requirement but
you don’t want to convert the entire query to SQL.

Function expressions are created with the function() method of the CriteriaBuilder interface. It
requires as arguments the database function name, the expected return type and a variable list of
arguments, if any, that should be passed to the function. The return type is an Expression, so it can be
used in many other places within the query. The following example invokes a database function to
capitalize the first letter of each word in a department name:

CriteriaQuery<String> c = cb.createQuery(String.class);
Root<Department> dept = c.from(Department.class);
c.select(cb.function("initcap", String.class, dept.get("name")));

As always, developers interested in maximizing the portability of their applications should be
careful in using function expressions. Unlike native SQL queries, which are clearly marked, function
expressions are a small part of what otherwise looks like a normal portable JPA query that is actually tied
to database-specific behavior.

The ORDER BY Clause
The orderBy() method of the CriteriaQuery interface sets the ordering for a query definition. This
method accepts one or more Order objects, which are created by the asc() and desc() methods of the
CriteriaBuilder interface, for ascending and descending ordering respectively. The following example
demonstrates the orderBy() method:

CriteriaQuery<Tuple> c = cb.createQuery(Tuple.class);
Root<Employee> emp = c.from(Employee.class);

CHAPTER 9 ■ CRITERIA API

265

Join<Employee,Department> dept = emp.join("dept");
c.multiselect(dept.get("name"), emp.get("name"));
c.orderBy(cb.desc(dept.get("name")),
 cb.asc(emp.get("name")));

Query ordering through the criteria API is still subject to the same constraints as JP QL. The
arguments to asc() and desc() must be single-valued expressions, typically formed from the state field
of an entity. The order in which the arguments are passed to the orderBy() method determines the
generation of SQL. The equivalent JP QL for the query shown in the previous example is as follows:

SELECT d.name, e.name
FROM Employee e JOIN e.dept d
ORDER BY d.name DESC, e.name

The GROUP BY and HAVING Clauses
The groupBy() and having() methods of the AbstractQuery interface are the criteria API equivalent of
the GROUP BY and HAVING clauses from JP QL, respectively. Both arguments accept one or more
expressions that are used to group and filter the data. By this point in the chapter, the usage pattern for
these methods should be more intuitive to you. Consider the following example from the previous
chapter:

SELECT e, COUNT(p)
FROM Employee e JOIN e.projects p
GROUP BY e
HAVING COUNT(p) >= 2

To re-create this example with the criteria API, we will need to make use of both aggregate functions
and the grouping methods. The following example demonstrates this conversion:

CriteriaQuery<Object[]> c = cb.createQuery(Object[].class);
Root<Employee> emp = c.from(Employee.class);
Join<Employee,Project> project = emp.join("projects");
c.multiselect(emp, cb.count(project))
 .groupBy(emp)
 .having(cb.ge(cb.count(project),2));

Strongly Typed Query Definitions
Throughout this chapter, we have been demonstrating criteria API query definitions constructed using
string names to refer to attributes in path expressions. This subset of the criteria API is referred to as the
string-based API. We have mentioned a few times, however, that an alternative approach for
constructing path expressions also existed that offered a more strongly typed approach. In the following
sections, we will establish some theory around the metamodel that underlies the strongly typed
approach and then demonstrate its usage with the criteria API.

The Metamodel API
Before we look at strongly typed query definitions, we must first set the stage for our discussion with a
short digression into the metamodel for persistence units in a JPA application. The metamodel of a
persistence unit is a description of the persistent type, state, and relationships of entities, embeddables,
and managed classes. With it, we can interrogate the persistence provider runtime to find out

CHAPTER 9 ■ CRITERIA API

266

information about the classes in a persistence unit. A wide variety of information, from names to types
to relationships, is stored by the persistence provider and made accessible through the metamodel API.

The metamodel API is exposed through the getMetamodel() method of the EntityManager interface.
This method returns an object implementing the Metamodel interface which we can then use to begin
navigating the metamodel. The Metamodel interface can be used to list the persistent classes in a
persistence unit or to retrieve information about a specific persistent type.

For example, to obtain information about the Employee class we have been demonstrating in this
chapter, we would use the entity() method.

Metamodel mm = em.getMetamodel();
EntityType<Employee> emp_ = mm.entity(Employee.class);

The equivalent methods for embeddables and managed classes are embeddable() and managedType()
respectively. It is important to note that the call to entity() in this example is not creating an instance of
the EntityType interface. Rather it is retrieving a metamodel object that the persistence provider would
have initialized when the EntityManagerFactory for the persistence unit was created. Had the class
argument to entity() not been a pre-existing persistent type, an IllegalArgumentException would have
been thrown.

The EntityType interface is one of many interfaces in the metamodel API that contain information
about persistent types and attributes. Figure 9-2 shows the relationships between the interfaces that
make up the metamodel API.

Figure 9-2. Metamodel interfaces

To further expand on this example, consider a tool that inspects a persistent unit and prints out
summary information to the console. To enumerate all of the attributes and their types, we could use the
following code:

public <T> void listAttributes(EntityType<T> type) {
 for (Attribute<? super T, ?> attr : type.getAttributes()) {

CHAPTER 9 ■ CRITERIA API

267

 System.out.println(attr.getName() + " " +
 attr.getJavaType().getName() + " " +
 attr.getPersistentAttributeType());
 }
}

For the Employee entity, this would result in the following:

id int BASIC
name java.lang.String BASIC
salary float BASIC
dept com.acme.Department MANY_TO_ONE
address com.acme.Address MANY_TO_ONE
directs com.acme.Employee ONE_TO_MANY
phones com.acme.Phone ONE_TO_MANY
projects com.acme.Project ONE_TO_MANY

In just a few method calls, we have uncovered a lot of information about the Employee entity. We
have listed all of the attributes and for each one we now know the attribute name, class type, and
persistent type. Collections have been unwrapped to reveal the underlying attribute type, and the
various relationship types are clearly marked.

From the perspective of the criteria API and providing strongly typed queries, we are mostly
interested in the type information exposed by the metamodel API interfaces. In the next section, we will
demonstrate how it can be used in that context.

The metamodel of a persistence unit is not a new concept. Previous versions of JPA have always
maintained similar structures internally for use at runtime, but only with JPA 2.0 was this kind of
metamodel exposed directly to developers. Direct usage of the metamodel classes is somewhat
specialized, but, for tool developers or applications that need to work with a persistence unit in a
completely generic way, the metamodel is a useful source of information about persistent types.

Strongly Typed API Overview
The string-based API within the criteria API centers around constructing path expressions: join(),
fetch(), and get() all accept string arguments. The strongly typed API within the criteria API also
supports path expressions by extending the same methods, but is also present in all aspects of the
CriteriaBuilder interface, simplifying typing and enforcing type safety where possible.

The strongly typed API draws its type information from the metamodel API classes we introduced in
the previous section. For example, the join() method is overloaded to accept arguments of type
SingularAttribute, CollectionAttribute, SetAttribute, ListAttribute, and MapAttribute. Each
overloaded version uses the type information associated with the attribute interface to create the
appropriate return type such as MapJoin for arguments of type MapAttribute.

To demonstrate this behavior, we will revisit an example from earlier in the chapter where we were
forced to use joinMap() with the string-based API in order to access the MapJoin object. This time we will
use the metamodel API to obtain entity and attribute type information and pass it to the criteria API
methods.

CHAPTER 9 ■ CRITERIA API

268

CriteriaQuery<Object> c = cb.createQuery();
Root<Employee> emp = c.from(Employee.class);
EntityType<Employee> emp_ = emp.getModel();
MapJoin<Employee,String,Phone> phone =
 emp.join(emp_.getMap("phones", String.class, Phone.class));
c.multiselect(emp.get(emp_.getSingularAttribute("name", String.class)),
 phone.key(), phone.value());

There are several things to note about this example. First is the use of getModel(). This method
exists on many of the criteria API interfaces as a shortcut to the underlying metamodel object. We assign
it to a variable, emp_, and add an underscore by convention to help denote it as a metamodel type.
Second are the two calls to methods from the EntityType interface. The getMap() invocation returns the
MapAttribute object for the phones attribute while the getSingularAttribute() invocation returns the
SingularAttribute object for the name attribute. Again, we have to supply the type information for the
attribute, partly to satisfy the generic type requirements of the method invocation but also as a type
checking mechanism. Had any of the arguments been incorrect, an exception would have been thrown.
Also note that the join() method no longer qualifies the collection type yet returns the correct MapJoin
instance. The join() method is overloaded to behave correctly in the presence of the different collection
attribute interfaces from the metamodel API.

The potential for error in using the metamodel objects is actually the heart of what makes it strongly
typed. By enforcing that the type information is available, the criteria API is able to ensure that not only
are the appropriate objects being passed around as method arguments but also that compatible types
are used in various expression building methods.

There is no question, however, that this is a much more verbose way of constructing a query.
Fortunately, the JPA 2.0 specification also defines an alternate presentation of the persistence unit
metamodel that is designed to make strongly typed programming easier. We will discuss this model in
the next section.

The Canonical Metamodel
Our usage of the metamodel API so far has opened the doors to strong type checking but at the expense
of readability and increased complexity. The metamodel APIs are not complex, but they are verbose. To
simplify their usage, the JPA 2.0 specification also defines what it calls the canonical metamodel of a
persistence unit.

The canonical metamodel consists of dedicated classes, typically generated, one per persistent
class, that contain static declarations of the metamodel objects associated with that persistent class. This
allows you to access the same information exposed through the metamodel API, but in a form that
applies directly to your persistent classes. Listing 9-7 shows an example of a canonical metamodel class.

Listing 9-7. The Canonical Metamodel Class for Employee

@StaticMetamodel(Employee.class)
public class Employee_ {
 public static volatile SingularAttribute<Employee, Integer> id;
 public static volatile SingularAttribute<Employee, String> name;
 public static volatile SingularAttribute<Employee, String> salary;
 public static volatile SingularAttribute<Employee, Department> dept;
 public static volatile SingularAttribute<Employee, Address> address;
 public static volatile CollectionAttribute<Employee, Project> project;
 public static volatile MapAttribute<Employee, String, Phone> phones;
}

CHAPTER 9 ■ CRITERIA API

269

Each canonical metamodel class contains a series of static fields, one for each attribute in the
persistent class. Each field in the canonical metamodel class is of the metamodel type that corresponds
to the type of the like-named field or property in the persistent class. If a persistent field or property in
an entity is of a primitive type or a single-valued relationship, then the like-named field in the canonical
metamodel class will be of type SingularAttribute. Similarly, if a persistent field or property is
collection-valued, then the field in the canonical metamodel class will be of type ListAttribute,
SetAttribute, MapAttribute, or CollectionAttribute, depending upon the type of collection.
Additionally, each canonical metamodel class is annotated with @StaticMetamodel, which identifies the
persistent class it is modeling.

A canonical metamodel class is generated in the same package as its associated persistent class and
has the same name, but with an additional underscore suffix. Non-canonical metamodel classes may be
generated in other packages and with different names if there is a need to do so. Some generation tools
may provide these kinds of options. The @StaticMetamodel annotation provides the binding between the
metamodel class and the entity, not the name or package, so there is no standard way of reading in such
metamodels. If a provider tool can generate the concrete metamodel classes in some non-canonical
form, then that runtime might be needed to recognize or detect them as well.

Using the Canonical Metamodel
We are now in the position of being able to leverage the metamodel without actually using the
metamodel API. As an example, we can convert the example from the previous section to use the
statically generated canonical classes.

CriteriaQuery<Object> c = cb.createQuery();
Root<Employee> emp = c.from(Employee.class);
MapJoin<Employee,String,Phone> phone = emp.join(Employee_.phones);
c.multiselect(emp.get(Employee_.name), phone.key(), phone.value());

This is a much more concise approach to using the metamodel objects than the interfaces we discussed
earlier while offering the exact same benefits. Coupled with a development environment that has good
code completion features, you may find it more convenient to develop using the canonical metamodel
than with the string-based API.

We can convert a more complex example to illustrate using the canonical metamodel. Listing 9-8
converts the example in Listing 9-6, showing an IN expression that uses a subquery, from using the
string-based attribute names to using the strongly typed approach.

Listing 9-8. Strongly Typed Query

CriteriaQuery<Employee> c = cb.createQuery(Employee.class);
Root<Employee> emp = c.from(Employee.class);
Subquery<Department> sq = c.subquery(Department.class);
Root<Department> dept = sq.from(Department.class);
Join<Employee,Project> project =
 dept.join(Department_.employees).join(Employee_.projects);
sq.select(dept)
 .distinct(true)
 .where(cb.like(project.get(Project_.name), "QA%"));
c.select(emp)
 .where(cb.in(emp.get(Employee_.dept)).value(sq));

CHAPTER 9 ■ CRITERIA API

270

Note that there are two main differences between this example and Listing 9-6. First, the use of
typed metamodel static fields to indicate entity attributes helps avert typing errors in attribute strings.
Second, there is no longer the need to do inlined typing to convert the Path<Object>, returned from the
get() method, to a narrower type. The stronger typing solves that problem for us.

All the examples in this chapter can be easily converted to use the canonical metamodel classes by
simply changing the string-based attributes to the corresponding static fields of the generated
metamodel classes. For example, emp.get("name") can be replaced with emp.get(Employee_.name), and
so on.

Generating the Canonical Metamodel
If you choose to use the generated metamodel in your queries, you should be aware of some of the
details of the development process in case inconsistency or configuration issues crop up. The canonical
metamodel classes will need to be updated or regenerated when certain changes to entities have
occurred during development. For example, changing the name of a field or property, or changing its
shape, would require an updated canonical metamodel class for that entity.

The generation tools offered by providers may vary widely in function or in operation. Generation
may involve reading the persistence.xml file, as well as accessing annotations on entities and XML
mapping files to determine what the metamodel classes should look like. Since the specification does
not require such tools to even exist, a provider may choose to not support it at all, expecting that if
developers want to use the canonical metamodel classes they will handcode them. Most providers do
offer some kind of generation tool, though; it’s just a matter of understanding how that vendor-specific
tool works. It might run statically as a separate command line tool, or it might use the compiler hook
offered in Java SE 6 to look at the entities and generate the classes at compile-time. For example, to run
the command line mode of the tool shipped with the EclipseLink Reference Implementation, you could
set the javac “-processor” and “-proc:only” options. These two options indicate the EclipseLink
code/annotation processor1 for the compiler to invoke, and instruct the compiler to call only the
processor but not do any actual compilation.

 javac -processor org.eclipse.persistence.internal.jpa.modelgen.CanonicalModelProcessor
 -proc:only
 -classpath lib/*.jar;punit
 *.java

The options are on separate lines to make them easier to see. It is assumed that the lib directory
contains the necessary EclipseLink JAR and JPA 2.0 interface JAR, and that the META-INF/persistence.xml
is in the punit directory.

Metamodel generation tools will also typically run in an IDE, and there will likely be IDE-specific
configuration necessary to direct the incremental compiler to use the tool’s annotation processor. In
some IDEs, there must be an additional code/annotation processor JAR to configure. The generated
metamodel classes will need to go in a specific directory and be on the build classpath so the criteria
queries that reference them can compile. Consult the IDE help files on how annotation processors or
APT is supported, as well as the provider documentation on what to configure in order to enable
generation in a given IDE.

1 This is often referred to as an annotation processing tool, or APT, because it used to be a standalone
tool shipped with the JDK and used only for processing annotations. Since Java SE 6, it is actually a
generalized compile-time hook to perform any kind of pre-processing or code generation.

CHAPTER 9 ■ CRITERIA API

271

Choosing the Right Type of Query
Now that you are familiar with criteria queries, you are well armed with two of the three distinct
languages in which to create queries: JP QL, native SQL, and the criteria API. We have demonstrated that
the criteria API is relatively easy to understand and use, but when should it be used? The answer is a
combination of your own preferences as a developer and the capabilities of the different query
approaches.

Native SQL queries are an easy choice to make: either you need to access a vendor-specific feature
or you don’t. If you do, there is only one option available if you can’t work around the dependency. You
discovered in this chapter that JP QL and the criteria API are almost completely equivalent in
functionality. When should you use a text-based query definition over one created from programming
APIs?

The programming API flows smoothly from the application. It can be strongly typed to reduce the
chance of errors, and with the code completion features of most modern development environments it
can be relatively quick to put together. It is also ideal for cases where the query definition can’t be fully
constructed with the input of a user.

JP QL, on the other hand, is more concise and familiar to anyone experienced with SQL. It can also
be embedded with the application annotations or XML descriptors and maintained independently of the
regular programming process. Some development environments also offer visual builders for JP QL
queries, making it a seamless part of the development process.

There is no right answer when it comes to choosing between JP QL and the criteria API. They can be
mixed and matched within an application as you see fit. In general, however, we still encourage
developers to use named queries as much as possible, and, for this, JP QL is the ideal choice.

Summary
In this chapter we have taken a tour of the criteria API introduced in JPA 2.0. We started with an overview
and example focused on dynamic query creation.

In investigating the criteria API, we started with JP QL concepts and sought to draw parallels
between the query language and the criteria API. We looked at how to formulate each clause of a query
with the criteria API and addressed some of the more complex issues that developers encounter.

We introduced the metamodel API and showed how it can be used to create strongly typed queries
with the criteria API. We looked at programming with the metamodel API using both runtime interfaces
and through the generated classes of a canonical metamodel implementation.

Finally we discussed the advantages of the different approaches to building queries using JP QL,
native SQL, and the criteria API. We highlighted some of the strengths of the query languages and
presented some advice on when one might be more beneficial. We reiterated that the right query
language for you will mostly come down to style and personal preference.

Over the course of the chapter, we have tried to demonstrate that although the form of the criteria
API is very different from the JP QL query language, the underlying semantics are almost identical and
switching between the two is relatively easy once you get the hang of the API coding patterns.

In the next chapter we switch back to object-relational mapping and cover advanced concepts such
as inheritance, composite primary keys and associations, and multiple table mappings.

CHAPTER 9 ■ CRITERIA API

272

C H A P T E R 10

■ ■ ■

273

Advanced Object-Relational

Mapping

Every application is different, and, while most have some elements of complexity in them, the difficult
parts in one application will tend to be different than those in other types of applications. Chances are
that whichever application you are working on at any given time will need to make use of at least one
advanced feature of the API. This chapter will introduce and explain some of these more advanced
ORM features.

Some of the features in this chapter are targeted at applications that need to reconcile the
differences between an existing data model and an object model. For example, when the data in an
entity table would be better decomposed in the object model as an entity and a dependent sub-object
that is referenced by the entity, then the mapping infrastructure should be able to support that.
Likewise, when the entity data is spread across multiple tables, the mapping layer should allow for this
kind of configuration to be specified.

There has been no shortage of discussion in this book about how entities in JPA are just regular Java
classes and not the heavy persistent objects that were generated by the old EJB entity bean compilers.
One of the benefits of entities being regular Java classes is that they can adhere to already established
concepts and practices that exist in object-oriented systems. One of the traditional object-oriented
innovations is the use of inheritance and creating objects in a hierarchy in order to inherit state and
behavior.

This chapter will discuss some of the more advanced mapping features and delve into some of the
diverse possibilities offered by the API and the mapping layer. We will see how inheritance works within
the framework of the Java Persistence API and how inheritance affects the model.

Table and Column Names
In previous sections, we have shown the names of tables and columns as upper-case identifiers. We did
this, first, because it helps differentiate them from Java identifiers and, second, because the SQL
standard defines that undelimited database identifiers do not respect case, and most tend to display
them in upper case.

Anywhere a table or column name is specified, or is defaulted, the identifier string is passed through
to the JDBC driver exactly as it is specified, or defaulted. For example, when no table name is specified
for the Employee entity, then the name of the table assumed and used by the provider will be Employee,
which by SQL definition is no different from EMPLOYEE. The provider is neither required nor expected to
do anything to try to adjust the identifiers before passing them to the database driver.

The following annotations should, therefore, be equivalent in that they refer to the same table in a
SQL standard compliant database:

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

274

@Table(name="employee")
@Table(name="Employee")
@Table(name="EMPLOYEE")

Some database names are intended to be case-specific, and must be explicitly delimited. For
example, a table might be called EmployeeSales, but without case distinction would become
EMPLOYEESALES, clearly less readable and harder to ascertain its meaning. While it is by no means
common, or good practice, a database in theory could have an EMPLOYEE table as well as an Employee
table. These would need to be delimited in order to distinguish between the two. The method of
delimiting is the use of a second set of double quotes, which must be escaped, around the identifier. The
escaping mechanism is the backslash (the “\” character), which would cause the following annotations
to refer to different tables:

@Table(name="\"Employee\"")
@Table(name="\"EMPLOYEE\"")

Notice that the outer set of double quotes is just the usual delimiter of strings in annotation
elements, but the inner double quotes are preceded by the backslash to cause them to be escaped,
indicating that they are part of the string, not string terminators.

When using an XML mapping file, the identifier is also delimited by including quotes in the
identifier name. For example, the following two elements represent different columns:

<column name=""ID""/>
<column name=""Id""/>

The method of XML escaping is different than the one used in Java. Instead of using the backslash,
XML escapes with an ampersand (“&”) character followed by a word describing the specific thing being
escaped (in this case, “quot”) and finally a trailing semicolon character.

■ TIP Some vendors support features to normalize the case of the identifiers that are stored and passed back
and forth between the provider and the JDBC driver. This works around certain JDBC drivers that, for example,
accept upper-case identifiers in the native SQL query select statement, but pass them back mapped to lower-case
identifiers.

Sometimes the database is set to use case-specific identifiers, and it would become rather tedious
(and look exceedingly ugly) to have to put the extra quotes on every single table and column name. If
you find yourself in that situation, there is a convenience setting in the XML mapping file that will be of
value to you.

By including the empty delimited-identifiers element in the XML mapping file, all identifiers in
the persistence unit will be treated as delimited, and quotes will be added to them when they are passed
to the driver. The only catch is that there is no way to override this setting. Once the delimited identifier
flag is turned on, all identifiers must be specified exactly as they exist in the database. Furthermore, if
you decide to turn on the delimited-identifiers option, make sure you remove any escaped quotes in
your identifier names or you will find that they will be included in the name. Using escaping in addition
to the delimited identifiers option will take the escaped quotes and wrap them with further quotes,
making the escaped ones become part of the identifier.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

275

Complex Embedded Objects
In Chapter 4, we looked at embedding objects within entities, and how an embedded object becomes
part of, and dependent upon, the entity that embeds it. We will now explain how more can be done with
embedded objects, and how they can contain more than just basic mappings.

Advanced Embedded Mappings
Embedded objects can embed other objects, have element collections of basic or embeddable types, as
well as have relationships to entities. This is all possible under the assumption that objects embedded
within other embedded objects are still dependent upon the embedding entity. Similarly, when
bidirectional relationships exist within an embedded object, they are treated as though they exist in the
owning entity, and the target entity points back to the owning entity, not to the embedded object.

■ TIP The ability to have embeddables contain other nested embeddables, relationships to entities, and element
collections was introduced in JPA 2.0.

As an example, let’s bring back our Employee and embedded Address objects from Chapter 4 and
update the model just a little bit. Insert a ContactInfo object, containing the address plus the phone
information, into each employee. Instead of having an address attribute, our Employee entity would now
have an attribute named contactInfo, of type ContactInfo, annotated with @Embedded. The model is
shown in Figure 10-1.

Figure 10-1. Nested embeddables with relationships

The ContactInfo class contains an embedded object, as well as some relationships, and would be
annotated as shown in Listing 10-1.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

276

Listing 10-1. Embeddable ContactInfo Class

@Embeddable @Access(AccessType.FIELD)
public class ContactInfo {
 @Embedded
 private Address residence;

 @ManyToOne
 @JoinColumn(name="PRI_NUM")
 private Phone primaryPhone;

 @ManyToMany @MapKey(name="type")
 @JoinTable(name="EMP_PHONES")
 private Map<String, Phone> phones;
 // ...
}

The Address class remains the same as in Listing 4-26, but we have added more depth to our contact
information. Within the ContactInfo embeddable, we have the address as a nested embedded object,
but we also have an additional unidirectional relationship to the phone number serving as the primary
contact number. A bidirectional many-to-many relationship to the employee’s phone numbers would
have a default join table named EMPLOYEE_PHONE, and on the Phone side the relationship attribute would
refer to a list of Employee instances, with the mappedBy element being the qualified name of the embedded
relationship attribute. By qualified, we mean that it must first contain the attribute within Employee that
contains the embeddable, as well as a dot separator character (“.”) and the relationship attribute within
the embeddable. Listing 10-2 shows the Phone class and its mapping back to the Employee entity.

Listing 10-2. Phone Class Referring To Embedded Attribute

@Entity
public class Phone {
 @Id String num;

 @ManyToMany(mappedBy="contactInfo.phones")
 List<Employee> employees;

 String type;
 // ...
}

A proviso about embeddable types is that if an embedded object is a part of an element collection
then the embedded object in the collection can only include mappings where the foreign key is stored in
the source table. It can contain owned relationships, such as one-to-one and many-to-one, but it cannot
contain one-to-many or many-to-many relationships where the foreign key is in either the target table
or a join table. Similarly, collection table-based mappings like element collections are unsupported.

Overriding Embedded Relationships
When we first introduced embeddables back in Chapter 4, we showed how embeddable types could be
reused by being embedded within multiple entity classes. Even though the state is mapped within the
embeddable, the embedding entity can override those mappings by using @AttributeOverride to
redefine how the embedded state is mapped within that particular entity table. Now that we are using

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

277

relationships within embeddables, @AttributeOverride does not suffice. To override how a relationship
is mapped we need to use @AssociationOverride, which provides us with the ability to override
relationship join columns and join tables.

Before we look at an example of overriding an embeddable with a relationship in it, let’s first think
about the reusability of such an object. If a relationship from entity A to entity B is defined within the
embeddable of type E, then either the relationship is owned by A and the foreign key is in the table
corresponding to A (or in a join table owned by A) or it is owned by B and the foreign key is going to be in
B’s table (or a join table owned by B). If it is owned by B then the foreign key will be to A’s table, and
there would be no way to use E in any other entity because the foreign key would be to the wrong table.
Similarly, if the relationship was bidirectional then the attribute in B would be of type A (or a collection
of A), and could not refer to an object of some other type. We can understand, therefore, that only
embeddables with relationships that are owned by the source entity, A, and that are unidirectional, can
be reused in other entities.

Suppose the many-to-many relationship in ContactInfo was unidirectional and Phone didn’t have a
reference back to the Employee that embedded the ContactInfo. We might want to embed instances of
ContactInfo within a Customer entity as well. The CUSTOMER table, however, might have a PRI_CONTACT
foreign key column instead of PRI_NUM, and of course we would not be able to share the same join table
for both Employee and Customer relationships to the Phone. The resulting Customer class is shown in
Listing 10-3.

Listing 10-3. Customer Class Embedding ContactInfo

@Entity
public class Customer {
 @Id int id;

 @Embedded
 @AttributeOverride(name="address.zip", column=@Column(name="ZIP"))
 @AssociationOverrides({
 @AssociationOverride(name="primaryPhone",
 joinColumns=@JoinColumn(name="EMERG_PHONE")),
 @AssociationOverride(name="phones",
 joinTable=@JoinTable(name="CUST_PHONE"))})
 private ContactInfo contactInfo;

 // ...
}

We can override the zip attribute in the address that is embedded within contactInfo by using
@AttributeOverride and navigating to the attribute in the nested embedded Address object.

Because we are overriding two associations we need to use the plural variant of
@AssociationOverrides. Note that if there had not been a join table explicitly specified for the phones
attribute then the default join table name would have been different depending upon which entity was
embedding the ContactInfo. Since the default name is composed partly of the name of the owning
entity, the table joining the Employee entity to the Phone entity would have defaulted to EMPLOYEE_PHONE,
whereas in Customer the join table would have defaulted to CUSTOMER_PHONE.

■ TIP There is no way to override the collection table for an element collection in an embeddable.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

278

Compound Primary Keys
In some cases, an entity needs to have a primary key or identifier that is composed of multiple fields, or
from the database perspective the primary key in its table is made up of multiple columns. This is more
common for legacy databases and also occurs when a primary key is composed of a relationship, a topic
that we will discuss later in this chapter.

We have two options available to us for having compound primary keys in our entity, depending on
how we want to structure our entity class. Both of them require that we use a separate class containing
the primary key fields called a primary key class; the difference between the two options is determined
by what the entity class contains.

Primary key classes must include method definitions for equals() and hashCode() in order to be able
to be stored and keyed on by the persistence provider, and their fields or properties must be in the set of
valid identifier types listed in the previous chapter. They must also be public, implement Serializable,
and have a no-arg constructor.

As an example of a compound primary key, we will look at the Employee entity again, only this time
the employee number is specific to the country where he works. Two employees in different countries
can have the same employee number, but only one can be used within any given country. Figure 10-2
shows the EMPLOYEE table structured with a compound primary key to capture this requirement. Given
this table definition, we will now look at how to map the Employee entity using the two different styles of
primary key class.

Figure 10-2. EMPLOYEE table with a compound primary key

Id Class
The first and most basic type of primary key class is an id class. Each field of the entity that makes up the
primary key is marked with the @Id annotation. The primary key class is defined separately and
associated with the entity by using the @IdClass annotation on the entity class definition. Listing 10-4
demonstrates an entity with a compound primary key that uses an id class. The accompanying id class is
shown in Listing 10-5.

Listing 10-4. Using an Id Class

@Entity
@IdClass(EmployeeId.class)
public class Employee {
 @Id private String country;
 @Id
 @Column(name="EMP_ID")
 private int id;
 private String name;

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

279

 private long salary;
 // ...
}

The primary key class must contain fields or properties that match the primary key attributes in the
entity in both name and type. Listing 10-5 shows the EmployeeId primary key class. It has two fields, one
to represent the country and one to represent the employee number. We have also supplied equals()
and hashCode() methods to allow the class to be used in sorting and hashing operations.

Listing 10-5. The EmployeeId Id Class

public class EmployeeId implements Serializable {
 private String country;
 private int id;

 public EmployeeId() {}
 public EmployeeId(String country, int id) {
 this.country = country;
 this.id = id;
 }

 public String getCountry() { return country; }
 public int getId() { return id; }

 public boolean equals(Object o) {
 return ((o instanceof EmployeeId) &&
 country.equals(((EmployeeId)o).getCountry()) &&
 id == ((EmployeeId)o).getId());
 }

 public int hashCode() {
 return country.hashCode() + id;
 }
}

Note that there are no setter methods on the EmployeeId class. Once it has been constructed using
the primary key values, it can’t be changed. We do this to enforce the notion that a primary key value
cannot be changed, even when it is made up of multiple fields. Because the @Id annotation was placed
on the fields of the entity, the provider will also use field access when it needs to work with the primary
key class.

The id class is useful as a structured object that encapsulates all of the primary key information. For
example, when doing a query based upon the primary key, such as the find() method of the
EntityManager interface, an instance of the id class can be used as an argument instead of some
unstructured and unordered collection of primary key data. Listing 10-6 shows a code snippet that
searches for an Employee with a given country name and employee number. A new instance of the
EmployeeId class is constructed using the method arguments and then used as the argument to the
find() method.

Listing 10-6. Invoking a Primary Key Query on an Entity with an Id Class

EmployeeId id = new EmployeeId(country, id);
Employee emp = em.find(Employee.class, id);

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

280

■ TIP Because the argument to find() is of type Object, vendors can support passing in simple arrays or
collections of primary key information. Passing arguments that are not primary key classes is not portable.

Embedded Id Class
An entity that contains a single field of the same type as the primary key class is said to use an embedded
id class. The embedded id class is just an embedded object that happens to be composed of the primary
key components. We use an @EmbeddedId annotation to indicate that it is not just a regular embedded
object but also a primary key class. When we use this approach, there are no @Id annotations on the
class, nor is the @IdClass annotation used. You can think of @EmbeddedId as the logical equivalent to
putting both @Id and @Embedded on the field.

Like other embedded objects, the embedded id class must be annotated with @Embeddable, but the
access type might differ from that of the entity that uses it. Listing 10-7 shows the EmployeeId class again,
this time as an embeddable primary key class. The getter methods, equals() and hashCode()
implementations, are the same as the previous version from Listing 10-5.

Listing 10-7. Embeddable Primary Key Class

@Embeddable
public class EmployeeId {
 private String country;
 @Column(name="EMP_ID")
 private int id;

 public EmployeeId() {}
 public EmployeeId(String country, int id) {
 this.country = country;
 this.id = id;
 }

 // ...
}

Using the embedded primary key class is no different than using a regular embedded type, except
that the annotation used on the attribute is @EmbeddedId instead of @Embedded. Listing 10-8 shows the
Employee entity adjusted to use the embedded version of the EmployeeId class. Note that since the
column mappings are present on the embedded type, we do not specify the mapping for EMP_ID as was
done in the case of the id class. If the embedded primary key class is used by more than one entity, then
the @AttributeOverride annotation can be used to customize mappings just as you would for a regular
embedded type. To return the country and id attributes of the primary key from getter methods, we
must delegate to the embedded id object to obtain the values.

Listing 10-8. Using an Embedded Id Class

@Entity
public class Employee {
 @EmbeddedId private EmployeeId id;
 private String name;
 private long salary;

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

281

 public Employee() {}
 public Employee(String country, int id) {
 this.id = new EmployeeId(country, id);
 }

 public String getCountry() { return id.getCountry(); }
 public int getId() { return id.getId(); }
 // ...
}

We can create an instance of EmployeeId and pass it to the find() method just as we did for the id
class example, but, if we want to create the same query using JP QL and reference the primary key, we
have to traverse the embedded id class explicitly. Listing 10-9 shows this technique. Even though id is
not a relationship, we still traverse it using the dot notation in order to access the members of the
embedded class.

Listing 10-9. Referencing an Embedded Id Class in a Query

public Employee findEmployee(String country, int id) {
 return (Employee)
 em.createQuery("SELECT e " +
 "FROM Employee e " +
 "WHERE e.id.country = ?1 AND e.id.id = ?2")
 .setParameter(1, country)
 .setParameter(2, id)
 .getSingleResult();
}

The decision to use a single embedded identifier attribute or a group of identifier attributes, each
mapped separately in the entity class, mostly comes down to personal preference. Some people like to
encapsulate the identifier components into a single entity attribute of the embedded identifier class
type. The trade-off is that it makes dereferencing a part of the identifier a little bit longer in code or in JP
QL, although having helper methods, like those in Listing 10-8, can help.

If you access or set parts of the identifier individually, then it might make more sense to create a
separate entity attribute for each of the constituent identifier parts. This presents a more representative
model and interface for the separate identifier components. However, if most of the time you reference
and pass around the entire identifier as an object, then you might be better off with an embedded
identifier that creates and stores a single instance of the composite identifier.

Derived Identifiers
When an identifier in one entity includes a foreign key to another entity, we call it a derived identifier.
Because the entity containing the derived identifier depends upon another entity for its identity, we call
the first the dependent entity. The entity that it depends upon is the target of a many-to-one or one-to-
one relationship from the dependent entity, and is called the parent entity. Figure 10-3 shows an
example of a data model for the two kinds of entities, with DEPARTMENT table representing the parent
entity and PROJECT table representing the dependent entity. Note that in this example there is an
additional name primary key column in PROJECT, meaning that the corresponding Project entity has an
identifier attribute that is not part of its relationship to Department.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

282

Figure 10-3. Dependent and parent entity tables.

The dependent object cannot exist without a primary key, and since that primary key consists of the
foreign key to the parent entity it should be clear that a new dependent entity cannot be persisted
without the relationship to the parent entity being established. It is undefined to modify the primary key
of an existing entity, thus the one-to-one or many-to-one relationship that is part of a derived identifier
is likewise immutable and must not be reassigned to a new entity once the dependent entity has been
persisted, or already exists.

We spent the last few sections discussing different kinds of identifiers, and you might think back to
what you learned and realize that there are a number of different parameters that might affect how a
derived identifier can be configured. For example, the identifier in either of the entities might be
composed of one or a plurality of attributes. The relationship from the dependent entity to the parent
entity might make up the entire derived identifier, or, as in Figure 10-3, there might be additional state in
the dependent entity that contributes to it. One of the entities might have a simple or compound
primary key, and in the compound case might have an id class or an embedded id class. All of these
factors combine to produce a multitude of scenarios, each of which requires slightly different
configurations. The basic rules for derived identifiers are outlined first, with some more detailed
descriptions in the following sections.

Basic Rules for Derived Identifiers
Most of the rules for derived identifiers can be summarized in a few general statements, although
applying the rules together might not be quite as easy. We will go through some of the cases later to
explain them, and even show an exception case or two to keep it interesting, but to lay the groundwork
for those use cases the rules can be laid out as follows:

• A dependent entity might have multiple parent entities, i.e., a derived identifier
might include multiple foreign keys.

• A dependent entity must have all its relationships to parent entities set before it
can be persisted.

• If an entity class has multiple id attributes, then not only must it use an id class,
but there must also be a corresponding attribute of the same name in the id class
as each of the id attributes in the entity.

• Id attributes in an entity might be of a simple type, or of an entity type that is the
target of a many-to-one or one-to-one relationship.

• If an id attribute in an entity is of a simple type, then the type of the matching
attribute in the id class must be of the same simple type.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

283

• If an id attribute in an entity is a relationship, then the type of the matching
attribute in the id class is of the same type as the primary key type of the target
entity in the relationship (whether the primary key type is a simple type, an id
class, or an embedded id class).

• If the derived identifier of a dependent entity is in the form of an embedded id
class, then each attribute of that id class that represents a relationship should be
referred to by a @MapsId annotation on the corresponding relationship attribute.

The following sections describe how these rules may be applied.

Shared Primary Key
A simple, if somewhat less common case, is when the derived identifier is composed of a single attribute
that is the relationship foreign key. As an example, suppose there was a bidirectional one-to-one
relationship between Employee and EmployeeHistory entities. Because there is only ever one
EmployeeHistory per Employee, we might decide to share the primary key. In Listing 10-10, if the
EmployeeHistory is the dependent entity, then we indicate that the relationship foreign key is the
identifier by annotating the relationship with @Id.

Listing 10-10. Derived Identifier with Single Attribute

@Entity
public class EmployeeHistory {
 // …
 @Id
 @OneToOne
 @JoinColumn(name="EMP_ID")
 private Employee employee;
 // …
}

The primary key type of EmployeeHistory is going to be of the same type as Employee, so if Employee
has a simple integer identifier then the identifier of EmployeeHistory is also going to be an integer. If
Employee has a compound primary key, either with an id class or an embedded id class, then
EmployeeHistory is going to share the same id class (and should also be annotated with the @IdClass
annotation). The problem is that this trips over the id class rule that there should be a matching attribute
in the entity for each attribute in its id class. This is the exception to the rule, because of the very fact that
the id class is shared between both parent and dependent entities.

Occasionally, somebody might want the entity to contain a primary key attribute as well as the
relationship attribute, with both attributes mapped to the same foreign key column in the table. Even
though the primary key attribute is unnecessary in the entity, some people might want to define it
separately for easier access. Despite the fact that the two attributes map to the same foreign key column
(which is also the primary key column), the mapping does not have to be duplicated in both places. The
@Id annotation is placed on the identifier attribute and @MapsId annotates the relationship attribute to
indicate that it is mapping the id attribute as well. This is shown in Listing 10-11. Note that physical
mapping annotations (e.g. @Column) should not be specified on the empId attribute since @MapsId is
indicating that the relationship attribute is where the mapping occurs.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

284

Listing 10-11. Derived Identifier with Shared Mappings

@Entity
public class EmployeeHistory {
 // …
 @Id
 int empId;

 @MapsId
 @OneToOne
 @JoinColumn(name="EMP_ID")
 private Employee employee;
 // …
}

There are a couple of additional points worth mentioning about @MapsId, before we move on to
derived identifiers with multiple mapped attributes.

The first point is really a logical follow-on to the fact that the relationship annotated with @MapsId
defines the mapping for the identifier attribute as well. If there is no overriding @JoinColumn annotation
on the relationship attribute, then the join column will be defaulted according to the usual defaulting
rules. If this is the case, then the identifier attribute will also be mapped to that same default. For
example, if the @JoinColumn annotation was removed from Listing 10-11 then both the employee and the
empId attributes would be mapped to the default EMPLOYEE_ID foreign key column (assuming the primary
key column in the EMPLOYEE table was ID).

Secondly, even though the identifier attribute shares the database mapping defined on the
relationship attribute, from the perspective of the identifier attribute it is really a read-only mapping.
Updates or inserts to the database foreign key column will only ever occur through the relationship
attribute. This is one of the reasons why you must always remember to set the parent relationships
before trying to persist a dependent entity.

■ NOTE Do not attempt to set only the identifier attribute (and not the relationship attribute) as a means to
shortcut persisting a dependent entity. Some providers may have special support for doing this, but it will not
portably cause the foreign key to be written to the database.

The identifier attribute will get filled in automatically by the provider when an entity instance is read
from the database, or flushed/committed. However, it cannot be assumed to be there when first calling
persist() on an instance unless the user sets it explicitly.

Multiple Mapped Attributes
A more common case is probably the one in which the dependent entity has an identifier that includes
not only a relationship, but also some state of its own. We will use the example shown in Figure 10-3,
where a Project has a compound identifier composed of a name, and a foreign key to the department
that manages it. With the unique identifier being the combination of its name and department, no
department would be permitted to create more than one project with the same name. However, two

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

285

different departments may choose the same name for their own projects. Listing 10-12 illustrates the
trivial mapping of the Project identifier using @Id on both the name and dept attributes.

Listing 10-12. Project with Dependent Identifier

@Entity
@IdClass(ProjectId.class)
public class Project {

 @Id private String name;

 @Id
 @ManyToOne
 private Department dept;
 // ...
}

The compound identifier means that we must also specify the primary key class using the @IdClass
annotation. Recall our rule that primary key classes must have a matching named attribute for each of
the id attributes on the entity, and usually the attributes must also be of the same type. However, this
rule only applies when the attributes are of simple types, not entity types. If @Id is annotating a
relationship, then that relationship attribute is going to be of some target entity type, and the rule
extension is that the primary key class attribute must be of the same type as the primary key of the target
entity. This means that the ProjectId class specified as the id class for Project in Listing 10-12 must have
an attribute named name, of type String, and another named dept that will be the same type as the
primary key of Department. If Department has a simple integer primary key, then the dept attribute in
ProjectId will be of type int, but if Department has a compound primary key, with its own primary key
class, say DeptId, then the dept attribute in ProjectId would be of type DeptId, as shown in Listing 10-13.

Listing 10-13. ProjectId and DeptId Id Classes

public class ProjectId implements Serializable {
 private String name;
 private DeptId dept;

 public ProjectId() {}
 public ProjectId(DeptId deptId, String name) {
 this.dept = deptId;
 this.name = name;
 }
 // …
}

public class DeptId implements Serializable {
 private int number;
 private String country;

 public DeptId() {}
 public DeptId (int number, String country) {
 this.number = number;
 this.country = country;
 }
 // ...
}

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

286

Using EmbeddedId
It is also possible to have a derived identifier when one or the other (or both) of the entities uses
@EmbeddedId. When the id class is embedded, the non-relationship identifier attributes are mapped
within the embeddable id class, as usual, but the attributes in the embedded id class that correspond to
relationships are mapped by the relationship attributes in the entity. Listing 10-14 shows how the
derived identifier is mapped in the Project class when an embedded id class is used. We annotate the
relationship attribute with @MapsId(“dept”), indicating that it is also specifying the mapping for the dept
attribute of the embedded id class. The dept attribute of ProjectId is of the same primary key type as
Department in Listing 10-15.

Note that we have used multiple join columns on the department relationship because Department
has a compound primary key. Mapping multipart identifiers is explained in more detail in the
“Compound Join Columns” section later in the chapter.

Listing 10-14. Project and Embedded ProjectId Class

@Entity
public class Project {

 @EmbeddedId private ProjectId id;

 @MapsId("dept")
 @ManyToOne
 @JoinColumns({
 @JoinColumn(name="DEPT_NUM", referencedColumnName="NUM"),
 @JoinColumn(name="DEPT_CTRY", referencedColumnName="CTRY")})
 private Department department;
 // ...
}

@Embeddable
public class ProjectId implements Serializable {
 @Column(name="P_NAME")
 private String name;
 @Embedded
 private DeptId dept;

 // ...
}

The Department entity has an embedded identifier, but it is not a derived identifier because the
DeptId id class does not have any attributes that correspond to relationship attributes in Department. The
@Column annotations in the DeptId class map the identifier fields in the Department entity, but when
DeptId is embedded in ProjectId those column mappings do not apply. Once the dept attribute is
mapped by the department relationship in Project, the @JoinColumn annotations on that relationship are
used as the column mappings for the PROJECT table.

Listing 10-15. Department and Embedded DeptId Class

@Entity
public class Department {
 @EmbeddedId private DeptId id;

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

287

 @OneToMany(mappedBy="department")
 private List<Project> projects;

 // ...
}

@Embeddable
public class DeptId implements Serializable {
 @Column(name="NUM")
 private int number;
 @Column(name="CTRY")
 private String country;
 // ...
}

If the Department class had a simple primary key, for example a long instead of an id class, then the
dept attribute in ProjectId would just be the simple primary key type of Department, e.g., the long type,
and there would only be one join column on the many-to-one department attribute in Project.

ALTERNATIVE TO DERIVED IDENTIFIERS

The @MapsId annotation and the ability to apply @Id to relationship attributes was introduced in JPA 2.0 to improve
the situation that existed in JPA 1.0. At that time only the one-to-one shared primary key scenario was specified
using the @PrimaryKeyJoinColumn annotation (using the @Id annotation is the preferred and recommended
method going forward).

Although there was no specified way to solve the general case of including a foreign key in an identifier, it was
generally supported through the practice of adding one or more additional (redundant) fields to the dependent
entity. Each added field would hold a foreign key to the related entity, and, because both the added field and the
relationship would be mapped to the same join column(s), one or the other of the two would need to be marked as
read-only (see “Read-Only Mappings” section), or not updatable or insertable. The following example shows how
Listing 10-12 would be done using JPA 1.0. The id class would be the same. Since the deptNumber and
deptCountry attributes are identifier attributes, and can’t be changed in the database, there is no need to set
their updatability to false.

@Entity
@IdClass(ProjectId.class)
public class Project {
 @Id private String name;

 @Id
 @Column(name="DEPT_NUM", insertable=false)
 private int deptNumber;

 @Id
 @Column(name="DEPT_CTRY", insertable=false)
 private String deptCountry;

 @ManyToOne
 @JoinColumns({

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

288

 @JoinColumn(name="DEPT_NUM", referencedColumnName="NUM"),
 @JoinColumn(name="DEPT_CTRY", referencedColumnName="CTRY")})
 private Department department;
 // ...
}

Advanced Mapping Elements
Additional elements may be specified on the @Column and @JoinColumn annotations (and their
@MapKeyColumn, @MapKeyJoinColumn, and @OrderColumn relatives), some of which apply to schema
generation that will be discussed in Chapter 13. Other parts we can describe separately as applying to
columns and join columns in the following sections.

Read-Only Mappings
JPA does not really define any kind of read-only entity, although it will likely show up in a future release.
The API does, however, define options to set individual mappings to be read-only using the insertable
and updatable elements of the @Column and @JoinColumn annotations. These two settings default to true
but can be set to false if we want to ensure that the provider will not insert or update information in the
table in response to changes in the entity instance. If the data in the mapped table already exists and we
want to ensure that it will not be modified at runtime, then the insertable and updatable elements can
be set to false, effectively preventing the provider from doing anything other than reading the entity
from the database. Listing 10-16 demonstrates the Employee entity with read-only mappings.

Listing 10-16. Making An Entity Read-only

@Entity
public class Employee {
 @Id
 @Column(insertable=false)
 private int id;
 @Column(insertable=false, updatable=false)
 private String name;
 @Column(insertable=false, updatable=false)
 private long salary;

 @ManyToOne
 @JoinColumn(name="DEPT_ID", insertable=false, updatable=false)
 private Department department;
 // ...
}

We don’t need to worry about the identifier mapping being modified, because it is illegal to modify
identifiers. The other mappings, though, are marked as not being able to be inserted or updated, so we
are assuming that there are already entities in the database to be read in and used. No new entities will
be persisted, and existing entities will never be updated.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

289

Note that this does not guarantee that the entity state will not change in memory. Employee
instances could still get changed either inside or outside a transaction, but at transaction commit time or
whenever the entities get flushed to the database, this state will not be saved and the provider will likely
not throw an exception to indicate it. Be careful modifying read-only mappings in memory, however, as
changing the entities can cause them to become inconsistent with the state in the database and could
wreak havoc on a vendor-specific cache.

Even though all of these mappings are not updatable, the entity as a whole could still be deleted. A
proper read-only feature will solve this problem once and for all in a future release, but in the meantime
some vendors support the notion of read-only entities, and can optimize the treatment of them in their
caches and persistence context implementations.

Optionality
As we will see in Chapter 13, when we talk about schema generation, there exists metadata that either
permits the database columns to be null or requires them to have values. While this setting will affect the
physical database schema, there are also settings on some of the logical mappings that allow a basic
mapping or a single-valued association mapping to be left empty or required to be specified in the
object model. The element that requires or permits such behavior is the optional element in the @Basic,
@ManyToOne, and @OneToOne annotations.

When the optional element is specified as false, it indicates to the provider that the field or property
mapping may not be null. The API does not actually define what the behavior is in the case when the
value is null, but the provider may choose to throw an exception or simply do something else. For basic
mappings, it is only a hint and can be completely ignored. The optional element may also be used by the
provider when doing schema generation, because, if optional is set to true, then the column in the
database must also be nullable.

Because the API does not go into any detail about ordinality of the object model, there is a certain
amount of non-portability associated with using it. An example of setting the manager to be a required
attribute is shown in Listing 10-17. The default value for optional is true, making it necessary to be
specified only if a false value is needed.

Listing 10-17. Using Optional Mappings

@Entity
public class Employee {
 // ...
 @ManyToOne(optional=false)
 @JoinColumn(name="DEPT_ID", insertable=false, updatable=false)
 private Department department;
 // ...
}

Advanced Relationships
If you are in the opportune position of starting from a Java application and creating a database schema,
then you have complete control over what the schema looks like and how you map the classes to the
database. In this case, it is likely that you will not need to use very many of the advanced relationship
features that are offered by the API. The flexibility of being able to define a data model usually makes for
a less demanding mapping configuration. However, if you are in the unfortunate situation of mapping a
Java model to an existing database, then in order to work around the data schema you might need access
to more mappings than those we have discussed so far. The mappings described in the following

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

290

sections are primarily for mapping to legacy databases, and will most often be used because they are the
only option. A notable exception is the orphan removal feature, used to model a parent–child
relationship.

Using Join Tables
We have already seen mappings such as the many-to-many and unidirectional one-to-many mappings
that use join tables. Sometimes a database schema uses a join table to relate two entity types, even
though the cardinality of the target entity in the relationship is one. A one-to-one or many-to-one
relationship does not normally need a join table because the target will only ever be a single entity and
the foreign key can be stored in the source entity table. But if the join table already exists for a many-to-
one relationship, then of course we must map the relationship using that join table. To do so, we need
only add the @JoinTable annotation to the relationship mapping.

Whether the relationship is unidirectional or bidirectional, the @JoinTable annotation is a physical
annotation and must be defined on the owning side of the relationship, just as with all other mappings.
However, because a join table is not the default configuration for mappings that are not many-to-many
or unidirectional one-to-many, we do need to specify the annotation when we want a join table to be
used. The elements of the @JoinTable annotation can still be used to override the various schema names.

In Listing 10-18, we see a join table being used for a many-to-one relationship from Employee to
Department. The relationship may be unidirectional or it may be bidirectional, with a one-to-many
relationship from Department back to Employee, but in either case the “many” side must always be the
owner. The reason is because even if it were bidirectional the @ManyToOne side could not be the owner
because there would be no way for the @ManyToOne attribute to refer to the owning @OneToMany attribute
side. There is no mappedBy element in the @ManyToOne annotation definition.

As with most other mappings, the non-owning side of a bidirectional relationship does not change
based upon whether the relationship is mapped using a join table or not. It simply refers to the owning
relationship and lets it map to the physical tables/columns accordingly.

Listing 10-18. Many-to-one Mapping Using a Join Table

@Entity
public class Employee {
 @Id private int id;
 private String name;
 private long salary;

 @ManyToOne
 @JoinTable(name="EMP_DEPT")
 private Department department;
 // ...
}

■ TIP The ability to use a join table for unidirectional or bidirectional one-to-one or many-to-one relationships
was added in JPA 2.0.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

291

Avoiding Join Tables
Up to this point, we have discussed a unidirectional one-to-many mapping in the context of using a join
table, but it is also possible to map a unidirectional mapping without using a join table. It requires the
foreign key to be in the target table, or “many” side of the relationship, even though the target object
does not have any reference to the “one” side. We call this a unidirectional one-to-many target foreign
key mapping, because the foreign key is in the target table instead of a join table.

To use this mapping, we first indicate that the one-to-many relationship is unidirectional by not
specifying any mappedBy element in the annotation. Then we specify a @JoinColumn annotation on the
one-to-many attribute to indicate the foreign key column. The catch is that the join column that we are
specifying applies to the table of the target object, not the source object in which the annotation
appears.

Listing 10-19. Unidirectional One-to-many Mapping Using a Target Foreign Key

@Entity
public class Department {
 @Id private int id;

 @OneToMany
 @JoinColumn(name="DEPT_ID")
 private Collection<Employee> employees;
 // ...
}

The example in Listing 10-19 shows how simple it is to map a unidirectional one-to-many mapping
using a target foreign key. The DEPT_ID column refers to the table mapped by Employee, and is a foreign
key to the DEPARTMENT table, even though the Employee entity does not have any relationship attribute
back to Department.

Before you use this mapping, you should understand the implications of doing so, as they can be
quite negative, both from a modeling perspective and a performance perspective. Each row in the
EMPLOYEE table corresponds to an Employee instance, with each column corresponding to some state or
relationship in the instance. When there is a change in the row, there is the assumption that some kind
of change occurred to the corresponding Employee, but in this case that does not necessarily follow. The
Employee might have just been changed to a different Department, and because there was no reference to
the Department from the Employee there was no change to the Employee.

From a performance standpoint, think of the case when both the state of an Employee is changed,
and the Department that it belongs to is changed. When writing out the Employee state the foreign key to
the Department is not known because the Employee entity does not have any reference to it. In this case,
the Employee might have to be written out twice, once for the changed state of the Employee, and a
second time when the Department entity changes are written out and the foreign key from Employee to
Department must be updated to point to the Department that is referring to it.

■ TIP Support for unidirectional one-to-many target foreign key relationships was added in JPA 2.0.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

292

Compound Join Columns
Now that we have discussed how to create entities with compound primary keys, it is not a far stretch to
figure out that, as soon as we have a relationship to an entity with a compound identifier, we will need
some way to extend the way we currently reference it.

Up to this point, we have dealt with the physical relationship mapping only as a join column, but, if
the primary key that we are referencing is composed of multiple fields, then we will need multiple join
columns. This is why we have the plural @JoinColumns annotation that can hold as many join columns as
we need to put into it.

There are no default values for join column names when we have multiple join columns. The
simplest answer is to require the user to assign them, so, when multiple join columns are used, both the
name element and the referencedColumnName element, which indicates the name of the primary key
column in the target table, must be specified.

Now that we are getting into more complex scenarios, let’s add a more interesting relationship to
the mix. Let’s say that employees have managers and that each manager has a number of employees that
work for him. You may not find that very interesting until you realize that managers are themselves
employees, so the join columns are actually self-referential, that is, referring to the same table they are
stored in. Figure 10-4 shows the EMPLOYEE table with this relationship.

Figure 10-4. EMPLOYEE table with self-referencing compound foreign key

Listing 10-20 shows a version of the Employee entity that has a manager relationship, which is many-
to-one from each of the managed employees to the manager, and a one-to-many directs relationship
from the manager to its managed employees.

Listing 10-20. Self-referencing Compound Relationships

@Entity
@IdClass(EmployeeId.class)
public class Employee {
 @Id private String country;
 @Id
 @Column(name="EMP_ID")
 private int id;

 @ManyToOne
 @JoinColumns({
 @JoinColumn(name="MGR_COUNTRY", referencedColumnName="COUNTRY"),
 @JoinColumn(name="MGR_ID", referencedColumnName="EMP_ID")

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

293

 })
 private Employee manager;

 @OneToMany(mappedBy="manager")
 private Collection<Employee> directs;
 // ...
}

Any number of join columns can be specified, although in practice very seldom are there more than
two. The plural form of @JoinColumns may be used on many-to-one or one-to-one relationships or more
generally whenever the single @JoinColumn annotation is valid.

Another example to consider is in the join table of a many-to-many relationship. We can revisit the
Employee and Project relationship described in Chapter 4 to take into account our compound primary
key in Employee. The new table structure for this relationship is shown in Figure 10-5.

Figure 10-5. Join table with a compound primary key

If we keep the Employee entity as the owner, where the join table is defined, then the mapping for
this relationship will be as shown in Listing 10-21.

Listing 10-21. Join Table with Compound Join Columns

@Entity
@IdClass(EmployeeId.class)
public class Employee {
 @Id private String country;
 @Id
 @Column(name="EMP_ID")
 private int id;

 @ManyToMany
 @JoinTable(
 name="EMP_PROJECT",
 joinColumns={
 @JoinColumn(name="EMP_COUNTRY", referencedColumnName="COUNTRY"),
 @JoinColumn(name="EMP_ID", referencedColumnName="EMP_ID")},
 inverseJoinColumns=@JoinColumn(name="PROJECT_ID"))
 private Collection<Project> projects;
 // ...
}

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

294

Orphan Removal
The orphanRemoval element provides a convenient way of modeling parent-child relationships, or more
specifically privately owned relationships. We differentiate these two because privately owned is a
particular variety of parent-child in which the child entity may only be a child of one parent entity, and
may not ever belong to a different parent. While some parent-child relationships allow the child to
migrate from one parent to another, in a privately owned mapping the owned entity was created to
belong to the parent and cannot ever be migrated. Once it is removed from the parent, it is considered
orphaned and is deleted by the provider.

Only relationships with single cardinality on the source side can enable orphan removal, which is
why the orphanRemoval option is defined on the @OneToOne and @OneToMany relationship annotations, but
on neither of the @ManyToOne or @ManyToMany annotations.

When specified, the orphanRemoval element causes the child entity to be removed when the
relationship between the parent and the child is broken. This can be done either by setting to null the
attribute that holds the related entity, or additionally in the one-to-many case by removing the child
entity from the collection. The provider is then responsible, at flush or commit time (whichever comes
first), for removing the orphaned child entity.

In a parent-child relationship, the child is dependent upon the existence of the parent. If the parent
is removed, then by definition the child becomes an orphan and must also be removed. This second
feature of orphan removal behavior is exactly equivalent to a feature that we covered in Chapter 6 called
cascading, in which it is possible to cascade any subset of a defined set of operations across a
relationship. Setting orphan removal on a relationship automatically causes the relationship to have the
REMOVE operation option added to its cascade list, so it is not necessary to explicitly add it. Doing so is
simply redundant. It is impossible to turn off cascading REMOVE from a relationship marked for orphan
removal since its very definition requires such behavior to be present.

In Listing 10-22, the Employee class defines a one-to-many relationship to its list of annual
evaluations. It doesn’t matter whether the relationship is unidirectional or bidirectional, the
configuration and semantics are the same, so we need not show the other side of the relationship.

Listing 10-22. Employee Class with Orphan Removal of Evaluation Entities

@Entity
public class Employee {
 @Id private int id;
 @OneToMany(orphanRemoval=true)
 private List<Evaluation> evals;
 // ...
}

Suppose an employee receives an unfair evaluation from a manager. The employee might go to the
manager to correct the information and the evaluation might be modified, or the employee might have
to appeal the evaluation, and if successful the evaluation might simply be removed from the employee
record. This would cause it to be deleted from the database as well. If the employee decided to leave the
company, then when the employee is removed from the system his evaluations will be automatically
removed along with him.

If the collection in the relationship was a Map, keyed by a different entity type, then orphan removal
would only apply to the entity values in the Map, not to the keys. This means that entity keys are never
privately owned.

Finally, if the orphaned object is not currently managed in the persistence context, either because it
has been created in memory and not yet persisted, or is simply detached from the persistence context,
orphan removal will not be applied. Similarly, if it has already been removed in the current persistence
context.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

295

■ TIP The orphanRemoval element was introduced into the relationship annotations in JPA 2.0, although many
vendors provided similar functionality in the form of vendor-specific metadata (e.g. the Reference Implementation
supported a @PrivateOwned annotation).

Mapping Relationship State
There are times when a relationship actually has state associated with it. For example, let’s say that we
want to maintain the date an employee was assigned to work on a project. Storing the state on the
employee is possible but less helpful, since the date is really coupled to the employee’s relationship to a
particular project (a single entry in the many-to-many association). Taking an employee off a project
should really just cause the assignment date to go away, so storing it as part of the employee means that
we have to ensure that the two are consistent with each other, which can be bothersome. In UML, we
would show this kind of relationship using an association class. Figure 10-6 shows an example of this
technique.

Figure 10-6. Modeling state on a relationship using an association class

In the database everything is rosy, because we can simply add a column to the join table. The data
model provides natural support for relationship state. Figure 10-7 shows the many-to-many relationship
between EMPLOYEE and PROJECT with an expanded join table.

Figure 10-7. Join table with additional state

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

296

When we get to the object model, however, it becomes much more problematic. The issue is that
Java has no inherent support for relationship state. Relationships are just object references or pointers,
hence no state can ever exist on them. State exists on objects only, and relationships are not first-class
objects.

The Java solution is to turn the relationship into an entity that contains the desired state and map
the new entity to what was previously the join table. The new entity will have a many-to-one relationship
to each of the existing entity types, and each of the entity types will have a one-to-many relationship
back to the new entity representing the relationship. The primary key of the new entity will be the
combination of the two relationships to the two entity types. Listing 10-23 shows all of the participants
in the Employee and Project relationship.

Listing 10-23. Mapping Relationship State with an Intermediate Entity

@Entity
public class Employee {
 @Id private int id;
 // ...
 @OneToMany(mappedBy="employee")
 private Collection<ProjectAssignment> assignments;
 // ...
}

@Entity
public class Project {
 @Id private int id;
 // ...
 @OneToMany(mappedBy="project")
 private Collection<ProjectAssignment> assignments;
 // ...
}

@Entity
@Table(name="EMP_PROJECT")
@IdClass(ProjectAssignmentId.class)
public class ProjectAssignment {
 @Id
 @ManyToOne
 @JoinColumn(name="EMP_ID")
 private Employee employee;

 @Id
 @ManyToOne
 @JoinColumn(name="PROJECT_ID")
 private Project project;

 @Temporal(TemporalType.DATE)
 @Column(name="START_DATE", updatable=false)
 private Date startDate;
 // ...
}

public class ProjectAssignmentId implements Serializable {
 private int employee;

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

297

 private int project;
 // ...
}

Here we have the primary key entirely composed of relationships, with the two foreign key columns
making up the primary key in the EMP_PROJECT join table. The date at which the assignment was made
could be manually set when the assignment is created, or it could be associated with a trigger that causes
it to be set when the assignment is created in the database. Note that, if a trigger were used, then the
entity would need to be refreshed from the database in order to populate the assignment date field in the
Java object.

Multiple Tables
The most common mapping scenarios are of the so-called meet-in-the-middle variety. This means that
the data model and the object model already exist, or, if one does not exist, then it is created
independently of the other model. This is relevant because there are a number of features in the Java
Persistence API that attempt to address concerns that arise in this case.

Up to this point, we have assumed that an entity gets mapped to a single table and that a single row
in that table represents an entity. In an existing or legacy data model, it was actually quite common to
spread data, even data that was tightly coupled, across multiple tables. This was done for different
administrative as well as performance reasons, one of which was to decrease table contention when
specific subsets of the data were accessed or modified.

To account for this, entities may be mapped across multiple tables by making use of the
@SecondaryTable annotation and its plural @SecondaryTables form. We call the default table or the table
defined by the @Table annotation the primary table and any additional ones secondary tables. We can
then distribute the data in an entity across rows in both the primary table and the secondary tables
simply by defining the secondary tables as annotations on the entity and then specifying when we map
each field or property which table the column is in. We do this by specifying the name of the table in the
table element in @Column or @JoinColumn. We did not need to use this element earlier, because the
default value of table is the name of the primary table.

The only bit that is left is to specify how to join the secondary table or tables to the primary table. We
saw in Chapter 4 how the primary key join column is a special case of a join column where the join
column is just the primary key column (or columns in the case of composite primary keys). Support for
joining secondary tables to the primary table is limited to primary key join columns and is specified as a
@PrimaryKeyJoinColumn annotation as part of the @SecondaryTable annotation.

To demonstrate the use of a secondary table, consider the data model shown in Figure 10-8. There is
a primary key relationship between the EMP and EMP_ADDRESS tables. The EMP table stores the primary
employee information, while address information has been moved to the EMP_ADDRESS table.

Figure 10-8. EMP and EMP_ADDRESS tables

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

298

To map this table structure to the Employee entity, we must declare EMP_ADDRESS as a secondary table
and use the table element of the @Column annotation for every attribute stored in that table. Listing 10-24
shows the mapped entity. The primary key of the EMP_ADDRESS table is in the EMP_ID column. If it had
been named ID, then we would not have needed to use the name element in the @PrimaryKeyJoinColumn
annotation. It defaults to the name of the primary key column in the primary table.

Listing 10-24. Mapping an Entity Across Two Tables

@Entity
@Table(name="EMP")
@SecondaryTable(name="EMP_ADDRESS",
 pkJoinColumns=@PrimaryKeyJoinColumn(name="EMP_ID"))
public class Employee {
 @Id private int id;
 private String name;
 private long salary;
 @Column(table="EMP_ADDRESS")
 private String street;
 @Column(table="EMP_ADDRESS")
 private String city;
 @Column(table="EMP_ADDRESS")
 private String state;
 @Column(name="ZIP_CODE", table="EMP_ADDRESS")
 private String zip;
 // ...
}

In Chapter 4, we learned how to use the schema or catalog elements in @Table to qualify the primary
table to be in a particular database schema or catalog. This is also valid in the @SecondaryTable
annotation.

Previously, when discussing embedded objects, we mapped the address fields of the Employee entity
into an Address embedded type. With the address data in a secondary table, it is still possible to do this
by specifying the mapped table name as part of the column information in the @AttributeOverride
annotation. Listing 10-25 demonstrates this approach. Note that we have to enumerate all of the fields in
the embedded type even though the column names may match the correct default values.

Listing 10-25. Mapping an Embedded Type to a Secondary Table

@Entity
@Table(name="EMP")
@SecondaryTable(name="EMP_ADDRESS",
 pkJoinColumns=@PrimaryKeyJoinColumn(name="EMP_ID"))
public class Employee {
 @Id private int id;
 private String name;
 private long salary;
 @Embedded
 @AttributeOverrides({
 @AttributeOverride(name="street", column=@Column(table="EMP_ADDRESS")),
 @AttributeOverride(name="city", column=@Column(table="EMP_ADDRESS")),
 @AttributeOverride(name="state", column=@Column(table="EMP_ADDRESS")),
 @AttributeOverride(name="zip",
 column=@Column(name="ZIP_CODE", table="EMP_ADDRESS"))

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

299

 })
 private Address address;
 // ...
}

Let’s consider a more complex example involving multiple tables and compound primary keys.
Figure 10-9 shows the table structure we wish to map. In addition to the EMPLOYEE table, we have two
secondary tables, ORG_STRUCTURE and EMP_LOB. The ORG_STRUCTURE table stores employee and manager
reporting information. The EMP_LOB table stores large objects that are infrequently fetched during normal
query options. Moving large objects to a secondary table is a common design technique in many
database schemas.

Figure 10-9. Secondary tables with compound primary key relationships

Listing 10-26 shows the Employee entity mapped to this table structure. We have reused the
EmployeeId id class from Listing 10-5 in this example.

Listing 10-26. Mapping an Entity with Multiple Secondary Tables

@Entity
@IdClass(EmployeeId.class)
@SecondaryTables({
 @SecondaryTable(name="ORG_STRUCTURE", pkJoinColumns={
 @PrimaryKeyJoinColumn(name="COUNTRY", referencedColumnName="COUNTRY"),
 @PrimaryKeyJoinColumn(name="EMP_ID", referencedColumnName="EMP_ID")}),
 @SecondaryTable(name="EMP_LOB", pkJoinColumns={
 @PrimaryKeyJoinColumn(name="COUNTRY", referencedColumnName="COUNTRY"),
 @PrimaryKeyJoinColumn(name="ID", referencedColumnName="EMP_ID")})
})
public class Employee {
 @Id private String country;
 @Id
 @Column(name="EMP_ID")
 private int id;

 @Basic(fetch=FetchType.LAZY)
 @Lob
 @Column(table="EMP_LOB")
 private byte[] photo;

 @Basic(fetch=FetchType.LAZY)
 @Lob
 @Column(table="EMP_LOB")
 private char[] comments;

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

300

 @ManyToOne
 @JoinColumns({
 @JoinColumn(name="MGR_COUNTRY", referencedColumnName="COUNTRY",
 table="ORG_STRUCTURE"),
 @JoinColumn(name="MGR_ID", referencedColumnName="EMP_ID",
 table="ORG_STRUCTURE")
 })
 private Employee manager;
 // ...
}

We have thrown a few curves into this example to make it more interesting. The first is that we have
defined Employee to have a composite primary key. This requires additional information to be provided
for the EMP_LOB table, because its primary key is not named the same as the primary table. The next
difference is that we are storing a relationship in the ORG_STRUCTURE secondary table. The MGR_COUNTRY
and MGR_ID columns combine to reference the id of the manager for this employee. Since the employee
has a composite primary key, the manager relationship must also specify a set of join columns instead of
only one, and the referencedColumnName elements in those join columns refer to the primary key
columns COUNTRY and EMP_ID in the entity’s own primary table EMPLOYEE.

Inheritance
One of the common mistakes made by novice object-oriented developers is that they get converted to
the principle of reuse, but carry it too far. It is too easy to get caught up in the quest for reuse and create
complex inheritance hierarchies all for the sake of sharing a few methods. These kinds of multi-level
hierarchies will often lead to pain and hardship down the road as the application becomes difficult to
debug and a challenge to maintain.

Most applications do enjoy the benefits of at least some inheritance in the object model. As with
most things, moderation should be used, however, especially when it comes to mapping the classes to
relational databases. Large hierarchies can often lead to significant performance reduction, and it may
be that the cost of code reuse is higher than you might want to pay.

In the following sections, we will explain the support that exists in the API to map inheritance
hierarchies and outline some of the repercussions.

Class Hierarchies
Because this is a book about the Java Persistence API, the first and most obvious place to start talking
about inheritance is in the Java object model. Entities are objects, after all, and should be able to inherit
state and behavior from other entities. This is not only expected but also essential for the development
of object-oriented applications.

What does it mean when one entity inherits state from its entity superclass? It can imply different
things in the data model, but in the Java model it simply means that, when a subclass entity is
instantiated, it has its own version or copy of both its locally defined state and its inherited state, all of
which is persistent. While this basic premise is not at all surprising, it opens up the less obvious question
of what happens when an entity inherits from something other than another entity. Which classes is an
entity allowed to extend, and what happens when it does?

Consider the class hierarchy shown in Figure 10-10. As we saw in Chapter 1, there are a number of
ways that class inheritance can be represented in the database. In the object model, there may even be a
number of different ways to implement a hierarchy, some of which may include non-entity classes. We
will use this example as we explore ways to persist inheritance hierarchies in the following sections.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

301

Figure 10-10. Inheritance class hierarchy

We differentiate between a general class hierarchy, which is a set of various types of Java classes that
extend each other in a tree, and an entity hierarchy, which is a tree consisting of persistent entity classes
interspersed with non-entity classes. An entity hierarchy is rooted at the first entity class in the
hierarchy.

Mapped Superclasses
The Java Persistence API defines a special kind of class called a mapped superclass that is quite useful as
a superclass for entities. A mapped superclass provides a convenient class on which to store shared state
and behavior that entities can inherit from, but it is itself not a persistent class and cannot act in the
capacity of an entity. It cannot be queried over and cannot be the target of a relationship. Annotations
such as @Table are not permitted on mapped superclasses because the state defined in them applies only
to its entity subclasses.

Mapped superclasses can be compared to entities in somewhat the same way that an abstract class
is compared to a concrete class; they can contain state and behavior but just can’t be instantiated as
persistent entities. An abstract class is of use only in relation to its concrete subclasses, and a mapped
superclass is useful only as state and behavior that is inherited by the entity subclasses that extend it.
They do not play a role in an entity inheritance hierarchy other than contributing that state and behavior
to the entities that inherit from them.

Mapped superclasses may or may not be defined as abstract in their class definitions, but it is good
practice to make them actual abstract Java classes. We don’t know of any good use cases for creating
concrete Java instances of them without ever being able to persist them, and chances are that, if you
happen to find one, you probably want the mapped superclass to be an entity.

All of the default mapping rules that apply to entities also apply to the basic and relationship state in
mapped superclasses. The biggest advantage of using mapped superclasses is being able to define

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

302

partial shared state that should not be accessed on its own without the additional state that its entity
subclasses add to it. If you are not sure whether to make a class an entity or a mapped superclass, then
you need only ask yourself if you will ever need to query across or access an instance that is only exposed
as an instance of that mapped class. This also includes relationships, since a mapped superclass can’t be
used as the target of a relationship. If you answer yes to any variant of that question, then you should
probably make it a first-class entity.

If we look back at Figure 10-10, we could conceivably treat the CompanyEmployee class as a mapped
superclass instead of an entity. It defines shared state, but perhaps we have no reason to query over it.

A class is indicated as being a mapped superclass by annotating it with the @MappedSuperclass
annotation. The class fragments from Listing 10-27 show how the hierarchy would be mapped with
CompanyEmployee as a mapped superclass.

Listing 10-27. Entities Inheriting from a Mapped Superclass

@Entity
public class Employee {
 @Id private int id;
 private String name;
 @Temporal(TemporalType.DATE)
 @Column(name="S_DATE")
 private Date startDate;
 // ...
}

@Entity
public class ContractEmployee extends Employee {
 @Column(name="D_RATE")
 private int dailyRate;
 private int term;
 // ...
}

@MappedSuperclass
public abstract class CompanyEmployee extends Employee {
 private int vacation;
 // ...
}

@Entity
public class FullTimeEmployee extends CompanyEmployee {
 private long salary;
 private long pension;
 // ...
}

@Entity
public class PartTimeEmployee extends CompanyEmployee {
 @Column(name="H_RATE")
 private float hourlyRate;
 // ...
}

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

303

Transient Classes in the Hierarchy
We call classes in an entity hierarchy that are not entities or mapped superclasses transient classes.
Entities may extend transient classes either directly or indirectly through a mapped superclass. When an
entity inherits from a transient class, the state defined in the transient class is still inherited in the entity,
but it is not persistent. In other words, the entity will have space allocated for the inherited state,
according to the usual Java rules, but that state will not be managed by the persistence provider. It will
be effectively ignored during the lifecycle of the entity. The entity might manage that state manually
through the use of lifecycle callback methods that we describe in Chapter 11, or other approaches, but
the state will not be persisted as part of the provider-managed entity lifecycle.

One could conceive of having a hierarchy that is composed of an entity that has a transient subclass,
which in turn has one or more entity subclasses. While this case is not really a common one, it is
nonetheless possible and can be achieved in the rare circumstances when having shared transient state
or common behavior is desired. It would normally be more convenient, though, to declare the transient
state or behavior in the entity superclass than to create an intermediate transient class. Listing 10-28
shows an entity that inherits from a superclass that defines transient state that is the time an entity was
created in memory.

Listing 10-28. Entity Inheriting from a Transient Superclass

public abstract class CachedEntity {
 private long createTime;

 public CachedEntity() { createTime = System.currentTimeMillis(); }

 public long getCacheAge() { return System.currentTimeMillis() - createTime; }
}

@Entity
public class Employee extends CachedEntity {
 public Employee() { super(); }
 // ...
}

In this example, we moved the transient state from the entity class into a transient superclass, but
the end result is really quite the same. The previous example might have been a little neater without the
extra class, but this example allows us to share the transient state and behavior across any number of
entities that need only extend CachedEntity.

Abstract and Concrete Classes
We have mentioned the notion of abstract versus concrete classes in the context of mapped
superclasses, but we didn’t go into any more detail about entity and transient classes. Most people,
depending upon their philosophy, might expect that all non-leaf classes in an object hierarchy should be
abstract, or at the very least that some of them would be. A restriction that entities must always be
concrete classes would mess this up quite handily, and fortunately this is not the case. It is perfectly
acceptable for entities, mapped superclasses, or transient classes to be either abstract or concrete at any
level of the inheritance tree. As with mapped superclasses, making transient classes concrete in the
hierarchy doesn’t really serve any purpose and as a general rule should be avoided to prevent accidental
development errors and misuse.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

304

The case that we have not talked about is the one where an entity is an abstract class. The only
difference between an entity that is an abstract class and one that is a concrete class is the Java rule that
prohibits abstract classes from being instantiated. They can still define persistent state and behavior that
will be inherited by the concrete entity subclasses below them. They can be queried, the result of which
will be composed of concrete entity subclass instances. They can also bear the inheritance mapping
metadata for the hierarchy.

Our hierarchy in Figure 10-10 had an Employee class that was a concrete class. We would not want
users to accidentally instantiate this class and then try to persist a partially defined employee. We could
protect against this by defining it to be abstract. We would then end up with all of our non-leaf classes
being abstract and the leaf classes being persistent.

Inheritance Models
JPA provides support for three different data representations. The use of two of them is fairly
widespread, while the third is less common and not required to be supported, though it is still fully
defined with the intention that providers might be required to support it in the future.

When an entity hierarchy exists, it is always rooted at an entity class. Recall that mapped
superclasses do not count as levels in the hierarchy because they contribute only to the entities beneath
them. The root entity class must signify the inheritance hierarchy by being annotated with the
@Inheritance annotation. This annotation indicates the strategy that should be used for mapping and
must be one of the three strategies described in the following sections.

Every entity in the hierarchy must either define or inherit its identifier, which means that the
identifier must be defined either in the root entity or in a mapped superclass above it. A mapped
superclass may be higher up in the class hierarchy than where the identifier is defined.

Single-Table Strategy
The most common and performant way of storing the state of multiple classes is to define a single table
to contain a superset of all the possible state in any of the entity classes. This approach is called, not
surprisingly, a single-table strategy. It has the consequence that, for any given table row representing an
instance of a concrete class, there may be columns that do not have values because they apply only to a
sibling class in the hierarchy.

From Figure 10-10 we see that the id is located in the root Employee entity class and is shared by the
rest of the persistence classes. All the persistent entities in an inheritance tree must use the same type of
identifier. We don’t need to think about it very long before we see why this makes sense at both levels. In
the object layer, it wouldn’t be possible to issue a polymorphic find() operation on a superclass if there
were not a common identifier type that we could pass in. Similarly, at the table level, we would need
multiple primary key columns but without being able to fill them all in on any given insertion of an
instance that only made use of one of them.

The table must contain enough columns to store all the state in all the classes. An individual row
stores the state of an entity instance of a concrete entity type, which would normally imply that there
would be some columns left unfilled in every row. Of course, this leads to the conclusion that the
columns mapped to concrete subclass state should be nullable, which is normally not a big issue but
could be a problem for some database administrators.

In general, the single-table approach tends to be more wasteful of database tablespace, but it does
offer peak performance for both polymorphic queries and write operations. The SQL that is needed to
issue these operations is simple, optimized, and does not require joining.

To specify the single-table strategy for the inheritance hierarchy, the root entity class is annotated
with the @Inheritance annotation with its strategy set to SINGLE_TABLE. In our previous model, this would
mean annotating the Employee class as follows:

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

305

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
public abstract class Employee { ... }

As it turns out, though, the single-table strategy is the default one, so we wouldn’t strictly even need to
include the strategy element at all. An empty @Inheritance annotation would do the trick just as well.

In Figure 10-11, we see the single-table representation of our Employee hierarchy model. In terms of
the table structure and schema architecture for the single-table strategy, it makes no difference whether
CompanyEmployee is a mapped superclass or an entity.

Figure 10-11. A single-table inheritance data model

Discriminator Column

You may have noticed an extra column named EMP_TYPE in Figure 10-11 that was not mapped to any field
in any of the classes in Figure 10-10. This field has a special purpose and is required when using a single
table to model inheritance. It is called a discriminator column and is mapped using the
@DiscriminatorColumn annotation in conjunction with the @Inheritance annotation we have already
learned about. The name element of this annotation specifies the name of the column that should be
used as the discriminator column, and if not specified will be defaulted to a column named “DTYPE”.

A discriminatorType element dictates the type of the discriminator column. Some applications
prefer to use strings to discriminate between the entity types, while others like using integer values to
indicate the class. The type of the discriminator column may be one of three predefined discriminator
column types: INTEGER, STRING, or CHAR. If the discriminatorType element is not specified, then the
default type of STRING will be assumed.

Discriminator Value

Every row in the table will have a value in the discriminator column called a discriminator value, or a
class indicator, to indicate the type of entity that is stored in that row. Every concrete entity in the
inheritance hierarchy, therefore, needs a discriminator value specific to that entity type so that the
provider can process or assign the correct entity type when it loads and stores the row. The way this is
done is to use a @DiscriminatorValue annotation on each concrete entity class. The string value in the
annotation specifies the discriminator value that instances of the class will get assigned when they are

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

306

inserted into the database. This will allow the provider to recognize instances of the class when it issues
queries. This value should be of the same type as was specified or defaulted as the discriminatorType
element in the @DiscriminatorColumn annotation.

If no @DiscriminatorValue annotation is specified, then the provider will use a provider-specific way
of obtaining the value. If the discriminatorType was STRING, then the provider will just use the entity
name as the class indicator string. If the discriminatorType is INTEGER, then we would either have to
specify the discriminator values for every entity class or none of them. If we were to specify some but not
others, then we could not guarantee that a provider-generated value would not overlap with one that we
specified.

Listing 10-29 shows how our Employee hierarchy is mapped to a single-table strategy.

Listing 10-29. Entity Hierarchy Mapped Using Single-Table Strategy

@Entity
@Table(name="EMP")
@Inheritance
@DiscriminatorColumn(name="EMP_TYPE")
public abstract class Employee { ... }

@Entity
public class ContractEmployee extends Employee { ... }

@MappedSuperclass
public abstract class CompanyEmployee extends Employee { ... }

@Entity
@DiscriminatorValue("FTEmp")
public class FullTimeEmployee extends CompanyEmployee { ... }

@Entity(name=“PTEmp”)
public class PartTimeEmployee extends CompanyEmployee { ... }

The Employee class is the root class, so it establishes the inheritance strategy and discriminator
column. We have assumed the default strategy of SINGLE_TABLE and discriminator type of STRING.

Neither the Employee nor the CompanyEmployee classes have discriminator values, because
discriminator values should not be specified for abstract entity classes, mapped superclasses, transient
classes, or any abstract classes for that matter. Only concrete entity classes use discriminator values
since they are the only ones that actually get stored and retrieved from the database.

The ContractEmployee entity does not use a @DiscriminatorValue annotation, because the default
string “ContractEmployee”, which is the default entity name that is given to the class, is just what we
want. The FullTimeEmployee class explicitly lists its discriminator value to be “FTEmp”, so that is what is
stored in each row for instances of FullTimeEmployee. Meanwhile, the PartTimeEmployee class will get
“PTEmp” as its discriminator value because it set its entity name to be “PTEmp”, and that is the name
that gets used as the discriminator value when none is specified.

In Figure 10-12, we can see a sample of some of the data that we might find given the earlier model
and settings. We can see from the EMP_TYPE discriminator column that there are three different types of
concrete entities. We also see null values in the columns that do not apply to an entity instance.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

307

Figure 10-12. Sample of single-table inheritance data

Joined Strategy
From the perspective of a Java developer, a data model that maps each entity to its own table makes a lot
of sense. Every entity, whether it is abstract or concrete, will have its state mapped to a different table.
Consistent with our earlier description, mapped superclasses do not get mapped to their own tables but
are mapped as part of their entity subclasses.

Mapping a table per entity provides the data reuse that a normalized1 data schema offers and is the
most efficient way to store data that is shared by multiple subclasses in a hierarchy. The problem is that,
when it comes time to reassemble an instance of any of the subclasses, the tables of the subclasses must
be joined together with the superclass tables. It makes it fairly obvious why this strategy is called the
joined strategy. It is also somewhat more expensive to insert an entity instance, because a row must be
inserted in each of its superclass tables along the way.

Recall from the single-table strategy that the identifier must be of the same type for every class in
the hierarchy. In a joined approach, we will have the same type of primary key in each of the tables, and
the primary key of a subclass table also acts as a foreign key that joins to its superclass table. This should
ring a bell because of its similarity to the multiple-table case earlier in the chapter where we joined the
tables together using the primary keys of the tables and used the @PrimaryKeyJoinColumn annotation to
indicate it. We use this same annotation in the joined inheritance case since we have multiple tables that
each contain the same primary key type and each potentially has a row that contributes to the final
combined entity state.

While joined inheritance is both intuitive and efficient in terms of data storage, the joining that it
requires makes it somewhat expensive to use when hierarchies are deep or wide. The deeper the
hierarchy the more joins it will take to assemble instances of the concrete entity at the bottom. The
broader the hierarchy the more joins it will take to query across an entity superclass.

In Figure 10-13, we see our Employee example mapped to a joined table architecture. The data for an
entity subclass is spread across the tables in the same way that it is spread across the class hierarchy.

1 Normalization of data is a database practice that attempts to remove redundantly stored data. For the
seminal paper on data normalization, see “A Relational Model of Data for Large Shared Databanks” by E.
F. Codd (Communications of the ACM, 13(6) June 1970). Also, any database design book or paper should
have an overview.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

308

When using a joined architecture, the decision as to whether CompanyEmployee is a mapped superclass or
an entity makes a difference, since mapped superclasses do not get mapped to tables. An entity, even if it
is an abstract class, always does. Figure 8-13 shows it as a mapped superclass, but if it were an entity
then an additional COMPANY_EMP table would exist with ID and VACATION columns in it, and the VACATION
column in the FT_EMP and PT_EMP tables would not be present.

Figure 10-13. Joined inheritance data model

To map an entity hierarchy to a joined model, the @Inheritance annotation need only specify JOINED
as the strategy. Like the single-table example, the subclasses will adopt the same strategy that is specified
in the root entity superclass.

Even though there are multiple tables to model the hierarchy, the discriminator column is only
defined on the root table, so the @DiscriminatorColumn annotation is placed on the same class as the
@Inheritance annotation.

■ TIP Some vendors offer implementations of joined inheritance without the use of a discriminator column.
Discriminator columns should be used if provider portability is required.

Our Employee hierarchy example can be mapped using the joined approach shown in Listing 10-30.
In this example, we have used integer discriminator columns instead of the default string type.

Listing 10-30. Entity Hierarchy Mapped Using the Joined Strategy

@Entity
@Table(name="EMP")
@Inheritance(strategy=InheritanceType.JOINED)
@DiscriminatorColumn(name="EMP_TYPE", discriminatorType=DiscriminatorType.INTEGER)
public abstract class Employee { ... }

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

309

@Entity
@Table(name="CONTRACT_EMP")
@DiscriminatorValue("1")
public class ContractEmployee extends Employee { ... }

@MappedSuperclass
public abstract class CompanyEmployee extends Employee { ... }

@Entity
@Table(name="FT_EMP")
@DiscriminatorValue("2")
public class FullTimeEmployee extends CompanyEmployee { ... }

@Entity
@Table(name="PT_EMP")
@DiscriminatorValue("3")
public class PartTimeEmployee extends CompanyEmployee { ... }

Table-per-Concrete-Class Strategy
A third approach to mapping an entity hierarchy is to use a strategy where a table per concrete class is
defined. This data architecture goes in the reverse direction of non-normalization of entity data and
maps each concrete entity class and all its inherited state to a separate table. This has the effect of
causing all shared state to be redefined in the tables of all the concrete entities that inherit it. This
strategy is not required to be supported by providers but is included because it is anticipated that it will
be required in a future release of the API. We will describe it briefly for completeness.

The negative side of using this strategy is that it makes polymorphic querying across a class
hierarchy more expensive than the other strategies. The problem is that it must either issue multiple
separate queries across each of the subclass tables, or query across all of them using a UNION operation,
which is generally regarded as being expensive when lots of data is involved. If there are non-leaf
concrete classes, then each of them will have its own table. Subclasses of the concrete classes will have to
store the inherited fields in their own tables, along with their own defined fields.

The bright side of table-per-concrete-class hierarchies when compared to joined hierarchies is seen
in cases of querying over instances of a single concrete entity. In the joined case, every query requires a
join, even when querying across a single concrete entity class. In the table-per-concrete-class case, it is
akin to the single-table hierarchy because the query is confined to a single table. Another advantage is
that the discriminator column goes away. Every concrete entity has its own separate table, and there is
no mixing or sharing of schema, so no class indicator is ever needed.

Mapping our example to this type of hierarchy is a matter of specifying the strategy as
TABLE_PER_CLASS and making sure there is a table for each of the concrete classes. If a legacy database is
being used, then the inherited columns could be named differently in each of the concrete tables and
the @AttributeOverride annotation would come in handy. In this case, the CONTRACT_EMP table didn’t
have the NAME and S_DATE columns but instead had FULLNAME and SDATE for the name and startDate fields
defined in Employee.

If the attribute that we wanted to override was an association instead of a simple state mapping,
then we could still override the mapping, but we would need to use an @AssociationOverride annotation
instead of @AttributeOverride. The @AssociationOverride annotation allows us to override the join
columns used to reference the target entity of a many-to-one or one-to-one association defined in a
mapped superclass. To show this, we need to add a manager attribute to the CompanyEmployee mapped
superclass. The join column is mapped by default in the CompanyEmployee class to the MANAGER column in
the two FT_EMP and PT_EMP subclass tables, but in PT_EMP the name of the join column is actually MGR. We

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

310

override the join column by adding the @AssociationOverride annotation to the PartTimeEmployee entity
class and specifying the name of the attribute we are overriding and the join column that we are
overriding it to be. Listing 10-31 shows a complete example of the entity mappings, including the
overrides.

Listing 10-31. Entity Hierarchy Mapped Using Table-per-concrete-class Strategy

@Entity
@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)
public abstract class Employee {
 @Id private int id;
 private String name;
 @Temporal(TemporalType.DATE)
 @Column(name="S_DATE")
 private Date startDate;
 // ...
}

@Entity
@Table(name="CONTRACT_EMP")
@AttributeOverrides({
 @AttributeOverride(name="name", column=@Column(name="FULLNAME")),
 @AttributeOverride(name="startDate", column=@Column(name="SDATE"))
})
public class ContractEmployee extends Employee {
 @Column(name="D_RATE")
 private int dailyRate;
 private int term;
 // ...
}

@MappedSuperclass
public abstract class CompanyEmployee extends Employee {
 private int vacation;
 @ManyToOne
 private Employee manager;
 // ...
}

@Entity @Table(name="FT_EMP")
public class FullTimeEmployee extends CompanyEmployee {
 private long salary;
 @Column(name="PENSION")
 private long pensionContribution;
 // ...
}

@Entity
@Table(name="PT_EMP")
@AssociationOverride(name="manager",
 joinColumns=@JoinColumn(name="MGR"))
public class PartTimeEmployee extends CompanyEmployee {
 @Column(name="H_RATE")

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

311

 private float hourlyRate;
 // ...
}

The table organization shows how these columns are mapped to the concrete tables. See Figure 10-
14 for a clear picture of what the tables would look like and how the different types of employee
instances would be stored.

Figure 10-14. Table-per-concrete-class data model

Mixed Inheritance
We should begin this section by saying that the practice of mixing inheritance types within a single
inheritance hierarchy is currently outside the specification. We are including it because it is both useful
and interesting, but we are offering a warning that it might not be portable to rely on such behavior,
even if your vendor supports it.

Furthermore, it really makes sense to mix only single-table and joined inheritance types. We will
show an example of mixing these two, bearing in mind that support for them is vendor-specific. The
intent is that, in future releases of the specification, the more useful cases will be standardized and
required to be supported by compliant implementations.

The premise for mixing inheritance types is that it is well within the realm of possibilities that a data
model includes a combination of single-table and joined-table designs within a single entity hierarchy.
This can be illustrated by taking our joined example in Figure 10-13 and storing the FullTimeEmployee
and PartTimeEmployee instances in a single table. This would produce a model that looks like the one
shown in Figure 10-15.

Figure 10-15. Mixed inheritance data model

In this example, the joined strategy is used for the Employee and ContractEmployee classes, while the
CompanyEmployee, FullTimeEmployee, and PartTimeEmployee classes revert to a single-table model. To

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

312

make this inheritance strategy switch at the level of the CompanyEmployee, we need to make a simple
change to the hierarchy. We need to turn CompanyEmployee into an abstract entity instead of a mapped
superclass so that it can bear the new inheritance metadata. Note that this is simply an annotation
change, not making any change to the domain model.

The inheritance strategies can be mapped as shown in Listing 10-32. Notice that we do not need to
have a discriminator column for the single-table subhierarchy since we already have one in the
superclass EMP table.

Listing 10-32. Entity Hierarchy Mapped Using Mixed Strategies

@Entity
@Table(name="EMP")
@Inheritance(strategy=InheritanceType.JOINED)
@DiscriminatorColumn(name=“EMP_TYPE”)
public abstract class Employee {
 @Id private int id;
 private String name;
 @Temporal(TemporalType.DATE)
 @Column(name="S_DATE")
 private Date startDate;
 // ...
}

@Entity
@Table(name="CONTRACT_EMP")
public class ContractEmployee extends Employee {
 @Column(name="D_RATE") private int dailyRate;
 private int term;
 // ...
}

@Entity
@Table(name="COMPANY_EMP")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
public abstract class CompanyEmployee extends Employee {
 private int vacation;
 // ...
}

@Entity
public class FullTimeEmployee extends CompanyEmployee {
 private long salary;
 @Column(name="PENSION")
 private long pensionContribution;
 // ...
}

@Entity
public class PartTimeEmployee extends CompanyEmployee {
 @Column(name="H_RATE")
 private float hourlyRate;
 // ...
}

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

313

Summary
Entity mapping requirements often go well beyond the simplistic mappings that map a field or a
relationship to a named column. In this chapter, we addressed some of the more varied and diverse
mapping practices that are supported by the Java Persistence API.

We discussed how to delimit database identifiers on a case-by-case basis, or for all the mappings in
a persistence unit. We illustrated how delimiting identifiers allows the inclusion of special characters
and provides case-sensitivity when the target database requires it.

We showed how embeddable objects can have state, element collections, further nested
embeddables, and even relationships. We gave examples of reusing an embeddable object with
relationships in it by overriding the relationship mappings within the embedding entity.

Identifiers may be composed of multiple columns. We revealed the two approaches for defining and
using compound primary keys, and demonstrated using them in a way that is compatible with EJB 2.1
primary key classes. We established how other entities can have foreign key references to entities with
compound identifiers and explained how multiple join columns can be used in any context when a
single join column applies. We also showed some examples of mapping identifiers, called derived
identifiers, which included a relationship as part of their identities.

We explained some advanced relationship features, such as read-only mappings and optionality,
and showed how they could be of benefit to some models. We then went on to describe some of the
more advanced mapping scenarios that included using join tables or sometimes avoiding the use of join
tables. The topic of orphan removal was also touched upon and clarified.

We went on to show how to distribute entity state across multiple tables and how to use the
secondary tables with relationships. We even saw how an embedded object can map to a secondary
table of an entity.

CHAPTER 10 ■ ADVANCED OBJECT-RELATIONAL MAPPING

314

Finally, we went into detail about the three different inheritance strategies that can be used to map
inheritance hierarchies to tables. We explained mapped superclasses and how they can be used to define
shared state and behavior. We went over the data models that differentiate the various approaches and
showed how to map an entity hierarchy to the tables in each case. We finished off by illustrating how to
mix inheritance types within a single hierarchy.

In the next chapter, we will continue our discussion of advanced topics, looking at issues such as
SQL queries, locking, and caching.

C H A P T E R 11

■ ■ ■

315

Advanced Topics

In the previous edition of this book, we warned readers that content in an “Advanced Topics” chapter
might not line up with what every reader considered advanced. Our hypothesis was that the term
advanced was quite subjective. It turned out to be more correct than we guessed, and we had people
comment from both sides of the spectrum, saying either that it was not advanced enough or that there
was too much to understand. It depended upon the background and experience of the developer as well
as the complexity of application that was being developed.

What we can say is that, in large part, the topics in this chapter are those that we intended (during
development of the specification) to be of a more advanced nature or to be used by more advanced
developers. There are a few exceptions to this rule, though. For example, we included optimistic locking
in this chapter even though most applications do need to be aware of and make use of optimistic
locking. However, the actual locking calls are seldom used, and it just made sense to cover all the lock
modes together. In general, we think that most applications will not use more than a few of the features
described in this chapter. With this in mind, let’s explore some of the other features of the Java
Persistence API.

SQL Queries
With all the effort that has gone into abstracting away the physical data model, both in terms of object-
relational mapping and JP QL, it might be surprising to learn that SQL is alive and well in JPA. Although
JP QL is the preferred method of querying over entities, SQL cannot be overlooked as a necessary
element in many enterprise applications. The sheer size and scope of the SQL features, supported by the
major database vendors, means that a portable language such as JP QL will never be able to fully
encompass all their features.

■ NOTE queries are also known as native queries. EntityManager methods and query annotations related to
SQL queries also use this terminology. While this allows other query languages to be supported in the future, any
query string in a native query operation is assumed to be SQL.

CHAPTER 11 ■ ADVANCED TOPICS

316

Before discussing the mechanics of SQL queries, let’s first consider some of the reasons why a
developer using JP QL might want to integrate SQL queries into their application.

First, JP QL, despite the enhancements made in JPA 2.0, still contains only a subset of the features
supported by many database vendors. Inline views (subqueries in the FROM clause), hierarchical
queries, access to stored procedures, and additional function expressions to manipulate date and time
values are just some of the features not supported in JP QL.

Second, although vendors may provide hints to assist with optimizing a JP QL expression, there are
cases where the only way to achieve the performance required by an application is to replace the JP QL
query with a hand-optimized SQL version. This may be a simple restructuring of the query that the
persistence provider was generating, or it may be a vendor-specific version that leverages query hints
and features specific to a particular database.

Of course, just because you can use SQL doesn’t mean you should. Persistence providers have
become very skilled at generating high-performance queries, and many of the limitations of JP QL can
often be worked around in application code. We recommend avoiding SQL initially if possible and then
introducing it only when necessary. This will enable your queries to be more portable across databases
and more maintainable as your mappings change.

The following sections will discuss how SQL queries are defined using JPA and how their result sets
can be mapped back to entities. One of the major benefits of SQL query support is that it uses the same
Query interface used for JP QL queries. With some small exceptions that will be described later, all the
Query interface operations discussed in previous chapters apply equally to both JP QL and SQL queries.

Native Queries versus JDBC
A perfectly valid question for anyone investigating SQL support in JPA is whether it is needed at all. JDBC
has been in use for years, provides a broad feature set, and works well. It’s one thing to introduce a
persistence API that works on entities, but another thing entirely to introduce a new API for issuing SQL
queries.

The main reason to consider using SQL queries in JPA, instead of just issuing JDBC queries, is when
the result of the query will be converted back into entities. As an example, let’s consider a typical use
case for SQL in an application that uses JPA. Given the employee id for a manager, the application needs
to determine all the employees who report to that manager either directly or indirectly. For example, if
the query were for a senior manager, the results would include all the managers who report to that
senior manager as well as the employees who report to those managers. This type of query cannot be
implemented by using JP QL, but a database such as Oracle natively supports hierarchical queries for
just this purpose. Listing 11-1 demonstrates the typical sequence of JDBC calls to execute this query and
transform the results into entities for use by the application.

Listing 11-1. Querying Entities Using SQL and JDBC

@Stateless
public class OrgStructureBean implements OrgStructure {
 private static final String ORG_QUERY =
 "SELECT emp_id, name, salary " +
 "FROM emp " +
 "START WITH manager_id = ? " +
 "CONNECT BY PRIOR emp_id = manager_id";

 @Resource
 DataSource hrDs;

 public List findEmployeesReportingTo(int managerId) {
 Connection conn = null;

CHAPTER 11 ■ ADVANCED TOPICS

317

 PreparedStatement sth = null;
 try {
 conn = hrDs.getConnection();
 sth = conn.prepareStatement(ORG_QUERY);
 sth.setLong(1, managerId);
 ResultSet rs = sth.executeQuery();

 ArrayList<Employee> result = new ArrayList<Employee>();
 while (rs.next()) {
 Employee emp = new Employee();
 emp.setId(rs.getInt(1));
 emp.setName(rs.getString(2));
 emp.setSalary(rs.getLong(3));
 result.add(emp);
 }
 return result;
 } catch (SQLException e) {
 throw new EJBException(e);
 }
 }
}

Now consider the alternative syntax supported by JPA, as shown in Listing 11-2. By simply
indicating that the result of the query is the Employee entity, the query engine uses the object-relational
mapping of the entity to figure out which result columns map to the entity properties and builds the
result set accordingly.

Listing 11-2. Querying Entities Using SQL and the Query Interface

@Stateless
public class OrgStructureBean implements OrgStructure {
 private static final String ORG_QUERY =
 "SELECT emp_id, name, salary, manager_id, dept_id, address_id " +
 "FROM emp " +
 "START WITH manager_id = ? " +
 "CONNECT BY PRIOR emp_id = manager_id";

 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 public List findEmployeesReportingTo(int managerId) {
 return em.createNativeQuery(ORG_QUERY, Employee.class)
 .setParameter(1, managerId)
 .getResultList();
 }
}

Not only is the code much easier to read but it also makes use of the same Query interface that can
be used for JP QL queries. This helps to keep application code consistent because it needs to concern
itself only with the EntityManager and Query interfaces.

CHAPTER 11 ■ ADVANCED TOPICS

318

An unfortunate result of adding the TypedQuery interface in JPA 2.0 is that the createNativeQuery()
method was already defined in JPA 1.0 to accept a SQL string and a result class and return an untyped
Query interface. Now there is no backward compatible way to return a TypedQuery instead of a Query. The
regrettable consequence is that when the createNativeQuery() method is called with a result class
argument one might mistakenly think it will produce a TypedQuery, like createQuery() and
createNamedQuery() do when a result class is passed in.

Defining and Executing SQL Queries
SQL queries may be defined dynamically at runtime or named in persistence unit metadata, similar to
the JP QL query definitions discussed in Chapter 7. The key difference between defining JP QL and SQL
queries lies in the understanding that the query engine should not parse and interpret vendor-specific
SQL. In order to execute a SQL query and get entity instances in return, additional mapping information
about the query result is required.

The first and simplest form of dynamically defining a SQL query that returns an entity result is to
use the createNativeQuery() method of the EntityManager interface, passing in the query string and the
entity type that will be returned. Listing 11-2 in the previous section demonstrated this approach to map
the results of an Oracle hierarchical query to the Employee entity. The query engine uses the object-
relational mapping of the entity to figure out which result column aliases map to which entity
properties. As each row is processed, the query engine instantiates a new entity instance and sets the
available data into it.

If the column aliases of the query do not match up exactly with the object-relational mappings for
the entity, or if the results contain both entity and non-entity results, SQL result set mapping metadata is
required. SQL result set mappings are defined as persistence unit metadata and are referenced by name.
When the createNativeQuery() method is invoked with a SQL query string and a result set mapping
name, the query engine uses this mapping to build the result set. SQL result set mappings are discussed
in the next section.

Named SQL queries are defined using the @NamedNativeQuery annotation. This annotation may be
placed on any entity and defines the name of the query as well as the query text. Like JP QL named
queries, the name of the query must be unique within the persistence unit. If the result type is an entity,
the resultClass element may be used to indicate the entity class. If the result requires a SQL mapping,
the resultSetMapping element may be used to specify the mapping name. Listing 11-3 shows how the
hierarchical query demonstrated earlier would be defined as a named query.

Listing 11-3. Using an Annotation to Define a Named Native Query

@NamedNativeQuery(
 name="orgStructureReportingTo",
 query="SELECT emp_id, name, salary, manager_id, dept_id, address_id " +
 "FROM emp " +
 "START WITH manager_id = ? " +
 "CONNECT BY PRIOR emp_id = manager_id",
 resultClass=Employee.class
)

One advantage of using named SQL queries is that the application can use the createNamedQuery()
method on the EntityManager interface to create and execute the query. The fact that the named query
was defined using SQL instead of JP QL is not important to the caller. A further benefit is that
createNamedQuery() can return a TypedQuery whereas the createNativeQuery() method returns an
untyped Query.

CHAPTER 11 ■ ADVANCED TOPICS

319

Listing 11-4 demonstrates the reporting structure bean again, this time using a named query. The
other advantage of using named queries instead of dynamic queries is that they can be overridden using
XML mapping files. A query originally specified in JP QL can be overridden with a SQL version, and vice
versa. This technique is described in Chapter 12.

Listing 11-4. Executing a Named SQL Query

@Stateless
public class OrgStructureBean implements OrgStructure {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 public List<Employee> findEmployeesReportingTo(int managerId) {
 return em.createNamedQuery("orgStructureReportingTo",
 Employee.class)
 .setParameter(1, managerId)
 .getResultList();
 }
}

One thing to be careful of with SQL queries that return entities is that the resulting entity instances
become managed by the persistence context, just like the results of a JP QL query. If you modify one of
the returned entities, it will be written to the database when the persistence context becomes associated
with a transaction. This is normally what you want, but it requires that any time you select data that
corresponds to existing entity instances, it is important to ensure that all the necessary data required to
fully construct the entity is part of the query. If you leave out a field from the query, or default it to some
value and then modify the resulting entity, there is a possibility that you will overwrite the correct
version already stored in the database. This is because the missing state will be null (or some default
value according to the type) in the entity. When the transaction commits, the persistence context does
not know that the state was not properly read in from the query and might just attempt to write out null
or the default value.

There are two benefits to getting managed entities back from a SQL query. The first is that a SQL
query can replace an existing JP QL query and that application code should still work without changes.
The second benefit is that it allows the developer to use SQL queries as a method of constructing new
entity instances from tables that may not have any object-relational mapping. For example, in many
database architectures, there is a staging area to hold data that has not yet been verified or requires
some kind of transformation before it can be moved to its final location. Using JPA, a developer could
start a transaction, query the staged data to construct entities, perform any required changes, and then
commit. The newly created entities will get written to the tables mapped by the entity, not the staging
tables used in the SQL query. This is more appealing than the alternative of having a second set of
mappings that maps the same entities (or even worse, a second parallel set of entities) to the staging
tables and then writing some code that reads, copies, and rewrites the entities.

SQL data-manipulation statements (INSERT, UPDATE, and DELETE) are also supported as a
convenience so that JDBC calls do not have to be introduced in an application otherwise limited to JPA.
To define such a query, use the createNativeQuery() method, but without any mapping information.
Listing 11-5 demonstrates these types of queries in the form of a session bean that logs messages to a
table. Note that the bean methods run in a REQUIRES_NEW transaction context to ensure that the message
is logged even if an active transaction rolls back.

CHAPTER 11 ■ ADVANCED TOPICS

320

Listing 11-5. Using SQL INSERT and DELETE Statements

@Stateless
@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public class LoggerBean implements Logger {
 private static final String INSERT_SQL =
 "INSERT INTO message_log (id, message, log_dttm) " +
 " VALUES(id_seq.nextval, ?, SYSDATE)";
 private static final String DELETE_SQL =
 "DELETE FROM message_log";

 @PersistenceContext(unitName="Logger")
 EntityManager em;

 public void logMessage(String message) {
 em.createNativeQuery(INSERT_SQL)
 .setParameter(1, message)
 .executeUpdate();
 }

 public void clearMessageLog() {
 em.createNativeQuery(DELETE_SQL)
 .executeUpdate();
 }
}

Executing SQL statements that make changes to data in tables mapped by entities is generally
discouraged. Doing so may cause cached entities to be inconsistent with the database because the
provider cannot track changes made to entity state that has been modified by data-manipulation
statements.

SQL Result Set Mapping
In the SQL query examples shown so far, the result mapping was straightforward. The column aliases in
the SQL string matched up directly with the object-relational column mapping for a single entity. It is
not always the case that the names match up, nor is it always the case that only a single entity type is
returned. JPA provides SQL result set mappings to handle these scenarios.

A SQL result set mapping is defined using the @SqlResultSetMapping annotation. It may be placed
on an entity class and consists of a name (unique within the persistence unit) and one or more entity
and column mappings. The entity result class argument on the createNativeQuery() method is really a
shortcut to specifying a simple SQL result set mapping. The following mapping is equivalent to
specifying Employee.class in a call to createNativeQuery():

@SqlResultSetMapping(
 name="employeeResult",
 entities=@EntityResult(entityClass=Employee.class)
)

Here we have defined a SQL result set mapping called employeeResult that may be referenced by
any query returning Employee entity instances. The mapping consists of a single entity result, specified
by the @EntityResult annotation, which references the Employee entity class. The query must supply

CHAPTER 11 ■ ADVANCED TOPICS

321

values for all columns mapped by the entity, including foreign keys. It is vendor-specific whether the
entity is partially constructed or whether an error occurs if any required entity state is missing.

Mapping Foreign Keys
Foreign keys do not need to be explicitly mapped as part of the SQL result set mapping. When the query
engine attempts to map the query results to an entity, it considers foreign key columns for single-valued
associations as well. Let’s look at the reporting structure SQL query again:

SELECT emp_id, name, salary, manager_id, dept_id, address_id
FROM emp
START WITH manager_id IS NULL
CONNECT BY PRIOR emp_id = manager_id

The MANAGER_ID, DEPT_ID, and ADDRESS_ID columns all map to the join columns of associations on the
Employee entity. An Employee instance returned from this query can use the methods getManager(),
getDepartment(), and getAddress(), and the results will be as expected. The persistence provider will
retrieve the associated entity based on the foreign key value read in from the query. There is no way to
populate collection associations from a SQL query. Entity instances constructed from this example are
effectively the same as they would have been had they been returned from a JP QL query.

Multiple Result Mappings
A query may return more than one entity at a time. This is most often useful if there is a one-to-one
relationship between two entities; otherwise, the query will result in duplicate entity instances. Consider
the following query:

SELECT emp_id, name, salary, manager_id, dept_id, address_id,
 id, street, city, state, zip
FROM emp, address
WHERE address_id = id

The SQL result set mapping to return both the Employee and Address entities out of this query is
defined in Listing 11-6. Each entity is listed in an @EntityResult annotation, an array of which is assigned
to the entities element. The order in which the entities are listed is not important. The query engine
uses the column names of the query to match against entity mapping data, not column position.

Listing 11-6. Mapping a SQL Query that Returns Two Entity Types

@SqlResultSetMapping(
 name="EmployeeWithAddress",
 entities={@EntityResult(entityClass=Employee.class),
 @EntityResult(entityClass=Address.class)}
)

Mapping Column Aliases
If the column aliases in the SQL statement do not directly match up with the names specified in the
column mappings for the entity, field result mappings are required for the query engine to make the
correct association. Suppose, for example, that both the EMP and ADDRESS tables listed in the previous

CHAPTER 11 ■ ADVANCED TOPICS

322

example used the column ID for their primary key. The query would have to be altered to alias the ID
columns so that they are unique:

SELECT emp.id AS emp_id, name, salary, manager_id, dept_id, address_id,
 address.id, street, city, state, zip
FROM emp, address
WHERE address_id = address.id

The @FieldResult annotation is used to map column aliases to the entity attributes in situations
where the name in the query is not the same as the one used in the column mapping. Listing 11-7 shows
the mapping required to convert the EMP_ID alias to the id attribute of the entity. More than one
@FieldResult may be specified, but only the mappings that are different need to be specified. This can
be a partial list of entity attributes.

Listing 11-7. Mapping a SQL Query with Unknown Column Aliases

@SqlResultSetMapping(
 name="EmployeeWithAddress",
 entities={@EntityResult(entityClass=Employee.class,
 fields=@FieldResult(
 name="id",
 column="EMP_ID")),
 @EntityResult(entityClass=Address.class)}
)

Mapping Scalar Result Columns
SQL queries are not limited to returning only entity results, although it is expected that this will be the
primary use case. Consider the following query:

SELECT e.name AS emp_name, m.name AS manager_name
FROM emp e,
 emp m
WHERE e.manager_id = m.emp_id (+)
START WITH e.manager_id IS NULL
CONNECT BY PRIOR e.emp_id = e.manager_id

Non-entity result types, called scalar result types, are mapped using the @ColumnResult annotation.
One or more column mappings may be assigned to the columns attribute of the mapping annotation.
The only attribute available for a column mapping is the column name. Listing 11-8 shows the SQL
mapping for the employee and manager hierarchical query.

Listing 11-8. Scalar Column Mappings

@SqlResultSetMapping(
 name="EmployeeAndManager",
 columns={@ColumnResult(name="EMP_NAME"),
 @ColumnResult(name="MANAGER_NAME")}
)

Scalar results may also be mixed with entities. In this case, the scalar results are typically providing
additional information about the entity. Let’s look at a more complex example in which this would be
the case. A report for an application needs to see information about each department, showing the

CHAPTER 11 ■ ADVANCED TOPICS

323

manager, the number of employees, and the average salary. The following JP QL query produces the
correct report:

SELECT d, m, COUNT(e), AVG(e.salary)
FROM Department d LEFT JOIN e.employees e
 LEFT JOIN e.employees m
WHERE m IS NULL OR m IN (SELECT de.manager
 FROM Employee de
 WHERE de.department = d)
GROUP BY d, m

This query is particularly challenging because there is no direct relationship from Department to the
Employee who is the manager of the department. Therefore, the employees relationship must be joined
twice: once for the employees assigned to the department and once for the employee in that group who
is also the manager. This is possible because the subquery reduces the second join of the employees
relationship to a single result. We also need to accommodate the fact that there might not be any
employees currently assigned to the department and further that a department might not have a
manager assigned. This means that each of the joins must be an outer join and that we further have to
use an OR condition to allow for the missing manager in the WHERE clause.

Once in production, it is determined that the SQL query generated by the provider is not performing
well, so the DBA proposes an alternate query that takes advantage of the inline views possible with the
Oracle database. The query to accomplish this result is shown in Listing 11-9.

Listing 11-9. Department Summary Query

SELECT d.id, d.name AS dept_name,
 e.emp_id, e.name, e.salary, e.manager_id, e.dept_id,
 e.address_id,
 s.tot_emp, s.avg_sal
FROM dept d,
 (SELECT *
 FROM emp e
 WHERE EXISTS(SELECT 1 FROM emp WHERE manager_id = e.emp_id)) e,
 (SELECT d.id, COUNT(*) AS tot_emp, AVG(e.salary) AS avg_sal
 FROM dept d, emp e
 WHERE d.id = e.dept_id (+)
 GROUP BY d.id) s
WHERE d.id = e.dept_id (+) AND
 d.id = s.id

Fortunately, mapping this query is a lot easier than reading it. The query results consist of a
Department entity; an Employee entity; and two scalar results, the number of the employees and the
average salary. Listing 11-10 shows the mapping for this query.

Listing 11-10. Mapping for the Department Query

@SqlResultSetMapping(
 name="DepartmentSummary",
 entities={
 @EntityResult(entityClass=Department.class,
 fields=@FieldResult(name="name", column="DEPT_NAME")),
 @EntityResult(entityClass=Employee.class)
 },
 columns={@ColumnResult(name="TOT_EMP"),

CHAPTER 11 ■ ADVANCED TOPICS

324

 @ColumnResult(name="AVG_SAL")}
)

Mapping Compound Keys
When a primary or foreign key is composed of multiple columns that have been aliased to unmapped
names, a special notation must be used in the @FieldResult annotations to identify each part of the key.
Consider the query shown in Listing 11-11 that returns both the employee and the manager of the
employee. The table in this example is the same one we demonstrated in Figure 10-4 of Chapter 10.
Because each column is repeated twice, the columns for the manager state have been aliased to new
names.

Listing 11-11. SQL Query Returning Employee and Manager

SELECT e.country, e.emp_id, e.name, e.salary,
 e.manager_country, e.manager_id, m.country AS mgr_country,
 m.emp_id AS mgr_id, m.name AS mgr_name, m.salary AS mgr_salary,
 m.manager_country AS mgr_mgr_country, m.manager_id AS mgr_mgr_id
FROM emp e,
 emp m
WHERE e.manager_country = m.country AND
 e.manager_id = m.emp_id

The result set mapping for this query depends on the type of primary key class used by the target
entity. Listing 11-12 shows the mapping in the case where an id class has been used. For the primary key,
each attribute is listed as a separate field result. For the foreign key, each primary key attribute of the
target entity (the Employee entity again in this example) is suffixed to the name of the relationship
attribute.

Listing 11-12. Mapping for Employee Query Using id Class

@SqlResultSetMapping(
 name="EmployeeAndManager",
 entities={
 @EntityResult(entityClass=Employee.class),
 @EntityResult(
 entityClass=Employee.class,
 fields={
 @FieldResult(name="country", column="MGR_COUNTRY"),
 @FieldResult(name="id", column="MGR_ID"),
 @FieldResult(name="name", column="MGR_NAME"),
 @FieldResult(name="salary", column="MGR_SALARY"),
 @FieldResult(name="manager.country",
 column="MGR_MGR_COUNTRY"),
 @FieldResult(name="manager.id", column="MGR_MGR_ID")
 }
)
 }
)

If Employee uses an embedded id class instead of an id class, the notation is slightly different. We
have to include the primary key attribute name as well as the individual attributes within the embedded
type. Listing 11-13 shows the result set mapping using this notation.

CHAPTER 11 ■ ADVANCED TOPICS

325

Listing 11-13. Mapping for Employee Query Using Embedded id Class

@SqlResultSetMapping(
 name="EmployeeAndManager",
 entities={
 @EntityResult(entityClass=Employee.class),
 @EntityResult(
 entityClass=Employee.class,
 fields={
 @FieldResult(name="id.country", column="MGR_COUNTRY"),
 @FieldResult(name="id.id", column="MGR_ID"),
 @FieldResult(name="name", column="MGR_NAME"),
 @FieldResult(name="salary", column="MGR_SALARY"),
 @FieldResult(name="manager.id.country",
 column="MGR_MGR_COUNTRY"),
 @FieldResult(name="manager.id.id", column="MGR_MGR_ID")
 }
)
 }
)

Mapping Inheritance
In many respects, polymorphic queries in SQL are no different from regular queries returning a single
entity type. All columns must be accounted for, including foreign keys and the discriminator column for
single-table and joined inheritance strategies. The key thing to remember is that if the results include
more than one entity type, each of the columns for all the possible entity types must be represented in
the query. The field result mapping techniques demonstrated earlier may be used to customize columns
that use unknown aliases. These columns may be at any level in the inheritance tree. The only special
element in the @EntityResult annotation for use with inheritance is the discriminatorColumn element.
This element allows the name of the discriminator column to be specified in the unlikely event that it is
different from the mapped version.

Assume that the Employee entity had been mapped to the table shown in Figure 10-11 from Chapter
10. To understand aliasing a discriminator column, consider the following query that returns data from
another EMPLOYEE_STAGE table structured to use single-table inheritance:

SELECT id, name, start_date, daily_rate, term, vacation,
 hourly_rate, salary, pension, type
FROM employee_stage

To convert the data returned from this query to Employee entities, the following result set mapping
would be used:

@SqlResultSetMapping(
 name="EmployeeStageMapping",
 entities=
 @EntityResult(
 entityClass=Employee.class,
 discriminatorColumn="TYPE",
 fields={
 @FieldResult(name="startDate", column="START_DATE"),
 @FieldResult(name="dailyRate", column="DAILY_RATE"),
 @FieldResult(name="hourlyRate", column="HOURLY_RATE")

CHAPTER 11 ■ ADVANCED TOPICS

326

 }
)
)

Parameter Binding
SQL queries have traditionally supported only positional parameter binding. The JDBC specification
itself supports only named parameters on CallableStatement objects, not PreparedStatement, and not all
database vendors even support this syntax. As a result, JPA guarantees only the use of positional
parameter binding for SQL queries. Check with your vendor to see whether the named parameter
methods of the Query interface are supported, but understand that using them may make your
application non-portable between persistence providers.

Another limitation of parameter support for SQL queries is that entity parameters cannot be used.
The specification does not define how these parameter types should be treated. Be careful when
converting or overriding a named JP QL query with a native SQL query that the parameter values are still
interpreted correctly.

Lifecycle Callbacks
Every entity has the potential to go through one or more of a defined set of lifecycle events. Depending
upon the operations invoked upon an entity, these events may or may not occur for that entity, but there
is at least the potential for them to occur. In order to respond to any one or more of the events, an entity
class or any of its superclasses may declare one or more methods that will be invoked by the provider
when the event gets fired. These methods are called callback methods.

Lifecycle Events
The event types that make up the lifecycle fall into four categories: persisting, updating, removing, and
loading. These are really data-level events that correspond to the database operations of inserting,
updating, deleting, and reading; and except for loading, each has a Pre event and a Post event. In the
load category there is only a PostLoad event because it would not make any sense for there to be PreLoad
on an entity that was not yet built. Thus the full suite of lifecycle events that can occur is composed of
PrePersist, PostPersist, PreUpdate, PostUpdate, PreRemove, PostRemove, and PostLoad.

PrePersist and PostPersist
The PrePersist event notifies an entity when EntityManager.persist() has been successfully invoked on
it. PrePersist events may also occur on a merge() call when a new entity has been merged into the
persistence context. If the PERSIST cascade option is set on a relationship of an object that is being
persisted and the target object is also a new object, the PrePersist event is triggered on the target object.
If multiple entities are cascaded to during the same operation, the order in which the PrePersist
callbacks occur cannot be relied upon.

CHAPTER 11 ■ ADVANCED TOPICS

327

PostPersist events occur when an entity is inserted, which normally occurs during the transaction
completion phase. Firing of a PostPersist event does not indicate that the entity has committed
successfully to the database because the transaction in which it was persisted may be rolled back after
the PostPersist event but before the transaction successfully commits.

PreRemove and PostRemove
When an EntityManager.remove() call is invoked on an entity, the PreRemove callback is triggered. This
callback implies that an entity is being queued for deletion, and any related entities across relationships
that have been configured with the REMOVE cascade option will also get a PreRemove notification. When
the SQL for deletion of an entity finally does get sent to the database, the PostRemove event will get fired.
As with the PostPersist lifecycle event, the PostRemove event does not guarantee success. The enclosing
transaction may still be rolled back.

PreUpdate and PostUpdate
Updates to managed entities may occur at any time, either within a transaction or (in the case of an
extended persistence context) outside a transaction. Because there is no explicit method on the
EntityManager, the PreUpdate callback is guaranteed to be invoked only at some point before the
database update. Some implementations may track changes dynamically and may invoke the callback
on each change, while others may wait until the end of the transaction and just invoke the callback once.

Another difference between implementations is whether PreUpdate events get fired on entities that
were persisted in a transaction and then modified in the same transaction before being committed. This
would be a rather unfortunate choice because unless the writes were done eagerly on each entity call,
there would be no symmetric PostUpdate call because in the usual deferred writing case, a single persist
to the database would occur when the transaction ends. The PostUpdate callback occurs right after the
database update. The same potential for rollback exists after PostUpdate callbacks as with PostPersist
and PostRemove.

PostLoad
The PostLoad callback occurs after the data for an entity is read from the database and the entity
instance is constructed. This can get triggered by any operation that causes an entity to be loaded,
normally by either a query or traversal of a lazy relationship. It can also happen as a result of a refresh()
call on the entity manager. When a relationship is set to cascade REFRESH, the entities that get cascaded
to will also get loaded. The invocation of entities in a single operation, be it a query or a refresh, is not
guaranteed to be in any order, so we should not rely upon any observed order in any implementation.

■ TIP Other lifecycle methods may be defined by specific providers, such as when an entity is merged or
copied/cloned.

Callback Methods
Callback methods may be defined a few different ways, the most basic of which is to simply define a
method on the entity class. Designating the method as a callback method involves two steps: defining

CHAPTER 11 ■ ADVANCED TOPICS

328

the method according to a given signature and annotating the method with the appropriate lifecycle
event annotation.

The required signature definition is very simple. The callback method may have any name, but must
have a signature that takes no parameters and has a return type of void. A method such as public void
foo() {} is an example of a valid method. Final or static methods are not valid callback methods,
however.

Checked exceptions may not be thrown from callback methods because the method definition of a
callback method is not permitted to include a throws clause. Runtime exceptions may be thrown,
though, and if they are thrown while in a transaction, they will cause the provider to not only abandon
invocation of subsequent lifecycle event methods in that transaction, but also mark the transaction for
rollback.

A method is indicated as being a callback method by being annotated with a lifecycle event
annotation. The relevant annotations match the names of the events listed earlier: @PrePersist,
@PostPersist, @PreUpdate, @PostUpdate, @PreRemove, @PostRemove, and @PostLoad. A method may be
annotated with multiple lifecycle event annotations, but only one lifecycle annotation of a given type
may be present in an entity class.

Certain types of operations may not be portably performed inside callback methods. For example,
invoking methods on an entity manager or executing queries obtained from an entity manager are not
supported, as well as accessing entities other than the one to which the lifecycle event applies. Looking
up resources in JNDI or using JDBC and JMS resources are allowed, so looking up and invoking EJB
session beans would be allowed.

Now that we know all the different kinds of lifecycle events that we can handle, let’s look at an
example that uses them. One common usage of lifecycle events is to maintain non-persistent state
inside a persistent entity. If we want the entity to record its cached age or the time it was last
synchronized with the database, we could easily do this right inside the entity using callback methods.
We consider that the entity is synchronized with the database each time it is read from or written to the
database. Users of this Employee could check on the cached age of this object to see if it meets their
freshness requirements. The entity is shown in Listing 11-14.

Listing 11-14. Using Callback Methods on an Entity

@Entity
public class Employee {
 @Id private int id;
 private String name;
 @Transient private long syncTime;

 // ...

 @PostPersist
 @PostUpdate
 @PostLoad
 private void resetSyncTime() {
 syncTime = System.currentTimeMillis();
 }

 public long getCachedAge() {
 return System.currentTimeMillis() - syncTime;
 }

 // ...
}

CHAPTER 11 ■ ADVANCED TOPICS

329

Enterprise Contexts
When a callback method is invoked, the provider will not take any particular action to suspend or
establish any different kind of naming, transaction, or security context in the Java EE environment.
Callback methods are executed in whatever contexts are active at the time they are invoked.

Remembering this fact is important because it will most often be a session bean with a container-
managed transaction that invokes calls on the entity manager, and it will be that session bean’s contexts
that will be in effect when the Pre calls are invoked. Depending upon where the transaction started and
is committed, the Post calls will likely be invoked at the end of the transaction and could actually be in
an entirely different set of contexts than the Pre methods. This is especially true in the case of an
extended persistence context where the entities are managed and persisted outside a trans-action, yet
the next transaction commit will cause the entities that were persisted to be written out.

Entity Listeners
Callback methods in the entity are fine when you don’t mind if the event callback logic is included in the
entity, but what if you want to pull the event handling behavior out of the entity class into a different
class? To do this, you can use an entity listener. An entity listener is not an entity; it is a class on which
you can define one or more lifecycle callback methods to be invoked for the lifecycle events of an entity.
Similar to the callback methods on the entity, however, only one method in each listener class may be
annotated for each event type. Multiple event listeners may be applied to an entity, though.

When the callback is invoked on a listener, the listener typically needs to have access to the entity
state. For example, if we were to implement the previous example of the cached age of an entity instance
then we would want to get passed the entity instance. For this reason, the signature required of callback
methods on entity listeners is slightly different from the one required on entities. On an entity listener, a
callback method must have a similar signature as on an entity with the exception that it must also have a
single defined parameter of a type that is compatible with the entity type, as the entity class, a superclass
(including Object), or an interface implemented by the entity. A method with the signature public void
foo(Object o) {} is an example of a valid callback method on an entity listener. The method must then
be annotated with the necessary event annotation(s).

Entity listener classes must be stateless, meaning that they should not declare any fields. A single
instance may be shared among multiple entity instances and may even be invoked upon concurrently
for multiple entity instances. In order for the provider to be able to create instances of the entity listener,
every entity listener class must have a public no-argument constructor.

Attaching Entity Listeners to Entities
An entity designates the entity listeners that should be notified of its lifecycle events through the use of
the @EntityListeners annotation. One or more entity listeners may be listed in the annotation. When a
lifecycle event occurs, the provider will iterate through each of the entity listeners in the order in which
they were listed and instantiate an instance of the entity listener class that has a method annotated with
the annotation for the given event. It will invoke the callback method on the listener, passing in the
entity to which the event applies. After it has done this for all the listed entity listeners, it will invoke the
callback method on the entity if there is one. If any of the listeners throws an exception, it will abort the
callback process, causing the remaining listeners and the callback method on the entity to not be
invoked.

Now let’s look at our cached entity age example and add some entity listeners into the mix. Because
we now have the ability to do multiple tasks in multiple listeners, we can add a listener to do some name
validation as well as some extra actions on employee record changes. Listing 11-15 shows the entity with
its added listeners.

CHAPTER 11 ■ ADVANCED TOPICS

330

Listing 11-15. Using Multiple Entity Listeners

@Entity
@EntityListeners({EmployeeDebugListener.class, NameValidator.class})
public class Employee implements NamedEntity {
 @Id private int id;
 private String name;
 @Transient private long syncTime;

 public String getName() { return name; }

 @PostPersist
 @PostUpdate
 @PostLoad
 private void resetSyncTime() {
 syncTime = System.currentTimeMillis();
 }

 public long getCachedAge() {
 return System.currentTimeMillis() - syncTime;
 }

 // ...
}

public interface NamedEntity {
 public String getName();
}

public class NameValidator {
 static final int MAX_NAME_LEN = 40;

 @PrePersist
 public void validate(NamedEntity obj) {
 if (obj.getName().length()) > MAX_NAME_LEN)
 throw new ValidationException("Identifier out of range");
 }
}

public class EmployeeDebugListener {
 @PrePersist
 public void prePersist(Employee emp) {
 System.out.println("Persist on employee id: " + emp.getId());
 }

 @PreUpdate
 public void preUpdate(Employee emp) { ... }

 @PreRemove
 public void preRemove(Employee emp) { ... }

 @PostLoad
 public void postLoad(Employee emp) { ... }
}

CHAPTER 11 ■ ADVANCED TOPICS

331

As you can see, different listener callback methods take different types of parameters. The callback
methods in the EmployeeDebugListener class take Employee as a parameter because they are being
applied only to Employee entities. In the NameValidator class, the validate() method parameter is of type
NamedEntity. The Employee entity and any number of other entities that have names may implement this
interface. The validation logic may be needed because a particular aspect of the system may have a
current name-length limitation but may change in the future. It is preferable to centralize this logic in a
single class than to duplicate the validation logic in each of the class setter methods if there is any
possibility of an inheritance hierarchy.

Even though entity listeners are convenient, we have decided to leave the cache age logic in the
entity because it is actually modifying the state of the entity and because putting it in a separate class
would have required us to relax the access of the private resetSyncTime() method. In general, when a
callback method accesses state beyond what should be publicly accessible, it is best suited to being in
the entity and not in an entity listener.

Default Entity Listeners
A listener may be attached to more than one type of entity simply by being listed in the
@EntityListeners annotation of more than one entity. This can be useful in cases where the listener
provides a more general facility or wide-ranging runtime logic.

For even broader usage of an entity listener across all the entities in a persistence unit, one or more
default entity listeners may be declared. There is currently no standard annotation target for persistence
unit scoped metadata, so this kind of metadata can be declared only in an XML mapping file. See
Chapter 12 for the specifics of how to declare default entity listeners.

When a list of default entity listeners is declared, it will be traversed in the order they were listed in
the declaration, and each one that has a method annotated or declared for the current event will be
invoked upon. Default entity listeners will always get invoked before any of the entity listeners listed in
the @EntityListeners annotation for a given entity.

Any entity may opt out of having the default entity listeners applied to it by using the
@ExcludeDefaultListeners annotation. When an entity is annotated with this annotation, none of the
declared default listeners will get invoked for the lifecycle events for instances of that entity type.

Inheritance and Lifecycle Events
The presence of events with class hierarchies requires that we explore the topic of lifecycle events in a
little more depth. What happens when we have multiple entities that each define callback methods or
entity listeners or both? Do they all get invoked on a subclass entity or only those that are defined on or
in the subclass entity?

These and many other questions arise because of the added complexity of inheritance hierarchies. It
follows that there must be rules for defining predictable behavior in the face of potentially complex
hierarchies where lifecycle event methods are scattered throughout the hierarchy.

Inheriting Callback Methods
Callback methods may occur on any entity or mapped superclass, be it abstract or concrete. The rule is
fairly simple. It is that every callback method for a given event type will be invoked in the order
according to its place in the hierarchy, most general classes first. Thus, if in our Employee hierarchy that
we saw in Figure 10-10 the Employee class contains a PrePersist callback method named checkName(),
and FullTimeEmployee also contains a PrePersist callback method named verifyPension(), when the
PrePersist event occurs, the checkName() method will get invoked, followed by the verifyPension()
method.

CHAPTER 11 ■ ADVANCED TOPICS

332

We could also have a method on the CompanyEmployee mapped superclass that we want to apply to
all the entities that subclassed it. If we add a PrePersist method named checkVacation() that verifies
that the vacation carryover is less than a certain amount, it will be executed after checkName() and before
verifyPension().

It gets more interesting if we define a checkVacation() method on the PartTimeEmployee class
because part-time employees don’t get as much vacation. Annotating the overridden method with
PrePersist would cause the PartTimeEmployee.checkVacation() method to be invoked instead of the one
in CompanyEmployee.

Inheriting Entity Listeners
Like callback methods in an entity, the @EntityListeners annotation is also valid on entities or mapped
superclasses in a hierarchy, whether they are concrete or abstract. Also similar to callback methods, the
listeners listed in the entity superclass annotation get invoked before the listeners in the subclass
entities. In other words, defining an @EntityListeners annotation on an entity is additive in that it only
adds listeners; it does not redefine them or their order of invocation.

To redefine which entity listeners get invoked and their order of invocation, an entity or mapped
superclass should be annotated with @ExcludeSuperclassListeners. This will cause the listeners defined
in all the superclasses to not be invoked for any of the lifecycle events of the annotated entity subclass. If
we want a subset of the listeners to still be invoked, they must be listed in the @EntityListeners
annotation on the overriding entity and in the order that is appropriate.

Lifecycle Event Invocation Order
The rules for lifecycle event invocation are now a little more complex, so they warrant being laid out
more carefully. Perhaps the best way to describe it is to outline the process that the provider must follow
to invoke the event methods. If a given lifecycle event X occurs for entity A, the provider will do the
following:

1. Check whether any default entity listeners exist (see Chapter 12). If they do,
iterate through them in the order they are defined and look for methods that
are annotated with the lifecycle event X annotation. Invoke the lifecycle method
on the listener if a method was found.

2. Check on the highest mapped superclass or entity in the hierarchy for classes
that have an @EntityListeners annotation. Iterate through the entity listener
classes that are listed in the annotation and look for methods that are
annotated with the lifecycle event X annotation. Invoke the lifecycle method on
the listener if a method was found.

3. Repeat step 2 going down the hierarchy on entities and mapped superclasses
until entity A is reached, and then repeat it for entity A.

4. Check on the highest mapped superclass or entity in the hierarchy for methods
that are annotated with the lifecycle event X annotation. Invoke the callback
method on the entity if a method was found and the method is not also defined
in entity A with the lifecycle event X annotation on it.

5. Repeat step 2 going down the hierarchy on entities and mapped superclasses
until entity A is reached.

6. Invoke any methods that are defined on A and annotated with the lifecycle
event X annotation.

CHAPTER 11 ■ ADVANCED TOPICS

333

This process might be easier to follow if we have code that includes these cases and we go through
the order in which they are executed. Listing 11-16 shows our entity hierarchy with a number of listeners
and callback methods on it.

Listing 11-16. Using Entity Listeners and Callback Methods in a Hierarchy

@Entity
@Inheritance(strategy=InheritanceType.JOINED)
@EntityListeners(NameValidator.class)
public class Employee implements NamedEntity {
 @Id private int id;
 private String name;
 @Transient private long syncTime;

 public String getName() { return name; }

 @PostPersist
 @PostUpdate
 @PostLoad
 private void resetSyncTime() { syncTime = System.currentTimeMillis(); }
 // ...
}

public interface NamedEntity {
 public String getName();
}

@Entity
@ExcludeSuperclassListeners
@EntityListeners(LongNameValidator.class)
public class ContractEmployee extends Employee {
 private int dailyRate;
 private int term;

 @PrePersist
 public void verifyTerm() { ... }
 // ...
}

@MappedSuperclass
@EntityListeners(EmployeeAudit.class)
public abstract class CompanyEmployee extends Employee {
 protected int vacation;
 // ...

 @PrePersist
 @PreUpdate
 public void verifyVacation() { ... }
}

@Entity
public class FullTimeEmployee extends CompanyEmployee {
 private long salary;

CHAPTER 11 ■ ADVANCED TOPICS

334

 private long pension;
 // ...
}

@Entity
@EntityListeners({})
public class PartTimeEmployee extends CompanyEmployee {
 private float hourlyRate;
 // ...

 @PrePersist
 @PreUpdate
 public void verifyVacation() { ... }
}

public class EmployeeAudit {
 @PostPersist
 public void auditNewHire(CompanyEmployee emp) { ... }
}

public class NameValidator {
 @PrePersist
 public void validateName(NamedEntity obj) { ... }
}

public class LongNameValidator {
 @PrePersist
 public void validateLongName(NamedEntity obj) { ... }
}

public class EmployeeDebugListener {
 @PrePersist
 public void prePersist(Employee emp) {
 System.out.println("Persist called on: " + emp);
 }

 @PreUpdate
 public void preUpdate(Employee emp) { ... }

 @PreRemove
 public void preRemove(Employee emp) { ... }

 @PostLoad
 public void postLoad(Employee emp) { ... }
}

We have a pretty complex example here to study, and the easiest way to make use of it is to say what
happens when a given event occurs for a specific entity. We will assume that the EmployeeDebugListener
class has been set in the XML mapping file as a default entity listener for all entities.

Let’s see what happens when we create a new instance of PartTimeEmployee and pass it to
em.persist(). Because the first step is always to invoke the default listeners, and our default listener does
indeed have a PrePersist method on it, the EmployeeDebugListener.prePersist() method will be
invoked first.

CHAPTER 11 ■ ADVANCED TOPICS

335

The next step would be to traverse down the hierarchy looking for entity listeners. The first class we
find is the Employee class, which defines a NameValidator entity listener. The NameValidator class does
define a PrePersist method, so the next method to get executed would be
NameValidator.validateName(). The next class we hit moving down the hierarchy is the CompanyEmployee
class. This class defines an EmployeeAudit listener that does not happen to have a PrePersist method on
it, so we skip past it.

Next we get to the PartTimeEmployee class that has an @EntityListeners annotation but does not
define any listeners. This is essentially a false alarm that does not really override anything, but is simply a
no-op in terms of adding listeners (probably a leftover of a listener that was once there but has since
been removed).

The next phase in the process is to start looking for callback methods on entities and mapped
superclasses. Once again we start at the top of the hierarchy and look at the Employee class to see
whether a PrePersist method exists, but none does. We have PostPersist and others, but no
PrePersist. We continue on down to CompanyEmployee and see a PrePersist method called
verifyVacation(), but looking down on the PartTimeEmployee entity we find that the method has been
overridden by a verifyVacation() method there that also has an @PrePersist annotation on it. This is a
case of overriding the callback method and will result in the PartTimeEmployee.verifyVacation()
method being called instead of the CompanyEmployee.verifyVacation() method. We are finally done, and
the entity will be persisted.

The next event might then be a PostPersist event on the same entity at commit time. This will
bypass the default listener because there is no PostPersist method in EmployeeDebugListener and also
bypass the NameValidator because there is no PostPersist event method there either. The next listener
that it tries will be the EmployeeAudit listener class, which does include a PostPersist method called
auditNewHire(), which will then get invoked. There are no more listeners to examine, so we move on to
the callback methods and find the resetSyncTime() method in Employee. This one gets called, and
because we find no more PostPersist callback methods in the hierarchy, we are done.

The next thing we can try is persisting a ContractEmployee. This is a simple persistence structure
with only the Employee and ContractEmployee entities in it. When we create a ContractEmployee and the
PrePersist event gets triggered, we first get our default EmployeeDebugListener.prePersist() callback
and then move on to processing the entity listeners. The curve is that the @ExcludeSuperclassListeners
annotation is present on the ContractEmployee, so the NameValidator.validateName() method that
would otherwise have been invoked will not be considered. We instead go right to the @EntityListeners
annotation on the ContractEmployee class and find that we need to look at LongNameValidator. When we
do, we find that it has a validateLongName() method on it that we execute and then go on to executing
the callback methods. There are callback methods in both classes in the hierarchy, and the
Employee.resetSyncTime() method gets invoked first, followed by the ContractEmployee.verifyTerm()
method.

Validation
Listing 11-15 showed an example of an entity listener in which we validated that a name was no longer
than we expected it to be before the entity was persisted to the database. The constraint may have been
imposed by a database schema definition or a business rule in the application. In Java EE 6, validation is
considered a separate aspect of the application; a mechanism was developed and standardized (in JSR
303) for the platform. It was also designed to function in a stand-alone Java SE environment. We will give

CHAPTER 11 ■ ADVANCED TOPICS

336

an overview of that specification and how it can be used, but for more details we refer you to the JSR 303
specification1 developed within the Java Community Process.

Validation has an annotation model and a dynamic API that can be invoked from any layer, and on
almost any bean. Constraint annotations are placed on the field or property of the object to be validated,
or even on the object class itself, and later when the validator runs the constraints will be checked. The
validation specification provides a few predefined constraint annotations that can be used by any bean
developer, but more importantly it includes a model for creating user-defined constraints that are
specific to application logic or schemas.

Using Constraints
Adding constraints to an object can be as simple as annotating the class, its fields, or its JavaBean-style
properties. For example, using the built-in @Size constraint we can validate our Employee entity in Listing
11-15 and save ourselves having to code an entity listener. Listing 11-17 shows an Employee object class
containing constraints.

Listing 11-17. Using Predefined Constraints

public class Employee {
 @NotNull
 private int id;

 @NotNull(message="Employee name must be specified")
 @Size(max=40)
 private String name;

 @Past
 private Date startDate;
 // ...
}

The @Size constraint ensures the name is within the 40-character range, just as our entity listener
validator did. We also added a @NotNull constraint to validate that a name was always specified. If this
constraint was not satisfied in our previous Employee entity, our listener would have exploded with a
NullPointerException because it did not check for null before verifying the length. Using validation,
these concerns are separated and can be imposed independently. The @Past annotation will validate that
the start date is a valid date that occurs in the past. Note that null is a valid value in this case. If we
wanted to ensure that a date was present, we would annotate it with @NotNull as well.

In the second @NotNull constraint we have also included a message to be included in the exception
if the constraint check fails. Every built-in constraint annotation has a message element that may be
specified to override the default message that would be generated2.

The complete set of built-in constraints that can be used with validation is in Table 11-1. These are
defined in the javax.validation.constraints package.

1 See http://www.jcp.org/en/jsr/summary?id=303.
2 Some localization mechanisms are built into the validation message interpolator, but custom message
interpolation can also be plugged into the validator to perform localization in custom ways.

http://www.jcp.org/en/jsr/summary?id=303

CHAPTER 11 ■ ADVANCED TOPICS

337

Table 11-1. Built-in Validation Constraints

Constraint Attributes3 Description

@Null Element must be null

@NotNull Element must not be null

@AssertTrue Element must be true

@AssertFalse Element must be false

@Min long value() Element must have a value greater than or
equal to the minimum

@Max long value() Element must have a value less than or equal to
the maximum

@DecimalMin String value() Element must have a value greater than or
equal to the minimum

@DecimalMax String value() Element must have a value less than or equal to
the maximum

@Size int min() Element must have a value between the
specified limits

 int max()

@Digits int integer() Element must be a number within the specified
range

 int fraction()

@Past Element must be a date in the past

@Future Element must be a date in the future

@Pattern String regexpr() Element must match the specified regular
expression

 Flag[] flags (Flags offer regular expression settings)

Invoking Validation
The main API class for invoking validation on an object is the javax.validation.Validator class. Once a
Validator instance is obtained, the validate()4 method can be invoked on it, passing in the object to be
validated.

3 Only the non-standard attributes are listed. The standard/required attributes will be discussed in the
section on creating new constraints.
4 validateProperty() and validateValue() methods are also available, but we will discuss only the
representative validate() method.

CHAPTER 11 ■ ADVANCED TOPICS

338

Validation is designed similarly to JPA in many respects. It is divided into a set of APIs and a
validation implementation, or validation provider, and the way that providers advertise themselves is by
using the same service provider model. Providers contain META-INF/services files that indicate their SPI
classes to be invoked.

Like JPA, validation is used slightly differently depending upon whether it is used in container mode
or in Java SE mode. In a container, a Validator instance may be injected into any Java EE component
that supports injection. The example definition of a stateless session bean in Listing 11-18 shows that the
regular Java EE @Resource injection annotation can be used.

Listing 11-17. Injection of a Validator

@Stateless
public class EmployeeOperationsEJB implements EmployeeOperations {

 @Resource
 Validator validator;

 public void newEmployee(Employee emp) {
 validator.validate(emp);
 //…
 }
 //…
}

In a non-container environment, a Validator instance is obtained from a
javax.validation.ValidatorFactory, which can in turn be acquired from a bootstrap
javax.validation.Validation class, as follows:

ValidatorFactory factory =
Validation.buildDefaultValidatorFactory();

Validator validator = factory.getValidator();

Once the validator is obtained, you may invoke the validate() method on it just as in Listing
11-17.

When the validate method fails and a constraint is not satisfied, a ValidationException is thrown
with an accompanying message String that is dictated by the definition of the constraint that was not
met, specifically by the value of its message annotation element that was described in the preceding
section.

Validation Groups
It may be that the same object needs to be validated at different times for multiple different constraint
sets. To achieve this, we would create separate validation groups and specify which group or groups the
constraint belongs to. When a group is passed as an argument during validation, all constraints that are
a part of that group are checked for validity. When no group is specified on a constraint or as an
argument to the validate() method, the Default group is assumed.

Groups are defined and referenced as classes, so a couple of examples of defining groups might be
the following:

public interface FullTime extends Default {}
public interface PartTime extends Default {}

CHAPTER 11 ■ ADVANCED TOPICS

339

There is nothing of value within the group class, apart from the class itself, so they are defined as
simple interfaces. Although these two extend the javax.validation.groups.Default group interface (an
interface defined by the specification) this is certainly not a requirement, but because a subclass group
includes any groups it inherits, it is convenient to make these extend the Default group.

Listing 11-18 shows an object class that uses these groups to ensure that the correct wage field is set
according to whether an employee is being hired to work on a full-time or part-time basis.

Listing 11-18. Using Constraint Groups

public class Employee {
 @NotNull
 private int id;

 @NotNull
 @Size(max=40)
 private String name;

 @NotNull(groups=FullTime.class)
 @Null(groups=PartTime.class)
 private long salary;

 @NotNull(groups=PartTime.class)
 @Null(groups=FullTime.class)
 private double hourlyWage;

 // ...
}

Because the constraints on the id and name fields do not have a group assigned to them, they are
assumed to belong to the Default group and will be checked whenever either the Default group, or no
group, is passed to the validate() method. However, because our two new groups extended Default, the
two fields will also be validated when either the FullTime or PartTime groups are passed in. If we had not
extended Default in our two group definitions, we would have had to include the two groups in the
constraints on the id and name fields if we wanted them to be checked when either of the two groups
were specified in the validate() method, as shown in Listing 11-19.

Listing 11-19. Specifying Multiple Groups

public class Employee {
 @NotNull(groups={FullTime.class,PartTime.class})
 private int id;

 @NotNull(groups={FullTime.class,PartTime.class})
 @Size(groups={FullTime.class,PartTime.class},max=40)
 private String name;
 // ...
}

CHAPTER 11 ■ ADVANCED TOPICS

340

Creating New Constraints
One of the most valuable aspects of validation is the ability to add new constraints for a given
application, or even to share across applications. Constraints may be implemented to be application-
specific and tied to a particular business logic, or they may be generalized and bundled up in constraint
libraries for reuse. We won’t go into great detail in this area, but hopefully you will get the idea from a
couple of simple examples, and if you want to do more extensive validation programming, you will look
into the specification further. Unfortunately, because it is a brand new technology there are no
references available as of this writing, save the actual specification that was previously referenced.

Each new constraint is composed of two parts: the annotation definition and the implementation or
validation classes. We have been showing examples of built-in annotations in our examples so far, so we
know how to use them. However, we haven’t seen the accompanying implementation classes for those
built-in annotations because they are assumed to be implemented by the validation provider. When we
write our own constraint, we need to supply an implementation class for each different type of object
that may be annotated by our new constraint annotation. Then, during the validation process, the
validator will invoke the corresponding implementation class for the type of object that is being
validated.

Constraint Annotations
It is not a difficult task to define a new constraint annotation, but there are a few required ingredients to
consider when doing so. They are included in the simple constraint annotation definition in Listing 11-
20 that marks a number as being even. Note that it is good practice to document in the constraint
definition what types it may annotate.

Listing 11-20. Defining a Constraint Annotation

/**
 * Indicate that a number should be even.
 * May be applied on fields or properties of type Integer.
 */
@Constraint(validatedBy={EvenNumberValidator.class})
@Target({METHOD, FIELD})
@Retention(RUNTIME)
public @interface Even {
 String message() default "Number must be even";
 Class<?>[] groups() default {};
 Class<? extends ConstraintPayload>[] payload() default {};
 boolean includeZero() default true;
}

As the example shows, the @Retention policy must be set to RUNTIME, and the @Target must include
at least one or more of TYPE, FIELD, METHOD, or ANNOTATION_TYPE. Other target types may also be included,
but only these are required to be discovered by validation providers. The definition must also be
annotated with the @Constraint meta-annotation, which indicates the implementation class to go along
with this annotation and contains the validation code. We will discuss how to create implementation
classes in the next section.

There are three elements that are mandatory in every constraint annotation. We have already
discussed the first one, the message element, and how it can be used to set a default exception message
when constraints are not met. We discussed groups in the previous section, so you also know that the
groups element is used when the validation of a constraint should occur as part of one or more sets of

CHAPTER 11 ■ ADVANCED TOPICS

341

related other constraint checks. The third element is the payload element, which is just a place to pass
context-specific metadata to the validation class. The classes passed to this element are defined by the
constraint creator and must extend the specification-defined javax.validation.ConstraintPayLoad type.
Any number of additional constraint-specific elements may also be added. In this example, we have
added an option to either include or exclude zero as an even number.

While each of the required elements has its purposes, it is rather unfortunate that they are all
required. Requiring them just because they might be useful to some applications is somewhat
reminiscent of the days of early EJB, when applications were forced to insert extra code (that they had no
desire to either include or use) just because the specification said they had to. This will hopefully be fixed
in a future release of the validation specification.

Constraint Implementation Classes
For each constraint annotation there must be one or more constraint implementation classes. Each class
must implement the javax.validation.ConstraintValidator interface and provide the logic to validate
the value being checked. Listing 11-21 is the implementation class to accompany our @Even constraint
annotation.

Listing 11-21. Defining a Constraint Implementation Class

public class EvenNumberValidator
 implements ConstraintValidator<Even,Integer> {

 boolean includesZero;

 public void initialize(Even constraint) {
 includesZero = constraint.includeZero();
 }

 public boolean isValid(Integer value,
 ConstraintValidatorContext ctx) {
 if (value == null)
 return true;
 if (value == 0)
 return includesZero;
 return value % 2 == 0;
 }
}

The validation class implements the javax.validation.ConstraintValidator interface with two type
parameters. The first type is the constraint annotation type, and the second is the type of value that the
implementation class is expecting to validate. In our case, we are validating integer types, which means
that the @Even constraint annotation may be applied to fields or getters of type Integer, or any subtypes
(of which there are none in this case). The primitive int type corresponding to the wrapper type is also a
candidate type.

The two methods that must be implemented are initialize() and isValid(). The initialize()
method is invoked first and passes in the annotation instance that caused the validating class to be
invoked in the first place. We take any state from the instance and initialize the validation class with it, so
when the isValid() method is called we can validate the value passed to us according to the parameters
of the constraint that is annotating it. The additional ConstraintValidatorContext parameter can be
used for more advanced error generation, but it is somewhat obtuse and beyond the scope of our
validation overview.

CHAPTER 11 ■ ADVANCED TOPICS

342

Validation in JPA
Now that you have some basic validation knowledge we are ready to put things in a JPA context. When
validating JPA entities there is a specific integration required with the JPA provider. There are a few
reasons for this integration.

First and foremost, an entity may have lazily loaded attributes, and because a validator does not
have a dependency on, or knowledge of, JPA, it would not know when an attribute has not been loaded.
The process of validation could unwittingly cause the entire object graph to be loaded into memory!
Another case is if validation is occurring on a JPA entity on the client side and the unloaded attributes
are not even loadable. In this case, validation would produce an exception, not quite as bad as loading
the entire object graph, but still clearly undesirable.

The most practical reason for a JPA integration is that most often we want validation to be invoked
automatically at specific lifecycle phases. Recall that in our example in Listing 11-15 we validated at the
PrePersist phase to ensure that we did not persist an entity in an invalid state. It turns out that the most
convenient lifecycle events to trigger validation at are PrePersist, PreUpdate, and PreRemove, so if
validation is enabled these events will cause the validator to do its work. Listing 11-22 shows an entity
and an embeddable type with validation constraints on them.

Listing 11-22. Validating an Entity

@Entity
public class Employee {
 @Id @NotNull
 private int id;

 @NotNull
 @Size(max=40)
 private String name;

 @Past
 private Date startDate;

 @Embedded
 @Valid
 private EmployeeInfo info;

 @ManyToOne
 private Address address;
 // ...
}

@Embeddable
public class EmployeeInfo {
 @Past
 private Date dob;

 @Embedded
 private PersonInfo spouse;
}

When an entity is validated, each of the fields or properties, or even the type itself, is validated
according to the regular validation rules. However, the validation specification dictates that when a
@Valid annotation is present on a field or property, the validation process proceeds to the object stored

CHAPTER 11 ■ ADVANCED TOPICS

343

in that field or property. Embeddables may optionally be annotated with @Valid in order to be traversed
during validation, but relationships may not. In other words, the EmployeeInfo object in the info field
will be validated when the Employee is validated, but the spouse will not be, and related entities, such as
the Address, will also not be validated unless they themselves have been persisted, updated, or removed.

Enabling Validation
When no overriding settings are present at the JPA configuration level, validation is on by default when a
validation provider is on the classpath. To explicitly control whether validation should be enabled or
disabled there are two possible settings:

• validation-mode element in the persistence.xml file. This element may be set to
one of three possible values:

1. AUTO—Turn on validation when a validation provider is present on the
classpath (default)

2. CALLBACK—Turn on validation and throw an error if no validation provider is
available

3. NONE—Turn off validation

• javax.persistence.validation.mode persistence property. This property may be
specified in the Map passed to the createEntityManagerFactory() method and
overrides the validation-mode setting if present. Possible values are the string
equivalents of the validation-mode values, "auto", "callback", and "none", and
have exactly the same meanings as their validation-mode counterparts.

Setting Lifecycle Validation Groups
By default, each of the PrePersist and PreUpdate lifecycle events will trigger validation on the affected
entity, immediately following the event callback, using the Default validation group. No group will be
validated, by default, during the PreRemove phase. To change the groups being validated at the three
different lifecycle event types, any of the following properties may be specified, either as properties in
the properties section of the persistence.xml file, or in the Map passed into
createEntityManagerFactory():

javax.persistence.validation.group.pre-persist—Set the groups to validate
at PrePersist time

javax.persistence.validation.group.pre-update—Set the groups to validate at
PreUpdate time

javax.persistence.validation.group.pre-remove—Set the groups to validate at
PreRemove time

By setting these properties to a particular group or groups, you can isolate the kinds of validation
that get performed on entities across different lifecycle events. For example, you may create groups
called Create, Update, and Remove, and then when you want some kind of validation to occur on one or
more of these events you need only set the groups on the relevant constraints to be checked. In fact, it is
more common for validation to occur at creation and updating, and for the same validation to occur at
both stages, so the Default group will most often be sufficient for both of these. However, you may want
to specify a separate group for PreRemove, as shown in Listing 11-23.

CHAPTER 11 ■ ADVANCED TOPICS

344

Listing 11-23. Varying Validation According to Lifecycle Events

@Entity
public class Employee {
 @Id @NotNull
 private int id;

 @NotNull
 @Size(max=40)
 private String name;

 @Past
 private Date startDate;

 @Size(groups=Remove.class,min=0,max=0)
 private long vacationDays;

 // ...
}

The validation in Listing 11-23 ensures that no employee is removed from the system either owing
or being owed vacation time. The rest of the constraints are validated during the PrePersist and
PreUpdate events. This assumes that the Remove group has been defined, and that the following property
is present in the persistence.xml file:

<property name="javax.persistence.validation.group.pre-remove"
 value="Remove"/>

■ TIP It is not currently portable in JPA 2.0 to set the groups on a per-entity basis, although some providers may
provide such capabilities. Providers that do support it would typically allow the entity name to be an additional
suffix on the property name (e.g., javax.persistence.validation.group.pre-remove.Employee).

Concurrency
The concurrency of entity access and entity operations is not heavily specified, but there are a few rules
that dictate what we can and can’t expect. We will go over these and leave the rest to the vendors to
explain in the documentation for their respective implementations.

Entity Operations
A managed entity belongs to a single persistence context and should not be managed by more than one
persistence context at any given time. This is an application responsibility, however, and may not
necessarily be enforced by the persistence provider. Merging the same entity into two different open
persistence contexts could produce undefined results.

CHAPTER 11 ■ ADVANCED TOPICS

345

Entity managers and the persistence contexts that they manage are not intended to be accessed by
more than one concurrently executing thread. The application cannot expect it to be synchronized and
is responsible for ensuring that it stays within the thread that obtained it.

Entity Access
Applications may not access an entity directly from multiple threads while it is managed by a persistence
context. An application may choose, however, to allow entities to be accessed concurrently when they
are detached. If it chooses to do so, the synchronization must be controlled through the methods coded
on the entity. Concurrent entity state access is not recommended, however, because the entity model
does not lend itself well to concurrent patterns. It would be preferable to simply copy the entity and pass
the copied entity to other threads for access and then merge any changes back into a persistence context
when they need to be persisted.

Refreshing Entity State
The refresh() method of the EntityManager interface can be useful in situations when we know or
suspect that there are changes in the database that we do not have in our managed entity. The refresh
operation applies only when an entity is managed because when we are detached we typically only need
to issue a query to get an updated version of the entity from the database.

Refreshing makes more sense the longer the duration of the persistence context that contains it.
Refreshing is especially relevant when using an extended or application-managed persistence context
because it prolongs the interval of time that an entity is effectively cached in the persistence context in
isolation from the database.

To refresh a managed entity, we simply call refresh() on the entity manager. If the entity that
we try to refresh is not managed, an IllegalArgumentException exception will be thrown. To clarify some
of the issues around the refresh operation, we will use the example session bean shown in Listing 11-17.

Listing 11-17. Periodic Refresh of a Managed Entity

@Stateful
@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public class EmployeeServiceBean implements EmployeeService {
 public static final long REFRESH_THRESHOLD = 300000;

 @PersistenceContext(unitName="EmployeeService",
 type=PersistenceContextType.EXTENDED)
 EntityManager em;
 Employee emp;
 long loadTime;

 public void loadEmployee (int id) {
 emp = em.find(Employee.class, id);
 if (emp == null)
 throw new IllegalArgumentException(
 "Unknown employee id: " + id);
 loadTime = System.currentTimeMillis();
 }

 public void deductEmployeeVacation(int days) {

CHAPTER 11 ■ ADVANCED TOPICS

346

 refreshEmployeeIfNeeded();
 emp.setVacationDays(emp.getVacationDays() - days);
 }

 public void adjustEmployeeSalary(long salary) {
 refreshEmployeeIfNeeded();
 emp.setSalary(salary);
 }

 @Remove
 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void finished() {}

 private void refreshEmployeeIfNeeded() {
 if ((System.currentTimeMillis() - loadTime) > REFRESH_THRESHOLD) {
 em.refresh(emp);
 loadTime = System.currentTimeMillis();
 }
 }

 // ...
}

The stateful session bean in Listing 11-17 uses an extended persistence context in order to keep an
Employee instance managed while various operations are applied to it via the business methods of the
session bean. It might allow a number of modifying operations on it before it commits the changes, but
we need to include only a couple of operations for this example.

Let’s look at this bean in detail. The first thing to notice is that the default transaction attribute has
been changed from REQUIRED to NOT_SUPPORTED. This means that as the Employee instance is changed by
the various business methods of the bean, those changes will not be written to the database. This will
occur only when the finished() method is invoked, which has a transaction attribute of REQUIRED. This is
the only method on the bean that will associate the extended persistence context with a transaction and
cause it to be synchronized with the database.

The second interesting thing about this bean is that it stores the time the Employee instance was last
accessed from the database. Because the stateful session bean instance may exist for a long time, the
business methods use the refreshEmployeeIfNeeded() method to see if it has been too long since the
Employee instance was last refreshed. If the refresh threshold has been reached, the refresh() method is
used to update the Employee state from the database.

Unfortunately, the refresh operation does not behave as the author of the session bean expected.
When refresh is invoked, it will overwrite the managed entity with the state in the database, causing any
changes that have been made to the entity to be lost. For example, if the salary is adjusted and five
minutes later the vacation is adjusted, the employee will get refreshed, causing the previous change to
the salary to be lost. It turns out that although the example in Listing 11-17 does indeed do a periodic
refresh of the managed entity, the result is not only an inappropriate use of refresh() but also a
detrimental outcome to the application.

So when is refreshing valid for objects that we are modifying? The answer is, not as often as you
think. One of the primary use cases is to “undo” or discard changes made in the current transaction,
reverting them back to their original value. It may also be used in long-lived persistence contexts where
read-only managed entities are being cached. In these scenarios, the refresh() operation can safely
restore an entity to its currently recorded state in the database. This would have the effect of picking up
changes made in the database since the entity had been last loaded into the persistence context. The
stipulation is that the entity should be read-only or not contain any changes.

CHAPTER 11 ■ ADVANCED TOPICS

347

Recall our editing session in Listing 6-33. Using refresh(), we can add the ability to revert an entity
when the user decides to cancel their changes to an Employee editing session. Listing 11-18 shows the
bean with its additional revertEmployee() method.

Listing 11-18. Employee Editing Session with Revert

@Stateful
@TransactionAttribute(TransactionAttributeType.NOT_SUPPORTED)
public class EmployeeEditBean implements EmployeeEdit {
 @PersistenceContext(unitName="EmployeeService",
 type=PersistenceContextType.EXTENDED)
 EntityManager em;
 Employee emp;

 public void begin(int id) {
 emp = em.find(Employee.class, id);
 if (emp == null) {
 throw new IllegalArgumentException("Unknown employee id: " + id);
 }
 }

 public Employee getEmployee() { return emp; }

 public Employee revertEmployee() {
 em.refresh(emp);
 return emp;
 }

 @Remove
 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 public void save() {}

 @Remove
 public void cancel() {}
}

Refresh operations may also be cascaded across relationships. This is done on the relationship
annotation by setting the cascade element to include the REFRESH value. If the REFRESH value is not
present in the cascade element, the refresh will stop at the source entity. Listing 11-19 demonstrates how
to set the REFRESH cascade operation for a many-to-one relationship.

Listing 11-19. Cascading a Refresh Operation

@Entity
public class Employee {
 @Id private int id;
 private String name;
 @ManyToOne(cascade={CascadeType.REFRESH})
 private Employee manager;
 // ...
}

CHAPTER 11 ■ ADVANCED TOPICS

348

Locking
Locking surfaces at many different levels and is intrinsic to JPA. It is used and assumed at various points
throughout the API and the specification. Whether your application is simple or complex, chances are
that you will make use of locking somewhere along the way.

While we will discuss all the locking defined and used in JPA, we will focus primarily on optimistic
locking because that is not only the most prevalent, but also the most useful way to scale an application.

Optimistic Locking
When we talk about locking we are often referring to optimistic locking. The optimistic locking model
subscribes to the philosophy that there is a good chance that the transaction in which changes are made
to an entity will be the only one that actually changes the entity during that interval. This translates into
the decision to not acquire a lock on the entity until the change is actually made to the database, usually
at the end of the transaction.

When the data actually does get sent to the database to get updated at flush time or at the end of the
transaction, the entity lock is acquired and a check is made on the data in the database. The flushing
transaction must see whether any other transaction has committed a change to the entity in the
intervening time since this transaction read it in and changed it. If a change occurred, it means that the
flushing transaction has data that does not include those changes and should not write its own changes
to the database lest it overwrite the changes from the intervening transaction. At this stage, it must roll
back the transaction and throw a special exception called OptimisticLockException. The example in
Listing 11-20 shows how this could happen.

Listing 11-20. Method That Adjusts Vacation Balance

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 public void deductEmployeeVacation(int id, int days) {
 Employee emp = em.find(Employee.class, id);
 int currentDays = emp.getVacationDays();
 // Do some other stuff like notify HR system, etc.
 // ...
 emp.setVacationDays(currentDays - days);
 }
}

While this method might seem harmless enough, it is really just an accident waiting to happen. The
problem is as follows. Imagine that two HR data-entry operators, Frank and Betty, were charged with
entering a backlog of vacation adjustments into the system and they both happened to be entering an
adjustment for the employee with id 42 at the same time. Frank is supposed to deduct 1 day from
employee 42, while Betty is deducting 12 days. Frank’s console calls deductEmployeeVacation() first,
which immediately reads employee 42 in from the database, finds that employee 42 has 20 days, and
then proceeds into the HR notification step. Meanwhile, Betty starts to enter her data on her console,
which also calls deductEmployeeVacation(). It also reads employee 42 in from the database and finds that
the employee has 20 vacation days, but Betty happens to have a much faster connection to the HR
system. As a result, Betty gets past the HR notification before Frank does and proceeds to set the
vacation day count to 8 before committing her transaction and going on to the next item. Frank finally

CHAPTER 11 ■ ADVANCED TOPICS

349

gets past the HR system notification and deducts 1 day from the 20, and then commits his transaction. If
Frank commits, he has overwritten Betty’s deduction and employee 42 gets an extra 12 days of vacation.

Instead of committing Frank’s transaction, though, an optimistic locking strategy would find out
when it was time to commit that someone else had changed the vacation count. When Frank attempted
to commit his transaction, an OptimisticLockException would have been thrown, and his transaction
would have been rolled back instead. The result is that Frank would have to reenter his change and try
again, which is far superior to getting an incorrect result for employee 42.

Versioning
The question that you might have been asking is how the provider can know whether somebody made
changes in the intervening time since the committing transaction read the entity. The answer is that the
provider maintains a versioning system for the entity. In order for it to do this, the entity must have a
dedicated persistent field or property declared in it to store the version number of the entity that was
obtained in the transaction. The version number must also be stored in the database. When going back
to the database to update the entity, the provider can check the version of the entity in the database to
see if it matches the version that it obtained previously. If the version in the database is the same, the
change can be applied and everything goes on without any problems. If the version was greater,
somebody else changed the entity since it was obtained in the transaction, and an exception should be
thrown. The version field will get updated both in the entity and in the database whenever an update to
the entity is sent to the database.

Version fields are not required, but we recommend that version fields be in every entity that has any
chance of being concurrently modified by more than one process. A version column is an absolute
necessity whenever an entity gets modified as a detached entity and merged back into a persistence
context again afterward. The longer an entity stays in memory, the higher the chance that it will be
changed in the database by another process, rendering the in-memory copy invalid. Version fields are at
the core of optimistic locking and provide the best and most performant protection for infrequent
concurrent entity modification.

Version fields are defined simply by annotating the field or property on the entity with a @Version
annotation. In Listing 11-21 is an Employee entity annotated to have a version field.

Listing 11-21. Using a Version Field

@Entity
public class Employee {
 @Id private int id;
 @Version private int version;
 // ...
}

Version-locking fields defined on the entity can be of type int, short, long, the corresponding
wrapper types, and java.sql.Timestamp. The most common practice is just to use int or one of the
numeric types, but some legacy databases use timestamps.

As with the identifier, the application should not set or change the version field once the entity has
been created. It might access it, though, for its own purposes if it wants to make use of the version
number for some application-dependent reason.

CHAPTER 11 ■ ADVANCED TOPICS

350

■ TIP Some providers do not require that the version field be defined and stored in the entity. Variations of
storing it in the entity are storing it in a vendor-specific cache, or not storing anything at all but instead using field
comparison. For example, a popular option is to compare some application-specified combination of the entity
state in the database with the entity state being written and then use the results as criteria to decide whether state
has been changed.

A couple of words of warning about version fields are in order. The first is that they are not
guaranteed to be updated, either in the managed entities or the database, as part of a bulk update
operation. Some vendors offer support for automatic updating of the version field during bulk updates,
but this cannot be portably relied upon. For those vendors that do not support automatic version
updates, the entity version can be manually updated as part of the UPDATE statement, as exhibited by
the following query:

UPDATE Employee e
SET e.salary = e.salary + 1000, e.version = e.version + 1
WHERE EXISTS (SELECT p
 FROM e.projects p
 WHERE p.name = 'Release2')

The second point worth remembering is that version fields will be automatically updated only when
either the non-relationship fields or the owning foreign key relationship fields (e.g., many-to-one and
one-to-one source foreign key relationships) are modified. If you want a non-owned, collection-valued
relationship to cause an update to the entity version, you might need to use one of the locking strategies
described in the following locking sections.

Advanced Optimistic Locking Modes
By default, JPA assumes what is defined in the ANSI/ISO SQL specification and known in transaction
isolation parlance as Read Committed isolation. This standard isolation level simply guarantees that any
changes made inside a transaction will not be visible to other transactions until the changing transaction
has been committed. Normal execution using version locking works with Read Committed isolation to
provide additional data-consistency checks in the face of interleaved writes. Satisfying tighter locking
constraints than what this locking offers requires that an additional locking strategy be used. To be
portable, these strategies can be used only on entities with version fields.

Locking options can be specified by means of a number of different calls:

• EntityManager.lock()—Explicit method for locking of objects already in
persistence context

• EntityManager.refresh()—Permits a lock mode to be passed in and applies to the
object in the persistence context being refreshed

• EntityManager.find()—Permits a lock mode to be passed in and applies to the
object being returned

• Query.setLockMode()—Sets the lock mode to be in effect during execution of the
query

CHAPTER 11 ■ ADVANCED TOPICS

351

Each of the EntityManager methods must be invoked within a transaction. Although the
Query.setLockMode() method may be invoked at any time, a query that has its lock mode set must be
executed within the context of a transaction.

The lock() and refresh() methods are invoked on objects already in the persistence context, so
depending upon the particular implementation there might or might not be any action taken other than
simply flagging the objects as being locked.

Optimistic Read Locking

The next level of transaction isolation is termed Repeatable Read and prevents the so-called non-
repeatable read anomaly. This anomaly can be described a few different ways, but perhaps the simplest
is to say that when a transaction queries for the same data twice in the same transaction, the second
query returns a different version of the data than was returned the first time because another transaction
modified it in the intervening time. Put another way, Repeatable Read isolation level means that once a
transaction has accessed data and another transaction modifies that data, at least one of the
transactions must be prevented from committing. An optimistic read lock in JPA provides this level of
isolation.

To optimistically read-lock an entity, a lock mode of LockModeType.OPTIMISTIC can be passed to one
of the locking methods. The resulting lock will guarantee that both the transaction that obtains the entity
read lock and any other that tries to change that entity instance will not both succeed. At least one will
fail, but like the database isolation levels, which one fails depends upon the implementation.

■ TIP The LockModeType.OPTIMISTIC value was introduced in JPA 2.0 and is really just a rename of the
LockModeType.READ option that existed in JPA 1.0. Although READ is still a valid option, OPTIMISTIC should be
used in all new applications going forward.

The way read locking is implemented is entirely up to the provider. Even though it is called an
optimistic read lock, a provider might choose to be heavy-handed and obtain an eager write lock on the
entity, in which case any other transaction that tries to change the entity will fail or block until the
locking transaction completes. The provider will, however, most often optimistically read-lock the
object, meaning that the provider will not actually go to the database for a lock when the locking method
is called. It will instead wait until the end of the transaction, and at commit time it will reread the entity
to see if the entity has been changed since it was last read in the transaction. If it has not changed, the
read lock was honored, but if the entity has changed, the gamble was lost and the transaction will be
rolled back.

A corollary to this optimistic form of read-locking implementation is that it doesn’t matter at which
point the locking method is actually invoked during the transaction. It can be invoked right up until just
before the commit, and the exact same results will be produced. All the method does is flag the entity for
being reread at commit time. It doesn’t really matter when, during the transaction, the entity gets added
to this list because the actual read operation will not occur until the end of the transaction. You can
think of the lock() or locking refresh() calls as being retroactive to the point at which the entity was
read into the transaction to begin with because that is the point at which the version is read and
recorded in the managed entity.

The quintessential case for using this kind of lock is when an entity has an intrinsic dependency on
one or more other entities for consistency. There is often a relationship between the entities, but not
always. To demonstrate this, think of a Department that has employees where we want to generate a
salary report for a given set of departments and have the report indicate the salary expenditures of each

CHAPTER 11 ■ ADVANCED TOPICS

352

department. We have a method called generateDepartmentsSalaryReport() that will iterate through the
set of departments and use an internal method to find the total salary for each one. The method defaults
to having a transaction attribute of REQUIRED, so it will be executed entirely within the context of a
transaction. The code is in Listing 11-22.

Listing 11-22. Department Salaries Report

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 // ...

 public SalaryReport generateDepartmentsSalaryReport(
 List<Integer> deptIds) {
 SalaryReport report = new SalaryReport();
 long total = 0;
 for (Integer deptId : deptIds) {
 long deptTotal = totalSalaryInDepartment(deptId);
 report.addDeptSalaryLine(deptId, deptTotal);
 total += deptTotal;
 }
 report.addSummarySalaryLine(total);
 return report;
 }

 protected long totalSalaryInDepartment(int deptId) {
 long total = 0;
 Department dept = em.find(Department.class, deptId);
 for (Employee emp : dept.getEmployees())
 total += emp.getSalary();
 return total;
 }

 public void changeEmployeeDepartment(int deptId, int empId) {
 Employee emp = em.find(Employee.class, empId);
 emp.getDepartment().removeEmployee(emp);
 Department dept = em.find(Department.class, deptId);
 dept.addEmployee(emp);
 emp.setDepartment(dept);
 }
 // ...
}

The report will get generated fine, but is it correct? What happens if an employee gets moved from
one department to another during the time we are computing the total salary? For example, we make a
request for a report on departments 10, 11, and 12. The request starts to generate the report for
department 10. It finishes department 10 and moves on to department 11. As it is iterating through all
the employees in department 11, the employee with id 50 in department 10 gets changed to be in
department 12. Somewhere a manager invokes the changeEmployeeDepartment() method, the
transaction commits, and employee 50 is changed to be in department 12. Meanwhile the report
generator has finished department 11 and is now going on to generate a salary total for department 12.

CHAPTER 11 ■ ADVANCED TOPICS

353

When it iterates through the employees it will find employee 50 even though it already counted that
employee in department 10, so employee 50 will be counted twice. We did everything in transactions but
we still got an inconsistent view of the employee data. Why?

The problem was in the fact that we did not lock any of the employee objects from being modified
during our operation. We issued multiple queries and were vulnerable to viewing the same object with
different state in it, which is the non-repeatable read phenomenon. We could fix it in a number of ways,
one of which would be to set the database isolation to Repeatable Read. Because we are explaining the
lock() method, we will use it to lock each of the employees so that either they could not change while
our transaction was active, or if one did, our transaction would fail. Listing 11-23 shows the updated
method that does the locking.

Listing 11-23. Using an Optimistic Read Lock

protected long totalSalaryInDepartment(int deptId) {
 long total = 0;
 Department dept = em.find(Department.class, deptId);
 for (Employee emp : dept.getEmployees()) {
 em.lock(emp, LockModeType.OPTIMISTIC);
 total += emp.getSalary();
 }
 return total;
}

We mentioned that the implementation is permitted to lock eagerly or defer acquisition of the locks
until the end of the transaction. Most major implementations defer the locking until commit time and
by doing so provide far superior performance and scalability without sacrificing any of the semantics.

Optimistic Write Locking

A second level of advanced optimistic locking is called an optimistic write lock, which by virtue of its
name hints correctly that we are actually locking the object for writing. The write lock guarantees all that
the optimistic read lock does, but also pledges to increment the version field in the transaction
regardless of whether a user updated the entity or not. This provides a promise of an optimistic lock
failure if another transaction also tries to modify the same entity before this one commits. This is
equivalent to making a forced update to the entity in order to trigger the version number to be
augmented, and is why the option is called OPTIMISTIC_FORCE_INCREMENT. The obvious conclusion
is that if the entity is being updated or removed by the application, it never needs to be explicitly write-
locked and that write-locking it anyway would be redundant at best and at worst could lead to an
additional update, depending upon the implementation.

■ TIP The LockModeType.OPTIMISTIC_FORCE_INCREMENT value was introduced in JPA 2.0 and is really just a
rename of the LockModeType.WRITE option that existed in JPA 1.0. Although WRITE is still a valid option,
OPTIMISTIC_FORCE_INCREMENT should be used in all new applications going forward.

Recall that updates to the version column do not normally occur when changes are made to a non-
owned relationship. Due to this, the common case for using OPTIMISTIC_FORCE_INCREMENT is to guarantee
consistency across entity relationship changes (often they are one-to-many relationships with target

CHAPTER 11 ■ ADVANCED TOPICS

354

foreign keys) when in the object model the entity relationship pointers change, but in the data model no
columns in the entity table change.

For example, let’s say an employee has a set of assigned uniforms that were given to him, and his
company has a cheap cleaning service that bills him automatically through payroll deduction. So
Employee has a one-to-many relationship to Uniform, and Employee has a cleaningCost field that contains
the amount that will get deducted from his paycheck at the end of the month. If there are two different
stateful session beans that have extended persistence contexts, one for managing employees
(EmployeeManagement) and another that manages the cleaning fees (CleaningFeeManagement) for the
company, then if the Employee exists in both of the persistence contexts, there is a possibility of
inconsistency.

Both copies of the Employee entity start out the same, but let’s say that an operator records that the
employee has received an additional brand new uniform. This implies creation of a new Uniform entity
and adding it to the one-to-many collection of the Employee. The transaction is committed and
everything is fine, except that now the EmployeeManagement persistence context has a different version of
the Employee than the CleaningFeeManagement persistence context has. The operator has done the first
maintenance task and now goes on to computing the cleaning charge for clients. The
CleaningFeeManagement session computes the cleaning charges based on the one-to-many relationship
that it knows about (without the extra uniform) and writes out a new version of the Employee with the
employee’s cleaning charge based on one less uniform. The transaction commits successfully even
though the first transaction had already committed and though the changes to the uniform relationship
had already committed to the database. Now we have an inconsistency between the number of uniforms
and the cost of cleaning them, and the CleaningFeeManagement persistence context could go on with its
stale copy of the Employee without even knowing about the new uniform and never get a lock conflict.

The reason why the change was not seen and no lock exception occurred for the second operation
was because in the first operation no writes to the Employee actually occurred and thus the version
column was not updated. The only changes to the Employee were to its relationship, and because it was
owned by the Uniform side there was no reason to make any updates to the Employee. Unfortunately for
the company (but not for the employee) this means they will be out a cleaning fee for the uniform.

The solution is to use the OPTIMISTIC_FORCE_INCREMENT option, as shown in Listing 11-24, and force
an update to the Employee when the relationship changed in the first operation. This will cause any
updates in any other persistence contexts to fail if they make changes without knowing about the
relationship update.

Listing 11-24. Using an Optimistic Write Lock

@Stateful
public class EmployeeManagementBean implements EmployeeManagement {
 @PersistenceContext(unitName="EmployeeService",
 type=PersistenceContextType.EXTENDED)
 EntityManager em;

 public void addUniform(int id, Uniform uniform) {
 Employee emp = em.find(Employee.class, id);
 em.lock(emp, LockModeType.OPTIMISTIC_FORCE_INCREMENT);
 emp.addUniform(uniform);
 uniform.setEmployee(emp);
 }

 // ...
}

@Stateful
public class CleaningFeeManagementBean implements CleaningFeeManagement {

CHAPTER 11 ■ ADVANCED TOPICS

355

 static final Float UNIFORM_COST = 4.7f;

 @PersistenceContext(unitName="EmployeeService",
 type=PersistenceContextType.EXTENDED)
 EntityManager em;

 public void calculateCleaningCost(int id) {
 Employee emp = em.find(Employee.class, id);
 Float cost = emp.getUniforms().size() * UNIFORM_COST;
 emp.setCost(emp.getCost() + cost);
 }

 // ...
}

Recovering from Optimistic Failures
An optimistic failure means that one or more of the entities that were modified were not fresh enough to
be allowed to record their changes. The version of the entity that was modified was stale, and the entity
had since been changed in the database, hence an OptimisticLockException was thrown. There is not
always an easy solution to recovering, and depending upon the application architecture, it may or may
not even be possible, but if and when appropriate, one solution might be to get a fresh copy of the entity
and then re-apply the changes. In other cases, it might only be possible to give the client (such as a web
browser) an indication that the changes were in conflict with another transaction and must be
reentered. The harsh reality of it is that in the majority of cases it is neither practical nor feasible to
handle optimistic lock problems other than to simply retry the operation at a convenient transactional
demarcation point.

The first problem you might encounter when an OptimisticLockException is thrown could be the
one you never see. Depending on what your settings are, for example whether the calling bean is
container-managed or bean-managed, and whether the interface is remote or local, you might only get a
container-initiated EJBException. This exception will not necessarily even wrap the
OptimisticLockException because all that is formally required of the container is to log it before
throwing the exception.

Listing 11-25 shows how this could happen when invoking a method on a session bean that initiates
a new transaction.

Listing 11-25. BMT Session Bean Client

@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class EmpServiceClientBean implements EmpServiceClient {
 @EJB EmployeeService empService;

 public void adjustVacation(int id, int days) {
 try {
 empService.deductEmployeeVacation(id, days);
 } catch (EJBException ejbEx) {
 System.out.println(
 "Something went wrong, but I have no idea what!");
 } catch (OptimisticLockException olEx) {
 System.out.println(
 "This exception would be nice, but I will " +

CHAPTER 11 ■ ADVANCED TOPICS

356

 "probably never get it!");
 }
 }
}

The problem is that when an optimistic exception occurs down in the bowels of the persistence
layer, it will get passed back to the EmployeeService session bean and get handled according to the rules
of runtime exception handling by the container. Because the EmpServiceClientBean uses bean-managed
transactions and does not start a transaction, and EmployeeServiceBean defaults to container-managed
transactions with a REQUIRED attribute, a transaction will be initiated when the call to
deductVacationBalance() occurs.

Once the method has completed and the changes have been made, the container will attempt to
commit the transaction. In the process of doing this, the persistence provider will get a transaction
synchronization notification from the transaction manager to flush its persistence context to the
database. As the provider attempts its writes, it finds during its version number check that one of the
objects has been modified by another process since being read by this one, so it throws an
OptimisticLockException. The problem is that the container treats this exception the same way as any
other runtime exception. The exception simply gets logged and the container throws an EJBException.

The solution to this problem is to perform a flush() operation from inside the container-managed
transaction at the moment just before we are ready to complete the method. This forces a write to the
database and locks the resources only at the end of the method so the effects on concurrency are
minimized. It also allows us to handle an optimistic failure while we are in control, without the container
interfering and potentially swallowing the exception. If we do get an exception from the flush() call, we
can throw an application exception that the caller can recognize. This is shown in Listing 11-26.

Listing 11-26. Catching and Converting OptimisticLockException

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 public void deductEmployeeVacation(int id, int days) {
 Employee emp = em.find(Employee.class, id);
 emp.setVacationDays(emp.getVacationDays() - days);
 // ...
 flushChanges();
 }

 public void adjustEmployeeSalary(int id, long salary) {
 Employee emp = em.find(Employee.class, id);
 emp.setSalary(salary);
 // ...
 flushChanges();
 }

 protected void flushChanges() {
 try {
 em.flush();
 } catch (OptimisticLockException optLockEx) {
 throw new ChangeCollisionException();
 }
 }

CHAPTER 11 ■ ADVANCED TOPICS

357

 // ...
}

@ApplicationException
public class ChangeCollisionException extends RuntimeException {
 public ChangeCollisionException() { super(); }
}

The OptimisticLockException might contain the object that caused the exception, but it is not
guaranteed to. In Listing 11-26 there is only one object in the transaction (the Employee), so we know that
it was the one that caused the failure. If there were multiple objects in the transaction, we could have
invoked getEntity() on the caught exception to see whether the offending object was included.

We factor out the flushing from the rest of the processing code because every method must flush
and catch the exception and then rethrow a domain-specific application exception. The
ChangeCollisionException class is annotated with @ApplicationException, which is an EJB container
annotation in the javax.ejb package, to indicate to the container that the exception is not really a
system-level exception but should be thrown back to the client as-is. Normally, defining an application
exception will cause the container to not roll back the transaction, but this is an EJB 3 container notion.
The persistence provider that threw the OptimisticLockException does not know about the special
semantics of designated application exceptions and seeing a runtime exception will go ahead and mark
the transaction for rollback.

The client code that we saw earlier can now receive and handle the application exception and
potentially do something about it. At the very least, it is aware of the fact that the failure was a result of a
data collision instead of some other more fatal error. The client bean is shown in Listing 11-27.

Listing 11-27. Handling OptimisticLockException

@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class EmpServiceClientBean implements EmpServiceClient {
 @EJB EmployeeService empService;

 public void adjustVacation(int id, int days) {
 try {
 empService.deductEmployeeVacation(id, days);
 } catch (ChangeCollisionException ccEx) {
 System.out.println(
 "Collision with other change - Retrying…");
 empService.deductEmployeeVacation(id, days);
 }
 }
}

When an OptimisticLockException occurs in this context, the easy answer is to retry. This was really
quite a trivial case, so the decision to retry was not hard to make. If we are in an extended persistence
context, however, we might have a much harder job of it because all the entities in the extended
persistence context become detached when a transaction rolls back. Essentially we would need to
reenlist all our objects after having reread them and then replay all the changes that we had applied in
the previous failed transaction. Not a very easy thing to do in most cases.

In general it is quite difficult to code for the optimistic exception case. When running in a server
environment, chances are that any OptimisticLockException will be wrapped by an EJB exception or
server exception. The best approach is to simply treat all transaction failures equally and retry the
transaction from the beginning or to indicate to the browser client that they must restart and retry.

CHAPTER 11 ■ ADVANCED TOPICS

358

Pessimistic Locking
Pessimistic locking implies obtaining a lock on one or more objects immediately, instead of
optimistically waiting until the commit phase and hoping that the data has not changed in the database
since it was last read in. A pessimistic lock is synchronous in that by the time the locking call returns, it is
guaranteed that the locked object will not be modified by another transaction until after the current
transaction completes and releases its lock. This does not leave the window open for transaction failure
due to concurrent changes, a very real possibility when simple optimistic locking is used.

It was probably obvious from the preceding section that handling optimistic lock exceptions is not
always a simple matter. This is likely one of the reasons why many developers tend to use pessimistic
locking because it is always easier to write your application logic when you know up front whether your
update will succeed or not.

In actuality, though, they are often limiting the scalability of their applications because needless
locking serializes many operations that could easily occur in parallel. The reality is that very few
applications actually need pessimistic locking, and those that do only need it for a limited subset of
queries. The rule is that if you think you need pessimistic locking, think again. If you are in a situation
where you have a very high degree of write concurrency on the same object(s) and the occurrence of
optimistic failures is high, then you might need pessimistic locking because the cost of retries can
become so prohibitively expensive that you are better off locking pessimistically. If you absolutely
cannot retry your transactions and are willing to sacrifice some amount of scalability for it, this also
might lead you to use pessimistic locking.

Pessimistic Locking Modes
Assuming that your application does fall within the small percentage of applications that should acquire
pessimistic locks, you can pessimistically lock entities using the same API methods as we described in
the “Advanced Optimistic Locking Modes” section. Like the optimistic modes, the pessimistic locking
modes also guarantee Repeatable Read isolation, they just do so pessimistically. Similarly, a transaction
must be active in order to acquire a pessimistic lock.

There are three supported pessimistic locking modes, but by far the most common is pessimistic
write locking, so we will discuss that one first.

Pessimistic Write Locking

When a developer decides that he wants to use pessimistic locking, he is usually thinking about the kind
of locking that is offered by the PESSIMISTIC_WRITE mode. This mode will be translated by most providers
into a SQL "SELECT FOR UPDATE" statement in the database, obtaining a write lock on the entity so no
other applications can modify it. Listing 11-28 shows an example of using the lock() method with
PESSIMISTIC_WRITE mode. It shows a process that runs every day and accrues the vacation amount for
each employee.

Listing 11-28. Pessimistic Write Locking

@Stateless
public class VacationAccrualBean implements VacationAccrualService {
 @PersistenceContext(unitName="Employee")
 EntityManager em;

 public void accrueEmployeeVacation(int id) {
 Employee emp = em.find(Employee.class, id);
 // Find amt according to union rules and emp status

CHAPTER 11 ■ ADVANCED TOPICS

359

 EmployeeStatus status = emp.getStatus();
 double accruedDays = calculateAccrual(status);
 if accruedDays > 0 {
 em.lock(emp, LockModeType.PESSIMISTIC_WRITE);
 emp.setVacationDays(emp.getVacationDays() + accruedDays);
 }
 }
}

The session bean uses container-managed transactions, thus a new transaction is started when the
accrueEmployeeVacation() method is called. The pessimistic lock is within the container transaction and
happens only if there is something to add, so we appear to not be acquiring the lock unnecessarily. On
the surface it all seems to be clever and correct. It isn’t, however, and has some flaws that must be
remedied before any process that calls this code should be started.

Ignoring the possibility that the employee may not exist (and the find() method might return null)
the most serious problem is that the code assumes the pessimistic lock is retroactive to the time the
employee was read. Locking at the last minute in order to minimize the time the exclusive lock is held is
the right idea, but the employee data that is being locked in the database might not actually be the same
as the state that we are looking at. The problem is rooted in the fact that we read the employee at the
beginning of the method, but locked it much later, leaving the window open for another process to
change the employee. Meanwhile, we are using the state of the employee that we initially read, and
modifying it. If we don’t have a version field on the Employee entity, the change that some other process
made would be overridden with our stale copy, even though we used a pessimistic lock.

If we do have a version field, the optimistic locking check that always occurs even when pessimistic
locking is used, would catch the stale version, and we would get an OptimisticLockException.
Apparently this exception would catch the code in Listing 11-28 by surprise because no handling is in
place. Also, we might have used pessimistic locking because we didn’t want to be surprised at commit
time and have to deal with problems so late in the transaction.

The solution is to either acquire the lock on the employee up front in the find() method (and risk
the scalability implications) or do a locking refresh(). Listing 11-29 shows the improved refreshing
version of the accrueEmployeeVacation() method.

Listing 11-29. Pessimistic Locking with Refresh

public void accrueEmployeeVacation(int id) {
 Employee emp = em.find(Employee.class, id);
 // Find amt according to union rules and emp status
 EmployeeStatus status = emp.getStatus();
 double accruedDays = calculateAccrual(status);
 if (accruedDays > 0) {
 em.refresh(emp, LockModeType.PESSIMISTIC_WRITE);
 if (status != emp.getStatus())
 accruedDays = calculateAccrual(emp.getStatus());
 if (accruedDays > 0)
 emp.setVacationDays(emp.getVacationDays() + accruedDays);
 }
}

When we do a refresh, the possibility arises that the employee state on which our calculations
initially depended has since changed. To ensure that we do not end up with an inconsistent employee
we do one last check of the employee status. If it has changed, we recalculate using the new status and
finally make the update.

CHAPTER 11 ■ ADVANCED TOPICS

360

Pessimistic Read Locking

Some databases support locking mechanisms to get repeatable read isolation without acquiring a write
lock. A PESSIMISTIC_READ mode can be used to pessimistically achieve repeatable read semantics when
no writes to the entity are expected. The fact that this kind of situation will not be encountered very
often, combined with the allowance that providers have of implementing it using a pessimistic write
lock, leads us to say that this mode is not one to be easily picked up and commonly used.

When an entity locked with a pessimistic read lock does end up getting modified, the lock will be
upgraded to a pessimistic write lock. However, the upgrade might not occur until the entity is flushed, so
it is of little efficacy because a failed lock acquisition exception won’t be thrown until transaction
commit time, rendering the lock equivalent to an optimistic one.

Pessimistic Forced Increment Locking

Another mode that targets the case of acquiring pessimistic locks, even though the entity is only being
read, is the PESSIMISTIC_FORCE_INCREMENT mode. Like the OPTIMISTIC_FORCE_INCREMENT, this mode will
also increment the version field of the locked entity regardless of whether changes were made to it. It is a
somewhat overlapping case with pessimistic read locking and optimistic write locking, for example,
when non-owned collection-valued relationships are present in the entity and have been modified.
Forcing the version field to be incremented can maintain a certain degree of version consistency across
relationships.

Pessimistic Scope
The “Versioning” section mentioned that changes to any owned relationships would cause the version
field of the owning entity to be updated. If a unidirectional one-to-many relationship were to change, for
example, the version would be updated even though no changes to the entity table would otherwise
have been asserted.

When it comes to pessimistic locking, acquiring exclusive locks on entities in other entity tables can
increase the likelihood of deadlock occurring. To avoid this, the default behavior of pessimistically
locking queries is to not acquire locks on tables that are not mapped to the entity. An extra property
exists to enable this behavior in case someone needs to acquire the locks as part of a pessimistic query.
The javax.persistence.lock.scope property can be set on the query as a property, with its value set to
PessimisticLockScope.EXTENDED. When set, target tables of unidirectional relationships, element
collection tables, and owned many-to-many relationship join tables will all have their corresponding
rows pessimistically locked.

This property should normally be avoided, except when it is absolutely necessary to lock such tables
as join tables that cannot be conveniently locked any other way. Strict ordering and a solid
understanding of the mappings and operation ordering should be a prerequisite to enabling this
property to ensure that deadlocks do not result.

Pessimistic Timeouts
Until now we have made no mention of timeouts or how to specify how long to wait for locks. Although
JPA does not normatively describe how providers must support timeout modes for pessimistic lock
acquisition, JPA does define a hint that providers can use. Though not mandatory, the
javax.persistence.lock.timeout hint is likely supported by the major JPA providers, however, make
sure that your provider supports it before coding to this hint. Its value can be either “0”, meaning do not
block waiting for the lock, or some integer describing the number of milliseconds to wait for the lock. It

CHAPTER 11 ■ ADVANCED TOPICS

361

can be passed into any of the EntityManager API methods that accept both a lock mode and a Map of
properties or hints:

 Map<String,Object> props = new HashMap<String,Object>();
 props.put("javax.persistence.lock.timeout",5000);
 em.find(Employee.class, 42, LockModeType.PESSIMISTIC_WRITE, props);

It can also be set on a query as a hint:

 TypedQuery<Employee> q = em.createQuery(
 "SELECT e FROM EMPLOYEE e WHERE e.id = 42",
 Employee.class);
 q.setLockMode(LockModeType.PESSIMISTIC_WRITE);
 q.setHint("javax.persistence.lock.timeout",5000);

Unfortunately there is no default behavior when the timeout hint is not specified. Between the
provider and the database it may be blocking, it may be “no wait”, or it may have a default timeout.

Recovering From Pessimistic Failures
The last topic to discuss around pessimistic locking is what happens when the lock cannot be acquired.
We did not place any exception handling code around our examples, but pessimistic locking calls can
obviously fail for numerous reasons.

When a failure occurs as a result of not being able to acquire a lock during a query, or for any reason
that is considered by the database as being non-fatal to the transaction, a LockTimeoutException will be
thrown, and the caller can catch it and simply retry the call if he desires to do so. However, if the failure
is severe enough to cause a transaction failure, a PessimisticLockException will be thrown and the
transaction will be marked for rollback. When this exception occurs then some of the ideas in the
“Recovering from Optimistic Failures” section may help because the transaction is doomed to fail and
we would appear to be in the same boat here. The key difference, though, is that a
PessimisticLockException occurs as a result of method call, not as a deferred failure during the commit
phase. We have more control and could catch the exception and convert it to a more meaningful one
before throwing back to the transaction demarcation initiator.

Caching
Caching is a fairly broad term that generally implies saving something in memory for quicker access later
on. Even in a JPA context, caching can mean rather different things to different people, depending upon
the perspective. In this section, we are talking about caching entities or the state that makes up an entity.

Sorting Through the Layers
If there is one thing that we software types like to do, it is to break things down into layers. We do
this because dividing a complex system into multiple cohesive pieces helps us to more easily understand
and communicate aspects of the system. Because it works pretty well, and we are not
ones to ignore a good thing, we will similarly partition the JPA architecture into layers to illustrate
different opportunities to cache. Figure 11-1 gives a pictorial view of the different caching layers that
might exist.

CHAPTER 11 ■ ADVANCED TOPICS

362

Figure 11-1. Layers of caching in JPA

The first layer we encounter is actually at the application tier. Any application might be written to
cache as many entities as it likes simply by holding on to references to them. This should be done with
the realization that the entities are likely going to become detached at some point, and the longer they
sit in application space, the higher the probability they will become stale. Application caches have their
place, but are generally discouraged because the cached entity instances will never be included in any
future JPA query results or persistence contexts.

Next, the persistence context referenced by an entity manager can be considered a cache because it
keeps references to all the managed entities. If, as is done in hardware architectures, we categorize the
different layers of caching into levels, we would call the persistence context the first real level of JPA
caching because it is the first place that a persistence provider could retrieve an in-memory entity from.
When running in a transaction-scoped entity manager that has a persistence context demarcated by the
transaction boundaries, the persistence context can be termed a transactional cache because it is around
only for the duration of the transaction. When the entity manager is an extended one, its persistence
context cache is longer-lived and will go away only when the entity manager is cleared or closed.

Executing a find() or a query method can be thought of as loading one or more entities into the
cache, while invoking detach() on an entity can in some ways be considered a persistence context cache
eviction of that entity. The difference is that if there are pending state changes in that entity they will be
lost unless a flush operation occurs before the entity is detached.

CHAPTER 11 ■ ADVANCED TOPICS

363

Caching in the entity manager factory is referred to by some as the second level cache, but of course
this name makes sense only if there are no caching layers between it and the persistence context, which
is not the case for all providers. One thing that is fairly prevalent across all providers is that the entity
data in this cache is shared across the entity managers from the factory that contains the cache, so a
better name for it is a shared cache. This cache has a specific API associated with it and is discussed in its
own section.

The last cache that can contribute entity state to JPA is the JDBC driver cache. Most drivers cache
connections and statements. Some caches also keep track of table or column state that is essentially
transparent to the JPA provider, but that nonetheless can offer some savings in terms of not having to go
to the database to get data on every call. This is generally feasible in the driver only if it is known that
either the data is read-only or the driver controls database access exclusively.

■ NOTE Some providers, such as the EclipseLink JPA 2.0 Reference Implementation, provide much more
sophisticated and exotic caching layers and features, such as isolated caching for Virtual Private Database (VPD)
support, fine-grained options to determine automatic entity eviction policies, and distributed cache coordination
mechanisms. Many also offer integrations with deluxe and highly specialized distributed caching products.

To see how the various levels of caching in the system get accessed during the course of a typical
operation, let’s trace a find() request for the Employee with id 100:

 Employee emp = em.find(Employee.class, 100);

The first thing that happens is that the client looks in its local cache for the employee and finds that
it doesn’t have that Employee instance with id 100. It then issues the find() call on the entity manager.
The entity manager will likely have a persistence context associated with it, so it checks in its persistence
context for the entity of type Employee with id 100. If the entity exists in the persistence context, the
managed instance is returned. If it does not exist or no persistence context had yet been associated with
the entity manager, the entity manager goes to the factory to see if the shared cache has the entity
instance. If it does, a new Employee instance with id 100 is created from the shared one and inserted into
the persistence context, and the new managed instance is returned to the caller. If it is not in the shared
cache, an SQL query is generated to select the entity from the database. The JDBC driver may have some
data cached, so it could short-circuit the select clause and return at least part of the needed data. The
resulting query data is then composed into an object and passed back. That object is inserted into the
shared entity manager factory cache, and a new instance copy of it is created and inserted into the
persistence context to be managed. That entity instance is finally returned to the client application for
the client to cache, if it is so inclined.

Shared Cache
In the early days of JPA 1.0, when people would ask us to standardize shared caching at the entity
manager factory layer we generally figured that it wasn’t worth it because every provider seemed to do
caching differently. Some providers cache raw JDBC data, others cache entire objects, others prefer the
middle ground of caching partial objects without the relationships built, while others don’t cache at all.
In the end, operating at the entity level is the best way to interface with the cache, and is the most
natural and convenient granularity to use for the API.

CHAPTER 11 ■ ADVANCED TOPICS

364

The shared cache is manipulated in JPA through a slim javax.persistence.Cache interface. An
object that implements Cache can be obtained from the entity manager factory by invoking
EntityManagerFactory.getCache(). Even if a provider does not support caching, a Cache object will be
returned; the difference being that the operations will have no effect.

The interface currently supports only a contains() method and a few method variants of eviction.
While it isn’t a very full API, applications should not really be using a caching interface in application
code, so not much of an API is necessary. In general, caching operations are useful primarily for testing
and debugging, and applications should not need to dynamically modify the cache at runtime. The most
convenient way to use the cache is to simply clear it between test cases to ensure proper cleanup and
isolate test behavior. Listing 11-30 shows a simple Junit 4 test case template that ensures that the shared
cache is cleared after each test is executed.

Listing 11-30. Using the Cache Interface

public class SimpleTest {

 static EntityManagerFactory emf;
 EntityManager em;

 @BeforeClass
 public static void classSetUp() {
 emf = Persistence.createEntityManagerFactory("HR");
 }

 @AfterClass
 public static void classCleanUp() {
 emf.close();
 }

 @Before
 public void setUp() {
 em = emf.createEntityManager();
 }

 @After
 public void cleanUp() {
 em.close();
 emf.getCache().evictAll();
 }

 @Test
 public void testMethod() {
 // Test code ...
 }
}

If we accessed only a single Employee entity with primary key 42 in the tests and wanted to be more
surgical about what we did to the cache, we could evict only that entity by calling evict(Employee.class,
42). Or, we could evict all instances of the Employee class by invoking evict(Employee.class). The
problem with removing specific entities or classes of entities is that if the cache is object-based, this
could leave it in an inconsistent state with dangling references to uncached objects. For example, if our
Employee with id 42 had a bidirectional relationship to an Office entity and we evicted the Employee
entity by using the class-based or instance-based eviction method, we would be leaving the cached

CHAPTER 11 ■ ADVANCED TOPICS

365

Office entity pointing to an uncached Employee. The next time the Employee with id 42 is queried for and
brought into the cache, its reference to its related Office will be properly set to point to the cached
Office entity. The problem is that the pointer back from the Office to the Employee will not be corrected
and we would be in a position where the Office entity is not pointing to the same Employee instance that
is pointing back to it. The moral is that it is clearly not a good idea to go around evicting classes of
objects that have relationships to, or are referenced by, other cached entities. We prefer the big evictAll
hammer that sweeps everything out of the cache and ensures that it is entirely clean and consistent.

On the debugging side, we can check to see if the particular entity is cached by calling
contains(Employee.class, 42). A provider that does not do any shared caching will simply return false
on every invocation.

Static Configuration of the Cache
The greatest value offered by the JPA cache abstraction is the ability to configure it. Caching can be
configured at the level of the global persistence unit or on a per-class basis. It is achieved through a
combination of a persistence unit setting and class settings.

The persistence unit cache setting is controlled by the shared-cache-mode element in the
persistence.xml file or the equivalent javax.persistence.sharedCache.mode property that can be passed
in at entity manager factory creation time. It has five options, one of which is the default NOT_SPECIFIED.
This means when the shared cache setting is not explicitly specified in the persistence.xml file or by the
presence of the javax.persistence.sharedCache.mode property, it is up to the provider to either cache or
not cache, depending upon its own defaults and inclinations. While this might seem a little odd to a
developer, it truly is the appropriate default because different providers have different implementations
that rely more or less heavily on caching.

Two other options, ALL and NONE, are more obvious in their meaning and semantics, and cause the
shared cache to be completely enabled or disabled, respectively.

■ CAUTION Developers that maintain volatile entities changed by multiple clients often think that they should be
disabling the shared cache for consistency. This is not often the right approach. Setting the cache mode to NONE
can not only cause severe slowdown to the application but also potentially defeat provider mechanisms that
optimize for caching. Using the locking, concurrency, and refreshing measures described earlier in this chapter is
the preferred and recommended path.

When an entity class is highly volatile and highly concurrent it is occasionally advantageous to
disable caching of instances only of that class. This is achieved by setting the shared cache to
DISABLE_SELECTIVE and then annotating the specific entity class that is to remain uncached with
@Cacheable(false). The DISABLE_SELECTIVE option will cause the default behavior to cache every entity
in the persistence unit. Each time an entity class is annotated with @Cacheable(false), you are effectively
overriding the default and disabling the cache for instances of that entity type. This can be done to as
many entity classes as you want. When applied to an entity class, the cacheability of its subclasses is also
affected by the @Cacheable annotation on the entity. It can be overridden, though, at the level of the
subclass, if the need arises.

CHAPTER 11 ■ ADVANCED TOPICS

366

If you get to the point where you have to annotate more classes than not, you can go the opposite
route and set the shared cache to ENABLE_SELECTIVE, meaning that the default is to disable caching for all
entities except those that have been annotated with @Cacheable(true) (or just @Cacheable because the
default value of @Cacheable is true). In a nutshell, the @Cacheable annotation is useful when either of the
two *_SELECTIVE options are in effect, and depending upon which is active, the boolean values in all the
@Cacheable annotations in the persistence unit should be all true or all false.

Dynamic Cache Management
It is also possible at runtime to override whether entities get read from the cache during query execution
or get put into the cache when entities are obtained from the database. In order for these overrides to be
in effect, though, caching must already be enabled for the relevant entity class(es). This could be true
because the static settings described in the previous section were used because the provider is defaulting
caching to be on, or because a provider-specific caching option enabled the cache.

We mentioned the two possibilities of reading from or writing to the cache as separate options
because, although related, they are distinct from each other and may be chosen independently. Each has
its own property name and can be passed as a property to an entity manager to set a default caching
behavior for that entity manager. It can also be passed to a find()method or as a hint to a query. The
property names are javax.persistence.cache.retrieveMode and javax.persistence.cache.storeMode,
with the values being members of the CacheRetrieveMode and CacheStoreMode enumerated types,
respectively.

The retrieve mode has two simple options: CacheRetrieveMode.USE to use the cache when reading
entities from the database, and CacheRetrieveMode.BYPASS to bypass the cache. The USE option is the
default because caching must be enabled anyway for the property to be used. When BYPASS is active,
entities should not be looked for in the shared cache. Note that the only reason USE even exists is to allow
resetting the retrieve mode back to using the cache when an entity manager is set to BYPASS.

■ NOTE Under normal circumstances the retrieve mode will have no practical effect if the entities are already
present in the persistence context. Retrieve mode only dictates whether a lookup in the shared cache is
performed. If queried entities exist in the active persistence context, those instances will always be returned.

The store mode supports a default CacheStoreMode.USE option, which places objects in the cache
when obtained from or committed to the database. The CacheStoreMode.BYPASS option can be used to
cause instances not to be inserted into the shared cache. A third store mode option,
CacheStoreMode.REFRESH, is useful when objects may change outside the realm of the shared cache. For
example, if an entity can be changed by a different application that uses the same database, or even by a
different entity manager factory (perhaps in a different JVM in a cluster), the instance in the shared
cache might become stale. Setting the store mode to REFRESH will cause the entity instance in the cache
to be refreshed the next time it is read from the database.

■ CAUTION The REFRESH option should always be turned on if there is a chance that application data may be
changed from outside of the JPA application.

CHAPTER 11 ■ ADVANCED TOPICS

367

Consider the example in Listing 11-31 that returns all the stocks that have a price greater than a
certain amount. Both the retrieve and store cache mode types are used to ensure that the results are as
fresh as possible and that the cache is refreshed with those results.

Listing 11-31. Using the Cache Mode Properties

public List<Stock> findExpensiveStocks(double threshold) {
 TypedQuery<Stock> q = em.createQuery(
 "SELECT s FROM Stock s WHERE s.price > :amount",
 Stock.class);
 q.setProperty("javax.persistence.cache.retrieveMode",
 CacheRetrieveMode.BYPASS);
 q.setProperty("javax.persistence.cache.storeMode",
 CacheStoreMode.REFRESH);
 q.setParameter("amount", threshold);
 return q.getResultList();
}

At first it may seem a little odd that the cache is being bypassed in the retrieve mode, yet being
refreshed in the store mode. It is assuming that not every query will be bypassing the cache, so
refreshing will give subsequent cache hits access to the fresh data.

Note that the REFRESH option is not necessary when entities have simply been updated in a
transaction. During commit the default USE store mode option will cause the shared cache entry to be
updated with the changes from the transaction. The added value of REFRESH applies only for database
reads. This is why REFRESH is not necessary in the situation when the database is essentially dedicated to
the JPA application. If all updates to the database go through the JPA application, its shared entity
manager factory cache would always have the most up-to-date data and there would never be any
reason to refresh the cache.

A store mode option may be passed into one method to which retrieve mode does not apply. The
semantics of the entity manager refresh() method are that the entity instance in the persistence context
is refreshed with the state from the database. Passing in a retrieve mode of USE is of debatable value
because the point of the refresh was to get the latest data, and you will only find that in the database.
However, the refresh() method semantics do not include updating the shared cache with the fresh
database state. For that to occur, you need to also include the store mode REFRESH option as a property
argument to the method:

 HashMap props = new HashMap();
 props.put("javax.persistence.cache.storeMode",
 CacheStoreMode.REFRESH);
 em.refresh(emp, props);

■ TIP For applications that require REFRESH to be the default, many vendors provide support for setting it at the
persistence unit level as a persistence unit property. Because refreshing may be more necessary for specific entity
classes than others, the REFRESH options may also be supported at the level of the entity class, meaning that all
entities of a given type are automatically refreshed in the cache when read from the database.

CHAPTER 11 ■ ADVANCED TOPICS

368

Using the dynamic caching options is preferred over simply disabling the cache, either globally or
on a per-class basis. It gives you fine-grained control over performance and consistency and still offers
the provider the opportunity to optimize for the cases when optimization is appropriate.

Utility Classes
A handful of methods are available on two utility interfaces, PersistenceUnitUtil and PersistenceUtil
in the javax.persistence package. These methods will not be used often by an application at runtime,
but can be useful primarily for tool providers or in application frameworks.

PersistenceUtil
An instance of PersistenceUtil is obtained from the Persistence class in both Java SE and Java EE
environments. The static getPersistenceUtil() method is the only method on the Persistence class that
a managed or container-based application would normally use in a managed environment. It exports
only two methods, both variants of determining whether state is loaded or not. The isLoaded(Object)
method will return whether the entity passed in has all of its non-lazy state loaded. For example, the
following might return false:

 Persistence.getPersistenceUtil().isLoaded(
 em.getReference(Employee.class, 42));

We say “might” because the provider is free to load some or all the fields or properties of the
Employee instance that gets returned; it just isn’t compelled to do so.

The second variant, isLoaded(Object, String), accepts an extra String parameter describing a
named attribute of the entity, and returns whether that attribute has been loaded in the entity instance
passed in. It will return false either if isLoaded(Object) is false, or if the attribute is marked as lazy and
has not been loaded. Assuming a definition of an Employee entity that has a "phoneNumbers" relationship
attribute marked as lazy, the following will likely return false:

 Persistence.getPersistenceUtil().isLoaded(
 em.find(Employee.class, 42), "phoneNumbers");

The PersistenceUtil class would be used only on the client side, or in a different application layer
from persistence, when the entity manager or factory associated with the entity is not known. Each of
the methods enters a provider resolution phase before calling the corresponding method on the correct
provider. This may add some overhead, depending upon the implementation, caching of providers, and
frequency of calling. On the server side, I might know which entity manager or factory to use for the
entity, and in that case the more efficient PersistenceUnitUtil class, described in the next section,
should be used instead.

PersistenceUnitUtil
A PersistenceUnitUtil instance can be obtained from an entity manager factory through the
getPersistenceUnitUtil() method. It serves as a utility class for the persistence unit, and although it
does not contain many methods now, in the future more utility functions will be added.

The same two isLoaded() methods are defined on the PersistenceUnitUtil class as were defined on
the PersistenceUtil class. The difference is that invoking them on this class does not require provider
resolution. The PersistenceUnitUtil interface is implemented by the provider, so the user is already
invoking a provider class that is assumed to have intimate knowledge of the domain model mappings
and the supporting JPA implementation.

CHAPTER 11 ■ ADVANCED TOPICS

369

An additional method named getIdentifier() returns the value of the identifier attribute if the
entity has a simple or an embedded identifier. If the entity has multiple identifier attributes, an instance
of the identifier class will be returned. This method enables a layer to dynamically obtain the identifier of
a given entity without having to know anything about the entity mappings, or even its type. This is a
fairly typical situation for a framework to be in. The method in Listing 11-32 collects all the identifiers for
a given List of entities.

Listing 11-32. Collecting Entity Identifiers

public List<Object> getEntityIdentifiers(List<T> entities) {
 PersistenceUnitUtil util = emf.getPersistenceUnitUtil();
 List<Object> result = new ArrayList<Object>();
 for (T entity : entities) {
 result.add(util.getIdentifier(entity));
 }
 return result;
}

Summary
This chapter covered a wide range of diverse topics, from SQL queries to caching. Not everything we
have described will be immediately usable in a new application, but some features, such as optimistic
locking, are likely to play a prominent role in many enterprise applications.

We began the chapter with a look at SQL queries. We looked at the role of SQL in applications that
also use JP QL and the specialized situations where only SQL can be used. To bridge the gap between
native SQL and entities, we described the result set mapping process in detail, showing a wide range of
queries and how they translate back into the application domain model.

The lifecycle callbacks section introduced the lifecycle of an entity and showed the points at which
an application can monitor events that are fired as an entity moves through different stages of its
lifecycle. We looked at two different approaches to implementing callback methods: on the entity class
and as part of a separate listener class.

We introduced validation and gave an overview of what it was, how it could be used, and how it
could be extended to provide application-specific validation constraints. We showed how it can save us
having to write explicit code for error conditions and boundary checking. We brought more context to
validation by explaining how it is integrated with JPA and how the integration points can be configured
to meet the needs of your application.

In our discussion of locking and versioning, we introduced optimistic locking and described the
vital role it plays in many applications, particularly those that use detached entities. We also looked at
the different kinds of additional locking options and when they may be usefully applied. We explained
their correspondence to isolation levels in the database and the extent to which they should be relied
upon. We described the difficulties of recovering from lock failures and when it is appropriate to refresh
the state of a managed entity. We went on to pessimistic locking and how it affects scalability. We
described the primary pessimistic mode and two other less-prevalent ones. We showed how timeouts
can be configured and highlighted the conditions under which the two different kinds of pessimistic
exceptions are thrown and can be handled.

We looked at caching and spent a bit of time going over how the shared cache can be managed and
controlled using global cache settings and local cache mode properties. We discussed how the cache
mode properties affect queries and offered advice about which modes to use and when to use them.

CHAPTER 11 ■ ADVANCED TOPICS

370

Finally, we uncovered a couple of the JPA utility classes that provide additional features, such as
being able to determine whether a JPA entity has been fully loaded and obtaining the identifier of any
entity instance.

In the next chapter, we will look at the XML mapping file, showing how to use XML with or instead
of annotations, and how annotation metadata can be overridden.

C H A P T E R 12

■ ■ ■

371

XML Mapping Files

After the release of Java SE 5, there was a quiet, and sometimes not-so-quiet, debate about whether
annotations were better or worse than XML. The defenders of annotations vigorously proclaimed how
annotations were so much simpler and provide in-lined metadata that is co-located with the code that it
is describing. The claim was that this avoids the need to replicate the information that is inherent in the
source code context of where the metadata applies. The XML proponents then retorted that annotations
unnecessarily couple the metadata to the code, and that changes to metadata should not require
changes to the source code.

The truth is that both sides were right, and there are appropriate times for using annotation
metadata and other times for using XML. When the metadata really is coupled to the code, it does make
sense to use annotations because the metadata is just another aspect of the program. For example,
specification of the identifier field of an entity is not only a relevant piece of information to the provider
but also a necessary detail known and assumed by the referencing application code. Other kinds of
metadata, such as which column a field is mapped to, can be safely changed without needing to change
the code. This metadata is akin to configuration metadata and might be better expressed in XML, where
it can be configured according to the usage pattern or execution environment.

The arguments also tended to unfairly compartmentalize the issue because in reality it goes deeper
than simply deciding when it might make sense to use one type of metadata or another. In many talks
and forums before the release of the JPA 1.0 specification, we asked people whether they planned on
using annotations or XML, and we consistently saw that there was a split. The reason was that there were
other factors that have nothing to do with which is better, such as existing development processes,
source control systems, developer experience, and so forth.

Now that developers have a few years of using annotations under their belts there is not nearly the
same hesitation to embed annotations in their code as there once was. In fact, most people are perfectly
happy with annotations, making their acceptance pretty much a fait accompli. Nevertheless, there are
still use cases for employing XML, so we continue to describe and illustrate how mapping metadata is
allowed to be specified in either format. In fact, XML mapping usage is defined to allow annotations to
be used and then overridden by XML. This provides the ability to use annotations for some things and
XML for others, or to use annotations for an expected configuration but then supply an overriding XML
file to suit a particular execution environment. The XML file might be sparse and supply only the
information that is being overridden. We will see later on in this chapter that the granularity with which
this metadata can be specified offers a good deal of object-relational mapping flexibility.

Over the course of this chapter, we will describe the structure and content of the mapping file and
how it relates to the metadata annotations. We will also discuss how XML mapping metadata can
combine with and override annotation metadata. We have tried to structure the chapter in a format that
will allow it to be used as both a source of information and a reference for the mapping file format.

CHAPTER 12 ■ XML MAPPING FILES

372

The Metadata Puzzle
The rules of XML and annotation usage and overriding can be a little confusing to say the least,
especially given the permutation space of mixing annotations with XML. The trick to understanding the
semantics, and being able to properly specify metadata the way that you would like it to be specified, is
to understand the metadata-collection process. Once you have a solid understanding of what the
metadata processor does, you will be well on your way to understanding what you need to do to achieve
a specific result.

The provider can choose to perform the metadata-gathering process in any way it chooses, but the
result is that it must honor the requirements of the specification. Developers understand algorithms, so
we decided that it would be easier to understand if we presented the logical functionality as an
algorithm, even though the implementation might not actually implement it this way. The following
algorithm can be considered as the simplified logic for obtaining the metadata for the persistence unit:

1. Process the annotations. The set of entities, mapped superclasses, and
embedded objects (we’ll call this set E) is discovered by looking for the @Entity,
@MappedSuperclass, and @Embeddable annotations. The class and method
annotations in all the classes in set E are processed, and the resulting metadata
is stored in set C. Any missing metadata that was not explicitly specified in the
annotations is left empty.

2. Add the classes defined in XML. Look for all the entities, mapped superclasses,
and embedded objects that are defined in the mapping files and add them to E.
If we find that one of the classes already exists in E, we apply the overriding
rules for class-level metadata that we found in the mapping file. Add or adjust
the class-level metadata in C according to the overriding rules.

3. Add the attribute mappings defined in XML. For each class in E, look at the
fields or properties in the mapping file and try to add the method metadata to
C. If the field or property already exists there, apply the overriding rules for
attribute-level mapping metadata.

4. Apply defaults. Determine all default values according to the scoping rules and
where defaults might have been defined (see the following for description of
default rules). The classes, attribute mappings, and other settings that have not
yet been filled in are assigned values and put in C.

Some of the following cases might cause this algorithm to be modified slightly, but in general this is
what will logically happen when the provider needs to obtain the mapping metadata.

You already learned in the mapping chapters that annotations might be sparse and that not
annotating a persistent attribute will usually cause it to default to being mapped as a basic mapping.
Other mapping defaults were also explained, and you saw how much easier they made configuring and
mapping entities. You will notice in our algorithm that the defaults are applied at the end, so the same
defaults that you saw for annotations will be applied when using mapping files as well. It should be of
some comfort to XML users that mapping files might be sparsely specified in the same way as
annotations. They also have the same requirements for what needs to be specified; for example, an
identifier must be specified, a relationship mapping must have at least its cardinality specified, and
so forth.

CHAPTER 12 ■ XML MAPPING FILES

373

The Mapping File
By this point, you are well aware that if you don’t want to use XML for mapping, you don’t need to use
XML. In fact, as you will see in Chapter 13, any number of mapping files, or none, might be included in a
persistence unit. If you do use one, however, each mapping file that is supplied must conform and be
valid against the orm_2_0.xsd schema located at http://java.sun.com/xml/ns/persistence/orm_2_0.xsd.

■ NOTE When using a JPA 1.0 implementation, the schema will be orm_1_0.xsd, located at
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd.

This schema defines a namespace called http://java.sun.com/xml/ns/persistence/orm that includes all
the ORM elements that can be used in a mapping file. A typical XML header for a mapping file is shown
in Listing 12-1.

Listing 12-1. XML Header for Mapping File

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_2_0.xsd"
 version="2.0">

The root element of the mapping file is called entity-mappings. All object-relational XML metadata
is contained within this element, and as seen in the example, the header information is also specified as
attributes in this element. The subelements of entity-mappings can be categorized into four main
scoping and functional groups: persistence unit defaults, mapping files defaults, queries and generators,
and managed classes and mappings. There is also a special setting that determines whether annotations
should be considered in the metadata for the persistence unit. These groups are discussed in the
following sections. For the sake of brevity, we won’t include the header information in the XML
examples in these sections.

Disabling Annotations
For those who are perfectly happy with XML and don’t feel the need for annotations, there are ways to
skip the annotation processing phase (step 1 in the previous algorithm). The xml-mapping-metadata-
complete element and metadata-complete attribute provide a convenient way to reduce the overhead
that is required to discover and process all the annotations on the classes in the persistence unit. It is
also a way to effectively disable any annotations that do exist. These options will cause the processor to
completely ignore them as if they did not exist at all.

http://java.sun.com/xml/ns/persistence/orm_2_0.xsd
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence/ormjava.sun.com/xml/ns/persistence/orm_2_0.xsd

CHAPTER 12 ■ XML MAPPING FILES

374

xml-mapping-metadata-complete
When the xml-mapping-metadata-complete element is specified, all annotations in the entire persistence
unit will be ignored, and only the mapping files in the persistence unit will be considered as the total set
of provided metadata. Only entities, mapped superclasses, and embedded objects that have entries in a
mapping file will be added to the persistence unit.

The xml-mapping-metadata-complete element needs to be in only one of the mapping files if there
are multiple mapping files in the persistence unit. It is specified as an empty subelement of the
persistence-unit-metadata element, which is the first1 subelement of entity-mappings. An example of
using this setting is in Listing 12-2.

Listing 12-2. Disabling Annotation Metadata for the Persistence Unit

<entity-mappings>
 <persistence-unit-metadata>
 <xml-mapping-metadata-complete/>
 </persistence-unit-metadata>
 ...
</entity-mappings>

If enabled, there is no way to portably override this setting. It will apply globally to the persistence unit,
regardless of whether any metadata-complete attribute is set to false in an entity.

metadata-complete
The metadata-complete attribute is an attribute on the entity, mapped-superclass, and embeddable
elements. If specified, all annotations on the specified class and on any fields or properties in the class
will be ignored, and only the metadata in the mapping file will be considered as the set of metadata for
the class.

■ CAUTION Annotations defining queries, generators, or result set mappings are ignored if they are defined on a
class that is marked as metadata-complete in an XML mapping file.

When metadata-complete is enabled, the same rules that we applied to annotated entities will
still apply when using XML-mapped entities. For example, the identifier must be mapped, and
all relationships must be specified with their corresponding cardinality mappings inside the
entity element.

An example of using the metadata-complete attribute is shown in Listing 12-3. The entity mappings
in the annotated class are disabled by the metadata-complete attribute, and because the fields are not

1 Technically, there is a description element in many of the elements, just as there are in most of the
standard schemas in Java EE, but they have little functional value and will not be mentioned here. They
might be of some use to tools that parse XML schemas and use the descriptions for tooltips and similar
actions.

CHAPTER 12 ■ XML MAPPING FILES

375

mapped in the mapping file, the default mapping values will be used. The name and salary fields will be
mapped to the NAME and SALARY columns, respectively.

Listing 12-3. Disabling Annotations for a Managed Class

@Entity
public class Employee {
 @Id private int id;
 @Column(name="EMP_NAME")
 private String name;
 @Column(name="SAL")
 private long salary;
 // ...
}

orm.xml snippet:

<entity-mappings>
 ...
 <entity class="examples.model.Employee"
 metadata-complete="true">
 <attributes>
 <id name="id"/>
 </attributes>
 </entity>
 ...
</entity-mappings>

Persistence Unit Defaults
One of the conditions for using annotation metadata is that we need to have something to annotate. If
we want to define metadata for a persistence unit, we are in the unfortunate position of not having
anything to annotate because a persistence unit is just a logical grouping of Java classes, basically a
configuration. This brings us back to the discussion that we had earlier when we decided that if
metadata is not coupled to code, maybe it shouldn’t really be in the code. These are the reasons why
persistence unit metadata can be specified only in an XML mapping file.

In general, a persistence unit default means that whenever a value for that setting is not specified at
a more local scope, the persistence unit default value will apply. It is a convenient way to set default
values that will apply to all entities, mapped superclasses, and embedded objects in the entire
persistence unit, be they in any of the mapping files or annotated classes. The default values will not be
applied if a value is present at any level below the persistence unit. This value can be in the form of a
mapping file default value, some value in an entity element, or an annotation on one of the managed
classes or persistent fields or properties.

The element that encloses all the persistence unit level defaults is the aptly named persistence-
unit-defaults element. It is the other subelement of the persistence-unit-metadata element (after xml-
mapping-metadata-complete). If more than one mapping file exists in a persistence unit, only one of the
files should contain these elements.

There are six settings that can be configured to have default values for the persistence unit. They are
specified using the schema, catalog, delimited-identifiers, access, cascade-persist, and entity-
listeners elements.

CHAPTER 12 ■ XML MAPPING FILES

376

schema
The schema element is useful if you don’t want to have to specify a schema in every @Table,
@SecondaryTable, @JoinTable, @CollectionTable, or @TableGenerator annotation; or table, secondary-
table, join-table, collection-table, or table-generator XML element in the persistence unit. When set
here, it will apply to all tables in the persistence unit, whether they were actually defined or defaulted by
the provider. The value of this element can be overridden by any of the following:

• schema element defined in the mapping file defaults (see the “Mapping File
Defaults” section)

• schema attribute on any table, secondary-table, join-table, collection-table, or
table-generator element in a mapping file

• schema defined within a @Table, @SecondaryTable, @JoinTable, @CollectionTable,
or @TableGenerator annotation; or in a @TableGenerator annotation (unless xml-
mapping-metadata-complete is set)

Listing 12-4 shows an example of how to set the schema for all the tables in the persistence unit that
do not already have their schema set.

Listing 12-4. Setting the Default Persistence Unit Schema

<entity-mappings>
 <persistence-unit-metadata>
 <persistence-unit-defaults>
 <schema>HR</schema>
 </persistence-unit-defaults>
 </persistence-unit-metadata>
 ...
</entity-mappings>

catalog
The catalog element is exactly analogous to the schema element, but it is for databases that support
catalogs. It can be used independently whether schema is specified or not, has the same behavior as
schema, and is overridden in exactly the same ways. The exact same rules can be applied to the catalog
mapping file default as described in the preceding schema section.

delimited-identifiers
The delimited-identifiers element causes database table, schema, and column identifiers used in the
persistence unit, defined in annotation form, XML, or defaulted, to be delimited when sent to the
database (refer to Chapter 10 for more on delimited identifiers). It cannot be disabled locally, so it is
important to have a full understanding of the consequences before enabling this option. If an
annotation or XML element is locally delimited with quotes, they will be treated as part of the
identifier name.

No value or text is included in the delimited-identifiers element. Only the empty element
should be specified within the persistence-unit-defaults element to enable persistence unit
identifier delimiting.

CHAPTER 12 ■ XML MAPPING FILES

377

access
The access element that is defined in the persistence-unit-defaults section is used to set the access
type for all the managed classes in the persistence unit that have XML entries but are not annotated. Its
value can be either “FIELD” or “PROPERTY”, indicating how the provider should access the persistent
state.

The access setting is a subtly different default that does not affect any of the managed classes that
have annotated fields or properties. It is a convenience for when XML is used and obviates having to
specify the access for all the entities listed in all the XML mapping files.

This element affects only the managed classes defined in the mapping files because a class with
annotated fields or properties is considered to have overridden the access mode by virtue of its having
annotations placed on its fields or properties. If the xml-mapping-metadata-complete element is enabled,
the persistence unit access default will be applied to these annotated classes that have entries in XML.
Put another way, the annotations that would have otherwise overridden the access mode would no
longer be considered, and the XML defaults, including the default access mode, would be applied.

The value of this element can be overridden by one or more of the following:

• access element defined in the mapping file defaults (see the “Mapping File
Defaults” section)

• access attribute on any entity, mapped-superclass, or embeddable element in a
mapping file

• access attribute on any basic, id, embedded-id, embedded, many-to-one, one-to-one,
one-to-many, many-to-many, element-collection, or version element in a mapping
file

• @Access annotation on any entity, mapped superclass, or embeddable class

• @Access annotation on any field or property in an entity, mapped superclass, or
embedded object

• An annotated field or property in an entity, mapped superclass, or embedded
object

In Listing 12-5 we show an example of setting the access mode to “PROPERTY” for all the managed
classes in the persistence unit that do not have annotated fields.

Listing 12-5. Setting the Default Access Mode for the Persistence Unit

<entity-mappings>
 <persistence-unit-metadata>
 <persistence-unit-defaults>
 <access>PROPERTY</access>
 </persistence-unit-defaults>
 </persistence-unit-metadata>
 ...
</entity-mappings>

cascade-persist
The cascade-persist element is unique in a different way. When the empty cascade-persist element is
specified, it is analogous to adding the PERSIST cascade option to all the relationships in the persistence
unit. Refer to Chapter 6 for a discussion about the cascade options on relationships.

CHAPTER 12 ■ XML MAPPING FILES

378

The term persistence-by-reachability is often used to signify that when an object is persisted, all the
objects that are reachable from that object are also automatically persisted. The cascade-persist
element provides the persistence-by-reachability semantics that some people are used to having. This
setting cannot currently be overridden, but the intent is that it be overridable in future releases. The
assumption is that when somebody is accustomed to persistence-by-reachability semantics, they don’t
normally want to be turning it off. If more fine-grained control over cascading of the persist operation is
needed, this element should not be specified, and the relationships should have the PERSIST cascade
option specified locally.

An example of using the cascade-persist element is shown in Listing 12-6.

Listing 12-6. Configuring for Persistence-by-Reachability Semantics

<entity-mappings>
 <persistence-unit-metadata>
 <persistence-unit-defaults>
 <cascade-persist/>
 </persistence-unit-defaults>
 </persistence-unit-metadata>
 ...
</entity-mappings>

entity-listeners
This is the only place where a list of default entity listeners can be specified. A default entity listener is a
listener that will be applied to every entity in the persistence unit. They will be invoked in the order that
they are listed in this element, before any other listener or callback method is invoked on the entity. It is
the logical equivalent of adding the listeners in this list to the front of the @EntityListeners list in the
root superclass. We discussed entity listeners in the last chapter, so refer to Chapter 11 to review the
order of invocation if you need to. A description of how to specify an entity listener is given in the “Entity
Listeners” section of that chapter.

The entity-listeners element is composed of zero or more entity-listener elements that each
defines an entity listener. They can be overridden or disabled in either of the following two ways:

• exclude-default-listeners element in an entity or mapped-superclass mapping
file element

• @ExcludeDefaultListeners annotation on an entity or mapped superclass (unless
xml-mapping-metadata-complete is set)

Mapping File Defaults
The next level of defaults, after the ones defined for the entire persistence unit, are those that pertain
only to the entities, mapped superclasses, and embedded objects that are contained in a particular
mapping file. In general, if there is a persistence unit default defined for the same setting, this value will
override the persistence unit default for the managed classes in the mapping file. Unlike the persistence
unit defaults, the mapping file defaults do not affect managed classes that are annotated and not defined
in the mapping file. In terms of our algorithm, the defaults in this section apply to all the classes of C that
have entries in the mapping file.

The mapping file defaults consist of four optional subelements of the entity-mappings element.
They are package, schema, catalog, and access; and they follow the persistence-unit-metadata element.

CHAPTER 12 ■ XML MAPPING FILES

379

package
The package element is intended to be used by developers who don’t want to have to repeat the fully
qualified class name in all the mapping file metadata. It can be overridden in the mapping file by fully
qualifying a class name in any element or attribute in which a class name is expected. They are the
following:

• class attribute of id-class, entity-listener, entity, mapped-superclass, or
embeddable elements

• target-entity attribute of many-to-one, one-to-one, one-to-many, and many-to-
many elements

• target-class attribute of element-collection element

• result-class attribute of named-native-query element

• entity-class attribute of entity-result element

An example of using this element is shown in Listing 12-7. We set the default mapping file package
name to examples.model for the entire mapping file and can just use the unqualified Employee and
EmployeePK class names throughout the file. The package name will not be applied to OtherClass,
though, because it is already fully specified.

Listing 12-7. Using the package Element

<entity-mappings>
 <package>examples.model</package>
 ...
 <entity class="Employee">
 <id-class class="EmployeePK"/>
 ...
 </entity>
 <entity class="examples.tools.OtherClass">
 ...
 </entity>
 ...
</entity-mappings>

schema
The schema element will set a default schema to be assumed for every table, secondary table, join table,
or table generator defined or defaulted within the mapping file. This element can be overridden by the
specification of the schema attribute on any table, secondary-table, join-table, collection-table,
sequence-generator, or table-generator element in the mapping file.

Listing 12-8 shows the mapping file schema default set to “HR”, so the EMP table that Employee is
mapped to is assumed to be in the HR schema.

CHAPTER 12 ■ XML MAPPING FILES

380

Listing 12-8. Using the schema Element

<entity-mappings>
 <package>examples.model</package>
 <schema>HR</schema>
 ...
 <entity class="Employee">
 <table name="EMP"/>
 ...
 </entity>
 ...
</entity-mappings>

The mapping file schema default will also affect @Table, @SecondaryTable, @SequenceGenerator, and
@TableGenerator annotations on classes that have entries in the mapping file. For example, because
Employee is listed in the mapping file, it becomes part of the set of classes to which the default applies. If
there was a @TableGenerator(name="EmpGen", table="IDGEN") annotation on Employee, the mapping file
default will be applied to it, and the IDGEN table will be assumed to be in the HR schema.

catalog
The catalog element is again exactly analogous to the schema element, but it is for databases that
support catalogs. It can be used independently of whether schema is specified or not, has the same
behavior as schema at the mapping file default level, and is overridden in exactly the same ways. As we
mentioned in the persistence unit section, the exact same rules can be applied to the catalog mapping
file default, as described in the schema mapping file default section.

access
Setting a particular access mode as the mapping file default value affects only the managed classes

that are defined in the mapping file. The default mapping file access mode can be overridden by one or
more of the following:

• access attribute on any entity, mapped-superclass, or embeddable element in a
mapping file

• access attribute on any basic, id, embedded-id, embedded, many-to-one, one-to-one,
one-to-many, many-to-many, element-collection, or version element in a mapping
file

• @Access annotation on any entity, mapped superclass, or embeddable class

• @Access annotation on any field or property in an entity, mapped superclass, or
embedded object

• An annotated field or property in an entity, mapped superclass, or
embedded object

CHAPTER 12 ■ XML MAPPING FILES

381

Queries and Generators
Some persistence artifacts, such as id generators and queries, are defined as annotations on a class even
though they are actually global to the persistence unit in scope because they are annotations and there is
no other place to put them other than on a class. Earlier we pointed out the inappropriateness of
expressing persistence unit metadata as annotations on a random class, but generators and queries
create something concrete, as opposed to being just settings. Nevertheless, it is still not ideal, and in
XML this global query-related metadata does not need to be placed arbitrarily within a class but can be
defined at the level of subelements of the entity-mappings element.

The global query metadata elements are made up of generator and query elements that include
sequence-generator, table-generator, named-query, named-native-query, and sql-result-set-mapping.
For historical reasons, these elements might appear in different contexts, but they are nevertheless still
scoped to the persistence unit. There are three different persistence unit namespaces, one for queries,
one for generators, and one for result set mappings that are used for native queries. When any of the
elements that we just listed are defined in the mapping file, the artifacts they define will be added into
the persistence unit namespace to which they apply. The namespaces will already contain all the
existing persistence unit artifacts that might have been defined in annotations or in another mapping
file. Because these artifacts share the same global persistence unit namespace type, when one of the
artifacts that is defined in XML shares the same name as one that already exists in the namespace of the
same type, it is viewed as an override. The artifact that is defined in XML overrides the one that was
defined by the annotation. There is no concept of overriding queries, generators, or result set mappings
within the same or different mapping files. If one or more mapping files contains one of these objects
defined with the same name, it is undefined which overrides the other because the order that they are
processed in is not specified.2

sequence-generator
The sequence-generator element is used to define a generator that uses a database sequence to generate
identifiers. It corresponds to the @SequenceGenerator annotation (refer to Chapter 4) and can be used to
define a new generator or override a generator of the same name that is defined by a @SequenceGenerator
annotation in any class in the persistence unit. It can be specified either at the global level as a
subelement of entity-mappings, at the entity level as a subelement of entity, or at the field or property
level as a subelement of the id mapping element.

The attributes of sequence-generator line up exactly with the elements in the @SequenceGenerator
annotation. Listing 12-9 shows an example of defining a sequence generator.

Listing 12-9. Defining a Sequence Generator

<entity-mappings>
 ...
 <sequence-generator name="empGen" sequence-name="empSeq"/>
 ...
</entity-mappings>

2 It is possible, and even probable, that vendors will process the mapping files in the order that they are
listed, but this is neither required nor standardized.

CHAPTER 12 ■ XML MAPPING FILES

382

table-generator
The table-generator element defines a generator that uses a table to generate identifiers. Its annotation
equivalent is the @TableGenerator annotation (refer to Chapter 4). This element might define a new
generator or it might be overriding a generator defined by a @TableGenerator annotation. Like the
sequence-generator element, it can be defined within any of entity-mappings, entity, or id elements.

The attributes of table-generator also match the @TableGenerator annotation elements. Listing 12-
10 shows an example of defining a sequence generator in annotation form but overriding it to be a table
generator in XML.

Listing 12-10. Overriding a Sequence Generator with a Table Generator

@Entity
public class Employee {
 @SequenceGenerator(name="empGen")
 @Id @GeneratedValue(generator="empGen")
 private int id;
 // ...
}

<entity-mappings>
 ...
 <table-generator name="empGen" table="ID_GEN" pk-column-value="EmpId"/>
 ...
</entity-mappings>

named-query
Static or named queries can be defined both in annotation form using @NamedQuery (refer to Chapter 7)
or in a mapping file using the named-query element. A named-query element in the mapping file can also
override an existing query of the same name that was defined as an annotation. It makes sense, of
course, when overriding a query to override it only with a query that has the same result type, be it an
entity, data, or projection of data. Otherwise, all the code that executes the query and processes the
results stands a pretty good chance of breaking.

A named-query element can appear as a subelement of entity-mappings or as a subelement of
entity. Regardless of where it is defined, it will be keyed by its name in the persistence unit query
namespace.

The name of the query is specified as an attribute of the named-query element, while the query string
goes in a query subelement within it. Any one of the enumerated LockModeType constants can be
included. Any number of query hints can also be provided as hint subelements.

Listing 12-11 shows an example of two named queries, one of which uses a hint that bypasses the
cache.

Listing 12-11. Named Query in a Mapping File

<entity-mappings>
 ...
 <named-query name="findEmpsWithName">
 <query>SELECT e FROM Employee e WHERE e.name LIKE :empName</query>
 <hint name="javax.persistence.cacheRetrieveMode"
 value="CacheRetrieveMode.BYPASS"/>
 </named-query>

CHAPTER 12 ■ XML MAPPING FILES

383

 <named-query name="findEmpsWithHigherSalary">
 <query><![CDATA[SELECT e FROM Employee e WHERE e.salary > :salary]]></query>
 </named-query>
 ...
</entity-mappings>

Query strings can also be expressed as CDATA within the query element. You can see in Listing 12-
11 that this is helpful in cases when the query includes XML characters such as “>” that would otherwise
need to be escaped.

named-native-query
Native SQL can also be used for named queries by defining a @NamedNativeQuery annotation (refer to
Chapter 11) or by specifying a named-native-query element in a mapping file. Both named queries and
native queries share the same query namespace in the persistence unit, so using either the named-query
or named-native-query element will cause that query to override any query of the same name defined in
annotation form.

Native queries are the same as named queries in that the native-named-query element can appear as
a subelement of entity-mappings or as a subelement of entity. The name is specified using the name
attribute, and the query string uses a query subelement. The hints are also specified in the same way.
The only difference is that two additional attributes have been added to named-native-query to supply
the result class or the result set mapping.

One use case for overriding queries is when the DBA comes to you and demands that your query run
a certain way on a certain database. You can leave the query as generic JP QL for the other databases, but
it turns out that, for example, the Oracle database can do this one particular thing very well using native
syntax. By putting this query in a DB-specific XML file, it will be much easier to manage in the future.
Listing 12-12 has an example of a vanilla named query in JP QL that is being overridden by a native SQL
query.

Listing 12-12. Overriding a JP QL Query with SQL

@NamedQuery(name="findAllManagers"
 query="SELECT e FROM Employee e WHERE e.directs IS NOT EMPTY")
@Entity
public class Employee { ... }

<entity-mappings>
 ...
 <named-native-query name="findAllManagers"
 result-class="examples.model.Employee">
 <query>
 SELECT /*+ FULL(m) */ e.id, e.name, e.salary,
 e.manager_id, e.dept_id, e.address_id
 FROM emp e,
 (SELECT DISTINCT manager_id AS id FROM emp) m
 WHERE e.id = m.id
 </query>
 </named-native-query>
 ...
</entity-mappings>

CHAPTER 12 ■ XML MAPPING FILES

384

sql-result-set-mapping
A result set mapping is used by native queries to instruct the persistence provider how to map the
results. The sql-result-set-mapping element corresponds to the @SqlResultSetMapping annotation. The
name of the result set mapping is specified in the name attribute of the sql-result-set-mapping element.
The result can be mapped as one or more entity types, projection data, or a combination of the two. Just
as @SqlResultSetMapping encloses arrays of @EntityResult or @ColumnResult, or both, so also can the sql-
result-set-mapping element contain multiple entity-result and column-result elements. And
similarly, because each @EntityResult contains an array of @FieldResult, the entity-result element can
contain multiple field-result elements. The other entityClass and discriminatorColumn elements of
the @EntityResult annotation map directly to the entity-class and discriminator-column attributes of
the entity-result element.

Each sql-result-set-mapping can define a new mapping or override an existing one of the same
name that was defined by an annotation. It is not possible to override only a part of the result set
mapping. If you’re overriding an annotation, the entire annotation will be overridden, and the
components of the result set mapping defined by the sql-result-set-mapping element will apply.

Having said all this about overriding, there is really not that much use in overriding a
@SqlResultSetMapping because they are used to structure the result format from a static native query. As
we mentioned earlier, queries tend to be executed with a certain expectation of the result that is being
returned. Result set mappings are typically defined in a mapping file because that is also where the
native query that it is defining the result is defined.

Listing 12-13 shows the “DepartmentSummary” result set mapping that we defined in Chapter 11
and its equivalent XML mapping file form.

Listing 12-13. Specifying a Result Set Mapping

@SqlResultSetMapping(
 name="DepartmentSummary",
 entities={
 @EntityResult(entityClass=Department.class,
 fields=@FieldResult(name="name", column="DEPT_NAME")),
 @EntityResult(entityClass=Employee.class)
 },
 columns={@ColumnResult(name="TOT_EMP"),
 @ColumnResult(name="AVG_SAL")}
)

<entity-mappings>
 ...
 <sql-result-set-mapping name="DepartmentSummary">
 <entity-result entity-class="examples.model.Department">
 <field-result name="name" column="DEPT_NAME"/>
 </entity-result>
 <entity-result entity-class="examples.model.Employee"/>
 <column-result name="TOT_EMP"/>
 <column-result name="AVG_SAL"/>
 </sql-result-set-mapping>
 ...
</entity-mappings>

CHAPTER 12 ■ XML MAPPING FILES

385

Managed Classes and Mappings
The main portion of every mapping file will typically be the managed classes in the persistence unit that
are the entity, mapped-superclass, and embeddable elements and their state and relationship mappings.
Each of them has its class specified as a class attribute of the element and its access type specified in an
access attribute. The access attribute is required only when there are no annotations on the managed
class or when metadata-complete (or xml-mapping-metadata-complete) has been specified for the class. If
neither of these conditions apply and annotations do exist on the class, the access attribute setting
should match the access used by the annotations.

For entities, an optional cacheable attribute can also be set to a boolean value. This attribute
corresponds to the @Cacheable annotation and when specified will override the value of the annotation.
Like the annotation, it dictates whether the shared cache is used for instances of the entity class, and is
applicable only when the shared-cache-mode (see Chapter 13) is set to one of the selective modes. The
cacheable attribute is inherited by subclasses and is overridden by either the @Cacheable annotation on
the subclass, or the cacheable attribute in the subclass element.

Queries and generators can be specified within an entity element. Generators can also be defined
inside an id element in an entity or mapped superclass. They have already been described in the
preceding “Queries and Generators” section.

Attributes
Unfortunately, the word attribute is grossly overloaded. It can be a general term for a field or property in
a class, it can be a specific part of an XML element that can be inlined in the element tag, or it can be a
generic term referring to a characteristic. Throughout these sections, we have usually referred to it in the
context of the second meaning because we have been talking a lot about XML elements. In this section,
however, it refers to the first definition of a state attribute in the form of a field or property.

The attributes element is a subelement of the entity, mapped-superclass, and embeddable
elements. It is an enclosing element that groups all the mapping subelements for the fields or properties
of the managed class. Because it is only a grouping element, it does not have an analogous annotation. It
dictates which mappings are allowed for each type of managed class.

In the entity and mapped-superclass elements, there are a number of mapping subelements that
can be specified. For identifiers, either multiple id subelements or a single embedded-id subelement can
be included. The simple basic, version, and transient mapping subelements can also be specified, as
well as the many-to-one, one-to-one, one-to-many, and many-to-many association subelements. The
mapping mix is rounded out with the embedded and element-collection subelements. An embeddable
element is not permitted to contain id, embedded-id, or version mapping subelements. These elements
will all be discussed separately in their own sections later, but they all have one thing in common. Each
one has a name attribute (in the XML attribute sense) that is required to indicate the name of the attribute
(in this case, we mean field or property) that it is mapping.

A general comment about overriding attribute mappings is that overriding annotations with XML is
done at the level of the attribute (field or property) name. Our algorithm will apply to these mappings as
they are keyed by attribute name, and XML overrides will be applied by attribute name alone. All the
annotated mapping information for the attribute will be overridden as soon as a mapping element for
that attribute name is defined in XML.

There is nothing to stop the type of attribute mapping defined in annotation form from being
overridden in XML to be a different mapping type. The provider is responsible only for implementing
the overriding rules and likely won’t prevent this kind of behavior. This leads us to our second comment
about overriding, which is that when overriding annotations, we should use the correct and compatible
XML mapping. There are some cases where it might be valid to actually map an attribute differently in
XML, but these cases are few and far between and primarily for exceptional types of testing or
debugging.

CHAPTER 12 ■ XML MAPPING FILES

386

For example, one could imagine overriding a field mapped in annotation form as a basic mapping
with a transient mapping in XML. This would be completely legal, but not necessarily a good idea. At
some point, a client of the entity might actually be trying to access that state, and if it is not being
persisted, the client might get quite confused and fail in curious ways that are difficult to debug. An
address association property mapped as a many-to-one mapping could conceivably be overridden to be
stored serially as a blob, but this could not only break client access but also spill over to break other areas
like JP QL queries that traverse the address.

The rule of thumb is that mappings should be overridden primarily to change the data-level
mapping information. This would normally need to be done when, for example, an application is
developed on one database but deployed to another or must deploy to multiple different databases in
production. In these cases, the XML mappings would likely be xml-mapping-metadata-complete anyway,
and the XML metadata would be used in its entirety rather than cobbling together bits of annotations
and bits of XML and trying to keep it all straight across multiple database XML mapping configurations.

Tables
Specifying tables in XML works pretty much the same way as it does in annotation form. The same
defaults are applied in both cases. There are two elements for specifying table information for a
managed class: table and secondary-table.

table

A table element can occur as a subelement of entity and describes the table that the entity is mapped
to. It corresponds to the @Table annotation (refer to Chapter 4) and has name, catalog, and schema
attributes. One or more unique-constraint subelements might be included if unique column constraints
are to be created in the table during schema generation.

If a @Table annotation exists on the entity, the table element will override the table defined by the
annotation. Overriding a table is usually accompanied also by the overridden mappings of the persistent
state to the overridden table. In Listing 12-14 is an example that shows how an entity can be mapped to a
different table than what it is mapped to by an annotation.

Listing 12-14. Overriding a Table

@Entity
@Table(name="EMP", schema="HR")
public class Employee { ... }

<entity class="examples.model.Employee">
 <table name="EMP_REC" schema="HR"/>
 ...
</entity>

secondary-table

Any number of secondary tables can be added to the entity by adding one or more secondary-table
subelements to the entity element. This element corresponds to the @SecondaryTable annotation (refer
to Chapter 10), and if it is present in an entity element, it will override any and all secondary tables that
are defined in annotations on the entity class. The name attribute is required, just as the name is required
in the annotation. The schema and catalog attributes and the unique-constraint subelements can be
included, just as with the table element.

CHAPTER 12 ■ XML MAPPING FILES

387

Every secondary table needs to be joined to the primary table through a primary key join column
(refer to Chapter 10). The primary-key-join-column element is a subelement of the secondary-table
element and corresponds to the @PrimaryKeyJoinColumn annotation. As with the annotation, this is
required only if the primary key column of the secondary table is different from that of the primary table.
If the primary key happens to be a compound primary key, multiple primary-key-join-column elements
can be specified.

Listing 12-15 compares the specification of secondary tables in annotation and XML form.

Listing 12-15. Specifying Secondary Tables

@Entity
@Table(name="EMP")
@SecondaryTables({
 @SecondaryTable(name="EMP_INFO"),
 @SecondaryTable(name="EMP_HIST",
 pkJoinColumns=@PrimaryKeyJoinColumn(name="EMP_ID"))
 })
public class Employee {
 @Id private int id;
 // ...
}

<entity class="examples.model.Employee">
 <table name="EMP"/>
 <secondary-table name="EMP_INFO"/>
 <secondary-table name="EMP_HIST">
 <primary-key-join-column name="EMP_ID"/>
 </secondary-table>
 ...
</entity>

Identifier Mappings
The three different types of identifier mappings can also be specified in XML. Overriding applies to the
configuration information within a given identifier type, but the identifier type of a managed class
should almost never be changed.

id

The id element is the most common method used to indicate the identifier for an entity. It corresponds
to the @Id annotation but also encapsulates metadata that is relevant to identifiers. This includes a
number of subelements, the first of which is the column subelement. It corresponds to the @Column
annotation that might accompany an @Id annotation on the field or property. When not specified, the
default column name will be assumed even if a @Column annotation exists on the field or property. As we
discussed in the “Attributes” section, this is because the XML mapping of the attribute overrides the
entire group of mapping metadata on the field or property.

A generated-value element corresponding to the @GeneratedValue annotation can also be included
in the id element. It is used to indicate that the identifier will have its value automatically generated by
the provider (refer to Chapter 4). This generated-value element has strategy and generator attributes
that match those on the annotation. The named generator can be defined anywhere in the persistence

CHAPTER 12 ■ XML MAPPING FILES

388

unit. Sequence and table generators can also be defined within the id element. These were discussed in
the “Queries and Generators” section.

An example of overriding an id mapping is to change the generator for a given database (see Listing
12-16).

Listing 12-16. Overriding an Id Generator

@Entity
public class Employee {
 @Id @GeneratedValue(strategy=GenerationType.TABLE, generator="empTab")
 @TableGenerator(name="empTab", table="ID_GEN")
 private long id;
 // ...
}

<entity class="examples.model.Employee">
 ...
 <attributes>
 <id name="id">
 <generated-value strategy="SEQUENCE" generator="empSeq"/>
 <sequence-generator name="empSeq" sequence-name="mySeq"/>
 </id>
 ...
 </attributes>
</entity>

embedded-id

An embedded-id element is used when a compound primary key class is used as the identifier (refer to
Chapter 10). It corresponds to the @EmbeddedId annotation and is really just mapping an embedded class
as the identifier. All the state is actually mapped within the embedded object, so there are only attribute
overrides available within the embedded-id element. As we will discuss in the “Embedded Object
Mappings” section, attribute overrides allow mapping of the same embedded object in multiple entities.
The zero or more attribute-override elements in the property or field mapping of the entity provide the
local overrides that apply to the entity table. Listing 12-17 shows how to specify an embedded identifier
in annotation and XML form.

Listing 12-17. Specifying an Embedded Id

@Entity
public class Employee {
 @EmbeddedId private EmployeePK id;
 // ...
}

<entity class="examples.model.Employee">
 ...
 <attributes>
 <embedded-id name="id"/>
 ...
 </attributes>
</entity>

CHAPTER 12 ■ XML MAPPING FILES

389

id-class

An id class is one strategy that can be used for a compound primary key (refer to Chapter 10). The id-
class subelement of an entity or mapped-superclass element corresponds to the @IdClass annotation,
and when it is specified in XML, it will override any @IdClass annotation on the class. Overriding the id
class should not normally be done in practice because code that uses the entities will typically assume a
particular identifier class.

The name of the class is indicated as the value of the class attribute of the id-class element, as
shown in Listing 12-18.

Listing 12-18. Specifying an Id Class

@Entity
@IdClass(EmployeePK.class)
public class Employee { ... }

<entity class="examples.model.Employee">
 ...
 <id-class="examples.model.EmployeePK"/>
 ...
</entity>

Simple Mappings
A simple mapping takes an attribute and maps it to a single column in a table. The majority of persistent
state mapped by an entity will be composed of simple mappings. In this section, we will discuss basic
mappings and also cover the metadata for versioning and transient attributes.

basic

Basic mappings were discussed in detail in the early part of the book; they map a simple state field or
property to a column in the table. The basic element provides this same ability in XML and corresponds
to the @Basic annotation. Unlike the @Basic annotation that we described in Chapter 4 that is rarely
used, the basic element is required when mapping persistent state to a specific column. Just as with
annotations, when a field or property is not mapped, it will be assumed to be a basic mapping and will
be defaulted as such. This will occur if the field or property is not annotated or has no named
subelement entry in the attributes element.

In addition to a name, the basic element has fetch and optional attributes that can be used for lazy
loading and optionality. They are not required and not very useful at the level of a field or property. The
only other attribute of the basic element is the access attribute. When specified, it will cause the state to
be accessed using the prescribed mode.

The most important and useful subelement of basic is the column element. Three other subelements
can optionally be included inside the basic element. They are used to indicate the type to use when
communicating with the JDBC driver to the database column. The first is an empty lob element that
corresponds to the @Lob annotation. This is used when the target column is a large object type. Whether
it is a character or binary object depends upon the type of the field or property.

Next is the temporal element that contains one of DATE, TIME, or TIMESTAMP as its content. It
corresponds to the @Temporal annotation and is used for fields of type java.util.Date or
java.util.Calendar.

CHAPTER 12 ■ XML MAPPING FILES

390

Finally, if the field or property is an enumerated type, and the enumerated values are to be mapped
using strings instead of ordinals, the enumerated element should be used. It corresponds to the
@Enumerated annotation, and contains either ORDINAL or STRING as its content.

Listing 12-19 shows some examples of basic mappings. By not specifying the column in the basic
element mapping for the name field, the column is overridden from using the annotated EMP_NAME column
to being defaulted to NAME. The comments field, however, is overridden from using the default to being
mapped to the COMM column. It is also stored in a character large object (CLOB) column due to the lob
element being present and the fact that the field is a String. The type field is overridden to be mapped to
the STR_TYPE column, and the enumerated type of STRING is specified to indicate that the values should
be stored as strings. The salary field does not have any metadata either in annotation or XML form and
continues to be mapped to the default column name of SALARY.

Listing 12-19. Overriding Basic Mappings

@Entity
public class Employee {
 // ...
 @Column(name="EMP_NAME")
 private String name;
 private String comments;
 private EmployeeType type;
 private long salary;
 // ...
}

orm.xml snippet:

<entity class="examples.model.Employee">
 ...
 <attributes>
 ...
 <basic name="name"/>
 <basic name="comments">
 <column name="COMM"/>
 <lob/>
 </basic>
 <basic name="type">
 <column name="STR_TYPE"/>
 <enumerated>STRING</enumerated>
 </basic>
 ...
 </attributes>
</entity>

transient

A transient element marks a field or property as being non-persistent. It is equivalent to the @Transient
annotation or having a transient qualifier on the field or property. Listing 12-20 shows an example of
how to set a field to be transient.

CHAPTER 12 ■ XML MAPPING FILES

391

Listing 12-20. Setting a Transient Field in a Mapping File

<entity-mappings>
 <entity class="examples.model.Employee">
 <attributes>
 <transient name="cacheAge"/>
 ...
 </attributes>
 </entity>
</entity-mappings>

version

The version element is used to map the version number field in the entity. It corresponds to the
@Version annotation and is normally mapped to an integral field for the provider to increment when it
makes persistent changes to the entity (refer to Chapter 11). The column subelement specifies the
column that stores the version data. Only one version field should exist for each entity. Listing 12-21
shows how a version field is specified in annotations and XML.

Listing 12-21. Specifying the Version

@Entity
public class Employee {
 // ...
 @Version
 private int version;
 // ...
}

orm.xml snippet:

<entity-mappings>
 <entity class="examples.model.Employee">
 <attributes>
 ...
 <version name="version"/>
 ...
 </attributes>
 </entity>
 ...
</entity-mappings>

Relationship and Collection Mappings
Like their annotation counterparts, the XML relationship and collection elements are used to map the
associations and element collections.

We are now confronted yet again with the problem of an overloaded term. Throughout this chapter,
we have been using the term element to signify an XML token (the thing with angled brackets around it).
But in Chapter 5 we introduced the notion of an element collection, a mapping that designates a

CHAPTER 12 ■ XML MAPPING FILES

392

collection of either simple objects or embeddable objects. The following sections discuss each of the
relationship and element collection mapping types that exist in XML.

many-to-one

To create a many-to-one mapping for a field or property, the many-to-one element can be specified. This
element corresponds to the @ManyToOne annotation and, like the basic mapping, has fetch, optional and
access attributes.

Normally the target entity is known by the provider because the field or property is almost always of
the target entity type, but if not then the target-entity attribute should also be specified. When the
many-to-one foreign key contributes to the identifier of the entity and the @MapsId annotation described
in Chapter 10 applies then the maps-id attribute would be used. The value, when required, is the name of
the embeddable attribute of the embedded id class that maps the foreign key relationship. If, on the
other hand, the relationship is part of the identifier but a simple @Id would be applied to the relationship
field or property, the boolean id attribute of the many-to-one element should be specified and set to true.

A join-column element can be specified as a subelement of the many-to-one element when the
column name is different from the default. If the association is to an entity with a compound primary
key, multiple join-column elements will be required. Mapping an attribute using a many-to-one element
causes the mapping annotations that might have been present on that attribute to be ignored. All the
mapping information for the relationship, including the join column information, must be specified or
defaulted within the many-to-one XML element.

Instead of a join column, it is possible to have a many-to-one or one-to-many relationship that uses
a join table. It is for this case that a join-table element can be specified as a subelement of the many-to-
one element. The join-table element corresponds to the @JoinTable annotation and contains a
collection of join-column elements that join to the owning entity, which is normally the many-to-one
side. A second set of join columns joins the join table to the inverse side of the relationship. They are
called inverse-join-column elements. In the absence of one or both of these, the default values will
be applied.

Unique to relationships is the ability to cascade operations across them. The cascade settings for a
relationship dictate which operations are cascaded to the target entity of the many-to-one mapping. To
specify how cascading should occur, a cascade element should be included as a subelement of the many-
to-one element. Within the cascade element, we can include our choice of empty cascade-all, cascade-
persist, cascade-merge, cascade-remove, cascade-refresh, or cascade-detach subelements that dictate
that the given operations be cascaded. Of course, specifying cascade elements in addition to the
cascade-all element is simply redundant.

Now we come to an exception to our rule that we gave earlier when we said that overriding of
mappings will typically be for physical data overrides. When it comes to relationships, there are times
where you will want to test the performance of a given operation and would like to be able to set certain
relationships to load eagerly or lazily. You will not want to go through the code and have to keep
changing these settings back and forth, however. It would be more practical to have the mappings that
you are tuning in XML and just change them when required.3 Listing 12-22 shows overriding two many-
to-one relationships to be lazily loaded.

3 Some have argued that these kinds of tuning exercises are precisely why XML should be used to begin
with.

CHAPTER 12 ■ XML MAPPING FILES

393

Listing 12-22. Overriding Fetch Mode

@Entity
public class Employee {
 // ...
 @ManyToOne
 private Address address;
 @ManyToOne
 @JoinColumn(name="MGR")
 private Employee manager;
 // ...
}

<entity class="examples.model.Employee">
 ...
 <attributes>
 ...
 <many-to-one name="address" fetch="LAZY"/>
 <many-to-one name="manager" fetch="LAZY">
 <join-column name="MGR"/>
 </many-to-one>
 ...
 </attributes>
</entity>

one-to-many

A one-to-many mapping is created by using a one-to-many element. This element corresponds to the
@OneToMany annotation and has the same optional target-entity, fetch, and access attributes that were
described in the many-to-one mapping. It has an additional attribute called mapped-by, which indicates
the field or property of the owning entity (refer to Chapter 4) and an orphan-removal attribute to specify
that orphaned entities should be automatically removed (refer to Chapter 10).

A one-to-many mapping is a collection-valued association, and the collection can be a List, Map,
Set, or Collection. If it is a List, the elements can be populated in a specific order by specifying an
order-by subelement. This element corresponds to the @OrderBy annotation and will cause the contents
of the list to be ordered by the specific field or property name that is specified in the element content.
Alternatively, a List can have its order persisted using an order-column subelement, which provides all
the functionality of its @OrderColumn annotation counterpart.

If the collection is a Map, there are a number of different options, depending upon the key type. If the
key type is a field or property of the target entity, an optional map-key subelement can be specified to
indicate the name of the field or property to use as the key. This element corresponds to the @MapKey
annotation and will default to the primary key field or property when none is specified. If the key type is
an entity, a map-key-join-column can be used, whereas if the key is a basic type, a map-key-column
subelement indicates the column that stores the key. Furthermore, for basic keys, map-key-enumerated
or map-key-temporal can be used if the basic type is an enumerated or temporal type, respectively. If the
key type is an embeddable type, map-key-attribute-override can be specified to override where an
embedded field or property of the embeddable type is mapped. The map-key-class subelement is
included to indicate the type of the key when the Map is not generically typed, and the key is not a field or
property of the target entity.

A join table is used by default to map a unidirectional one-to-many association that does not store a
join column in the target entity. To make use of this kind of mapping, the mapped-by attribute is omitted,

CHAPTER 12 ■ XML MAPPING FILES

394

and the join-table element is included. If the mapping is a unidirectional one-to-many with the foreign
key in the target table, one or more join-column subelements are used instead of the join-table. The
join-column elements apply to the target entity table, though, not the source entity table (refer to
Chapter 10).

Finally, cascading across the relationship is specified through an optional cascade element. Listing
12-23 shows a bidirectional one-to-many mapping, both in annotations and XML.

Listing 12-23. Specifying a One-to-Many Mapping

@Entity
public class Employee {
 // ...
 @OneToMany(mappedBy="manager")
 @OrderBy
 private List<Employee> directs;
 @ManyToOne
 private Employee manager;
 // ...
}

orm.xml snippet:

<entity class="examples.model.Employee">
 ...
 <attributes>
 ...
 <one-to-many name="directs" mapped-by="manager">
 <order-by/>
 </one-to-many>
 <many-to-one name="manager"/>
 ...
 </attributes>
</entity>

one-to-one

To map a one-to-one association, the one-to-one element must be used. This element corresponds to
the @OneToOne annotation that we described in Chapter 4 and has the same target-entity, fetch,
optional, access, maps-id, and id attributes that the many-to-one element has. It also has the mapped-by
and orphan-removal attributes that we saw in the one-to-many mapping to refer to the owning entity and
to cause orphaned target entities to be automatically removed.

A one-to-one element might contain a join-column element if it is the owner of the relationship or it
might have multiple join-column elements if the association is to an entity with a compound primary
key. In some legacy systems, it is mapped using a join table, so a join-table element should be used in
this case.

When the one-to-one association is joined using the primary keys of the two entity tables, instead of
using either the maps-id or id attributes, the one-to-one element might contain a primary-key-join-
column element. When it has a compound primary key, multiple primary-key-join-column elements will
be present. Either of primary-key-join-column or join-column elements might be present, but not both.

CHAPTER 12 ■ XML MAPPING FILES

395

■ NOTE The use of primary key join columns for one-to-one primary key associations was instituted in JPA 1.0.
In JPA 2.0, the option to use id and maps-id was introduced, and it is the preferred method going forward.

The annotated classes and XML mapping file equivalents for a one-to-one mapping using a primary
key association are shown in Listing 12-24.

Listing 12-24. One-to-One Primary Key Association

@Entity
public class Employee {
 // ...
 @OneToOne(mappedBy="employee")
 private ParkingSpace parkingSpace;
 // ...
}

@Entity
public class ParkingSpace {
 @Id
 private int id;
 // ...
 @OneToOne @MapsId
 private Employee employee;
 // ...
}

orm.xml snippet:

<entity-mappings>
 <entity class="examples.model.Employee">
 <attributes>
 ...
 <one-to-one name="parkingSpace" mapped-by="employee"/>
 ...
 </attributes>
 </entity>
 <entity class="examples.model.ParkingSpace">
 <attributes>
 ...
 <one-to-one name="employee" maps-id=”true”/>
 ...
 </attributes>
 </entity>
</entity-mappings>

CHAPTER 12 ■ XML MAPPING FILES

396

many-to-many

Creating a many-to-many association is done through the use of a many-to-many element. This element
corresponds to the @ManyToMany annotation (refer to Chapter 4) and has the same optional target-
entity, fetch, access, and mapped-by attributes that were described in the one-to-many mapping.

Also, being a collection-valued association like the one-to-many mapping, it supports the same
order-by, order-column, map-key, map-key-class, map-key-column, map-key-join-column, map-key-
enumerated, map-key-temporal, map-key-attribute-override, join-table, and cascade subelements as
the one-to-many mapping. Listing 12-25 shows an entity class example and equivalent XML, with a
sample many-to-many relationship.

Listing 12-25. Many-to-Many Mapping Annotations and XML

@Entity
public class Employee {
 // ...
 @ManyToMany
 @MapKey(name="name")
 @JoinTable(name="EMP_PROJ",
 joinColumns=@JoinColumn(name="EMP_ID"),
 inverseJoinColumns=@JoinColumn(name="PROJ_ID"))
 private Map<String, Project> projects;
 // ...
}

@Entity
public class Project {
 // ...
 private String name;
 @ManyToMany(mappedBy="projects")
 private Collection<Employee> employees;
 // ...
}

orm.xml snippet:

<entity-mappings>
 <entity class="examples.model.Employee">
 <attributes>
 ...
 <many-to-many name="projects">
 <map-key name="name"/>
 <join-table name="EMP_PRJ">
 <join-column name="EMP_ID"/>
 <inverse-join-column name="PROJ_ID"/>
 </join-table>
 </many-to-many>
 ...
 </attributes>
 </entity>
 <entity class="examples.model.Project">
 <attributes>
 ...
 <many-to-many name="employee" mapped-by="projects"/>

CHAPTER 12 ■ XML MAPPING FILES

397

 ...
 </attributes>
 </entity>
</entity-mappings>

element-collection

A collection of basic or embeddable objects is mapped using an element-collection element, which
corresponds to the @ElementCollection annotation (refer to Chapter 5) and has the same optional
target-entity, fetch, and access attributes that were described in the one-to-many and many-to-many
mapping sections.

If the collection is a List, one of order-by or order-column can be specified as a subelement. If the
collection is a Map and contains embeddables as values, a map-key element can be used to indicate that a
field or property in the embeddable value is to be used as the map key. Alternatively, the various map-
key-column, map-key-join-column, map-key-enumerated, map-key-temporal, map-key-attribute-override,
and map-key-class can be used as described in the one-to-many section.

Embeddables can contain basic mappings as well as relationships, so in order to override the
columns and join columns that embeddable objects are mapped to, the attribute-override and
association-override subelements are used.

If the value is a basic type, the column subelement with the possibility of additional temporal, lob
and enumerated subelements can be included. These all refer to the basic values in the collection, and the
column element refers to the column in the collection table that stores the values.

Finally, element collections are stored in a collection table, so the collection-table subelement will
obviously be a common one. It corresponds to the @CollectionTable annotation and refers to the table
that stores the basic or embeddable objects in the collection as well as the keys that index them if the
collection is a Map. An example of a Map element collection is one that stores the number of hours worked
against a particular project name, as shown in Listing 12-26.

Listing 12-26. Element Collection of Integers with String Keys

@Entity
public class Employee {
 // ...
 @ElementCollection(targetClass=java.lang.Integer)
 @MapKeyClass(name="java.lang.String")
 @MapKeyColumn(name=”PROJ_NAME”)
 @Column(name=”HOURS_WORKED”)
 @CollectionTable(name="PROJ_TIME")
 private Map projectHours;
 // ...
}

orm.xml snippet:

<entity class="examples.model.Employee">
 <attributes>
 ...
 <element-collection name="projectHours" target-class=”java.lang.Integer“>
 <map-key-class name="java.lang.String"/>
 <map-key-column name="PROJ_NAME"/>
 <column name="HOURS_WORKED"/>
 <collection-table name="PROJ_TIME"/>
 </element-collection>

CHAPTER 12 ■ XML MAPPING FILES

398

 </attributes>
></entity>

Embedded Object Mappings
An embedded object is a class that depends on its parent entity for its identity. Embedded objects are
specified in XML using the embedded element and are customized using the attribute-override element.

embedded

An embedded element is used for mapping an embedded object contained within a field or property (refer
to Chapter 4). It corresponds to the @Embedded annotation, and permits an access attribute to be
specified to dictate whether the state is to be accessed using a field or property. Because the persistent
state is mapped within the embedded object, only the attribute-override and association-override
subelements are allowed within the embedded element.

There must be an embeddable class entry in a mapping file for the embedded object, or it must be
annotated as @Embeddable. An example of overriding an embedded Address is shown in Listing 12-27.

Listing 12-27. Embedded Mappings in Annotations and XML

@Entity
public class Employee {
 // ...
 @Embedded
 private Address address;
 // ...
}

@Embeddable
public class Address {
 private String street;
 private String city;
 private String state;
 private String zip;
 // ...
}

orm.xml snippet:

<entity-mappings>
 <entity class="examples.model.Employee">
 <attributes>
 ...
 <embedded name="address"/>
 ...
 </attributes>
 </entity>
 <embeddable class="examples.model.Address"/>
</entity-mappings>

CHAPTER 12 ■ XML MAPPING FILES

399

attribute-override

When an embedded object is used by multiple entity types, it is likely that some of the basic mappings
in the embedded object will need to be remapped by one or more of the entities (refer to Chapter 4). The
attribute-override element can be specified as a subelement of the embedded, embedded-id, and
element-collection elements to accommodate this case.

The annotation that corresponds to the attribute-override element is the @AttributeOverride
annotation. This annotation can be on the entity class or on a field or property that stores an embedded
object, collection of embedded objects, or embedded id. When an @AttributeOverride annotation is
present in the entity, it will be overridden only by an attribute-override element in the entity mapping
file entry that specifies the same named field or property. Our earlier algorithm still holds if we think of
the attribute overrides as keyed by the name of the field or property that they are overriding. All the
annotation overrides for an entity are gathered, all the XML overrides for the class are applied on top of
the annotation overrides. If there is an override in XML for the same named field or property, it will
overwrite the annotated one. The remaining non-overlapping overrides from annotations and XML will
also be applied.

The attribute-override element stores the name of the field or property in its name attribute and the
column that the field or property maps to as a column subelement. Listing 12-28 revisits Listing 12-27 and
overrides the state and zip fields of the embedded address.

Listing 12-28. Using Attribute Overrides

@Entity
public class Employee {
 // ...
 @Embedded
 @AttributeOverrides({
 @AttributeOverride(name="state", column=@Column(name="PROV")),
 @AttributeOverride(name="zip", column=@Column(name="PCODE"))})
 private Address address;
 // ...
}

orm.xml snippet:

<entity class="examples.model.Employee">
 <attributes>
 ...
 <embedded name="address">
 <attribute-override name="state">
 <column name="PROV"/>
 </attribute-override>
 <attribute-override name="zip">
 <column name="PCODE"/>
 </attribute-override>
 </embedded>
 ...
 </attributes>
</entity>

CHAPTER 12 ■ XML MAPPING FILES

400

association-override

Embeddable objects also support relationship mappings, although it is a less common requirement.
When a many-to-one or one-to-one relationship is present in an embeddable, a join column is mapped
either explicitly or by default by the association in the embedded object. Reusing the embeddable type
within another entity class means there is a possibility that the join column will need to be remapped.
The association-override element, which corresponds to the @AssociationOverride annotation (refer to
Chapter 10), can be included as a subelement of the embedded, embedded-id and element-collection
elements to accommodate this case.

The association-override element maps the name of the field or property in its name attribute and
the join columns that the field or property maps to as one or more join-column subelements. If the
mapping being overridden uses a join table, the join-table subelement is used instead of join-column.

The same XML overriding annotation rules apply as were described for attribute overrides.
Listing 12-29 revisits our embedded example again, but this time overrides the city association in

the embedded address.

Listing 12-29. Using Association Overrides

@Entity
public class Employee {
 // ...
 @Embedded
 @AssociationOverride(name="city", joinColumns=@JoinColumn(name="CITY_ID"))
 private Address address;
 // ...
}

@Embeddable
public class Address {
 private String street;
 @ManyToOne
 @JoinColumn(name=”CITY”)
 private City city;
 // ...
}

orm.xml snippet:

<entity class="examples.model.Employee">
 <attributes>
 ...
 <embedded name="address">
 <association-override name="city">
 <join-column name="CITY_ID"/>
 </association-override>
 </embedded>
 ...
 </attributes>
</entity>

CHAPTER 12 ■ XML MAPPING FILES

401

Inheritance Mappings
An entity inheritance hierarchy is mapped using the inheritance, discriminator-column, and
discriminator-value elements. If the inheritance strategy is changed, it must be overridden for the
entire entity hierarchy.

inheritance

The inheritance element is specified to indicate the root of an inheritance hierarchy. It corresponds to
the @Inheritance annotation and indicates the inheritance-mapping strategy that is to be used. When it
is included in the entity element, it will override any inheritance strategy that is defined or defaulted in
the @Inheritance annotation on the entity class.

Changing the inheritance strategy can cause repercussions that spill out into other areas. For
example, changing a strategy from single table to joined will likely require adding a table to each of the
entities below it. The example in Listing 12-30 overrides an entity hierarchy from using a single table to
using a joined strategy.

Listing 12-30. Overriding an Inheritance Strategy

@Entity
@Table(name="EMP")
@Inheritance
@DiscriminatorColumn(name="TYPE")
public abstract class Employee { ... }

@Entity
@DiscriminatorValue("FT")
public class FullTimeEmployee { ... }

@Entity
@DiscriminatorValue("PT")
public class PartTimeEmployee { ... }

orm.xml snippet:

<entity-mappings>
 <entity class="examples.model.Employee">
 <table name="EMP"/>
 <inheritance strategy="JOINED"/>
 ...
 </entity>
 <entity class="examples.model.FullTimeEmployee">
 <table name="FT_EMP"/>
 ...
 </entity>
 <entity class="examples.model.PartTimeEmployee">
 <table name="PT_EMP"/>
 ...
 </entity>
</entity-mappings>

CHAPTER 12 ■ XML MAPPING FILES

402

discriminator-column

Discriminator columns store values that differentiate between concrete entity subclasses in an
inheritance hierarchy (refer to Chapter 10). The discriminator-column element is a subelement of the
entity or entity-result elements and is used to define or override the discriminator column. It
corresponds to and overrides the @DiscriminatorColumn annotation and has attributes that include the
name, discriminator-type, columnDefinition, and length. It is an empty element that has no
subelements.

The discriminator-column element is not typically used to override a column on its own but in
conjunction with other inheritance and table overrides. Listing 12-31 demonstrates specifying a
discriminator column.

Listing 12-31. Specifying a Discriminator Column

@Entity
@Inheritance
@DiscriminatorColumn(name="TYPE")
public abstract class Employee { ... }

orm.xml snippet:

<entity class="examples.model.Employee">
 <inheritance/>
 <discriminator-column name="TYPE"/>
 ...
</entity >

discriminator-value

A discriminator-value element is used to declare the value that identifies the concrete entity subclass
that is stored in a database row (refer to Chapter 10). It exists only as a subelement of the entity
element. The discriminator value is indicated by the content of the element. It has no attributes or
subelements.

The discriminator-value element corresponds to the @DiscriminatorValue annotation and
overrides it when it exists on the entity class. As with the other inheritance overrides, it is seldom used
as an override. Even when a hierarchy is remapped to a different database or set of tables, it will not
normally be necessary to override the value. Listing 12-32 shows how to specify a discriminator value in
annotation and XML form.

Listing 12-32. Specifying a Discriminator Column

@Entity
@DiscriminatorValue("FT")
public class FullTimeEmployee extends Employee { ... }

orm.xml snippet:

<entity class="examples.model.FullTimeEmployee">
 <discriminator-value>FT</discriminator-value>
 ...
</entity >

CHAPTER 12 ■ XML MAPPING FILES

403

attribute-override and association-override

Simple mappings and associations can be overridden through the use of attribute overrides and
association overrides, but only in the case of an entity that is the subclass of a mapped superclass.
Simple persistent state or association state that is inherited from an entity superclass cannot portably be
overridden.

An example of overriding two simple name and salary persistent field mappings, and a manager
association with a compound primary key, is shown in Listing 12-33.

Listing 12-33. Using Attribute and Association Overrides with Inheritance

@MappedSuperclass
@IdClass(EmployeePK.class)
public abstract class Employee {
 @Id private String name;
 @Id private java.sql.Date dob;
 private long salary;
 @ManyToOne
 private Employee manager;
 // ...
}

@Entity
@Table(name="PT_EMP")
@AttributeOverrides({
 @AttributeOverride(name="name", column=@Column(name="EMP_NAME")),
 @AttributeOverride(name="salary", column=@Column(name="SAL"))})
@AssociationOverride(name="manager",
 joinColumns={
 @JoinColumn(name="MGR_NAME", referencedName="EMP_NAME"),
 @JoinColumn(name="MGR_DOB", referencedName="DOB")})
public class PartTimeEmployee extends Employee { ... }

orm.xml snippet:

<entity class="examples.model.PartTimeEmployee">
 ...
 <attribute-override name="name">
 <column name="EMP_NAME"/>
 </attribute-override>
 <attribute-override name="salary">
 <column name="SAL"/>
 </attribute-override>
 <association-override name="manager">
 <join-column name="MGR_NAME" referenced-column-name="EMP_NAME"/>
 <join-column name="MGR_DOB" referenced-column-name="DOB"/>
 </association-override>
 ...
</entity>

CHAPTER 12 ■ XML MAPPING FILES

404

Lifecycle Events
All the lifecycle events that can be associated with a method in an entity listener can also be associated
directly with a method in an entity or mapped superclass (refer to Chapter 11). The pre-persist, post-
persist, pre-update, post-update, pre-remove, post-remove, and post-load methods are all valid
subelements of the entity or mapped-superclass elements. Each of them can occur only once in each
class. Each lifecycle event element will override any entity callback method of the same event type that
might be annotated in the entity class.

Before anyone goes out and overrides all their annotated callback methods with XML overrides, we
should mention that the use case for doing such a thing borders on, if not completely falls off into, the
non-existent. An example of specifying an entity callback method in annotations and in XML is shown in
Listing 12-34.

Listing 12-34. Specifying Lifecycle Callback Methods

@Entity
public class Employee {
 // ...
 @PrePersist
 @PostLoad
 public void initTransientState() { ... }
 // ...
}

orm.xml snippet:

<entity class="examples.model.Employee">
 ...
 <pre-persist method-name="initTransientState"/>
 <post-load method-name="initTransientState"/>
 ...
</entity>

Entity Listeners
Lifecycle callback methods defined on a class other than the entity class are called entity listeners. The
following sections describe how to configure entity listeners in XML using the entity-listeners element
and how to exclude inherited and default listeners.

entity-listeners

One or more ordered entity listener classes can be defined in an @EntityListeners annotation on an
entity or mapped superclass (refer to Chapter 11). When a lifecycle event fires, the listeners that have
methods for the event will get invoked in the order in which they are listed. The entity-listeners
element can be specified as a subelement of an entity or mapped-superclass element to accomplish
exactly the same thing. It will also have the effect of overriding the entity listeners defined in an
@EntityListeners annotation with the ones defined in the entity-listeners element.

An entity-listeners element includes a list of ordered entity-listener subelements, each of
which defines an entity-listener class in its class attribute. For each listener, the methods
corresponding to lifecycle events must be indicated as subelement events. The events can be one or
more of pre-persist, post-persist, pre-update, post-update, pre-remove, post-remove, and post-load,

CHAPTER 12 ■ XML MAPPING FILES

405

which correspond to the @PrePersist, @PostPersist, @PreUpdate, @PostUpdate, @PreRemove, @PostRemove,
and @PostLoad annotations, respectively. Each of the event subelements has a method-name attribute that
names the method to be invoked when its lifecycle event is triggered. The same method can be supplied
for multiple events, but no more than one event of the same type can be specified on a single listener
class.

The entity-listeners element can be used to disable all the entity listeners defined on a class or
just add an additional listener. Disabling listeners is not recommended, of course, because listeners
defined on a class tend to be fairly coupled to the class itself, and disabling them might introduce bugs
into either the class or the system as a whole.

Listing 12-35 shows that the XML mapping file is overriding the entity listeners on the Employee
class. It is keeping the existing ones, but also adding one more at the end of the order to notify the IT
department to remove an employee’s user accounts when he or she leaves the company.

Listing 12-35. Overriding Entity Listeners

@Entity
@EntityListeners({ EmployeeAuditListener.class, NameValidator.class })
public class Employee { ... }

public class EmployeeAuditListener {
 @PostPersist
 public void employeeCreated(Employee emp) { ... }
 @PostUpdate
 public void employeeUpdated(Employee emp) { ... }
 @PostRemove
 public void employeeRemoved(Employee emp) { ... }
}
public class NameValidator {
 @PrePersist
 public void validateName(Employee emp) { ... }
}
public class EmployeeExitListener {
 public void notifyIT(Employee emp) { ... }
}

orm.xml snippet:

<entity class="examples.model.Employee">
 ...
 <entity-listeners>
 <entity-listener class="examples.listeners.EmployeeAuditListener">
 <post-persist method-name="employeeCreated"/>
 <post-update method-name="employeeUpdated"/>
 <post-remove method-name="employeeRemoved"/>
 </entity-listener>
 <entity-listener class="examples.listeners.NameValidator">
 <pre-persist method-name="validateName"/>
 </entity-listener>
 <entity-listener class="examples.listeners.EmployeeExitListener">
 <post-remove method-name="notifyIT"/>
 </entity-listener>
 </entity-listeners>
 ...
</entity>

CHAPTER 12 ■ XML MAPPING FILES

406

Note that we have fully specified each of the entity callback listeners in XML. Some vendors will find
the lifecycle event annotations on the EmployeeAuditListener and NameValidator entity listener classes,
but this is not required behavior. To be portable, the lifecycle event methods should be specified in each
of the entity-listener elements.

exclude-default-listeners

The set of default entity listeners that applies to all entities is defined in the entity-listeners
subelement of the persistence-unit-defaults element (see the entity-listeners section). These
listeners can be turned off or disabled for a particular entity or hierarchy of entities by specifying an
empty exclude-default-listeners element within the entity or mapped-superclass element. This is
equivalent to the @ExcludeDefaultListeners annotation, and if either one is specified for a class, default
listeners are disabled for that class. Note that exclude-default-listeners is an empty element, not a
Boolean. If default entity listeners are disabled for a class by an @ExcludeDefaultListeners annotation,
there is currently no way to re-enable them through XML.

exclude-superclass-listeners

Entity listeners defined on the superclass of an entity will normally be fired before the entity listeners
defined on the entity class itself are fired (refer to Chapter 11). To disable the listeners defined on an
entity superclass or mapped superclass, an empty exclude-superclass-listeners element can be
supplied inside an entity or mapped-superclass element. This will disable the superclass listeners for the
managed class and all its subclasses.

The exclude-superclass-listeners element corresponds to the @ExcludeSuperclassListeners
annotation and, like the exclude-default-listeners/@ExcludeDefaultListeners pair, either one of the
two can be specified in order to disable the superclass listeners for the entity or mapped superclass and
its subclasses.

Summary
With all the XML mapping information under your belt, you should now be able to map entities using
annotations, XML, or a combination of the two. In this chapter, we went over all the elements in the
mapping file and compared them with their corresponding annotations. We discussed how each of the
elements is used, what they override, and how they are overridden. We also used them in some short
examples.

Defaults can be specified in the mapping files at different levels, from the global persistence unit
level to the mapping file level. We covered what each of the defaulting scopes was and how they were
applied.

The next chapter shows how to package and deploy applications that use JPA. We will also look at
how XML mapping files are referenced as part of a persistence unit configuration.

C H A P T E R 13

■ ■ ■

407

Packaging and Deployment

Configuring a persistence application involves specifying the bits of information, additional to the code,
that the execution environment or persistence platform may require in order for the code to function as
a runtime application. Packaging means putting all the pieces together in a way that makes sense and
can be correctly interpreted and used by the infrastructure when the application is deployed into an
application server or run in a stand-alone JVM. Deployment is the process of getting the application into
an execution environment and running it.

One could view the mapping metadata as part of the overall configuration of an application, but we
won’t cover that in this chapter because it has already been discussed in previous chapters. In this
chapter, we will be discussing the primary runtime persistence configuration file, persistence.xml,
which defines persistence units. We will go into detail about how to specify the different elements of this
file, when they are required, and what the values should be.

Once the persistence unit has been configured, we will package a persistence unit with a few of the
more common deployment units, such as EJB archives, web archives, and the application archives in a
Java EE server. The resulting package will then be deployable into a compliant application server. We
will also step through the packaging and deployment rules for Java SE applications.

Configuring Persistence Units
The persistence unit is the primary unit of runtime configuration. It defines the various pieces of
information that the provider needs to know in order to manage the persistent classes during program
execution and is configured within a persistence.xml file. There may be one or more persistence.xml
files in an application, and each persistence.xml file may define multiple persistence units. There will
most often be only one, though. Since there is one EntityManagerFactory for each persistence unit, you
can think of the configuration of the persistence unit as the configuration of the factory for that
persistence unit.

A common configuration file goes a long way to standardizing the runtime configuration, and the
persistence.xml file offers exactly that. While some providers might still require an additional provider-
specific configuration file, most will also support their properties being specified within the properties
section (described in the “Adding Vendor Properties” section) of the persistence.xml file.

The persistence.xml file is the first step to configuring a persistence unit. All the information
required for the persistence unit should be specified in the persistence.xml file. Once a packaging
strategy has been chosen, the persistence.xml file should be placed in the META-INF directory of the
chosen archive.

Each persistence unit is defined by a persistence-unit element in the persistence.xml file. All the
information for that persistence unit is enclosed within that element. The following sections describe the
metadata that a persistence unit may define when deploying to a Java EE server.

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

408

Persistence Unit Name
Every persistence unit must have a name that uniquely identifies it within the scope of its packaging. We
will be discussing the different packaging options later, but in general, if a persistence unit is defined
within a Java EE module, there must not be any other persistence unit of the same name in that module.
For example, if a persistence unit named “EmployeeService” is defined in an EJB JAR named
emp_ejb.jar, there should not be any other persistence units named “EmployeeService” in emp_ejb.jar.
There may be persistence units named “EmployeeService” in a web module or even in another EJB
module within the application, though.

We have seen in some of the examples in previous chapters that the name of the persistence unit is
just an attribute of the persistence-unit element, as in the following:

<persistence-unit name="EmployeeService"/>

This empty persistence-unit element is the minimal persistence unit definition. It may be all that is
needed if the server defaults the remaining information, but not all servers will do this. Some may
require other persistence unit metadata to be present, such as the data source to be accessed.

Transaction Type
The factory that is used to create entity managers for a given persistence unit will generate entity
managers to be of a specific transactional type. We went into detail in Chapter 6 about the different
types of entity managers, and one of the things that we saw was that every entity manager must either
use JTA or resource-local transactions. Normally, when running in a managed server environment, the
JTA transaction mechanism is used. It is the default transaction type that a server will assume when
none is specified for a persistence unit and is generally the only one that most applications will ever
need, so in practice the transaction type will not need to be specified very often.

If the data source is required by the server, as it often will be, a JTA-enabled data source should be
supplied (see the “Data Source” section). Specifying a data source that is not JTA-enabled might actually
work in some cases, but the database operations will not be participating in the global JTA transaction or
necessarily be atomic with respect to that transaction.

In situations such as those described in Chapter 6, when you want to use resource-local transactions
instead of JTA, the transaction-type attribute of the persistence-unit element is used to explicitly
declare the transaction type of RESOURCE_LOCAL or JTA, as in the following example:

<persistence-unit name="EmployeeService"
 transaction-type="RESOURCE_LOCAL"/>

Here we are overriding the default JTA transaction type to be resource-local, so all the entity
managers created in the “EmployeeService” persistence unit must use the EntityTransaction interface
to control transactions.

Persistence Provider
The Java Persistence API has a pluggable Service Provider Interface (SPI) that allows any compliant Java
EE server to communicate with any compliant persistence provider implementation. Servers normally
have a default provider, though, that is native to the server, meaning that it is implemented by the same
vendor or is shipped with the server. In most cases, this default provider will be used by the server, and
no special metadata will be necessary to explicitly specify it.

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

409

In order to switch to a different provider, the provider-supplied class that implements the
javax.persistence.spi.PersistenceProvider interface must be listed in the provider element. Listing
13-1 shows a simple persistence unit that explicitly defines the EclipseLink provider class. The only
requirement is that the provider JARs be on the server or application classpath and accessible to the
running application at deployment time.

Listing 13-1. Specifying a Persistence Provider

<persistence-unit name="EmployeeService">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
</persistence-unit>

Data Source
A fundamental part of the persistence unit metadata is the description of where the provider should
obtain database connections from in order to read and write entity data. The target database is specified
in terms of the name of a JDBC data source that is in the server JNDI space. This data source must be
globally accessible since the provider accesses it when the persistence application is deployed.

The typical case is that JTA transactions are used, so it is in the jta-data-source element that the
name of the JTA data source should be specified. Similarly, if the transaction type of the persistence unit
is resource-local, the non-jta-data-source element should be used.

Although JPA defines the standard elements in which to specify data source names, it does not
dictate the format. In the past, a data source was made available in JNDI by being configured in a server-
specific configuration file or management console. The name was not officially portable but in practice
they were usually of the form “jdbc/SomeDataSource”. Listing 13-2 shows how a Java EE 6 application-
scoped data source would be specified. This example assumes that the provider is being defaulted.

Listing 13-2. Specifying JTA Data Source

<persistence-unit name="EmployeeService">
 <jta-data-source>java:app/jdbc/EmployeeDS</jta-data-source>
</persistence-unit>

Java EE 6 Namespaces

Many applications will still use the naming approach that assumes a component scoped name (e.g.,
jdbc/SomeDataSource), but in Java EE 6 three new namespaces were introduced to allow names to refer to
global, application or module scope. By using the corresponding standard namespace prefixes of java:global,
java:app, or java:module, a resource can be made available to other components in a wider scope than just
the component, and the name would be portable across container implementations.
We will use the application namespace in our examples because we think of the application scope as being the
most useful and reasonable scope. Because no Java EE 6 applications existed at the time of this writing we cannot
say which one will be the most prevalent.

Some servers actually provide a default data source at the deployed Java EE application level, and if
the provider is a native implementation for the server, it may make use of this default. In other cases the
data source will need to be specified.

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

410

Some providers offer high-performance reading through database connections that are not
associated with the current JTA transaction. The query results are then returned and made conformant
with the contents of the persistence context. This improves the scalability of the application because the
database connection does not get enlisted in the JTA transaction until later on when it absolutely needs
to be, usually at commit time. To enable these types of scalable reads, the non-jta-data-source element
value would be supplied in addition to the jta-data-source element. An example of specifying these two
is in Listing 13-3.

Listing 13-3. Specifying JTA and Non-JTA Data Sources

<persistence-unit name="EmployeeService">
 <jta-data-source>java:app/jdbc/EmployeeDS</jta-data-source>
 <non-jta-data-source>java:app/jdbc/NonTxEmployeeDS</non-jta-data-source>
</persistence-unit>

Note that the “EmployeeDS” is a regularly configured data source that accesses the employee
database, but “NonTxEmployeeDS” is a separate data source configured to access the same employee
database but not be enlisted in JTA transactions.

Mapping Files
In Chapter 12, we used XML mapping files to supply mapping metadata. Part or all of the mapping
metadata for the persistence unit may be specified in mapping files. The union of all the mapping files
(and the annotations in the absence of xml-mapping-metadata-complete) will be the metadata that is
applied to the persistence unit.

You might wonder why multiple mapping files might be useful. There are actually numerous cases
for using more than one mapping file in a single persistence unit, but it really comes down to preference
and process. For example, you might want to define all the persistence-unit-level artifacts in one file and
all the entity metadata in another file. In another case, it may make sense for you to group all the queries
together in a separate file to isolate them from the rest of the physical database mappings. Perhaps it
suits the development process to even have a file for each entity, either to decouple them from each
other or to reduce conflicts resulting from the version control and configuration management system.
This can be a popular choice for a team that is working on different entities within the same persistence
unit. Each may want to change the mappings for a particular entity without getting in the way of other
team members who are modifying other entities. Of course, this must be negotiated carefully when there
really are dependencies across the entities such as relationships or embedded objects. It makes sense to
group entity metadata together when the relationships between them are not static or when the object
model may change. As a general rule, if there is strong coupling in the object model, the coupling should
be considered in the mapping configuration model.

Some might just prefer to have a single mapping file with all the metadata contained within it. This
is certainly a simpler deployment model and makes for easier packaging. There is built-in support
available to those who are happy limiting their metadata to a single file and willing to name it “orm.xml”.
If a mapping file named “orm.xml” exists in a META-INF directory on the classpath, for example beside
the persistence.xml file, it does not need to be explicitly listed. The provider will automatically search
for such a file and use it if one exists. Mapping files that are named differently or are in a different
location must be listed in the mapping-file elements in the persistence.xml file.

Mapping files listed in the mapping-file elements are loaded as Java resources (using methods such
as ClassLoader.getResource(), for example) from the classpath, so they should be specified in the same
manner as any other Java resource that was intended to be loaded as such. The directory location
component followed by the file name of the mapping file will cause it to be found, loaded, and processed
at deployment time. For example, if we put all our persistence unit metadata in META-INF/orm.xml, all our
queries in META-INF/employee_service_queries.xml, and all our entities in META-INF/employee_

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

411

service_entities.xml, we should end up with the persistence-unit-level definition shown in Listing
13-4. Remember, we don’t need to specify the META-INF/orm.xml file because it will be found and
processed by default. The other mapping files could be in any directory, not necessarily just the META-INF
directory. We put them in META-INF just to keep them together with the orm.xml file.

Listing 13-4. Specifying Mapping Files

<persistence-unit name="EmployeeService">
 <jta-data-source>java:app/jdbc/EmployeeDS</jta-data-source>
 <mapping-file>META-INF/employee_service_queries.xml</mapping-file>
 <mapping-file>META-INF/employee_service_entities.xml</mapping-file>
</persistence-unit>

Managed Classes
Managed classes are all the classes that must be processed and considered in a persistence unit,
including entities, mapped superclasses, and embeddable classes. Typical deployments will put all the
entities and other managed classes in a single JAR, with the persistence.xml file in the META-INF
directory and one or more mapping files also tossed in when XML mapping is used. The deployment
process is optimized for these kinds of deployment scenarios to minimize the amount of metadata that a
deployer has to specify.

The set of entities, mapped superclasses, and embedded objects that will be managed in a particular
persistence unit is determined by the provider when it processes the persistence unit. At deployment
time it may obtain managed classes from any of four sources. A managed class will be included if it is
among the following:

• Local classes: the annotated classes in the deployment unit in which its
persistence.xml file was packaged.

• Classes in mapping files: the classes that have mapping entries in an XML
mapping file.

• Explicitly listed classes: the classes that are listed as class elements in the
persistence.xml file.

• Additional JARs of managed classes: the annotated classes in a named JAR listed
in a jar-file element in the persistence.xml file.

As a deployer you may choose to use any one or a combination of these mechanisms to cause your
managed classes to be included in the persistence unit. We will discuss each in turn.

Local Classes
The first category of classes that gets included is the one that is the easiest and will likely be used the
most often. We call these classes local classes because they are local to the deployment unit. When a JAR
is deployed with a persistence.xml file in the META-INF directory, that JAR will be searched for all the
classes that are annotated with @Entity, @MappedSuperclass or @Embeddable. This will hold true for
various types of deployment units that we will describe in more detail later in the chapter.

This method is clearly the simplest way to cause a class to be included because all that has to be
done is to put the annotated classes into a JAR and add the persistence.xml file in the META-INF directory
of the JAR. The provider will take care of going through the classes and finding the entities. Other classes

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

412

may also be placed in the JAR with the entities and will have no effect on the finding process other than
perhaps potentially slowing down the finding process if there are many such classes.

Classes in Mapping Files
Any class that has an entry in a mapping file will also be considered a managed class in the persistence
unit. It need only be named in an entity, mapped-superclass, or embeddable element in one of the
mapping files. The set of all the classes from all the listed mapping files (including the implicitly
processed orm.xml file) will be added to the set of managed classes in the persistence unit. Nothing
special has to be done apart from ensuring that the classes named in a mapping file are on the classpath
of the unit being deployed. If they are in the deployed component archive, they will likely already be on
the classpath. But if they aren’t, they must be explicitly included in the classpath just as the explicitly
listed ones are (see the following “Explicitly Listed Classes” section).

Explicitly Listed Classes
When the persistence unit is small or when there is not a large number of entities, you may want to list
classes explicitly in class elements in the persistence.xml file. This will cause the listed classes to be
added to the persistence unit.

Since a class that is local to the deployment unit will already be included, we don’t need to list it in a
class element. Explicitly listing the classes is really useful in three main cases.

The first is when there are additional classes that are not local to the deployment unit JAR. For
example, there is an embedded object class in a different JAR that you want to use in an entity in your
persistence unit. You would list the fully qualified class in the class element in the persistence.xml file.
You will also need to ensure that the JAR or directory that contains the class is on the classpath of the
deployed component, for example, by adding it to the manifest classpath of the deployment JAR.

In the second case, we want to exclude one or more classes that may be annotated as an entity. Even
though the class may be annotated with @Entity, we don’t want it to be treated as an entity in this
particular deployed context. For example, it may be used as a transfer object and need to be part of the
deployment unit. In this case, we need to make use of a special element called exclude-unlisted-
classes in the persistence.xml file, which disables local classes from being added to the persistence
unit. When exclude-unlisted-classes is used, none of the classes in the local classes category described
earlier will be included.

■ NOTE There was a bug in the JPA 1.0 persistence_1_0.xsd schema that the default value of the exclude-
unlisted-classes element was false. This meant that a value of true needed to be explicitly included as
content, such as <exclude-unlisted-classes>true<exclude-unlisted-classes/>, instead of being able to
simply include the empty element to signify that only the classes listed in the <class> elements need to be
considered as entities. Some vendors actually worked around it by not validating the persistence.xml against the
schema, but to be portable in JPA 1.0 you should explicitly set it to true when you want to exclude the unlisted
classes. The bug was fixed in the JPA 2.0 persistence_2_0.xsd schema.

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

413

The third case is when we expect to be running the application in a Java SE environment and when
we list the classes explicitly because that is the only portable way to do so in Java SE. We will explain
deployment to the Java SE non-server environment later in the chapter.

Additional JARs of Managed Classes
The last way to get managed classes included in the persistence unit is to add them to another JAR and
specify the name of the JAR in a jar-file element in the persistence.xml. The jar-file element is used
to indicate to the provider a JAR that may contain annotated classes. The provider will then treat the
named JAR as if it were a deployment JAR, and it will look for any annotated classes and add them to the
persistence unit. It will even search for an orm.xml file in the META-INF directory in the JAR and process it
just as if it were an additionally listed mapping file.

Any JAR listed in a jar-file entry must be on the classpath of the deployment unit. You must do this
manually, though, since the server will not automatically do it for you. Again, this may be done by either
putting the JAR in the lib directory of the EAR (or WAR if you are deploying a WAR), adding the JAR to
the manifest classpath of the deployment unit or by some other vendor-specific means.

When listing a JAR in a jar-file element, it must be listed relative to the parent of the JAR file in
which the META-INF/persistence.xml file is located. This matches what you would put in the classpath
entry in the manifest. For example, assume the enterprise archive (EAR), that we will call emp.ear, is
structured as shown in Listing 13-5.

Listing 13-5. Entities in an External JAR

emp.ear
 emp-ejb.jar
 META-INF/persistence.xml
 lib/emp-classes.jar
 examples/model/Employee.class

The contents of the persistence.xml file should be as shown in Listing 13-6, with the jar-file
element containing “lib/emp-classes.jar” to reference the emp-classes.jar in the lib directory in the
EAR file. This would cause the provider to add the annotated classes it found in emp-classes.jar
(Employee.class) to the persistence unit, and because the jar is in the lib directory of the EAR, it would
automatically be on the application classpath.

Listing 13-6. Contents of persistence.xml

<persistence-unit name="EmployeeService">
 <jta-data-source>java:app/jdbc/EmployeeDS</jta-data-source>
 <jar-file>lib/emp-classes.jar</jar-file>
</persistence-unit>

Shared Cache Mode
At the end of Chapter 11, we went into some detail about caching and the cache that is shared by all the
entity managers obtained from the same entity manager factory. In the “Static Configuration of the
Cache” section of that chapter, we described the options for setting the shared cache mode, but we will
summarize here how the shared-cache-mode element works in the persistence.xml file.

The shared-cache-mode element is optional, but when specified it may be set to one of the five
options that are listed in Table 13-1.

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

414

Table 13-1. shared-cache-mode options

Value Description

UNSPECIFIED The provider chooses whatever option is most appropriate for that
provider.

ALL Cache all the entities in the persistence unit.

NONE Do not cache any of the entities in the persistence unit.

DISABLE_SELECTED Cache all entities except those annotated with @Cacheable(false).

ENABLE_SELECTED Cache no entities except those annotated with @Cacheable(true).

It doesn’t make much sense to explicitly designate UNSPECIFIED as the option because it is exactly
equivalent to not specifying the value at all and offers no real information. When not set, the element
will be defaulted by the provider to whichever of the other four options makes the most sense for that
provider.

The next two options, ALL and NONE, are “sweeping” options, meaning that they affect all the entities
in the persistence unit, without exception. Any @Cacheable annotations will be ignored when either of
these options is set.

The DISABLE_SELECTED and ENABLE_SELECTED options are “discretionary” options, and are used in
conjunction with the @Cacheable annotation to determine the entities that are cached and those that are
not. If the default for your provider is one of the discretionary options and you end up using the
@Cacheable annotation to affect which entities get cached, you might want to explicitly set this element
to the desired/expected mode instead of relying upon the default provider behavior. This will avoid
confusion that could result from switching providers and getting a different default that does not
consider the @Cacheable annotations.

Validation Mode
The validation-mode element in the persistence.xml file determines whether validation is enabled or
not (see the “Enabling Validation” section in Chapter 11). It may be set to AUTO, meaning that in the
container environment validation is enabled, but when not running in the container, validation will be
enabled only if there is a validation provider available. Setting it to CALLBACK will enable validation and
assume that a validation provider is on the classpath.

The default is AUTO, which enables validation, so if you do not intend to use validation we
recommend that you explicitly disable it by setting the validation-mode element to NONE. This will bypass
the validation provider checks and prevent you from incurring any validation overhead if at some point
later on a provider happens to show up on the classpath.

Adding Vendor Properties
The last section in the persistence.xml file is the properties section. The properties element gives a
deployer the chance to supply standard and provider-specific settings for the persistence unit. To
guarantee runtime compatibility, a provider must ignore properties it does not understand. While it is
helpful to be able to use the same persistence.xml file across different providers, it also makes it easy to

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

415

mistakenly type a property incorrectly and have it unintentionally and silently ignored. An example of
adding some vendor properties is shown in Listing 13-7.

Listing 13-7. Using Provider Properties

<persistence-unit name="EmployeeService">
 ...
 <properties>
 <property name="eclipselink.logging.level"
 value="FINE"/>
 <property name="eclipselink.cache.size.default"
 value="500"/>
 </properties>
</persistence-unit>

Building and Deploying
One of the big wins that a standard persistence API brings is not only a portable runtime API but also a
common way to compose, assemble, and configure an application that makes use of persistence. In this
section, we will describe some of the popular and practical choices that are used to deploy persistence-
enabled applications.

Deployment Classpath
In some of the previous sections we say that a class or a JAR must be on the deployment classpath. When
we say this we mean that the JAR must be accessible to the EJB JAR, the web archive (WAR), or the
enterprise application archive (EAR). This can be achieved in several ways.

The first is by putting the JAR in the manifest classpath of the EJB JAR or WAR. This is done by
adding a classpath entry to the META-INF/MANIFEST.MF file in the JAR or WAR. One or more directories or
JARs may be specified, as long as they are separated by spaces. For example, the following manifest file
classpath entry will add the employee/emp-classes.jar and the employee/classes directory to the
classpath of the JAR that contains the manifest file:

Class-Path: employee/emp-classes.jar employee/classes

A better way to get a JAR into the deployment unit classpath is to place the JAR in the library
directory of the EAR. When a JAR is in the library directory, it will automatically be on the application
classpath and accessible by all the modules deployed within the EAR. By default, the library directory is
the lib directory in the EAR, although it may be configured to be any directory using the library-
directory element in the application.xml deployment descriptor. The application.xml file would look
something like the skeletal one shown in Listing 13-8.

Listing 13-8. Setting the Application Library Directory

<application ... >
 ...
 <library-directory>myDir/jars</library-directory>
</application>

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

416

When you are deploying a WAR and want to put an additional JAR of entities on the classpath, you
can put the JAR in the WEB-INF/lib directory of the WAR. This causes the JAR to be on the classpath, and
the classes in it are accessible to all the classes in the WAR.

Vendors usually provide their own vendor-specific way for deployers to add classes or JARs to the
deployment classpath. This is usually offered at the application level and not at the level of a JAR or
WAR; however, some may provide both.

Packaging Options
A primary focus of the Java Persistence API is its integration with the Java EE platform. Not only has it
been integrated in fine-grained ways, such as allowing injection of entity managers into Java EE
components, but it also has special status in Java EE application packaging. Java EE allows for
persistence to be supported in a variety of packaging configurations that offer flexibility and choice. We
will divide them up into the different module types that the application might be deployed into: EJB
modules, web modules, and persistence archives.

EJB JAR
Modularized business logic typically ends up in session bean components, which is why session beans
have always been the primary Java EE component clients of persistence. It is not only fitting but also an
essential part of the integration of JPA with Java EE. Because session beans provide such a natural home
for code that operates on entities, the best supported way to access and package entities will be with
session beans. Session beans have traditionally been deployed in an EJB JAR, although in Java EE 6 they
may also be deployed in a WAR with web components. For a discussion on deploying in a WAR, see the
next section.

We assume that the reader is familiar with packaging and deploying EJB components in an EJB JAR,
but if not, there is a host of books and resources available to learn about it.

As of EJB 3.0, you no longer need to have an ejb-jar.xml deployment descriptor, but if you choose
to use one, it must be in the META-INF directory. When defining a persistence unit in an EJB JAR, the
persistence.xml file is not optional. It must be created and placed in the META-INF directory of the JAR
alongside the ejb-jar.xml deployment descriptor, if it exists. Although the existence of persistence.xml
is required, the contents may be very sparse indeed; in some cases including only the name of the
persistence unit.

The only real work in defining a persistence unit is to decide where we want our entities and
managed classes to reside. We have a number of options available to us. The simplest approach is to
simply dump our managed classes into the EJB JAR along with the EJB components. As we described in
the “Local Classes” section earlier in the chapter, as long as the managed classes are correctly annotated,
they will be automatically discovered by the provider at deployment time and added to the persistence
unit. Listing 13-9 shows a sample enterprise application archive file that does this.

Listing 13-9. Packaging Entities in an EJB JAR

emp.ear
 emp-ejb.jar
 META-INF/persistence.xml
 META-INF/orm.xml
 examples/ejb/EmployeeService.class
 examples/ejb/EmployeeServiceBean.class
 examples/model/Employee.class
 examples/model/Phone.class
 examples/model/Address.class

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

417

 examples/model/Department.class
 examples/model/Project.class

In this case, the orm.xml file contains any mapping information that we might have at the
persistence-unit level; for example, setting the schema for the persistence unit. In the persistence.xml
file, we would need to specify only the name of the persistence unit and the data source. Listing 13-10
shows the corresponding persistence.xml file in its entirety.

Listing 13-10. Persistence.xml File for Entities Packaged in an EJB JAR

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="1.0">
 <persistence-unit name="EmployeeService">
 <jta-data-source>java:app/jdbc/EmployeeDS</jta-data-source>
 </persistence-unit>
</persistence>

If we wanted to separate the entities from the EJB components, we could put them in a different JAR
and reference that JAR in a jar-file entry in the persistence.xml file. We showed a simple example of
doing this in the “Additional JARs of Managed Classes” section, but we will show one again here with an
additional orm.xml file and emp-mappings.xml mapping file. Listing 13-11 shows what the structure and
contents of the EAR would look like.

Listing 13-11. Packaging Entities in a Separate JAR

emp.ear
 emp-ejb.jar
 META-INF/persistence.xml
 examples/ejb/EmployeeService.class
 examples/ejb/EmployeeServiceBean.class
 lib/emp-classes.jar
 META-INF/orm.xml
 META-INF/emp-mappings.xml
 examples/model/Employee.class
 examples/model/Phone.class
 examples/model/Address.class
 examples/model/Department.class
 examples/model/Project.class

The emp-classes.jar file containing the entities would be on the classpath since it is in the library
directory of the EAR, as described in the “Deployment Classpath” section. In addition to processing the
entities found in the emp-classes.jar file, the orm.xml file in the META-INF directory will also be detected
and processed automatically. We need to explicitly list the additional emp_mappings.xml mapping file in a
mapping-file element, though, in order for the provider to find it as a resource. The persistence unit
portion of the persistence.xml file is shown in Listing 13-12.

Listing 13-12. Persistence.xml File for Entities Packaged in a Separate JAR

<persistence-unit name="EmployeeService">
 <jta-data-source>java:app/jdbc/EmployeeDS</jta-data-source>
 <mapping-file>META-INF/emp-mappings.xml</mapping-file>

http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistencejava.sun.com/xml/ns/persistence/persistence_2_0.xsd

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

418

 <jar-file>lib/emp-classes.jar</jar-file>
</persistence-unit>

Web Archive
We have not been shy about the fact that we believe that session beans are the best way to access
entities. Regardless of what we say, though, there will be people who don’t want to (or cannot) use
session beans. Operating on entities directly from the web tier is still a valid option and may continue to
be popular for a subset of web developers.

We assume that you will take our advice and use session beans as the objects referenced by the web
tier, however, and the easiest way to facilitate this is to deploy the web components, EJBs, and
persistence unit all in a WAR file. This not only simplifies the organization of the deployment structure
but also provides a more practical scope for the application. By using the WAR as the deployment
vehicle for all three code tiers, the EJB JAR and EAR units become unnecessary, and the WAR becomes
the new EAR equivalent.

The downside is that a WAR is a little more complex than the EJB JAR, and learning to package
persistence units in web archives requires understanding the relevance of the persistence.xml file
location. The location of the persistence.xml file determines the persistence unit root. The root of the
persistence unit is defined as the JAR or directory that contains the META-INF directory where the
persistence.xml file is located. For example, in an EJB JAR, the persistence.xml file is located in the
META-INF directory of the root of the JAR, so the root of the persistence unit is always the root of the EJB
JAR file itself. In a WAR, the persistence unit root depends upon where the persistence unit is located
within the WAR. The obvious choice is to use the WEB-INF/classes directory as the root, which would
lead us to place the persistence.xml file in the WEB-INF/classes/META-INF directory. Any annotated
managed classes rooted in the WEB-INF/classes directory will be detected and added to the persistence
unit. Similarly, if an orm.xml file is located in WEB-INF/classes/META-INF, it will be processed. The web
components and EJBs are also placed in the classes directory. An example of packaging a persistence
unit in the WEB-INF/classes directory, with the accompanying other application classes, is shown in
Listing 13-13. We have included the web.xml file, but it is no longer necessary if annotations on the
servlet are used.

Listing 13-13. Packaging Entities in the WEB-INF/classes Directory

emp.war
 WEB-INF/web.xml
 WEB-INF/classes/META-INF/persistence.xml
 WEB-INF/classes/META-INF/orm.xml
 WEB-INF/classes/examples/web/EmployeeServlet.class
 WEB-INF/classes/examples/ejb/EmployeeService.class
 WEB-INF/classes/examples/ejb/EmployeeServiceBean.class
 WEB-INF/classes/examples/model/Employee.class
 WEB-INF/classes/examples/model/Phone.class
 WEB-INF/classes/examples/model/Address.class
 WEB-INF/classes/examples/model/Department.class
 WEB-INF/classes/examples/model/Project.class

The persistence.xml file would be specified in exactly the same way as is shown in Listing 13-10. If
we need to add another mapping file then we can put it anywhere on the deployment unit classpath. We
just need to add a mapping-file element to the persistence.xml file. If, for example, we put emp-
mapping.xml in the WEB-INF/classes/mapping directory, we would add the following element to the
persistence.xml file:

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

419

<mapping-file>mapping/emp-mapping.xml</mapping-file>

Since the WEB-INF/classes directory is automatically on the classpath of the WAR, the mapping file
is specified relative to that directory.

Persistence Archive
If we want to allow a persistence unit to be shared or accessible by multiple components, either in
different Java EE modules or in a single WAR, we should use a persistence archive. It also promotes good
design principles by keeping the persistence classes together. We saw a simple persistence archive back
in Chapter 2 when we were first getting started and observed how it housed the persistence.xml file and
the managed classes that were part of the persistence unit defined within it. By placing a persistence
archive in the lib directory of an EAR, or in the WEB-INF/lib directory of a WAR, we can make it available
to any enclosed component that needs to operate on the entities defined by its contained persistence
unit.

The persistence archive is simple to create and easy to deploy. It is simply a JAR that contains a
persistence.xml in its META-INF directory and the managed classes for the persistence unit defined by
the persistence.xml file.

Listing 13-14 shows the contents of the WAR that we showed in Listing 13-13, but in this case it uses
a simple persistence archive, emp-persistence.jar, to define the persistence unit that we have been
using in the previous examples. This time, we need to only put the persistence archive in the WEB-
INF/lib directory and it will be both on the classpath and detected as a persistence unit.

Listing 13-14. Packaging Entities in a Persistence Archive

emp.war
 WEB-INF/web.xml
 WEB-INF/classes/examples/web/EmployeeServlet.class
 WEB-INF/classes/examples/ejb/EmployeeService.class
 WEB-INF/classes/examples/ejb/EmployeeServiceBean.class
 WEB-INF/lib/emp-persistence.jar
 META-INF/persistence.xml
 META-INF/orm.xml
 examples/model/Employee.class
 examples/model/Phone.class
 examples/model/Address.class
 examples/model/Department.class
 examples/model/Project.class

If the emp-persistence.jar JAR part of Listing 13-14 looks familiar, that’s because it is virtually the
same as the EJB JAR structure that we showed in Listing 13-9 except that it is a persistence archive JAR
instead of an EJB JAR. We just changed the name of the JAR and took out the session bean classes. The
contents of the persistence.xml file can be exactly the same as what is shown in Listing 13-10. Just as
with the other archive types, the orm.xml file in the META-INF directory will be automatically detected and
processed, and other XML mapping files may be placed within the JAR and referenced by the
persistence.xml file as a mapping-file entry.

Managed classes may also be stored in a separate JAR external to the persistence archive, just as
they could be in other packaging archive configurations. The external JAR would be referenced by the
persistence.xml file as a jar-file entry with the same rules for specification as were described in the
other cases. This is neither recommended nor useful, though, since the persistence archive itself is
already separated from the other component classes. Seldom will there be a reason to create yet
another JAR to store the managed classes, but there may be a case when the other JAR is pre-existing,

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

420

and you need to reference it because you can’t or don’t want to put the persistence.xml file in the pre-
existing JAR.

Persistence archives are actually a very tidy way of packaging a persistence unit. By keeping them
self-contained (if they do not reference external JARs of classes using jar-file entries), they do not
depend on any other components of the application but can sit as a layer underneath those components
to be used by them.

Persistence Unit Scope
For simplicity, we have talked about a persistence unit in the singular. The truth is that any number of
persistence units may be defined in the same persistence.xml file and used in the scope within which
they were defined. We saw in the preceding sections, when we discussed how managed classes get
included in the persistence unit, that local classes in the same archive will be processed by default. If
multiple persistence units are defined in the same persistence.xml file, and exclude-unlisted-classes
is not used on either one, the same classes will be added to all the defined persistence units. This may be
a convenient way to import and transform data from one data source to another: simply by reading in
entities through one persistence unit and performing the transformation on them before writing them
out through another persistence unit.

Now that we have defined and packaged our persistence units, we should outline the rules and ways
to use them. There are only a few, but they are important to know.

The first rule is that persistence units are accessible only within the scope of their definition. We
have already mentioned this in passing a couple of times, and we hinted at it again in the persistence
archive section. We said that the persistence unit defined within a persistence archive at the EAR level
was accessible to all the components in the EAR, and that a persistence unit defined in a persistence
archive in a WAR is accessible only to the components defined within that WAR. In fact, in general a
persistence unit defined from an EJB JAR is seen by EJB components defined by that EJB JAR, and a
persistence unit defined in a WAR will be seen only by the components defined within that WAR.
Persistence units defined in a persistence archive that lives in the EAR will be seen by all the components
in the application.

The next part is that the names of persistence units must be unique within their scope. For example,
there may be only one persistence unit of a given name within the same EJB JAR. Likewise there may be
only one persistence unit of a given name in the same WAR, as well as only one persistence unit of the
same name in all the persistence archives at the EAR level. There may be a named persistence unit name
in one EJB JAR and another that shares its name in another EJB JAR, or there may even be a persistence
unit with the same name in an EJB JAR as there is in a persistence archive. It just means that whenever a
persistence unit is referenced either within a @PersistenceContext, a @PersistenceUnit annotation, or a
createEntityManagerFactory() method, the most locally scoped one will get used.

A final note about naming is appropriate at this point. Just because it’s possible to have multiple
persistence units with the same name in different component archive namespaces doesn’t mean that it
is a good idea. As a general rule, you should always give persistence units unique names within the
application.

Outside the Server
There are some obvious differences between deploying in a Java EE server and deploying to a Java SE
runtime environment. For example, some of the Java EE container services will not be present, and this
spills out into the runtime configuration information for a persistence unit. In this section, we will
outline the differences to consider when packaging and deploying to a Java SE environment.

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

421

Configuring the Persistence Unit
As before, the place to start is the configuration of the persistence unit, which is chiefly in the creation of
the persistence.xml file. We will outline the differences between creating a persistence.xml file for a
Java SE application and creating one for a Java EE application.

Transaction Type
When running in a server environment, the transaction-type attribute in the persistence unit defaults
to being JTA. The JTA transaction layer was designed for use within the Java EE server and is intended to
be fully integrated and coupled to the server components. Given this fact, JPA does not provide support
for using JTA outside the server. Some providers may offer this support, but it cannot be portably relied
upon, and of course it relies upon the JTA component being present.

The transaction type does not normally need to be specified when deploying to Java SE. It will just
default to being RESOURCE_LOCAL, but may be specified explicitly to make the programming contract more
clear.

Data Source
When we described configuration in the server, we illustrated how the jta-data-source element denotes
the JNDI location of the data source that will be used to obtain connections. We also saw that some
servers might even default the data source.

The non-jta-data-source element is used in the server to specify where resource-local connections
can be obtained in JNDI. It may also be used by providers that do optimized reading through non-JTA
connections.

When configuring for outside the server, not only can we not rely upon JTA, as we described in the
transaction type section, but we cannot rely upon JNDI at all. We therefore cannot portably rely upon
either of the data source elements in Java SE configurations.

When using resource-local transactions outside the server, the provider obtains database
connections directly vended out by the JDBC driver. In order for it to get these connections, it must
obtain the driver-specific information, which typically includes the name of the driver class, the URL
that the driver uses to connect to the database, and the user and password authentication that the driver
also passes to the database. This metadata may be specified in whichever way the provider prefers it to
be specified, but all vendors must support the standard JDBC properties in the properties section.
Listing 13-15 shows an example of using the standard properties to connect to the Derby database
through the Derby driver.

Listing 13-15. Specifiying Resource-Level JDBC Properties

<persistence-unit name="EmployeeService">
 ...
 <properties>
 <property name="javax.persistence.jdbc.driver"
 value="org.apache.derby.jdbc.ClientDriver"/>
 <property name="javax.persistence.jdbc.url"
 value="jdbc:derby://localhost:1527/EmpServDB;create=true"/>
 <property name="javax.persistence.jdbc.user"
 value="APP"/>
 <property name="javax.persistence.jdbc.password"
 value="APP"/>
 </properties>
</persistence-unit>

derby://localhost:1527/EmpServDB

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

422

Providers
Many servers will have a default or native provider that they will use when the provider is not specified.
It will automatically call into that provider to create an EntityManagerFactory at
deployment time.

When not in a server, the factory is created programmatically using the Persistence class. When the
createEntityManagerFactory() method is invoked, the Persistence class will begin a built-in
pluggability protocol that goes out and finds the provider that is specified in the persistence unit
configuration. If none was specified, the first one that it finds will be used. Providers export themselves
through a service that exists in the provider JAR that must be on the classpath. The net result is that the
provider element is not required.

In the majority of cases when only one provider will be on the classpath, the provider will be
detected and used by the Persistence class to create an EntityManagerFactory for a given persistence
unit. If you are ever in a situation in which you have two providers on the classpath and you want a
particular one to be used, you should specify the provider class in the provider element. To prevent
runtime and deployment errors, the provider element should be used if the application has a code
dependency on a specific provider.

Listing the Entities
One of the benefits of deploying inside the server is that it is a highly controlled and structured
environment. Because of this, the server can support the deployment process in ways that cannot be
achieved by a simple Java SE runtime. The server already has to process all the deployment units in an
application and can do things like detecting all the managed persistence classes in an EJB JAR or a
persistence archive. This kind of class detection makes persistence archives a very convenient way to
bundle a persistence unit.

The problem with this kind of detection outside the server is that the Java SE environment permits
all kinds of different class resources to be added to the classpath, including network URLs or any other
kind of resource that is acceptable to a classloader. There are no official deployment unit boundaries
that the provider is aware of. This makes it difficult for JPA to require providers to support doing
automatic detection of the managed classes inside a persistence archive. The official position of the API
is that for an application to be portable across all vendors it must explicitly list all the managed classes in
the persistence unit using class elements. When a persistence unit is large and includes a large number
of classes, this task can become rather onerous.

In practice, however, some of the time the classes are sitting in a regular persistence archive JAR on
the filesystem, and the provider runtime can do the detection that the server would do in Java EE if it can
just determine the JAR to search in. For this reason many of the major providers actually do support
detecting the classes outside the server. This is really kind of an essential usability issue since the
maintenance of a class list would be so cumbersome as to be a productivity bottleneck unless you had a
tool manage the list for you.

A corollary to the official portability guideline to use class elements to enumerate the list of
managed classes is that the exclude-unlisted-classes element is not guaranteed to have any impact in
Java SE persistence units. Some providers may allow this element to be used outside the server, but it is
not really very useful in the SE environment anyway given the flexibility of the classpath and packaging
allowances in that environment.

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

423

Specifying Properties at Runtime
One of the benefits of running outside the server is the ability to specify provider properties at runtime.
This is available because of the overloaded createEntityManagerFactory() method that accepts a Map of
properties in addition to the name of the persistence unit. The properties passed to this method are
combined with those already specified, normally in the persistence.xml file. They may be additional
properties or they may override the value of a property that was already specified. This may not seem
very useful to some applications, since putting runtime configuration information in code is not
normally viewed as being better than isolating it in an XML file. However, one can imagine this being a
convenient way to set properties obtained from a program input, such as the command line, as an even
more dynamic configuration mechanism. In Listing 13-16 is an example of taking the user and password
properties from the command line and passing them to the provider when creating the
EntityManagerFactory.

Listing 13-16. Using Command-Line Persistence Properties

public class EmployeeService {
 public static void main(String[] args) {
 Map props = new HashMap();
 props.put("javax.persistence.jdbc.user", args[0]);
 props.put("javax.persistence.jdbc.password", args[1]);
 EntityManagerFactory emf = Persistence
 .createEntityManagerFactory("EmployeeService", props);
 // ...
 emf.close();
 }
}

System Classpath
In some ways, configuring a persistence unit in a Java SE application is actually easier than configuring
in the server because the classpath is simply the system classpath. Adding classes or jars on the system
classpath is a trivial exercise. In the server we may have to manipulate the manifest classpath or add
some vendor-specific application classpath configuration.

Schema Generation
When we mentioned schema generation in Chapter 4, we promised to go over the mapping annotation
elements that are considered when schema generation occurs. In this section, we will make good on that
pledge and explain which elements get applied to the generated schema for those vendors that support
schema generation.1

A couple of comments are in order before we start into them, though. First, the elements that
contain the schema-dependent properties are, with few exceptions, in the physical annotations. This is

1 Most JPA vendors support some kind of schema generation either in the runtime or in a tool.

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

424

to try to keep them separate from the logical non-schema-related metadata. Second, these annotations
are ignored, for the most part,2 if the schema is not being generated. This is one reason why using them
is a little out of place in the usual case, since schema information about the database is of little use once
the schema has been created and is being used.

One of the complaints around schema generation is that you can’t specify everything that you need
to be able to finely tune the schema. This was done on purpose. There are too many differences between
databases and too many different settings to try to put in options for every database type. If every
database-tuning option were exposed through JPA then we would end up duplicating the features of
Data Definition Language (DDL) in an API that was not meant to be a database schema generation
facility. As we mentioned earlier, the majority of applications find themselves in a meet-in-the-middle
mapping scenario in any case, and when they do have control over the schema, the final schema will
typically be tuned by a database administrator or someone with the appropriate level of database
experience.

Unique Constraints
A unique constraint can be created on a generated column or join column by using the unique element
in the @Column or @JoinColumn annotations. There are not actually very many cases where this will be
necessary because most vendors will generate a unique constraint when it is appropriate, such as on the
join column of one-to-one relationships. Otherwise, the value of the unique element defaults to false.
Listing 13-17 shows an entity with a unique constraint defined for the STR column.

Listing 13-17. Including Unique Constraints

@Entity
public class Employee {
 @Id private int id;
 @Column(unique=true)
 private String name;
 // ...
}

Note that the unique element is unnecessary on the identifier column because a primary key
constraint will always be generated for the primary key.

A second way of adding a unique constraint is to embed one or more @UniqueConstraint
annotations in a uniqueConstraints element in the @Table or @SecondaryTable annotations. Any number
of unique constraints may be added to the table definition, including compound constraints. The value
passed to the @UniqueConstraint annotation is an array of one or more strings listing the column names
that make up the constraint. Listing 13-18 demonstrates how to define a unique constraint as part of a
table.

2 The exception to this rule may be the optional element of the mapping annotations, which may result
in a NON NULL constraint, but which may also be used in memory to indicate that the value is or isn’t
allowed to be set to null.

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

425

Listing 13-18. Unique Constraints Specified in Table Definition

@Entity
@Table(name="EMP",
 uniqueConstraints=@UniqueConstraint(columnNames={"NAME"}))
public class Employee {
 @Id private int id;
 private String name;
 // ...
}

Null Constraints
Constraints on a column may also be in the form of null constraints. A null constraint just indicates that
the column may or may not be null. It is defined when the column is declared as part of the table.

Null constraints are defined on a column by using the nullable element in the @Column or
@JoinColumn annotations. A column allows null values by default, so this element really needs to be used
only when a value for the field or property is required. Listing 13-19 demonstrates how to set the
nullable element of basic and relationship mappings.

Listing 13-19. Null Constraints Specified in Column Definitions

@Entity
public class Employee {
 @Id private int id;
 @Column(nullable=false)
 private String name;
 @ManyToOne
 @JoinColumn(nullable=false)
 private Address address;
 // ...
}

String-Based Columns
When no length is specified for a column that is being generated to store string values, the length will be
defaulted to 255. When a column is generated for a basic mapping of a field or property of type String,
char[], or Character[], its length should be explicitly listed in the length element of the @Column
annotation if 255 is not the desired maximum length. Listing 13-20 shows an entity with explicitly
specified lengths for strings.

Listing 13-20. Specifying the Length of Character-Based Column Types

@Entity
public class Employee {
 @Id
 @Column(length=40)
 private String name;
 @ManyToOne
 @JoinColumn(name="MGR")

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

426

 private Employee manager;
 // ...
}

We can see from the previous example that there is no similar length element in the @JoinColumn
annotation. When primary keys are string-based, the provider may set the join column length to the
same length as the primary key column in the table that is being joined to. This is not required to be
supported, however.

It is not defined for length to be used for large objects; some databases do not require or even allow
the length of lobs to be specified.

Floating Point Columns
Columns containing floating point types have a precision and scale associated with them. The precision
is just the number of digits that are used to represent the value, and the scale is the number of digits after
the decimal point. These two values may be specified as precision and scale elements in the @Column
annotation when mapping a floating point type. Like other schema generation elements, they have no
effect on the entity at runtime. Listing 13-21 demonstrates how to set these values.

Listing 13-21. Specifying the Precision and Scale of Floating Point Column Types

@Entity
public class PartTimeEmployee {
 // ...
 @Column(precision=8, scale=2)
 private float hourlyRate;
 // ...
}

■ TIP Precision may be defined differently for different databases. In some databases and for some floating point
types it is the number of binary digits, while for others it is the number of decimal digits.

Defining the Column
There may be a time when you are happy with all the generated columns except for one. The type of the
column isn’t what you want it to be, and you don’t want to go through the trouble of manually
generating the schema for the sake of one column. This is one instance when the columnDefinition
element comes in handy. By hand-rolling the DDL for the column, we can include it as the column
definition and let the provider use it to define the column.

The columnDefinition element is available in all the column-oriented annotation types, including
@Column, @JoinColumn, @PrimaryKeyJoinColumn, @MapKeyColumn, @MapKeyJoinColumn, @OrderColumn, and
@DiscriminatorColumn. Whenever a column is to be generated, the columnDefinition element may be
used to indicate the DDL string that should be used to generate the type (not including the trailing
comma). This gives the user complete control over what is generated in the table for the column being

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

427

mapped. It also allows a database-specific type or format to be used that may supersede the generated
type offered by the provider for the database being used.3 Listing 13-22 shows some definitions specified
for two columns and a join column.

Listing 13-22. Using a Column Definition to Control DDL Generation

@Entity
public class Employee {
 @Id
 @Column(columnDefinition="NVARCHAR2(40)")
 private String name;
 @Column(name="START_DATE",
 columnDefinition="DATE DEFAULT SYSDATE")
 private java.sql.Date startDate;
 @ManyToOne
 @JoinColumn(name="MGR", columnDefinition="NVARCHAR2(40)")
 private Employee manager;
 // ...
}

In this example, we are using a Unicode character field for the primary key and then also for the join
column that refers to the primary key. We also define the date to be assigned the default current date at
the time the record was inserted (in case it was not specified).

Specifying the column definition is quite a powerful schema generation practice that allows
overriding of the generated column to an application-defined custom column definition. But the power
is accompanied by some risk as well. When a column definition is included, other accompanying
column-specific generation metadata is ignored. Specifying the precision, scale, or length in the same
annotation as a column definition would be both unnecessary and confusing.

Not only does using columnDefinition in your code bind you to a particular schema but it also binds
you to a particular database since the DDL tends to be database-specific. This is just a flexibility-
portability trade-off, and you have to decide whether it is appropriate for your application.

Summary
It is a simple exercise to package and deploy persistence applications using the Java Persistence API. In
most cases, it is just a matter of adding a very short persistence.xml file to the JAR containing the entity
classes.

In this chapter, we described how to configure the persistence unit in the Java EE server
environment using the persistence.xml file and how in some cases the name may be the only setting
required. We then explained when to apply and how to specify the transaction type, the persistence
provider, and the data source. We showed how to use and specify the default orm.xml mapping file and
then went on to use additional mapping files within the same persistence unit. We also discussed the
various ways that classes may be included in the persistence unit and how to customize the persistence
unit using standard and vendor-specific properties.

3 The resulting column must be supported by the provider runtime to enable reading from and writing to
the column.

CHAPTER 13 ■ PACKAGING AND DEPLOYMENT

428

We looked at the ways that persistence units may be packaged and deployed to a Java EE
application as part of an EJB archive, a web archive, or a persistence archive that is accessible to all the
components in the application. We examined how persistence units may exist within different scopes of
a deployed Java EE application and what the name-scoping rules were. We then compared the
configuration and deployment practices of deploying an application to a Java SE environment.

Finally, we showed how a schema can be generated in the database to match the requirements of
the persistence unit using the domain model and the mapping metadata. We cautioned against using
the generated schema for production systems, but showed how it can be used during development,
prototyping, and testing to get up and running quickly and conveniently.

In the next chapter, we will consider the accepted and best practices for testing applications that use
persistence.

C H A P T E R 14

■ ■ ■

429

Testing

One of the major selling points of JPA and EJB 3.0 has been the drive toward better testability. The use of
plain Java classes where possible as well as the ability to use persistence outside of the application server
has made enterprise applications much easier to test. This chapter will cover unit testing and integration
testing with entities, with a mix of modern and traditional test techniques.

Testing Enterprise Applications
Testing is generally accepted as being a good thing, but how exactly should we go about doing it? Almost
all enterprise applications are hosted in some kind of server environment, whether it is a servlet
container like Apache Tomcat or a full Java EE application server. Once deployed to such an
environment, the developer is much more isolated from the application than if he was developing in a
Java SE runtime environment. At this point, it can be tested only using the public interface of the
application, such as a browser using HTTP, web service, RMI, or a messaging interface.

This presents an issue for developers because to do unit testing we want to be able to focus on the
components of an application in isolation. An elaborate sequence of operations through a web site may
be required to access a single method of a session bean that implements a particular business service.
For example, to view an Employee record, a test client might have to log in using a user name and
password, traverse several menu options, execute a search, and then finally access the record. Afterward,
the HTML output of the report must be verified to ensure that the operation completed as expected. In
some applications this procedure may be short-circuited by directly accessing the URL that retrieves a
particular record. But with more and more information cached in HTTP session state, URLs are
beginning to look like random sequences of letters and numbers. Getting direct access to a particular
feature of an application may not be easy to achieve.

Java SE clients (so called “fat” clients) that communicate with databases and other resources suffer
from the same problem despite their ability to execute the program without the need for an application
server. The user interface of a Java SE client may well be a Swing application requiring special tools to
drive it in order to do any kind of test automation. The application is still just a black box without any
obvious way to get inside.

Numerous attempts have been made to expose the internals of an application to testing while
deployed on a server. One of the first was the Cactus1 framework, which allows developers to write tests
using JUnit, which are then deployed to the server along with the application and executed via a web

1 Visit http://jakarta.apache.org/cactus/ for more information.

http://jakarta.apache.org/cactus

CHAPTER 14 ■ TESTING

430

interface provided by Cactus. Other frameworks adopted a similar approach using RMI instead of a web
interface to control the tests remotely.

Although effective, the downside to these approaches is that the application server still has to be up
and running before we can attempt any kind of testing. For developers who use test-driven development
(TDD), in which tests are written before code and the full unit test suite is executed after every
development iteration (which can be as small as a change to a single method), any kind of interaction
with the application server is a problem. Even for developers who practice a more traditional testing
methodology, frequent test execution is hampered by the need to keep the application server running,
with a packaging and deployment step before every test run.

Clearly, for developers who want to break a Java EE application into its component parts and test
those components in isolation, there is a need for tools that will let us directly execute portions of the
application outside of the server environment in which it is normally hosted.

Terminology
Not everyone agrees about exactly what constitutes a unit test or an integration test. In fact, it is quite
likely that any survey of a group of developers will yield a wide variety of results, some similar in nature
while others venture into completely different areas of testing. Therefore we feel it is important to define
our terminology for testing so that you can translate it into whatever terms you are comfortable with.

We see tests falling into the following four categories:

• Unit tests. Unit tests are written by developers and focus on isolated components
of an application. Depending on your approach, this may be a single class or a
collection of classes. The only key defining elements in our opinion are that the
unit test is not coupled to any server resources (these are typically stubbed out as
part of the test process) and executes very quickly. It must be possible to execute
an entire suite of unit tests from within an IDE and get the results in a matter of
seconds. Unit test execution can be automated and is often configured to happen
automatically as part of every merge to a configuration management system.

• Integration tests. Integration tests are also written by developers and focus on use
cases within an application. They are still typically decoupled from the application
server, but the difference between a unit test and an integration test is that the
integration test makes full use of external resources such as a database. In effect,
an integration test takes a component from an application and runs in isolation as
if it were still inside the application server. Running the test locally makes it much
faster than a test hosted in an application server, but still slower than a unit test.
Integration tests are also automated and often run at least daily to ensure that
there are no regressions introduced by developers.

• Functional tests. Functional tests are the black box tests written and automated
by quality engineers instead of developers. Quality engineers look at the
functional specification for a product and its user interface, and seek to automate
tests that can verify product behavior without understanding (or caring) how the
application is implemented. Functional tests are a critical part of the application
development process, but it is unrealistic to execute these tests as part of the day-
to-day work done by a developer. Automated execution of these tests often takes
place on a different schedule, independent of the regular development process.

CHAPTER 4 ■ TESTING

431

• Acceptance tests. Acceptance tests are customer-driven. These tests, usually
conducted manually, are carried out directly by customers or representatives who
play the role of the customer. The goal of an acceptance test is to verify that the
requirements set out by the customer are fulfilled in the user interface and
behavior of the application.

In this chapter, we will focus only on unit tests and integration tests. These tests are written by
developers for the benefit of developers and constitute what is called white box testing. These tests are
written with the full understanding of how the application is implemented and what it will take not only
to test the successful path through an application but also to trigger failure scenarios.

Testing Outside the Server
The common element between unit tests and integration tests is that they are executed without the need
for an application server. Unfortunately for Java EE developers, this has traditionally been very difficult.
Applications developed before the Java EE 5 release are tightly coupled to the application server, often
making it difficult and counterproductive to attempt replicating the required container services in a
stand-alone environment.

To put this in perspective, let’s look at Enterprise JavaBeans as they existed in EJB 2.1. On paper,
testing a session bean class should be little more than a case of instantiating the bean class and invoking
the business method. For trivial business methods, this is indeed the case, but things start to go downhill
quickly once dependencies get involved. For example, let’s consider a business method that needs to
invoke another business method from a different session bean.

Dependency lookup was the only option in EJB 2.1, so if the business method has to access JNDI to
obtain a reference to the other session bean, either JNDI must be worked around or the bean class must
be refactored so that the lookup code can be replaced with a test-specific version. If the code uses the
Service Locator2 pattern, we have a bigger problem because a singleton static method is used to obtain
the bean reference. The only solution for testing beans that use Service Locators outside the container is
to refactor the bean classes so that the locator logic can be overridden in a test case.

Next we have the problem of the dependent bean itself. The bean class does not implement the
business interface, so it cannot simply be instantiated and made available to the bean we are trying to
test. Instead, it will have to be subclassed to implement the business interface, and stubs for a number of
low-level EJB methods will have to be provided because the business interface in EJB 2.1 actually extends
an interface that is implemented internally by the application server.

Even if we get that to work, what happens if we encounter a container-managed entity bean? Not
only do we have the same issues with respect to the interfaces involved but the bean class is also
abstract, with all the persistent state properties unimplemented. We could implement them, but our test
framework would rapidly start to outgrow the application code. We can’t even just run them against the
database as we can with JDBC code because so much of the entity bean logic, relationship maintenance,
and other persistence operations are available only inside an EJB container.

The dirty secret of many applications written using older versions of Java EE is that there is little to
no developer testing at all. Developers write, package, and deploy applications; test them manually
through the user interface; and then hope that the quality assurance group can write a functional test
that verifies each feature. It’s just too much work to test individual components outside of the
application server.

2 Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design Strategies,
Second Edition. Upper Saddle River, N.J.: Prentice Hall PTR, 2003, p. 315.

CHAPTER 14 ■ TESTING

432

This is where EJB and JPA come in. Starting with EJB 3.0, a session bean class is a simple Java class
that implements a regular Java interface, and in EJB 3.1 even the interface is no longer required for local
beans. No special EJB interfaces need to be extended or implemented. To unit test the logic in a session
bean, we can usually just implement it and execute it. If the bean depends on another bean, we can
instantiate that bean and manually inject it into the bean being tested. The EJB 3.0 release was designed
to encourage testing by breaking the hard dependencies between application code and the application
server.

Likewise entities are a world apart from container-managed entity beans. If your session bean uses
an entity, you can just instantiate it and use it like any other class. If you are testing code that uses the
entity manager and want to verify that it is interacting with the database the way you expect it to, just
bootstrap the entity manager in Java SE and make full use of the entity manager outside of the
application server.

In this chapter, we will demonstrate how to take a session bean and JPA code from a Java EE
application and run it outside the container using unit testing and integration testing approaches. If you
have worked with older versions of EJB and experienced the pain of developer testing, prepare yourself
for a completely different look at testing enterprise applications.

Test Frameworks
The JUnit test framework is a de facto standard for testing Java applications. JUnit is a simple unit testing
framework that allows tests to be written as Java classes. These Java classes are then bundled together
and run in suites using a test runner that is itself a simple Java class. Out of this simple design, a whole
community has emerged to provide extensions to JUnit and integrate it into all major development
environments.

Despite its name, unit testing is only one of the many things that JUnit can be used for. It has been
extended to support testing of web sites, automatic stubbing of interfaces for testing, concurrency
testing, and performance testing. Many quality assurance groups now use JUnit as part of the
automation mechanism to run whole suites of end-to-end functional tests.

For our purposes, we will look at JUnit in the context of its unit testing roots, and also at strategies
that allow it to be used as an effective integration test framework. Collectively we look at these two
approaches simply as developer tests because they are written by developers to assist with the overall
quality and development of an application.

In addition to the test framework itself, there are other libraries that can assist with the testing of
Java EE components. The EJB 3.1 release introduced the embedded EJB container, providing developers
with many of the services of an EJB container without the requirement to run within an application
server. Many nonstandard frameworks also offer sophisticated dependency injection support even in
the Java SE environment, allowing dependent classes to be woven together. Even if a framework does
not directly support EJB 3.0 annotations, the fact that session beans are simple Java classes makes them
usable with any lightweight container framework. As always, before writing these kinds of frameworks
for testing, check to see that the problem hasn’t already been solved. If nothing else, the Java community
has shown a remarkable willingness to share solutions to problems in the open source community and
even with commercial vendors.

We will assume that you are familiar with JUnit 4 (which makes use of annotations) at this point.
Introductory articles and tutorials can be found on the JUnit website at http://www.junit.org. Many
books and other online resources cover testing with JUnit in extensive detail.

http://www.junit.org

CHAPTER 4 ■ TESTING

433

Unit Testing
It might seem counterintuitive at first, but one of the most interesting things about entities is that they
can participate in tests without requiring a running application server or live database. For years,
enterprise developers have been frustrated with container-managed entity beans because they were
effectively untestable without a live application server. The component and home interfaces could
conceivably be used in unit tests, but only if the developer provided implementations of those
interfaces, duplicating effort already invested in writing the real bean classes and potentially introducing
new bugs in the process. Because entities are plain Java classes, they can be used directly in tests without
any additional effort required.

In the following sections, we will look at testing entity classes directly and using entities as part of
tests for Java EE components. We will also discuss how to leverage dependency injection in unit tests
and how to deal with the presence of JPA interfaces.

Testing Entities
Entities are unlikely to be extensively tested in isolation. Most methods on entities are simple getters or
setters that relate to the persistent state of the entity or to its relationships. Business methods may also
appear on entities, but are less common. In many applications, entities are little more than basic
JavaBeans.

As a rule, property methods do not generally require explicit tests. Verifying that a setter assigns a
value to a field and the corresponding getter retrieves the same value is not testing the application so
much as the compiler. Unless there is a side effect in one or both of the methods, getters and setters are
too simple to break and therefore too simple to warrant testing.

Key things to look for in determining whether or not an entity warrants individual testing are side
effects from a getter or setter method (such as data transformation or validation rules) and the presence
of business methods. The entity shown in Listing 14-1 contains nontrivial logic that warrants specific
testing.

Listing 14-1. An Entity that Validates and Transforms Data

@Entity
public class Department {
 @Id private String id;
 private String name;
 @OneToMany(mappedBy="department")
 private Collection<Employee> employees;

 public String getId() { return id; }
 public void setId(String id) {
 if (id.length() != 4) {
 throw new IllegalArgumentException(
 "Department identifiers must be four characters in length");
 }
 this.id = id.toUpperCase();
 }

 // ...
}

CHAPTER 14 ■ TESTING

434

The setId() method both validates the format of the department identifier and transforms the
string to uppercase. This type of logic and the fact that setting the identifier can actually cause an
exception to be thrown suggests that tests would be worthwhile. Testing this behavior is simply a matter
of instantiating the entity and invoking the setter with different values. Listing 14-2 shows one possible
set of tests.

Listing 14-2. Testing a Setter Method for Side Effects

public class DepartmentTest {

 @Test
 public void testValidDepartmentId() throws Exception {
 Department dept = new Department();
 dept.setId("NA65");
 Assert.assertEquals("NA65", dept.getId());
 }

 @Test
 public void testDepartmentIdInvalidLength() throws Exception {
 Department dept = new Department();
 try {
 dept.setId("NA6");
 Assert.fail("Department identifiers must be four characters");
 } catch (IllegalArgumentException e) {
 }
 }

 @Test
 public void testDepartmentIdCase() throws Exception {
 Department dept = new Department();
 dept.setId("na65");
 Assert.assertEquals("NA65", dept.getId());
 }
}

Testing Entities in Components
The most likely test candidate for entities is not the entity but the application code that uses the entity as
part of its business logic. For many applications this means testing session beans, managed beans and
other Java EE components. If the entities are obtained or initialized outside the scope of the component,
testing is made easy in the sense that the entity class can simply be instantiated, populated with entity
data and set into the bean class for testing. When used as a domain object in application code, an entity
is no different from any other Java class. You can effectively pretend that it’s not an entity at all.

Of course, there is more to unit testing a session bean than simply instantiating entities to be used
with a business method. We also need to be concerned with the dependencies that the session bean has
in order to implement its business logic. These dependencies are usually manifested as fields on the
bean class that are populated using a form of dependency injection or dependency lookup.

CHAPTER 4 ■ TESTING

435

When writing unit tests, our goal is to introduce the minimum set of dependencies required to
implement a particular test. If we are testing a business method that needs to invoke a method on the
EJBContext interface, we should worry only about providing a stubbed version of the interface. If the
bean uses a data source but is not relevant to our testing, then ideally we want to ignore it entirely.

Dependency injection is the key to effective unit testing. By removing the JNDI API from session
bean code and eliminating the need for the Service Locator pattern, you can ensure that the bean class
has few dependencies on the application server. We need only instantiate the bean instance and
manually inject the required resources, the majority of which will be either other beans from the
application or test-specific implementations of a standard interface.

As we explained in Chapter 3, the setter injection form of dependency injection is the easiest to use
in unit tests. Because the setter methods are almost always public, they can be invoked directly by the
test case to assign a dependency to the bean class. Field injection is still easy to deal with so long as the
field uses package scope because the convention for unit tests is to use the same package name as the
class that is being tested.

When the dependency is another session bean, you must make a choice about whether all the
dependencies of the required bean class must be met or whether a test-specific version of the business
interface should be used instead. If the business method from the dependent business interface does not
affect the outcome of the test, it may not be worth the effort to establish the full dependency. As an
example, consider the session bean shown in Listing 14-3. We have shown a single method for
calculating years of service for an employee that retrieves an Employee instance using the
EmployeeService session bean.

Listing 14-3. Using the EmployeeService Bean in a Different Business Method

@Stateless
public class VacationBean implements Vacation {
 public static final long MILLIS_PER_YEAR = 1000 * 60 * 60 * 24 * 365;
 @EJB EmployeeService empService;

 public int getYearsOfService(int empId) {
 Employee emp = empService.findEmployee(empId);
 long current = System.currentTimeMillis();
 long start = emp.getStartDate().getTime();
 return (int)((current - start) / MILLIS_PER_YEAR);
 }

 // ...
}

Because the only thing necessary to verify the getYearsOfService() method is a single Employee
instance with a start date value, there is no need to use the real EmployeeService bean. An
implementation of the EmployeeService interface that returns an entity instance preconfigured for the
test is more than sufficient. In fact, the ability to specify a well-known return value from the
findEmployee() method makes the overall test much easier to implement. Listing 14-4 demonstrates
using a test-specific implementation of a session bean interface. The implementation is defined as an
anonymous class in the test class. Implementing an interface specifically for a test is called mocking the
interface, and the instantiated instance is referred to as a mock object.

CHAPTER 14 ■ TESTING

436

Listing 14-4. Creating a Test-specific Version of a Business Interface

public class VacationBeanTest {
 @Test
 public void testYearsOfService() throws Exception {
 VacationBean bean = new VacationBean();
 bean.empService = new EmployeeService() {
 public Employee findEmployee(int id) {
 Employee emp = new Employee();
 emp.setStartDate(new Time(System.currentTimeMillis() -
 VacationBean.MILLIS_PER_YEAR * 5));
 return emp;
 }

 // ...
 };
 int yearsOfService = bean.getYearsOfService(0);
 Assert.assertEquals(5, yearsOfService);
 }

 // ...
}

The Entity Manager in Unit Tests
The EntityManager and Query interfaces present a challenge to developers writing unit tests. Code that
interacts with the entity manager can vary from the simple (persisting an object) to the complex (issuing
a JP QL query and obtaining the results). There are two basic approaches to dealing with the presence of
standard interfaces:

• Introduce a subclass that replaces methods containing entity manager or query
operations with test-specific versions that do not interact with JPA.

• Provide custom implementations of standard interfaces that may be predictably
used for testing.

Before covering these strategies in detail, consider the session bean implementation shown in
Listing 14-5 that provides a simple authentication service. For such a simple class, it is surprisingly
challenging to unit test. The entity manager operations are embedded directly within the
authenticate() method, coupling the implementation to JPA.

Listing 14-5. Session Bean that Performs Basic Authentication

@Stateless
public class UserServiceBean implements UserService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 public User authenticate(String userId, String password) {
 User user = em.find(User.class, userId);
 if (user != null) {
 if (password.equals(user.getPassword())) {

CHAPTER 4 ■ TESTING

437

 return user;
 }
 }
 return null;
 }
}

The first technique we will demonstrate to make this class testable is to introduce a subclass that
eliminates entity manager calls. For the UserServiceBean example shown in Listing 14-5, entity manager
access must first be isolated to a separate method before it can be tested. Listing 14-6 demonstrates such
a refactoring.

Listing 14-6. Isolating Entity Manager Operations for Testing

@Stateless
public class UserServiceBean implements UserService {
 @PersistenceContext(unitName="EmployeeService")
 EntityManager em;

 public User authenticate(String userId, String password) {
 User user = findUser(userId);
 // ...
 }

 User findUser(String userId) {
 return em.find(User.class, userId);
 }
}

With this refactoring complete, the authenticate() method no longer has any direct dependency on
the entity manager. The UserServiceBean class can now be subclassed for testing, replacing the
findUser() method with a test-specific version that returns a well-known result. Listing 14-7
demonstrates a complete test case using this technique.

Listing 14-7. Using a Subclass to Eliminate Entity Manager Dependencies

public class UserServiceTest {
 static final String USER_ID = "test_id";
 static final String PASSWORD = "test_password";
 static final String INVALID_USER_ID = "test_user";

 @Test
 public void testAuthenticateValidUser() throws Exception {
 TestUserService service = new TestUserService();
 User user = service.authenticate(USER_ID, PASSWORD);
 Assert.assertNotNull(user);
 Assert.assertEquals(USER_ID, user.getName());
 Assert.assertEquals(PASSWORD, user.getPassword());
 }

 @Test
 public void testAuthenticateInvalidUser() throws Exception {
 TestUserService service = new TestUserService();
 User user = service.authenticate(INVALID_USER_ID, PASSWORD);

CHAPTER 14 ■ TESTING

438

 Assert.assertNull(user);
 }

 class TestUserService extends UserServiceBean {
 private User user;

 public TestUserService() {
 user = new User();
 user.setName(USER_ID);
 user.setPassword(PASSWORD);
 }

 User findUser(String userId) {
 if (userId.equals(user.getName())) {
 return user;
 }
 return null;
 }
 }
}

This test case has the advantage of leaving the original authenticate() method implementation
intact, only overriding the findUser() method for the test. This works well for classes that have been
refactored to isolate persistence operations, but these changes cannot always be made. The alternative is
to mock the EntityManager interface. Listing 14-8 demonstrates this approach.

Listing 14-8. Using a Mock Entity Manager in a Unit Test

public class UserServiceTest2 {
 static final String USER_ID = "test_id";
 static final String PASSWORD = "test_password";
 static final String INVALID_USER_ID = "test_user";

 @Test
 public void testAuthenticateValidUser() throws Exception {
 UserServiceBean service = new UserServiceBean();
 service.em = new TestEntityManager(USER_ID, PASSWORD);
 User user = service.authenticate(USER_ID, PASSWORD);
 Assert.assertNotNull(user);
 Assert.assertEquals(USER_ID, user.getName());
 Assert.assertEquals(PASSWORD, user.getPassword());
 }

 @Test
 public void testAuthenticateInvalidUser() throws Exception {
 UserServiceBean service = new UserServiceBean();
 service.em = new TestEntityManager(USER_ID, PASSWORD);
 User user = service.authenticate(INVALID_USER_ID, PASSWORD);
 Assert.assertNull(user);
 }

 class TestEntityManager extends MockEntityManager {
 private User user;

CHAPTER 4 ■ TESTING

439

 public TestEntityManager(String user, String password) {
 this.user = new User();
 this.user.setName(user);
 this.user.setPassword(password);
 }

 public <T> T find(Class<T> entityClass, Object pk) {
 if (entityClass == User.class && ((String)pk).equals(user.getName())) {
 return (T) user;
 }
 return null;
 }
 }
}

The advantage of this approach over subclassing is that it leaves the original bean class unchanged
while allowing it to be unit tested. The MockEntityManager class referenced in the test is a concrete
implementation of the EntityManager interface with empty method definitions. All methods that return a
value return null or an equivalent instead. By defining it separately, it can be reused for other test cases.
Many unit test suites contain a small set of mocked interfaces that can be reused across multiple tests.

■ TIP Check out http://www.mockobjects.com for further information on mock object techniques and open
source tools to assist with mock object creation.

Integration Testing
Integration testing, for our purposes, is an extension of unit testing that takes components of a Java EE
application and executes them outside of an application server. Unlike unit testing, in which we went to
great lengths to avoid the entity manager, in integration testing we embrace it and leverage the fact that
it can be used in Java SE.

The following sections explore using JPA outside of an application server in order to test application
logic with a live database, but without starting the application server. To better approximate the runtime
environment, the same provider should be used for testing as is used in production.

Using the Entity Manager
In Listing 14-5, we demonstrated a session bean that performed basic authentication against a User
object retrieved from the database. To unit test this class, a number of techniques were presented to
replace or mock the entity manager operation. The downside to this approach is that the test code
required to work around external dependencies in the application code can quickly reach a point where
it is difficult to maintain and is a potential source of bugs.

Instead of mocking the entity manager, a resource-local, application-managed entity manager may
be used to perform tests against a live database. Listing 14-9 demonstrates a functional test version of
the UserServiceBean test cases.

http://www.mockobjects.com

CHAPTER 14 ■ TESTING

440

Listing 14-9. Integration Test for UserServiceBean

public class UserServiceTest3 {
 static final String USER_ID = "test_id";
 static final String PASSWORD = "test_password";
 static final String INVALID_USER_ID = "test_user";

 private EntityManagerFactory emf;
 private EntityManager em;

 @Before
 public void setUp() {
 emf = Persistence.createEntityManagerFactory("hr");
 em = emf.createEntityManager();
 createTestData();
 }

 @After
 public void tearDown() {
 if (em != null) {
 removeTestData();
 em.close();
 }
 if (emf != null) {
 emf.close();
 }
 }

 private void createTestData() {
 User user = new User();
 user.setName(USER_ID);
 user.setPassword(PASSWORD);
 em.getTransaction().begin();
 em.persist(user);
 em.getTransaction().commit();
 }

 private void removeTestData() {
 em.getTransaction().begin();
 User user = em.find(User.class, USER_ID);
 if (user != null) {
 em.remove(user);
 }
 em.getTransaction().commit();
 }

 @Test
 public void testAuthenticateValidUser() throws Exception {
 UserServiceBean service = new UserServiceBean();
 service.em = em;
 User user = service.authenticate(USER_ID, PASSWORD);
 Assert.assertNotNull(user);

CHAPTER 4 ■ TESTING

441

 Assert.assertEquals(USER_ID, user.getName());
 Assert.assertEquals(PASSWORD, user.getPassword());
 }

 @Test
 public void testAuthenticateInvalidUser() throws Exception {
 UserServiceBean service = new UserServiceBean();
 service.em = em;
 User user = service.authenticate(INVALID_USER_ID, PASSWORD);
 Assert.assertNull(user);
 }
}

This test case uses the fixture methods setUp() and tearDown() to create EntityManagerFactory and
EntityManager instances using the Java SE bootstrap API and then closes them when the test completes.
The test case also uses these methods to seed the database with test data and remove it when the test
completes. The tearDown() method is guaranteed to be called even if a test fails due to an exception. Like
any JPA application in the Java SE environment, a persistence.xml file will need to be on the classpath in
order for the Persistence class to bootstrap an entity manager factory. The file must contain the JDBC
connection properties to connect to the database, and if the managed classes were not already listed,
class elements would also need to be added for each managed class. If the transaction type was not
specified, it will be defaulted to the correct transaction type according to the environment; otherwise, it
should be set to RESOURCE_LOCAL. This example demonstrates the basic pattern for all integration tests
that use an entity manager.

The advantage of this style of test versus a unit test is that no effort was required to mock up
persistence interfaces. Emulating the entity manager and query engine in order to test code that
interacts directly with these interfaces suffers from diminishing returns as more and more effort is put
into preparing a test environment instead of writing tests. In the worst-case scenario, incorrect test
results occur because of bugs in the test harness, not in the application code. Given the ease with which
JPA can be used outside the application server, this type of effort may be better spent establishing a
simple database test environment and writing automated functional tests.

However, despite the opportunity that testing outside the application server presents, care must be
taken to ensure that such testing truly adds value. Quite often, developers fall into the trap of writing
tests that do little more than test vendor functionality as opposed to true application logic. An example
of this mistake is seeding a database, executing a query, and verifying that the desired results are
returned. It sounds valid at first, but all that it tests is the developer’s understanding of how to write a
query. Unless there is a bug in the database or the persistence provider, the test will never fail. A more
valid variation of this test would be to start the scenario farther up the application stack by executing a
business method on a session façade that initiates a query and then validating that the resulting transfer
objects are formed correctly for later presentation by a JSP page.

Test Setup and Teardown
Many tests involving persistence require some kind of test data in the database before the test can be
executed. If the business operation does not create and verify the result of a persistence operation, the
database must already contain data that can be read and used by the test. Because tests should ideally be
able to set and reset their own test data before and after each test, we must have a way to seed the
database appropriately.

This sounds pretty straightforward; use JDBC to seed the database during setUp() and again during
tearDown() to reset it. But there is a danger here. Most persistence providers employ some kind of data
or object caching. Any time data changes in the database without the persistence provider knowing
about it, its cache will get out of sync with the database. In the worst-case scenario, this

CHAPTER 14 ■ TESTING

442

could cause entity manager operations to return entities that have since been removed or that have stale
data.

It’s worth reiterating that this is not a problem with the persistence provider. Caching is a good
thing and the reason why JPA solutions often significantly outperform direct JDBC access in read-mostly
applications. The Reference Implementation, for example, uses a sophisticated shared-cache
mechanism that is scoped to the entire persistence unit. When operations are completed in a particular
persistence context, the results are merged back into the shared cache so that they can be used by other
persistence contexts. This happens whether the entity manager and persistence context are created in
Java SE or Java EE. Therefore, you can’t assume that closing an entity manager clears test data from
the cache.

There are several approaches we can use to keep the cache consistent with our test database. The
first, and easiest, is to create and remove test data using the entity manager. Any entity persisted or
removed using the entity manager will always be kept consistent with the cache. For small data sets, this
is very easy to accomplish. This is the approach we used in Listing 14-9.

For larger data sets, however, it can be cumbersome to create and manage test data using entities.
JUnit extensions such as DbUnit3 allow seed data to be defined in XML files and then loaded in bulk to
the database before each test begins. So given that the persistence provider won’t know about this data,
how can we still make use of it? The first strategy is to establish a set of test data that is read-only. As long
as the data is never changed, it doesn’t matter whether the entity exists in the provider cache or not. The
second strategy is to either use special data sets for operations that need to modify test data without
creating it or to ensure that these changes are never permanently committed. If the transaction to
update the database is rolled back, the database and cache state will both remain consistent.

The last thing to consider is explicit cache invalidation. Prior to JPA 2.0, access to the second-level
cache was vendor-specific. As discussed in Chapter 11, we can now use the Cache interface to explicitly
clear the second-level cache between tests. The following method demonstrates how to invalidate the
entire second-level cache given any EntityManagerFactory instance:

public static void clearCache(EntityManagerFactory emf) {
 emf.getCache().evictAll();
}

If there are any open entity managers, the clear() operation on each should be invoked as well. As
we have discussed before, the persistence context is a localized set of transactional changes. It uses data
from the shared cache but is actually a separate and distinct data structure.

Switching Configurations for Testing
One of the great advantages of JPA is that metadata specified in annotation form may be overridden or
replaced by metadata specified in XML form. This affords us a unique opportunity to develop an
application targeting the production database platform and then provide an alternate set of mappings
(even query definitions) targeted to a test environment. While this is a common practice and has its
benefits, it’s worth noting that if you are running on a test database with alternate mappings and query
definitions, there will clearly be at least some differences between the test installation and running in
production. Production testing is always going to be necessary, but testing earlier in the cycle on a test
database can be done on a more convenient or more accessible database platform and can catch some
bugs earlier in the cycle.

3 Visit http://dbunit.sourceforge.net/ for more information.

http://dbunit.sourceforge.net

CHAPTER 4 ■ TESTING

443

In the context of testing, the Java SE bootstrap mechanism will use the persistence.xml file located
in the META-INF directory on the classpath. As long as the persistence unit definition inside this file has
the same name as the one the application was written to, the test version can retarget it as necessary to
suit the needs of the integration test.

There are two main uses for this approach. The first is to specify properties in the persistence.xml
file that are specific to testing. For many developers, this will mean providing JDBC connection
information to a local database so that tests do not collide with other developers on a shared database.

The second major use of a custom persistence.xml file is to customize the database mappings for
deployment on a completely different database platform. For example, if Oracle is your production
database and you don’t want to run the full database4 on your local machine, you can adjust the
mapping information to target an embedded database such as Apache Derby.

As an example of when this would be necessary, consider an application that uses the native
sequencing of the Oracle database. Derby does not have an equivalent, so table generators must be used
instead. First, let’s consider an example entity that uses a native sequence generator:

@Entity
public class Phone {
 @SequenceGenerator(name="Phone_Gen", sequenceName="PHONE_SEQ")
 @Id @GeneratedValue(generator="Phone_Gen")
 private int id;
 // ...
}

The first step to get this entity working on Derby is to create an XML mapping file that overrides the
definition of the “Phone_Gen” generator to use a table generator. The following fragment of a mapping
file demonstrates how to replace the sequence generator with a table generator:

<entity-mappings>
 ...
 <table-generator name="Phone_Gen", table="ID_GEN", pk-column-value="PhoneId">
 ...
</entity-mappings>

This is the same technique we applied in Chapter 12 when we discussed overriding a sequence
generator.

Finally, we need to create a new persistence.xml file that references this mapping file. If the
overrides were placed in a mapping file called derby-overrides.xml, the following persistence unit
configuration would apply the mapping overrides:

<persistence>
 <persistence-unit name="hr">
 ...
 <mapping-file>derby-overrides.xml</mapping-file>
 ...
 </persistence-unit>
</persistence>

4 At the risk of sounding somewhat biased, might we humbly suggest Oracle XE. It represents the power
of the Oracle database conveniently sized to an individual machine at no cost. All the examples in this
book (including the advanced SQL query examples) were developed on Oracle XE.

CHAPTER 14 ■ TESTING

444

Unlike the mapping file, which sparsely defines overrides, all the information that was present in
the production persistence.xml file must be copied into the test-specific version. The only exception to
this is the JDBC connection properties, which will now have to be customized for the embedded Derby
instance.

Minimizing Database Connections
Integration tests execute slower than unit tests due to the nature of the database interaction, but what
might not be obvious from the test case shown in Listing 14-9 is that two separate connections are made
to the database, one each for the testAuthenticateValidUser() and testAuthenticateInvalidUser()
tests. JUnit actually instantiates a new instance of the test case class each time it runs a test method,
running setUp() and tearDown() each time as well. The reason for this behavior is to minimize the
chance of data stored in fields from one test case interfering with the execution of another.

While this works well for unit tests, it may lead to unacceptable performance for integration tests. To
work around this limitation, the @BeforeClass and @AfterClass features of JUnit 4 may be used to create
fixtures that run only once for all of the tests in a class. Listing 14-10 demonstrates a test suite class that
uses this feature at the level of the entire test suite.

Listing 14-10. One-time Database Setup for Integration Tests

@RunWith(Suite.class)
@Suite.SuiteClasses({UserServiceTest3.class})
public class DatabaseTest {
 public static EntityManagerFactory emf;

 @BeforeClass
 public static void setUpBeforeClass() throws Exception {
 emf = Persistence.createEntityManagerFactory("hr");
 }

 @AfterClass
 public static void tearDownAfterClass() throws Exception {
 if (emf != null) { emf.close(); }
 }}

Using this test suite as a starting point, all test cases added to the @Suite.SuiteClasses annotation
can have access to the correctly populated EntityManagerFactory static field on the DatabaseTest class.
The setUp() method of each test case now only needs to reference this class to obtain the factory instead
of creating it each time. The following example demonstrates the change required for the
UnitServiceTest3 test case:

@Before
public void setUp() {
 emf = DatabaseTest.emf;
 em = emf.createEntityManager();
 createTestData();
}

This is a useful technique to minimize the cost of acquiring expensive resources, but care must be
taken to ensure that side effects from one test do not accidentally interfere with the execution of other
tests. Because all tests share the same entity manager factory, data may be cached or settings may be
changed (supported by some entity manager factories) that have an unexpected impact later on. Just as
it is necessary to keep the database tables clean between tests, any changes to the entity manager factory

mailto:@Suite.SuiteClasses
mailto:@Suite.SuiteClasses

CHAPTER 4 ■ TESTING

445

must be reverted when the test ends, regardless of whether the outcome is a success or a failure. It is
usually a good idea to clear the cache, as we showed in the “Test Setup and Teardown” section.

Components and Persistence
More often than not, session beans in an integration test are no different from session beans in a unit
test. You instantiate the bean, supply any necessary dependencies, and execute the test. Where we start
to diverge is when we take into account issues such as transaction management and multiple session
bean instances collaborating together to implement a single use case. In the following sections, we will
discuss techniques to handle more complex session bean scenarios when testing outside of the
container.

Transaction Management
Transactions lie at the heart of every enterprise application. We made this statement back in Chapter 3
and drove it home in Chapter 6, demonstrating all the different ways in which entity managers and
persistence contexts can intersect with different transaction models. It might come as a surprise, then, to
learn that when it comes to writing integration tests, we can often sidestep the stringent transactional
requirements of the application to easily develop tests outside the container. The following sections will
delve into when transactions are really required and how to translate the container-managed and bean-
managed transaction models of the Java EE server into your test environment.

When to Use Transactions

Except for resource-local, application-managed entity managers, which are rarely used in the Java EE
environment, transaction management is the purview of session beans and other components that use
JPA. We will focus specifically on session beans, but the topics we cover apply equally to transactional
persistence operations hosted by transaction-capable components such as message-driven beans or
servlets.

The transaction demarcation for a session bean method needs to be considered carefully when
writing tests. Despite the default assumption that transactions are used everywhere in the application
server, only a select number of methods actually require transaction management for the purpose of
testing. Because we are focused on testing persistence, the situation we are concerned with is when the
entity manager is being used to persist, merge, or remove entity instances. We also need to determine
whether these entities actually need to be persisted to the database.

In a test environment, we are using resource-local, application-managed entity managers. Recall
from Chapter 6 that an application-managed entity manager can perform all its operations without an
active transaction. In effect, invoking persist() queues up the entity to be persisted the next time a
transaction starts and is committed. Furthermore, we know that once an entity is managed, it can
typically be located using the find() operation without the need to go to the database. Given these facts,
we generally need a transacted entity manager only if the business method creates or modifies entities,
and executes a query that should include the results.

Although not required to satisfy business logic, a transaction may also be required if you want the
results of the operation to be persisted so that they can be analyzed using something other than the
active entity manager. For example, the results of the operation can be read from the database using
JDBC and compared to a known value using a test tool.

The main thing we want to stress here before we look into how to implement transactions for
session bean tests is that more often than not, you don’t really need them at all. Look at the sequence of
operations you are testing and consider whether the outcome will be affected one way or the other first if
the data must be written to the database, and later if it truly must be committed as part of the test. Given

CHAPTER 14 ■ TESTING

446

the complexity that manual transaction management can sometimes require, use transactions only
when they are necessary.

Container-Managed Transactions

One of the most important benefits of container-managed transactions is that they are configured for
session bean methods entirely using metadata. There is no programming interface invoked by the
session bean to control the transaction other than the setRollbackOnly() method on the EJBContext
interface, and even this occurs only in certain circumstances. Therefore, once we decide that a particular
bean method requires a transaction to be active, we need only start a transaction at the start of the test
and commit or roll back the results when the test ends.

Listing 14-11 shows a bean method that will require an open transaction during a test. The
assignEmployeeToDepartment() method assigns an employee to a given department and then returns the
list of employees currently assigned to the department by executing a query. Because the data
modification and query occur in the same transaction, our test case will also require a transaction.

Listing 14-11. Business Method Requiring a Transaction

@Stateless
public class DepartmentServiceBean implements DepartmentService {
 private static final String QUERY =
 "SELECT e " +
 "FROM Employee e " +
 "WHERE e.department = ?1 ORDER BY e.name";

 @PersistenceContext
 EntityManager em;

 public List assignEmployeeToDepartment(int deptId, int empId) {
 Department dept = em.find(Department.class, deptId);
 Employee emp = em.find(Employee.class, empId);
 dept.getEmployees().add(emp);
 emp.setDepartment(dept);
 return em.createQuery(QUERY)
 .setParameter(1, dept)
 .getResultList();
 }

 // ...
}

Because we are using a resource-local entity manager, we will be simulating container-managed
transactions with EntityTransaction transactions managed by the test case. Listing 14-12 shows the test
case for the assignEmployeeToDepartment() method. We have followed the same template as in Listing
14-9, so the setUp() and tearDown() methods are not shown. Before the session bean method is invoked,
we create a new transaction. When the test is complete, we roll back the changes because it isn’t
necessary to persist them in the database.

CHAPTER 4 ■ TESTING

447

Listing 14-12. Testing a Business Method that Requires a Transaction

public class DepartmentServiceBeanTest {
 // ...

 private void createTestData() {
 Employee emp = new Employee(500, "Scott");
 em.persist(emp);
 emp = new Employee(600, "John");
 em.persist(emp);
 Department dept = new Department(700, "TEST");
 dept.getEmployees().add(emp);
 emp.setDepartment(dept);
 em.persist(dept);
 }

 @Test
 public void testAssignEmployeeToDepartment() throws Exception {
 DepartmentServiceBean bean = new DepartmentServiceBean();
 bean.em = em;
 em.getTransaction().begin();
 List result = bean.assignEmployeeToDepartment(700, 500);
 em.getTransaction().rollback();
 Assert.assertEquals(2, result.size());
 Assert.assertEquals("John", ((Employee)result.get(0)).getName());
 Assert.assertEquals("Scott", ((Employee)result.get(1)).getName());
 }

 // ...
}

Bean-Managed Transactions

For a session bean that uses bean-managed transactions, the key issue we need to contend with is the
UserTransaction interface. It may or may not be present in any given bean method and can be used for a
number of purposes, from checking the transaction status to marking the current transaction for
rollback, to committing and rolling back transactions. Fortunately, almost all the UserTransaction
methods have a direct correlation to one of the EntityTransaction methods. Because our test strategy
involves a single entity manager instance for a test, we need to adapt its EntityTransaction
implementation to the UserTransaction interface.

Listing 14-13 shows an implementation of the UserTransaction interface that delegates to the
EntityTransaction interface of an EntityManager instance. Exception handling has been added to
convert the unchecked exceptions thrown by EntityTransaction operations into the checked exceptions
that clients of the UserTransaction interface will be expecting.

CHAPTER 14 ■ TESTING

448

Listing 14-13. Emulating UserTransaction Using EntityTransaction

public class EntityUserTransaction implements UserTransaction {
 private EntityManager em;

 public EntityUserTransaction(EntityManager em) {
 this.em = em;
 }

 public void begin() throws NotSupportedException {
 if (em.getTransaction().isActive()) {
 throw new NotSupportedException();
 }
 em.getTransaction().begin();
 }

 public void commit() throws RollbackException {
 try {
 em.getTransaction().commit();
 } catch (javax.persistence.RollbackException e) {
 throw new RollbackException(e.getMessage());
 }
 }

 public void rollback() throws SystemException {
 try {
 em.getTransaction().rollback();
 } catch (PersistenceException e) {
 throw new SystemException(e.getMessage());
 }
 }

 public void setRollbackOnly() {
 em.getTransaction().setRollbackOnly();
 }

 public int getStatus() {
 if (em.getTransaction().isActive()) {
 return Status.STATUS_ACTIVE;
 } else {
 return Status.STATUS_NO_TRANSACTION;
 }
 }

 public void setTransactionTimeout(int timeout) {
 throw new UnsupportedOperationException();
 }
}

Note that we have implemented setTransactionTimeout() to throw an exception, but this does not
necessarily have to be the case. If the transaction timeout is set simply to prevent processes from taking
too long to complete, it might be safe to ignore the setting in an integration test.

CHAPTER 4 ■ TESTING

449

To demonstrate this wrapper, first consider Listing 14-14, which demonstrates a variation of the
example from Listing 14-11 that uses bean-managed transactions instead of container-managed
transactions.

Listing 14-14. Using Bean-managed Transactions

@Stateless
@TransactionManagement(TransactionManagementType.BEAN)
public class DepartmentServiceBean implements DepartmentService {
 // ...
 @Resource UserTransaction tx;

 public List assignEmployeeToDepartment(int deptId, int empId) {
 try {
 tx.begin();
 Department dept = em.find(Department.class, deptId);
 Employee emp = em.find(Employee.class, empId);
 dept.getEmployees().add(emp);
 emp.setDepartment(dept);
 tx.commit();
 return em.createQuery(QUERY)
 .setParameter(1, dept)
 .getResultList();
 } catch (Exception e) {
 // handle transaction exceptions
 // ...
 }
 }

 // ...
}

Using the UserTransaction wrapper is simply a matter of injecting it into a session bean that has
declared a dependency on UserTransaction. Because the wrapper holds onto an entity manager
instance, it can begin and end EntityTransaction transactions as required from within the application
code being tested. Listing 14-15 shows the revised test case from Listing 14-12 using this wrapper to
emulate bean-managed transactions. .

Listing 14-15. Executing a Test with Emulated Bean-managed Transactions

public class DepartmentServiceBeanTest {
 // ...

 @Test
 public void testAssignEmployeeToDepartment() throws Exception {
 DepartmentServiceBean bean = new DepartmentServiceBean();
 bean.em = em;
 bean.tx = new EntityUserTransaction(em);
 List result = bean.assignEmployeeToDepartment(700, 500);
 Assert.assertEquals(2, result.size());
 Assert.assertEquals("John", ((Employee)result.get(0)).getName());
 Assert.assertEquals("Scott", ((Employee)result.get(1)).getName());
 }

CHAPTER 14 ■ TESTING

450

 // ...
}

Note that although the UserTransaction interface is used, that doesn’t mean it’s actually necessary
for any particular test. If the transaction state doesn’t affect the outcome of the test, consider using an
implementation of the UserTransaction interface that doesn’t do anything. For example, the
implementation of UserTransaction shown in Listing 14-16 is fine for any case where transaction
demarcation is declared but unnecessary.

Listing 14-16. A Stubbed UserTransaction

public class NullUserTransaction implements UserTransaction {
 public void begin() {}
 public void commit() {}
 public void rollback() {}
 public void setRollbackOnly() {}
 public int getStatus() {
 return Status.STATUS_NO_TRANSACTION;
 }
 public void setTransactionTimeout(int timeout) {}
}

The test case shown in Listing 14-12 could also have tested the bean from Listing 14-14 if the empty
UserTransaction wrapper from Listing 14-16 was also injected into the bean instance. This would disable
the bean-managed transactions of the actual business method, allowing the transactions of the test case
to be used instead.

Container-Managed Entity Managers
The default entity manager type for a session bean is container-managed and transaction-scoped.
Extended entity managers are an option only for stateful session beans. In either case, the goal of testing
outside the container is to map the application-managed entity manager used by the test to one of these
entity manager types.

The good news for testing code that uses the extended entity manager is that the application-
managed entity manager offers almost exactly the same feature set. It can usually be injected into a
stateful session bean instance in place of an extended entity manager, and the business logic should
function without change in most cases.

Likewise, most of the time the transaction-scoped entity manager works just fine when an
application-managed entity manager is used in its place. The main issue we need to deal with in the case
of transaction-scoped entity managers is detachment. When a transaction ends, any managed entities
become detached. In terms of a test, that just means that we need to ensure that clear() is invoked on
the transaction boundary for our test entity manager.

We may also need to deal with the issue of propagation. In some respects, propagation is easy in a
test environment. If you inject the same application-managed entity manager instance into two session
bean instances, the beans share the same persistence context as if the entity manager were propagated
with the transaction. In fact, it is far more likely that you will need to inject multiple entity managers to
simulate the intentional lack of propagation (such as a bean that invokes a REQUIRES_NEW method on
another bean) than that you will have to do anything special for propagation.

CHAPTER 4 ■ TESTING

451

Let’s look at a concrete example of transaction propagation using the examples we first introduced
in Chapter 6. Listing 14-17 shows the implementation of the AuditService session bean that performs
audit logging. We have used setter injection in this example to contrast it against the version from
Chapter 6.

Listing 14-17. AuditService Session Bean with Setter Injection

@Stateless
public class AuditServiceBean implements AuditService {
 private EntityManager em;

 @PersistenceContext(unitName="hr")
 public void setEntityManager(EntityManager em) {
 this.em = em;
 }

 public void logTransaction(int empNo, String action) {
 // verify employee number is valid
 if (em.find(Employee.class, empNo) == null) {
 throw new IllegalArgumentException("Unknown employee id");
 }
 LogRecord lr = new LogRecord(empNo, action);
 em.persist(lr);
 }
}

Likewise Listing 14-18 shows a fragment from the EmployeeService session bean that uses the
AuditService session bean to record when a new Employee instance has been persisted. Because both the
createEmployee() and logTransaction() methods are invoked in the same transaction without a commit
in between, the persistence context must be propagated from one to the other. Again we have used
setter injection instead of field injection to make the bean easier to test.

Listing 14-18. EmployeeService Session Bean with Setter Injection

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 EntityManager em;
 AuditService audit;

 @PersistenceContext
 public void setEntityManager(EntityManager em) {
 this.em = em;
 }

 @EJB
 public void setAuditService(AuditService audit) {
 this.audit = audit;
 }

 public void createEmployee(Employee emp) {
 em.persist(emp);
 audit.logTransaction(emp.getId(), "created employee");
 }

CHAPTER 14 ■ TESTING

452

 // ...
}

Using the previous two session beans as an example, Listing 14-19 demonstrates how to emulate
propagation between two transaction-scoped, container-managed entity managers. The first step to
make this testable is to instantiate each session bean. The AuditService bean is then injected into the
EmployeeService bean, and the test entity manager instance is injected into both session beans. The
injection of the same EntityManager instance effectively propagates any changes from the
EmployeeService bean to the AuditService bean. Note that we have also used the entity manager in the
test to locate and verify the results of the business method.

Listing 14-19. Simulating Container-managed Transaction Propagation

public class TestEmployeeServiceBean {
 // ...

 @Test
 public void testCreateEmployee() throws Exception {
 EmployeeServiceBean empService = new EmployeeServiceBean();
 AuditServiceBean auditService = new AuditServiceBean();
 empService.setEntityManager(em);
 empService.setAuditService(auditService);
 auditService.setEntityManager(em);
 Employee emp = new Employee();
 emp.setId(99);
 emp.setName("Wayne");
 empService.createEmployee(emp);
 emp = em.find(Employee.class, 99);
 Assert.assertNotNull(emp);
 Assert.assertEquals(99, emp.getId());
 Assert.assertEquals("Wayne", emp.getName());
 }

 // ...
}

Other Services
There is more to a session bean than just dependency injection and transaction management. For
example, as we saw in Chapter 3, session beans can also take advantage of lifecycle methods. Other
services that are beyond the scope of this book include security management and interceptors.

The general rule is that in a test environment, you need to manually perform the work that would
have otherwise been done automatically by the container. In the case of lifecycle methods, for example,
you will have to explicitly invoke these methods if they are required for a particular test. Given this
requirement, it is a good idea to use package or protected scope methods so that they can be manually
invoked by test cases.

That being said, be aggressive in determining the true number of things that have to occur in order
for a test to succeed. Just because security roles have been declared for a session bean method doesn’t
mean that it actually has any effect on the test outcome. If it doesn’t have to be invoked prior to the test,
don’t waste time setting up the test environment to make it happen.

CHAPTER 4 ■ TESTING

453

Using an Embedded EJB Container for Integration Testing
When multiple session beans collaborate to implement a particular application use case, a lot of
scaffolding code may be required to get things up and running. If multiple test cases share similar graphs
of session beans, some or all of this code may have to be duplicated across multiple test cases. Ideally,
we want a framework to assist with issues such as dependency injection in our test environment.

Fortunately, EJB supports just such a container. An embedded EJB container supports EJB Lite, a
subset of the overall EJB feature set. EJB Lite includes support for local session beans, interceptors,
container-managed transactions (assuming the availability of a stand-alone JTA transaction manager
implementation) and security, and JPA, but does not include support for remote session beans,
message-driven beans, web service endpoints, timers, or asynchronous session beans. It offers more
than enough to handle the different dependency scenarios we have described so far.

To demonstrate how to use an embedded EJB container for integration testing with session beans
and the entity manager, we will revisit the propagation test case from the preceding “Container-
Managed Entity Managers” section and convert it to use an embedded container.

■ TIP Embedded EJB containers were introduced in EJB 3.1.

Unlike the other forms of integration techniques we have looked at so far, an embedded EJB
container requires no mocking of standard interfaces or subclassing of beans to override behavior
specific to the server. As long as an application fits within the subset of the EJB specification supported
by embedded containers, it can be used as-is.

Bootstrapping the embedded container is straightforward. You compile and package the classes as
normal into an EJB jar file and add that jar file to the test classpath in order for the embedded container
bootstrap mechanism to locate it. The static createEJBContainer() method of the
javax.ejb.embeddable.EJBContainer class can then be used to create an EJB container and load the
module from the classpath. Listing 14-20 demonstrates the bootstrapping process. Additional options
for the container may be specified by passing in a Map of properties, but for basic tests with a single
module, no special configuration is required.

Listing 14-20. Bootstrapping an Embedded EJB Container Within a Test Case

public class TestEmployeeServiceBean {
 private EJBContainer container;

 @Before
 public void setUp() {
 container = EJBContainer.createEJBContainer();
 }

 @After
 public void tearDown() {
 container.close();
 }

 // ...
}

CHAPTER 14 ■ TESTING

454

Once the container has initialized, we need to get access to session beans in order to test them. The
embedded container exposes its internal JNDI directory of session beans via the getContext() method of
the EJBContainer class. The test code must then make a global JNDI lookup in order to access a
particular session bean. A global lookup does not require references or an environment naming context.
Instead, the module name (derived from the jar name) and session bean names are composed to form a
unique name under the JNDI root “global”. Listing 14-21 demonstrates this technique assuming the
beans have been packaged in an EJB jar file called ''hr.jar''.

Listing 14-21. Acquiring a Session Bean Reference from an Embedded EJB Container

public class TestEmployeeServiceBean extends TestCase {
 private EJBContainer container;

 // ...

 private EmployeeService getServiceBean() throws Exception {
 return (EmployeeService)
container.getContext().lookup("java:global/hr/EmployeeServiceBean");
 }

 private EntityManager getEntityManager() throws Exception {
 return (EntityManager) container.getContext().lookup("java:global/hr/HRService");
 }

 // ...
}

With access to a live session bean, we can now write test methods as if we were running code
directly within the application server. Listing 14-22 completes this example with a new version of
testCreateEmployee() that uses the bean reference from the embedded container.

Listing 14-22. Testing a Session Bean Acquired from an Embedded EJB Container

public class TestEmployeeServiceBean {
 // ...

 @Test
 public void testCreateEmployee() throws Exception {
 EmployeeService bean = getServiceBean();
 Employee emp = new Employee();
 emp.setId(99);
 emp.setName("Wayne");
 bean.createEmployee(emp);
 EntityManager em = getEntityManager();
 emp = em.find(Employee.class, 99);
 Assert.assertNotNull(emp);
 Assert.assertEquals(99, emp.getId());
 Assert.assertEquals("Wayne", emp.getName());
 }

 // ...
}

CHAPTER 4 ■ TESTING

455

As discussed earlier in the “Switching Configurations for Testing” section, a custom
persistence.xml file appropriate to the test environment may be required and should be packaged in the
EJB jar file used on the system classpath. Likewise, sharing the EJB container across test executions will
likely improve overall test suite performance, but again care must be taken not to accidentally influence
the outcome of other tests with state maintained by the EJB container.

For two session beans, this approach is arguably overkill compared with the same test case shown in
Listing 14-19. But it should be easy to see even from this small example how complex bean relationships
can be realized using an embedded EJB container.

Best Practices
A full discussion of developer testing strategies is beyond the scope of this chapter, but to make testing of
application code that uses entities easier, consider adopting the following best practices:

• Avoid using the entity manager from within entity classes. This creates a tight
coupling between the domain object and the persistence API, making testing
difficult. Queries that are related to an entity, but not part of its object-relational
mapping, are better executed within a session façade or data access object.

• Prefer dependency injection to JNDI lookups in session beans. Dependency
injection is a key technology for simplifying tests. Instead of mocking the JNDI
interfaces to provide runtime support for unit testing, the required values can be
directly assigned to the object using a setter method or field access. Note that
accessing private fields from a test case is bad form. Either use package private
fields as the target for injected objects or provide a setter method.

• Isolate persistence operations. Keeping EntityManager and Query operations
separate in their own methods makes replacing them easier during unit testing.

• Decouple with interfaces. Just as JPA uses interfaces to minimize dependencies
on the persistence provider, loosely coupled components with interfaces can help
manage complex dependencies.

• Refactor when necessary. Don’t be afraid to refactor application code to make it
more test-friendly so long as the refactoring benefits the application as a whole.
Method extraction, parameter introduction, and other refactoring techniques can
help break down complex application logic into testable chunks, improving the
overall readability and maintainability of the application in the process.

These approaches, combined with the simplified testing features of the EJB and JPA specifications,
can support your testing style, no matter which approach you choose to use.

Summary
In this chapter, we started with an exploration of testing enterprise applications and the challenges that
have traditionally faced developers. We also looked at the different types of testing performed by
developers, quality engineers, and customers; and we refined our focus to look specifically at developer
tests for EJB and JPA applications.

CHAPTER 14 ■ TESTING

456

In the section on unit testing, we looked at how to test entity classes and then pulled back to look at
how to test session beans in combination with entities in a unit test environment. We introduced the
concept of mock objects and explored how to test code that depends on the entity manager without
actually using a real entity manager.

In our discussion of integration testing, we discussed how to get the entity manager up and running
in JUnit tests in the Java SE environment and the situations where it makes sense to use this technique.
We covered a number of issues related to the entity manager, including how to safely seed a database for
testing, how to use multiple mapping files for different database configurations, and how to minimize
the number of database connections required for a test suite. We also looked at how to make use of an
embedded EJB container for integration testing.

We looked at how to use session beans in integration tests and how to deal with dependency-
injection and transaction-management issues. For transaction management, we looked at how to
emulate container-managed and bean-managed transactions, as well as how to simulate persistence
context propagation in a test environment. We concluded with a summary of some best practices to
consider when building Java EE applications using JPA.

In the next chapter, we will look at how to migrate existing EJB 2.1 and JDBC applications to JPA.

C H A P T E R 15

■ ■ ■

457

Migration

Now that JPA has been explained in detail, your challenge is deciding how and when to adopt the new
persistence model. For new applications, this is not an issue, but what about existing applications? In
this chapter we will look at the challenges facing developers who want to integrate JPA into legacy
applications and offer some solutions to help ease the transition.

Terminology Check

Recall that JPA objects are called entities, not beans. The term entity beans refers to objects that were created using

EJB 2.1-style container-managed persistence (CMP). Mixing these terms up will inevitably put you in a confused and

unhappy state throughout this chapter.

Migrating from CMP Entity Beans
Until the publication of the EJB 3.0 specification and JPA, the only persistence technology officially part
of the Java EE platform was CMP using EJB entity beans. Ever since they were first required to be
supported in EJB 1.1, entity beans have been criticized as being too complex and lacking in features to
handle the persistence requirements of real-world applications. But standards matter in the enterprise,
so despite the availability of proven object-relational mapping solutions, both commercial and open
source, companies have always found a way to work around the entity bean shortcomings and get the
job done. As a result, there is a large installed base of applications based on CMP entity beans, and
bringing it forward into the next generation of Java EE standards might be a task worth pursuing.

The complexity of entity beans lies not in the concept but in the implementation. Like EJB 2.1
session beans, entity beans are true EJB components, with separate classes for the bean implementation,
home interface, and business interfaces. Entity beans also require a verbose XML deployment descriptor
that describes the persistent properties of the bean, container-managed relationships between entities,
and the EJB QL queries used to access the entities. Finally, many of the entity bean details require
vendor-specific configuration to deploy and run. In response to these issues, JPA offers a programming
model that is easier to use, while offering a larger feature set with less vendor-specific configuration.

CHAPTER 15 ■ MIGRATION

458

Although JPA is the standard persistence model moving forward, companies that have made an
investment in CMP entity beans can still use the latest release of Java EE because container-managed
persistence is still supported. Existing applications will work out of the box without changes because all
Java EE 6-compliant application servers must support EJB 2.0 and 2.1 CMP entity beans. This might be
the last release that requires such support, though, because entity beans are slated for being pruned in a
future release. This means that as early as the next platform release, entity beans might become an
optional part of the specification, and servers might decide not to provide support for them.

That’s okay for applications that aren’t likely to require much development going forward, but what
about applications that are planning revisions? Is it feasible to move away from CMP and take advantage
of JPA? In many cases, it will depend upon the design of your application. Only you can decide the most
appropriate plan of action for your application. The following sections will lay out the issues and discuss
potential strategies for migrating CMP applications to help you reach a decision.

■ NOTE This section assumes that you are familiar with EJB 2.1 container-managed entity bean implementation
and configuration.

Scoping the Challenge
The challenge in moving from entity beans to entities is not the entity beans themselves. However
complex they are to implement, they are relatively straightforward to use. The problem with entity beans
is that the public API they expose is tightly coupled to the component model on which they are based.
The principal issue facing any migration is the extent and manner in which application code interacts
with entity bean interfaces. The more code that uses entity beans, the harder it is to migrate.

There are also some entity bean features that are not reflected in JPA. Some of these features, such
as container-managed relationships, can be worked around; others are difficult if not impossible to
replace.

The primary showstopper scenario is the use of remote entity bean interfaces. There is simply no
equivalent to remote objects in JPA. Entities are plain Java classes, not interface-based components that
can be compiled down into RMI or Common Object Request Broker Architecture (CORBA) stubs.
Entities are mobile in the sense that they can be serialized and transferred between client and server, but
they are not network-aware. Ever since the EJB 2.0 specification introduced local interfaces, developers
have been warned not to use remote interfaces on entity beans because of the overhead of the network
infrastructure they require. If your application is one of the few that did, it will be much more difficult to
migrate without either refactoring the application or adding a remote layer in between.

■ TIP Often, remote interfaces are used on entities only to facilitate transporting data off to a remote tier for
presentation. Consider introducing the Transfer Object pattern (described later in this chapter) to remove remote
interfaces in these cases. Transfer objects share a strong symmetry with serializable entities, making them good
starting points for migration.

Applications that have isolated their persistence code, most likely through the use of one or more
design patterns, take the least effort to convert. Conversely, applications that sprinkle entity bean access

CHAPTER 15 ■ MIGRATION

459

across all tiers and are tightly coupled to the entity bean API present the greatest challenge. Refactoring
to decouple business and presentation logic from persistence code is often a worthwhile exercise before
attempting to migrate to JPA.

Two levels of application migration are discussed next. The first, documented in the section “Entity
Bean Conversion,” details the process of mapping an existing entity bean to a new entity. From there,
the developer can begin refactoring the application to introduce the entity manager and remove entity
bean usage. The second level builds on the first by identifying business tier design patterns that present
an opportunity to make a switch in persistence technologies with minimal impact to existing application
code. Design patterns are discussed in the section “Leveraging Design Patterns.”

Entity Bean Conversion
When planning any conversion between entity beans and entities, it is useful to use the existing bean as
a template for the new entity. The bean class, interfaces, and XML deployment descriptor describe the
persistent fields used by the entity, the queries used by the application to find entity instances, and the
container-managed relationships between entities. The following sections describe the process to
convert an entity bean into an entity. Later sections will describe how to integrate these new entities into
an existing application.

Converting the Business Interface
Entity beans are defined using a bean class, business interface, and home interface. When creating the
initial entity version, the business interface or bean class can be used as a template. The business
interface is often the best place to start as it defines the set of operations directly available on the entity
as opposed to the bean class, which also includes home and finder methods specific to the home
interface.

Migrating Properties

To demonstrate the process of migrating an entity bean to JPA, we will look at converting an entity bean
that stores information about a department. The business interface for the Department entity bean is
shown in Listing 15-1.

Listing 15-1. Department Business Interface

public interface Department extends EJBLocalObject {
 public int getId();

 public String getName();
 public void setName(String name);

 public Collection getEmployees();
 public void setEmployees(Collection employees);

 public Employee getManager();
}

To begin converting this interface into an entity, a concrete implementation of the interface must be
provided, removing the dependency on EJBLocalObject and providing a field to implement each of the
persistent properties. The properties id, name, and employees all map to either persistent fields or

CHAPTER 15 ■ MIGRATION

460

relationships. The getManager() method is actually a non-persistent business method that searches for
and returns the manager for the department. Therefore, although the business interface is a good
starting point, the bean implementation or the XML descriptor, which lists the persistent fields, must be
consulted to determine the true meaning for each business method.

With the set of persistent properties identified, the next step is to determine how they map to the
database. Unfortunately, this mapping was not standardized by the EJB specification, so vendor-specific
XML descriptors will have to be checked. For this example, assume that the entity bean maps to the table
DEPT, which has columns ID and NAME. Setting aside the getManager(), getEmployees(), and
setEmployees() methods for now, the entity implementation with basic mappings is shown in Listing 15-
2. Because the entity name and table name are different, the @Table annotation is required to override
the default table name of the entity.

Listing 15-2. Department Entity with Basic Mappings

@Entity
@Table(name="DEPT")
public class Department {
 @Id
 private int id;
 private String name;

 public int getId () { return id; }
 public void setId(int id) { this.id = id; }

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
}

Migrating Business Methods

Non-persistent business methods might be a source of problems during entity bean conversion. Many
business methods simply perform operations using the persistent state of the entity (using the persistent
getter methods to obtain data), and they might be copied to the new entity as is. However, the EJB
specification also allows for business methods to invoke select methods in order to issue queries and
operate on the results. Listing 15-3 shows a fragment from the DepartmentBean class, which defines the
implementation of the getManager() method.

Listing 15-3. Business Method Using a Select Method

public abstract class DepartmentBean implements EntityBean {
 // ...

 public abstract Employee ejbSelectManagerForDept(int deptId);

 public Employee getManager() {
 return ejbSelectManagerForDept(getId());
 }

 // ...
}

Select methods, which begin with the prefix “ejbSelect, are container-provided implementations of
EJB QL queries. They might be called by home methods (described later) and business methods.
Business methods that invoke “ejbSelect” methods pose a problem in entity bean conversion because

CHAPTER 15 ■ MIGRATION

461

the entity manager required to execute the query is not typically available to entity bean instances. In
this example, the select method issues the following query, which was defined in the XML descriptor:

SELECT OBJECT(e)
FROM Employee e
WHERE e.department.id = ?1 AND e.manager.department.id <> ?1

To execute these queries from within the entity class, the entity manager must be made available to
the entity instance. Because the entity manager is not part of the persistent state of the entity, you
should not store a reference to it. Instead, consider using the Service Locator pattern so that the entity
manager can be obtained from within the entity, even though it is not part of the entity. The following
implementation of getManager() uses this approach:

public Employee getManager() {
 EntityManager em =
 ServiceLocator.getInstance().getEntityManager("EmployeeService");
 return em.createNamedQuery("Department.managerForDept", Employee.class)
 .setParameter(1, getId())
 .getSingleResult();
}

The ServiceLocator class would be implemented as part of your code to look up the entity manager
from JNDI using the current environment naming context. The downside to this approach is that entities
tend to get used in a lot of different components, each with its own set of environment references. To
ensure portability, the same entity manager reference name must be used consistently in all
components, or some vendor-specific approach must be used to acquire the entity manager
independent of context.

Embedding entity manager operations within an entity class is generally considered bad style; it
introduces a dependency on the persistence runtime directly into the entity. This tightly couples the
entity implementation to a particular persistence mechanism (the entity is no longer a plain Java object)
and makes testing more difficult. Generally speaking, we recommend moving the business method to a
session façade or other business-focused component instead of embedding entity manager operations
within the entity class. The only possible consequence of moving the method to another class is that the
entity might need to be passed as an argument to the method in its new location.

Migrating Container-Managed Relationships

CMP entity beans might make use of container-managed relationships. These relationships are called
managed because the developer is required to update only one side of the relationship, and the server
will ensure that the other side of the relationship is updated automatically. Although there is no direct
equivalent to container-managed relationships in JPA, the XML descriptor for these relationships can
guide the definition of entity relationships for object-relational mapping.

The Department entity bean has a one-to-many relationship with the Employee entity bean. Listing
15-4 shows the XML definition of the container-managed relationship between these two entity beans.

CHAPTER 15 ■ MIGRATION

462

Listing 15-4. XML Definition of a Container-Managed Relationship

<ejb-relation>
 <ejb-relation-name>Dept-Emps</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Dept-has-Emps</ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <relationship-role-source>
 <ejb-name>DepartmentBean</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>employees</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>Emps-have-Dept</ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <relationship-role-source>
 <ejb-name>EmployeeBean</ejb-name>
 </relationship-role-source>
 <cmr-field><cmr-field-name>department</cmr-field-name></cmr-field>
 </ejb-relationship-role>
</ejb-relation>

Each side of the relationship is defined by using the ejb-relationship-role element. The
relationship-role-source and cmr-field elements define the entity bean and relationship property
being mapped. The multiplicity element defines the cardinality of that side of the relationship. There is
a direct mapping between each ejb-relationship-role element and a relationship annotation, the
choice of which is determined by the multiplicity elements from each end of the relationship.

Applying this pattern, the previous relationship descriptor maps to a @OneToMany annotation on the
employees attribute of the Department entity and a @ManyToOne annotation on the department attribute of
the Employee entity. Because the relationship is bidirectional, Employee will be the owner and Department
the inverse, so the mappedBy element of the @OneToMany annotation is set to the name of the owning
attribute, in this case department.

We can now complete our mapping for the Department entity by adding the relationships. Listing 15-
5 shows the complete entity class.

Listing 15-5. Department Entity with Relationship Mappings

@Entity
@Table(name="DEPT")
public class Department {
 @Id
 private int id;
 private String name;
 @OneToMany(mappedBy="department")
 private Collection<Employee> employees = new ArrayList<Employee>();

 public int getId () { return id; }
 public void setId(int id) { this.id = id; }

CHAPTER 15 ■ MIGRATION

463

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }

 public Collection<Employee> getEmployees() { return employees; }
}

Clients that used to use the relationship properties of the entity bean business interface require
special attention when converted to use entities. Relationships that were previously managed by the
container now require explicit maintenance to both sides of the relationship whenever a change occurs.
In most cases, this amounts to one extra line of code. For example, adding an Employee entity bean to the
employees property of the Department entity bean with container-managed relationships used to look
like this:

dept.getEmployees().add(emp);

Without container-managed relationships, an extra step is required:

dept.getEmployees().add(emp);
emp.setDepartment(dept);

Rather than adding these statements directly throughout application code, a best practice to
consider is the use of helper methods on entities to manage relationships. The following example
demonstrates these same operations as they would be implemented on the Department entity:

public void addEmployee(Employee emp) {
 getEmployees().add(emp);
 emp.setDepartment(this);
}

Converting the Home Interface
Creating an entity out of the entity bean business interface is often only the first step in conversion.
Application code relies on the home interface to create new entity beans, find existing entity beans, and
handle business methods that are related to an entity but not specific to any one entity bean instance.

The first choice to be made about the home interface is whether application code will be rewritten
to work directly with the entity manager. Doing so makes most of the home interface operations
obsolete, but it might be challenging to implement depending on how tightly coupled the entity bean
API is to the application code. Business methods on the home interface must also be accommodated.

If the home interface is still required, a stateless session bean might be used to provide equivalent
methods to the home interface operations. The following sections continue the Department entity
example by implementing a session façade for its business methods and finder operations.

Migrating Queries

EJB QL queries for CMP entity beans are defined in the deployment descriptor. Listing 15-6 shows two
query definitions for the Department entity bean.

CHAPTER 15 ■ MIGRATION

464

Listing 15-6. EJB QL Query Definitions

<query>
 <query-method>
 <method-name>findAll</method-name>
 <method-params/>
 </query-method>
 <ejb-ql>SELECT OBJECT(d) From Department d</ejb-ql>
</query>
<query>
 <query-method>
 <method-name>findByName</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </query-method>
 <ejb-ql>SELECT OBJECT(d) FROM Department d WHERE d.name = ?1</ejb-ql>
</query>

To reuse these same queries with the converted entity bean, it is necessary to define named queries
on the entity. Recall from Chapter 7 that every EJB QL query is a legal JP QL query; therefore existing EJB
QL entity bean queries can be migrated without change to JPA. The only thing we need to do is define a
name for the query that will be unique across the persistence unit. To facilitate this, we will prepend the
query name with the name of the entity. The following @NamedQuery annotations mirror the XML
versions:

@NamedQueries({
 @NamedQuery(name="Department.findAll",
 query="SELECT d FROM Department d"),
 @NamedQuery(name="Department.findByName",
 query="SELECT d FROM Department d WHERE d.name = ?1")
})

Note that in JP QL the OBJECT keyword is no longer required and it is considered good style to not
include it.

Migrating Home Methods

A home method is any method on the home interface that is not a finder (starts with “findBy”) or a
create method (starts with “create”). They are also typically the easiest to integrate into a session façade
because their implementation often relies only on select methods. Home methods are implemented on
the bean class in methods prefixed with “ejbHome”. Listing 15-7 shows a fragment of the DepartmentBean
demonstrating a home method and the select method that it uses.

Listing 15-7. Entity Bean Home Method

public abstract class DepartmentBean implements EntityBean {
 // ...

 public abstract Collection ejbSelectEmployeesWithNoDepartment() throws FinderException;

 public Collection ejbHomeUnallocatedEmployees() throws FinderException {

CHAPTER 15 ■ MIGRATION

465

 return ejbSelectEmployeesWithNoDepartment();
 }

 // ...
}

Assuming that the entity manager has been injected into the session bean, we can use the EJB QL
query definition from the XML descriptor to reimplement this method on the session façade:

public Collection unallocatedEmployees() throws FinderException {
 try {
 return em.createQuery("SELECT ... NULL")
 .getResultList();
 } catch (PersistenceException e) {
 throw new FinderException(e.getMessage());
 }
}

Creating the Façade

With queries mapped and home methods ready for conversion, creating the façade is straightforward.
The advantage of a session bean is that it can be looked up from JNDI just as the entity home was
previously and can use a similar interface in order to minimize application code changes. Listing 15-8
shows the home interface for the Department entity bean.

Listing 15-8. The DepartmentHome Interface

public interface DepartmentHome extends EJBLocalHome {
 public Department create(int id) throws CreateException;
 public Department findByPrimaryKey(int id) throws FinderException;
 public Collection findAll() throws FinderException;
 public Department findByName(String name) throws FinderException;
 public Collection unallocatedEmployees() throws FinderException;
}

The first step in this refactoring is to modify the home interface so that it does not extend
EJBLocalHome. With this dependency removed, the interface is now suitable for use as a stateless session
bean business interface. Listing 15-9 shows the converted interface.

Listing 15-9. The DepartmentHome Business Interface

public interface DepartmentHome {
 public Department create(int id) throws CreateException;
 public Department findByPrimaryKey(int id) throws FinderException;
 public Collection findAll() throws FinderException;
 public Department findByName(String name) throws FinderException;
 public Collection unallocatedEmployees() throws FinderException;
 public void remove (Object pk) throws RemoveException;
 public void remove (Department dept) throws RemoveException;
}

CHAPTER 15 ■ MIGRATION

466

Note the addition of the remove() methods. The first is the standard remove() method that is part of
the EJBLocalHome interface, and the second is a convenience method that does not require the user to
extract the primary key from the entity. Because entities do not implement EJBLocalObject, application
code will no longer be able to invoke the remove() method directly on the entity bean. Invoking these
methods is a compromise that allows application code to avoid directly using the entity manager while
maintaining the ability to remove an entity instance. Application code will need to be refactored to
change all invocations of remove() on the entity bean to one of these new methods on the session bean
home façade.

The next step is to create a session bean façade that implements the entity home interface. Using
the techniques we have discussed so far, Listing 15-10 shows the complete stateless session bean
implementation of the DepartmentHome interface. Note the use of checked exceptions on the bean
methods. Until existing code is refactored to use the runtime exception model supported by JPA, there
might be client code that expects CreateException or FinderException exceptions to be thrown. We have
also specified the name element for the @PersistenceContext annotation. This allows business methods
such as the getManager() method we described earlier in the section “Migrating Business Methods” to
access the entity manager from the java:comp/env/EmployeeService JNDI location.

Listing 15-10. The DepartmentHome Session Bean

@Stateless
public class DepartmentHomeBean implements DepartmentHome {
 @PersistenceContext(name="EmployeeService", unitName="EmployeeService")
 private EntityManager em;

 public Department create(int id) throws CreateException {
 Department dept = new Department();
 dept.setId(id);
 try {
 em.persist(dept);
 } catch (PersistenceException e) {
 throw new CreateException(e.getMessage());
 } catch (IllegalArgumentException e) {
 throw new CreateException(e.getMessage());
 }
 return dept;
 }

 public Department findByPrimaryKey(int id) throws FinderException {
 try {
 return em.find(Department.class, id);
 } catch (PersistenceException e) {
 throw new FinderException(e.getMessage());
 }
 }

 public Collection findAll() throws FinderException {
 try {
 return em.createNamedQuery("Department.findAll")
 .getResultList();
 } catch (PersistenceException e) {
 throw new FinderException(e.getMessage());
 }
 }

CHAPTER 15 ■ MIGRATION

467

 public Department findByName(String name) throws FinderException {
 try {
 return (Department)
 em.createNamedQuery("Department.findByDepartmentName")
 .setParameter(1, name)
 .getSingleResult();
 } catch (PersistenceException e) {
 throw new FinderException(e.getMessage());
 }
 }

 public Collection unallocatedEmployees() throws FinderException {
 try {
 return em.createNamedQuery("Department.empsWithNoDepartment")
 .getResultList();
 } catch (PersistenceException e) {
 throw new FinderException(e.getMessage());
 }
 }
 public void remove (Object pk) throws RemoveException {
 Department d = em.find(Department.class, pk);
 if (d == null) {
 throw new RemoveException(
 "Unable to find entity with pk: " + pk);
 }
 em.remove(d);
 }

 public void remove(Department dept) throws RemoveException {
 Department d = em.find(Department.class, dept.getId());
 if (d == null) {
 throw new RemoveException(
 "Unable to find entity with pk: " + dept.getId());
 }
 em.remove(d);
 }
}

Migrating from JDBC
The oldest and most basic form of relational persistence with Java is JDBC. A thin layer over the
programming interfaces required for communicating with a database, JDBC operations are defined
primarily in terms of SQL statements. Applications that make heavy use of JDBC might be more difficult
to migrate to JPA than applications that depend on entity beans.

As with entity beans, the complexity of migration depends on how tightly coupled the business logic
is to the JDBC API. There are two basic issues that we need to be concerned with. The first is the amount
of code that depends on the ResultSet or RowSet interfaces. The second is the amount of SQL and the
role it plays in the application.

CHAPTER 15 ■ MIGRATION

468

The ResultSet and RowSet interfaces are a concern because there is no logical equivalent to these
structures in JPA. Results from JP QL and SQL queries executed through the Query interface are basic
collections. Even though we can iterate over a collection, which is semantically similar to the row
position operations of the JDBC API, each element in the collection is an object or an array of objects.
There is no equivalent to the column index operations of the ResultSet interface.

Emulating the ResultSet interface over the top of a collection is unlikely to be a worthwhile venture.
Although some operations could be mapped directly, there is no generic way to map the attributes of an
entity to the column positions needed by the application code. There is also no guarantee of consistency
in how the column positions are determined; it might be different between two queries that achieve the
same goal but have ordered the SELECT clause differently. Even when column names are used, the
application code is referring to the column aliases of the query, not necessarily the true column names.

In light of these issues, our goal in planning any migration from JDBC is to isolate the JDBC
operations so that they can be replaced as a group as opposed to accommodating business logic that
depends on JDBC interfaces. Refactoring the existing application to break its dependencies on the JDBC
interfaces is generally going to be the easiest path forward.

Regarding the SQL usage in a JDBC application, we want to caution that although JPA supports SQL
queries, it is unlikely that this will be a major benefit for migrating an existing application. There are a
number of reasons for this, but the first to consider is that most SQL queries in a JDBC application are
unlikely to return results that map directly to the domain model of a JPA application. As you learned in
Chapter 11, to construct an entity from a SQL query requires all the data and foreign key columns to be
returned, regardless of what will eventually be required by the application code at that point in time.

If the majority of SQL queries need to be expanded to add columns necessary to satisfy the
requirements of JPA and if they then need to be mapped before they can be used, rewriting the queries
in JP QL is probably a better investment of time. The syntax of a JP QL query is easier to read and
construct, and directly maps to the domain model you want to introduce to the application. The entities
have already been mapped to the database, and the provider knows how to construct efficient queries to
obtain the data you need. SQL queries have a role, but they should be the exception, not the rule.

There are many Java EE design patterns that can help in this exercise if the application has made use
of them, or can be easily refactored to incorporate them. We will be exploring several of these in detail
later in the chapter, but it is worth mentioning at least a few now in the context of JDBC applications
specifically. The first and most important pattern to consider is the Data Access Object pattern. This
cleanly isolates the JDBC operations for a specific use case behind a single interface that we can migrate
forward. Next, consider the Transfer Object pattern as a way of introducing an abstraction of the row
and column semantics of JDBC into a more natural object model. When an operation returns a
collection of values, don’t return the ResultSet to the client. Construct transfer objects and build a new
collection similar to the results of the Query operations in JPA. These steps can go a long way toward
creating boundary points where JPA can be introduced without having a major impact on the
application logic.

Migrating from Other ORM Solutions
Since the very beginnings of Java (and indeed other object-oriented programming languages before
Java), object-relational mapping solutions have been available in one form or another, provided first by
commercial vendors and later by a number of open source solutions. Transparent persistence was also
standardized for Java as part of the Java Data Objects (JDO) specification, although object-relational
mapping was not explicitly defined by JDO until version 2.0 of the specification. It was the growing
popularity of the various proprietary solutions that pushed the EJB expert group to create JPA and
release it as part of the Java EE specification.

Fortunately, representatives from all major object-relational mapping providers (commercial and
open source) are contributing in an ongoing way to the definition of the JPA specification. As a result,
JPA standardizes a decade of object-relational mapping techniques that are well understood and in

CHAPTER 15 ■ MIGRATION

469

production today. As participants in the process, existing object-relational mapping providers are also
providing ways to move from their proprietary session and query objects, to the standard JPA
EntityManager and Query objects, while preserving the features in their products outside the scope of the
standard. It would be impractical for this book to describe the migration process for each product and
the various divergent artifacts, query language differences, and feature mismatches. Instead we suggest
that you ask your vendor for advice on how to take advantage of JPA.

Leveraging Design Patterns
For many years now, design patterns have been heavily promoted to help developers build better Java
applications. For enterprise development in particular, using the proven solutions documented in
design patterns has helped to manage the complexity of the Java EE platform. Ironically, patterns
designed to help integrate entity beans and JDBC into enterprise applications are also the key to
eliminating those technologies and introducing JPA. This is because enterprise design patterns most
often point to solutions that isolate persistence code from the rest of the application. An enterprise
application that has embraced common Java EE design patterns typically interacts only with session
façades, data access objects, and transfer objects—perfect boundary points to safely make a switch in
persistence technologies.

The following sections describe the design patterns that offer the greatest potential to replace
container-managed entity beans, JDBC code, and proprietary ORM tool usage with the lightweight
entities of JPA.

Transfer Object
The Transfer Object1 pattern, also called the Data Transfer Object pattern, encapsulates the results of
persistence operations in simple objects that are decoupled from the particular persistence
implementation. Implemented in this way, transfer objects might be shared between application tiers
without having dependencies on the entity bean API or requiring the use of remote entity beans.
Although originally designed as a solution to avoid the poor performance of network calls for remote
entity beans, they are widely used even in applications that do not have remote tiers in order to isolate
business logic from the persistence API.

Fine-Grained Transfer Objects
When used with entity beans, transfer objects are typically implemented as a mirror of the entity data
that is to be transported. For every persistent attribute on the entity bean, the same property is
implemented on the transfer object. Listing 15-11 shows the business interface for the Address entity
bean. It consists entirely of getter and setter methods to manage the persistent state of the entity bean.

Listing 15-11. The Address Business Interface

public interface Address extends EJBLocalObject {

1 Alur, Deepak, John Crupi, and Dan Malks. Core J2EE Patterns: Best Practices and Design Strategies,
Second Edition. Upper Saddle River, N.J.: Prentice Hall PTR, 2003.

CHAPTER 15 ■ MIGRATION

470

 public int getId();
 public void setId(int id);

 public String getStreet();
 public void setStreet(String street);

 public String getCity();
 public void setCity(String city);

 public String getState();
 public void setState(String state);

 public String getZip();
 public void setZip(String zip);
}

Using this business interface as a template, the transfer object corresponding to the Address
business interface is shown in Listing 15-12. It is implemented by using one field corresponding to each
persistent property of the entity bean. This particular transfer object can also be used as a template for
new entity bean instances or to capture changes that can be merged into an entity bean instance for
updating. Transfer objects are often implemented as immutable objects if the client has no need to make
changes and return the objects to the server for processing.

Listing 15-12. The Address Transfer Object

public class AddressTO implements Serializable {
 private int id;
 private String street;
 private String city;
 private String state;
 private String zip;

 public AddressTO() {}

 public AddressTO(int id, String street, String city,
 String state, String zip) {
 this.id = id;
 this.street = street;
 this.city = city;
 this.state = state;
 this.zip = zip;
 }

 public int getId() { return id; }
 public void setId(int id) { this.id = id; }

 public String getCity() { return city; }
 public void setCity(String city) { this.city = city; }

 public String getState() { return state; }
 public void setState(String state) { this.state = state; }

 public String getStreet() { return street; }

CHAPTER 15 ■ MIGRATION

471

 public void setStreet(String street) { this.street = street; }

 public String getZip() { return zip; }
 public void setZip(String zip) { this.zip = zip; }
}

This style of transfer object implementation, containing a one-to-one mapping of the persistent
attributes from an entity bean, is considered fine-grained. The entire entity bean model used by the
application is reflected in an identical, non-persistent model made up of transfer objects. When an
application uses a fine-grained transfer object model, one option for migrating to JPA is to convert the
transfer objects into entities by applying an object-relational mapping of the transfer objects to the
database tables originally mapped by the entity beans. Even better, this can be accomplished with
minimal impact to the business logic code that interacts with the transfer objects.

Compare the previous transfer object to the entity that follows:

@Entity
public class AddressTO implements Serializable {
 @Id
 private int id;
 private String street;
 private String city;
 private String state;
 @Column(name="ZIP_CODE")
 private String zip;

 // getter and setter methods
 // ...
}

The only difference between the original transfer object and this modified version is the addition of
object-relational mapping annotations. Modified in this way, the transfer object, now an entity, is ready
to be used with the entity manager to implement the persistence requirements of the application. If the
Session Façade or Data Access Object patterns have been used, this transformation is trivial. Instead of
retrieving an entity and converting it into a transfer object, the entity manager and query interfaces can
be used to retrieve the transfer object directly from the database.

Coarse-Grained Transfer Objects
A second type of transfer object is sometimes used that does not have a one-to-one correspondence with
a particular entity bean. Instead, these transfer objects either collect data from multiple entities into a
single transfer object or present a summarized view of overall entity state. This style of transfer object is
coarse-grained and is sometimes called a view object because it presents a particular view of entity data
that does not directly correspond to the entity bean implementation.

Listing 15-13 shows an example of this type of transfer object. Designed for distribution to the web
tier for presentation on a web page, the transfer object stores summary information about the manager
of a department. The managerName property is copied from the Employee entity bean, but the
employeeCount and avgSalary properties are aggregate values computed by running summary queries.

CHAPTER 15 ■ MIGRATION

472

Listing 15-13. A Course-Grained Transfer Object

public class ManagerStats {
 private String managerName;
 private int employeeCount;
 private double avgSalary;

 public ManagerStats(String managerName, int employeeCount, double avgSalary) {
 this.managerName = managerName;
 this.employeeCount = employeeCount;
 this.avgSalary = avgSalary;
 }

 public String getManagerName() { return managerName; }
 public int getEmployeeCount() { return employeeCount; }
 public double getAverageSalary() { return avgSalary; }
}

Fortunately, JPA can often accommodate this style of transfer object through the constructor
expressions in JP QL queries. The following query populates the transfer object shown previously:

SELECT NEW examples.ManagerStats(e.name, COUNT(d), AVG(d.salary))
FROM Employee e JOIN e.directs d
GROUP BY e.name

Constructor expression queries are also useful for composite transfer objects that simply combine
the data from multiple entities into a single object. This style is sometimes used for entities that have a
one-to-one relationship with other entities. The resulting transfer object flattens the object graph so that
all reachable persistent fields become properties.

Despite the flexibility of JP QL expressions and native SQL query result set mapping, there will still
be situations in which transfer objects need to be manually constructed. However, the simplicity of
working with entity classes can reduce the amount of code required to build transfer objects and reduce
overall complexity as a result.

Session Façade
The Session Façade2 pattern encapsulates business object access behind a session bean façade, typically
implemented by using stateless session beans. This business interface for the façade presents a coarse-
grained view of the operations required on the business data, which can be implemented using entity
beans, JDBC, or any other persistence technology.

Originally intended to define coarse-grained boundary operations for access by remote clients, the
Session Façade pattern has evolved into a more general service façade, in which remote access is no
longer the driving factor. Decoupling enterprise applications into sets of collaborating services is a well-
established best practice. Each service façade provides the business operations necessary to help realize
one or more application use cases.

2 Ibid.

CHAPTER 15 ■ MIGRATION

473

A key aspect of the Session Façade pattern that makes it appealing for introducing JPA is the
tendency to isolate persistence operations entirely behind the façade. The original use of transfer objects
in the pattern stemmed from the need to prevent entity beans from being used remotely. Today,
however, transfer objects are still widely used even for local services as a mechanism to abstract away
the particular mechanics of persistence in the application.

Legacy Java EE applications often use entity beans in the implementation of the Session Façade.
Listing 15-14 shows an EJB 2.1 façade that provides business operations related to the management of
Project entity beans.

Listing 15-14. Session Façade with Entity Beans

public class ProjectServiceBean implements SessionBean {
 private SessionContext context;
 private ProjectHome projectHome;
 private EmployeeHome empHome;

 public void setSessionContext(SessionContext context) {
 this.context = context;
 }

 public void ejbCreate() throws CreateException {
 try {
 Context ctx = new InitialContext();
 projectHome = (ProjectHome)
 ctx.lookup("java:comp/env/ejb/ProjectHome");
 empHome = (EmployeeHome)
 ctx.lookup("java:comp/env/ejb/EmployeeHome");
 } catch (NamingException e) {
 throw new CreateException(e.getMessage());
 }
 }

 public void addEmployeeToProject(int projectId, int empId)
 throws ApplicationException {
 try {
 Project project = projectHome.findByPrimaryKey(projectId);
 Employee emp = empHome.findByPrimaryKey(empId);
 project.getEmployees().add(emp);
 } catch (FinderException e) {
 throw new ApplicationException(e);
 }
 }

 // ...
}

Relying only on the primary key values as arguments, a service such as the one shown in Listing 15-
14 would typically be invoked from a servlet, in which the primary keys would have been obtained as
part of an earlier display operation using transfer objects. With entity bean access isolated to the bean
implementation, introducing entities is relatively straightforward. Listing 15-15 shows the service bean
updated for EJB 3 and converted to use entities instead of entity beans. No change to existing clients of
the service is necessary.

CHAPTER 15 ■ MIGRATION

474

Listing 15-15. Session Façade with Entities

@Stateless
public class ProjectServiceBean {
 @PersistenceContext(name="EmployeeService")
 private EntityManager em;

 public void addEmployeeToProject(int projId, int empId)
 throws ApplicationException {
 Project project = em.find(Project.class, projId);
 if (project == null)
 throw new ApplicationException("Unknown project id: " + projId);
 Employee emp = em.find(Employee.class, empId);
 if (emp == null)
 throw new ApplicationException("Unknown employee id: " + empId);
 project.getEmployees().add(emp);
 emp.getProjects().add(project);
 }

 // ...
}

Data Access Object
The Data Access Object3 pattern, better known simply as the DAO pattern, presents a good opportunity to
introduce JPA into an existing application. Indeed, the pattern itself was designed on the premise that
directly exposing persistence APIs to other application tiers was something to be avoided. Therefore, a
well-designed data access object implements a simple persistence manager interface by delegating to a
particular persistence technology.

The most common form of DAO delegates directly to JDBC, although other persistence technologies
are sometimes encountered. Data access objects are typically plain Java objects, although other
component types are sometimes used. When implemented as a session bean, particularly when using
entity beans, the lines between the data access object pattern and the Session Façade pattern start to
blur.

■ NOTE Many DAO implementations use JDBC directly because it is often considered the “optimal” performance
implementation by developers. Because JPA offers many benefits over direct JDBC, including the potential for
performance increases due to caching, this pattern presents an opportunity to introduce entities and see how they
compare with traditional JDBC.

3 Ibid.

CHAPTER 15 ■ MIGRATION

475

DAO implementations often use transfer objects to return results. For JDBC implementations, the
use of transfer objects gives the illusion of an object-oriented domain model. Listing 15-16 shows a
fragment of a DAO that uses JDBC for persistence and returns transfer objects to the client.

Listing 15-16. DAO Using JDBC for Persistence

public class AddressDAO {
 private static final String INSERT_SQL =
 "INSERT INTO address (id,street,city,state,zip) VALUES (?,?,?,?,?)";
 private static final String UPDATE_SQL =
 "UPDATE address SET street=?,city=?,state=?,zip=? WHERE id=?";
 private static final String DELETE_SQL =
 "DELETE FROM address WHERE id=?";
 private static final String FIND_SQL =
 "SELECT street,city,state,zip FROM address WHERE id=?";

 private DataSource ds;

 public AddressDAO(DataSource ds) {
 this.ds = ds;
 }

 public void create(AddressTO address) {
 Connection conn = null;
 PreparedStatement sth = null;
 try {
 conn = ds.getConnection();
 sth = conn.prepareStatement(INSERT_SQL);
 sth.setInt(1, address.getId());
 sth.setString(2, address.getStreet());
 sth.setString(3, address.getCity());
 sth.setString(4, address.getState());
 sth.setString(5, address.getZip());
 sth.execute();
 } catch (SQLException e) {
 throw new DAOException(e);
 } finally {
 if (sth != null) {
 try { sth.close(); } catch (SQLException e) {}
 }
 if (conn != null) {
 try { conn.close(); } catch (SQLException e) {}
 }
 }
 }

 // ...

 public AddressTO find(int id) {
 Connection conn = null;
 PreparedStatement sth = null;
 try {
 conn = ds.getConnection();

CHAPTER 15 ■ MIGRATION

476

 sth = conn.prepareStatement(FIND_SQL);
 sth.setInt(1, id);
 ResultSet rs = sth.executeQuery();
 if (rs.next()) {
 AddressTO address = new AddressTO();
 address.setId(id);
 address.setStreet(rs.getString(1));
 address.setCity(rs.getString(2));
 address.setState(rs.getString(3));
 address.setZip(rs.getString(4));
 return address;
 } else {
 return null;
 }
 } catch (SQLException e) {
 throw new DAOException(e);
 } finally {
 if (sth != null) {
 try { sth.close(); } catch (SQLException e) {}
 }
 if (conn != null) {
 try { conn.close(); } catch (SQLException e) {}
 }
 }
 }
}

One approach to conversion is to leave the transfer object as a non-persistent class while
introducing a separate entity model. The DAO then converts back and forth between the two. Ideally, the
transfer object is replaced with the entity (see the following for an example of this approach), but
preserving the transfer object allows developers to experiment with entities without disrupting the
application in any way. Listing 15-17 demonstrates replacing the JDBC operations of a DAO with entities
and an application-managed entity manager. Note the use of joinTransaction() in this example to
ensure that the application-managed entity manager of the DAO class synchronizes itself with the active
JTA transaction. See Chapter 6 for a reminder of when joinTransaction() is appropriately used.

Listing 15-17. DAO Using the Entity Manager for Persistence

public class AddressDAO {
 private EntityManager em;

 public AddressDAO(EntityManager em) {
 this.em = em;
 }

 public void create(AddressTO address) {
 Address entity = createEntity(address);
 em.joinTransaction();
 em.persist(entity);
 }

 public void update(AddressTO address) {
 em.joinTransaction();

CHAPTER 15 ■ MIGRATION

477

 em.merge(createEntity(address));
 }

 public void remove(int id) {
 em.joinTransaction();
 Address entity = em.find(Address.class, id);
 if (entity != null) {
 em.remove(entity);
 } else {
 throw new DAOException("No such address id: " + id);
 }
 }

 public AddressTO find(int id) {
 Address entity = em.find(Address.class, id);
 if (entity != null) {
 return createTO(entity);
 } else {
 return null;
 }
 }

 private Address createEntity(AddressTO address) {
 Address entity = new Address();
 entity.setId(address.getId());
 entity.setStreet(address.getStreet());
 entity.setCity(address.getCity());
 entity.setState(address.getState());
 entity.setZip(address.getZip());
 return entity;
 }

 private AddressTO createTO(Address entity) {
 AddressTO address = new AddressTO();
 address.setId(entity.getId());
 address.setStreet(entity.getStreet());
 address.setCity(entity.getCity());
 address.setState(entity.getState());
 address.setZip(entity.getZip());
 return address;
 }
}

The symmetry between the transfer object and entity operations, as well as the state similarities of
the two objects within the conversion methods going in both directions, suggests a simpler
implementation. If the transfer object has been migrated to be an entity, this data access object can be
simplified one more time. Listing 15-18 shows the final result.

CHAPTER 15 ■ MIGRATION

478

Listing 15-18. DAO Returning Entities

public class AddressDAO {
 private EntityManager em;

 public AddressDAO(EntityManager em) {
 this.em = em;
 }

 public void create(AddressTO address) {
 em.joinTransaction();
 em.persist(address);
 }

 public void update(AddressTO address) {
 em.joinTransaction();
 em.merge(address);
 }

 public void remove(int id) {
 em.joinTransaction();
 AddressTO entity = em.find(AddressTO.class, id);
 if (entity != null) {
 em.remove(entity);
 } else {
 throw new DAOException("No such address id: " + id);
 }
 }

 public AddressTO find(int id) {
 return em.find(AddressTO.class, id);
 }
}

Business Object
The Business Object4 pattern describes application object models that are conceptual rather than
physical in nature. If the physical domain model is too fine-grained, a more abstract domain model is
sometimes introduced that more closely represents the object model derived from use case modeling.
This secondary model reflects the conceptual business objects of the system rather than the domain
objects of the system and delegates to the physical domain model in its implementation. Application
code typically interacts only with the business objects.

It is this delegation to the physical domain model that makes business objects candidates for
migration to JPA. Business objects are not directly persistent; instead, they persist state using entity

4 Ibid.

CHAPTER 15 ■ MIGRATION

479

beans, DAOs, or other persistence mechanisms. The choice of persistence mechanism is hidden from
clients and therefore potentially replaceable.

There are several strategies for dealing with business objects. If the business object depends on a
pattern such as the Data Access Object pattern, the business object can often be left untouched, and the
application is migrated by tackling the underlying persistence pattern. If the business object directly
uses a persistence mechanism such as entity beans, an opportunity exists to change the persistence
mechanism and rethink the physical domain model.

The advanced object-relational mapping features of JPA might make it possible to map the business
objects directly to the database, effectively turning the business objects into entities. Caution must be
used in these situations because business objects tend to contain more business logic and focus more on
business use cases than persistence. This is not to say that it cannot be done, but the resulting entities
are unlikely to be as lightweight as would normally be expected with JPA.

Fast Lane Reader
The Fast Lane Reader5 pattern uses JDBC directly instead of using entity beans to query large amounts of
data for presentation. The theory behind this pattern is that entity beans are too expensive to create if
the only purpose for retrieving the entity is to read some value from it and then discard the instance.

The Fast Lane Reader pattern is more a combination of two other existing patterns than a unique
pattern of its own. The DAO pattern is used to collect the data for presentation, and the Transfer Object
pattern is used to present the results in a format suitable for rendering in the presentation layer. We
mention it distinct from other patterns only because it is one of the few cases in which both DAO and
entity bean implementations exist in the same application, returning the same set of transfer objects.

The result of a query with the Fast Lane Reader pattern is either a set of transfer objects or basic
collections containing entity fields. Therefore, we can take advantage of the Fast Lane Reader pattern
both at the DAO and transfer object levels. If the DAO is returning fine-grained transfer objects, then we
can apply the techniques we described earlier in the chapter to change the implementation of the DAO
to use JPA and ideally return entities instead of transfer objects. Likewise, if the Fast Lane Reader pattern
is returning basic collections, we can use projection queries to produce the same results with no
additional effort required to translate the JDBC result set.

Active Record
The Active Record6 pattern describes classes that manage their own persistence, typically implemented
using JDBC. The advantage of this approach is that the classes are not outwardly tied to any persistence
implementation. However, the internal coupling presents difficulties because a Service Locator must be
used to access the data source, and testing might be difficult if the persistence occurs automatically as a
side effect of mutating operations.

5 See http://java.sun.com/blueprints/patterns/FastLaneReader.html for more information.
6 Fowler, Martin. Patterns of Enterprise Application Architecture. Boston: Addison-Wesley, 2002.

http://java.sun.com/blueprints/patterns/FastLaneReader.html

CHAPTER 15 ■ MIGRATION

480

At first glance, migrating active record classes sounds easy—just map them as entities and get to
work. Unfortunately, to be useful, entities require application code to work with the entity manager for
all persistence operations. This requires the entity manager to be available in all cases where persistence
of the active record needs to occur.

The amount of refactoring required to introduce the entity manager depends on the number of
places where persistence operations occur as a side effect of public method calls on the active record
object. This might be obvious if the active record exposes insert, update, and delete methods; or more
subtle if a store occurs after every setter invocation. Before attempting to convert these classes to
entities, ensure that the application persistence strategy is well understood, refactoring to simplify it
before conversion if necessary.

Summary
Migrating the persistence layer of an application from one technology to another is rarely a trivial task.
The differences between EJB container–managed entity beans and the lightweight entities of JPA could
make the task of migration tricky. And yet, despite these challenges, it is possible not only to extract
enough information out of entity beans to bootstrap an object-oriented domain model but also to
leverage the same design patterns that made entity beans easier to work with as the very tool to replace
them.

In our discussion of entity beans, we looked at how to use the existing bean as a template for the
new entity, using the business interface, bean class, and XML descriptor of the entity bean in the
process. We also looked at the home interface and how we can introduce stateless session beans to
emulate the functions of the home interface with minimal impact to application code.

We then touched on the migration of ORM and JDBC technologies to JPA. While existing ORM
migrations will largely depend on the support provided by the vendor, existing JDBC applications can be
tackled by refactoring to existing Java EE design patterns before making the switch to JPA.

Finally, we looked at a catalog of Java EE design patterns related to persistence. Although not an
exhaustive list, we looked at many of the major design patterns in use today and how they can be
leveraged to safely introduce JPA while minimizing the overall impact to the existing application.

Index

■ ■ ■

481

■ SPECIAL CHARACTERS
* expression, 255
+ expression, 255
< operator, 254
<= operator, 254
<> operator, 254
= operator, 254
> operator, 254
>= operator, 254
. (dot) operator, 180, 213
' ' (single quotes), 229
/ expression, 255
- expression, 255

■ A
abs() method, 256
ABS function, 230, 256
abstract classes, 303–305
abstract persistence schema, 208
AbstractQuery interface, 247
acceptance tests, 431
@Access annotation, 72–73
access attribute, 385
access element, 377, 380
access modes, 70–71
ACID transactions, 54
activation, 41
Active Record pattern, 479–480
addItem() method, 57

Address domain class, 5
ADDRESS table, 5–6
ADDRESS_ID column, 6
aggregate functions, 235
aggregate queries, 182, 208, 233–236
alias() method, 251
all() method, 255
ALL expression, 255
ALL operator, 228, 414
allocation size, 84
and() method, 244, 254, 257
AND operator, 254, 257
annotation processing tool (APT), 270
annotations, 15–19

adding to classes, 20–21
disabling, 373–375
ignored, 69
logical, 69
persistence, 69–70
physical, 69
XML versus, 371

any() method, 255
ANY operator, 228, 255
application component models, 33–34
application-managed entity managers, 136–

138, 144–146, 150, 170, 446
application-managed persistence contexts,

144–146
application.xml file, 416
APT (annotation processing tool), 270

■ INDEX

482

asc() method, 264
ASC keyword, 111, 233
association fields, 208
association overrides, 403
@AssociationOverride annotation, 311
association-override element, 400–403
asynchronous messaging, 45
atomicity, 54
attribute element, 385
attribute mappings, 385–386
attribute overrides, 403
@AttributeOverride annotation, 105, 109, 122,

125, 280, 298–299, 310
attribute-override element, 399, 403
attributes, 385–386

defined, 75
lazy fetching of, 76–77
transient, 80–81

AUTO mode, 82–83
automatic id generation, 82–83
automatic state mapping, 22
avg() method, 256
AVG function, 235, 256

■ B
@Basic annotation, 75–77, 389
basic element, 389–390
basic mappings, 74–75, 77–78, 389–390
beanInterface element, 52
bean-managed transactions (BMTs), 55, 58,

449–452
beanName element, 52
beans. See JavaBeans
begin() method, 147
best practices, 457
between() method, 254
BETWEEN operator, 224, 254
bidirectional mappings, 96
bidirectional relationships, 87–88, 97–98
binary large objects (BLOBs), 78
BMTs (bean-managed transactions), 55, 58,

449–452
Boolean values, 229
bulk operations, 199–202, 205

business interfaces, remote, 38–39
business methods, migration of, 460–461
Business Object pattern, 478–479
business services

component model and, 33–34
session beans and, 34, 36–42

byte[] type, 78

■ C
cache data, testing and, 442–443
cache invalidation, 443
Cactus framework, 429
Calendar parameters, 187–188
callback methods, 326

enterprise contexts, 329
exceptions and, 328
inheriting, 332
signature definition, 328
specifying lifecycle, 404
using on an entity, 328–329

canonical metamodel
generating, 270
overview, 268–269
using, 269–270

cardinality, 89
Cartesian products, 217
cascade attribute

perist() method, 154–155
remove() method, 155–156

cascade element, 392, 394
cascade-persist element, 378
cascading merge(), 163–164
CASE expressions, 231, 233, 255, 262–264
case sensitivity, of queries, 208
catalog element, 74, 298, 376, 380
char[] objects, 78
character large objects (CLOBs), 78
Character[] objects, 78
Chen, Peter, 17
class elements, 423
class hierarchy, 300–303, 305

abstract and concrete classes, 303–305
joined strategy, 309
mapped superclasses, 301–303

■ INDEX

483

transient classes, 303
class indicators, 306
class representation, 3–4
classes

access types, 380
adding annotations to, 20–21
creation of, 28–29
embeddable, 104
managed, 385–394, 396–406
reusing embedded object, 105–106

class-level annotations, 69
classpath

deployment, 415–416
system, 424

clear() method, 156, 159, 191, 452
CLOBs (character large objects), 78
close() methods, 30
CMP (container-managed persistence) entity

beans
challenge of migrating, 458–459
conversion of, 459–467
migration from, to JPA, 457–467

CMTs (container-managed transactions), 56–
58, 447, 449

coalesce() method, 255
COALESCE expression, 255
coarse-grained transfer objects, 471–472
collection expressions, 227–228
Collection interface, 111, 127
collection mapping, 107, 130

best practices, 128–129
collection types, 110, 128

collection tables, 108–109
@CollectionTable annotation, 108, 116
Collection.toArray() method, 244
collection-valued associations, 95–101, 212

many-to-many mappings, 97–98
one-to-many mappings, 95–97
unidirectional, 100–101
using join tables, 99–100

column aliases, 321–322
@Column annotation

columnDefinition element, 427–428
insertable element, 288–289

length element, 426
nullable element, 426
precision element, 427
rules for using, 125
scale element, 427
updatable element, 288–289

column element, 389
column mappings, 75–76
columnDefinition element, 427
columnDefinitions element, 428
@ColumnResult annotation, 322
columns

defining, 427–428
discriminator, 306
floating point, 427
null constraints on, 426
string-based, 426–427

commit() method, 27, 147
Common Object Request Broker Architecture

(CORBA), 458
comparison operators, 181
component models, 33–34
components

advantages of, 34
defined, 33
defining, 64, 66
dependency management, 47–50, 52–53
message-driven beans, 45–46
servlets, 46–47
testing entities in, 434–436

compound join columns, 292–293
compound keys, mapping, 324–325
compound primary keys, 278–281

embedded id class, 280–281
id class, 278–280
join table with, 293
multiple tables and, 299

CompoundSelection<[T]> object, 250
CompoundSelection<Tuple> object, 250
comtainer-managed persistence, 457
concat() method, 256
CONCAT function, 230, 256
concrete classes, 303, 305
concurrency, 345–346

■ INDEX

484

conditional expressions
basic form, 223–224
HAVING clause, 236
LIKE operator, 224–225
BETWEEN operator, 224
IN operator, 226–227
operator precedence, 224

configuration, 15
data source, 409–410, 421–423
by exception, 20
for Java SE deployment, 421–423
managed classes, 411–413
mapping files, 410–411
mapping metadata as part of, 407
persistence providers, 408–409, 422
persistence units, 407–413, 415
transaction type, 408, 421

conjunction() method, 257
consistency, of transactions, 54
constraints

null, 426
unique, 425–426

construct() method, 251
constructor expressions, 192–193, 215, 472
container transactions, 55, 58–59
container-managed entity managers, 132–136,

433, 452–454
application-managed versus, 144–146
extended, 132–136
transaction-scoped, 132–133

container-managed persistence. See CMP entity
beans

container-managed relationships, migration of,
461–463

container-managed transaction managers, 55,
150

container-managed transactions (CMTs), 56–
58, 447, 449

contains() method, 150
Context interface, 48
conversational state, 46–47
CORBA (Common Object Request Broker

Architecture), 458
correlate() method, 260
count() method, 256

COUNT DISTINCT function, 256
COUNT function, 235, 256
countDistinct() method, 256
create, read, update, and delete (CRUD)

operations, 29
createEntityManager() method, 136–138
createEntityManagerFactory() method, 23, 422,

424
createNativeQuery() method, 318–320
createQuery() method, 28, 183–185, 241, 244–

245
createTupleQuery() method, 244
criteria API, 239–271

dynamic JP QL queries, 241–244
overview, 239–240
parameterized types, 241
queries, 244–265

FROM clause, 252–253
creating definition, 244–245
criteria objects and mutability, 246–247
expressions, 254–264
GROUP BY clauses, 265
ORDER BY clause, 264–265
overview, 244
path expressions, 247–249
query roots, 247–248
SELECT clause, 249–251
structure, 246
WHERE clause, 254

strongly typed query definitions, 265–271
canonical metamodel, 268–270
choosing right type of query, 271
metamodel API, 266–267
overview, 265
strongly typed API overview, 267–268

CriteriaBuilder interface, 240, 244, 246, 251, 254
CriteriaQuery interface, 244–245, 249
CRUD (create, read, update, and delete)

operations, 29
CURRENT_DATE function, 230, 256
CURRENT_TIME function, 230, 256
CURRENT_TIMESTAMP function, 230, 256
currentDate() method, 256
currentTime() method, 256

■ INDEX

485

currentTimestamp() method, 256

■ D
Data Access Object (DAO) pattern, 468, 474–478
data integrity, persistence contexts and, 146
data model example, 208–209
data source configuration, 409–410, 421–423
Data Transfer Object pattern. See Transfer

Object pattern
database connections, minimizing for

integration tests, 445–446
database identity, id generation using, 86–87
database persistence. See persistence
database sequences, for id generation, 85–86
database synchronization, 157
database systems, developing applications for,

1
database tables. See tables
Date parameters, 187–188
DbUnit extension, 442
declarative container services, 34
default names, overriding, 73
default values, 22
defaults, 15, 20
delete queries, 208, 237–238
DELETE statement, 199–202, 205
delimited-identifiers element, 376
dependencies

declaring, 51–53
unit testing and, 434

dependency injection
field injection, 49–50
testing and, 457
unit testing and, 435

dependency management, 33, 47–50, 52–53
components and, 34
dependency injection, 49–50
dependency lookup, 47–48
EJB referencing, 52–53
persistence context referencing, 51
persistence unit referencing, 52
resource referencing, 53

deployment, 407, 415–421
classpath, 415–416

to Java SE environment, 421–424
managed classes, 411–413
outside server, 421–424
packaging options, 416–420
persistence unit scope, 420–421

desc() method, 264
DESC keyword, 111, 233
design patterns

Active Record, 479–480
Business Object, 478–479
DAO, 468, 474–478
Fast Lane Reader, 479
migration and, 469–480
Session Facade, 473
Session Façade, 472, 474
Transfer Object, 168, 458, 468–472

detach() method, 159
detached entities, 15

merging, 161–162, 164
overview, 159, 161
working with, 164–177

detachment, 159–161, 164–177
avoiding, 168–172
lazy loading and, 160–161, 166–167
planning for, 166–168

diff() method, 255
DISABLE_SELECTED value, 414
discriminator column, 306
discriminator value, 306–307
@DiscriminatorColumn annotation, 306
discriminator-column element, 402
discriminator-value element, 402
disjunction() method, 257
distinct() method, 259
DISTINCT operator, 214, 222, 226, 249
doGet() method, 60
domain model. See object-relational mapping
doPost() method, 59
dot (.) operator, 180, 213
duplicates, 127–128
durability, of transactions, 54
dynamic JP QL queries, 241–244
dynamic queries, 27, 183–185

■ INDEX

486

■ E
EAGER fetch type, 167
eager loading, 167
Edit Session pattern, 174–177
@EJB annotation, 47, 49, 52–53
EJB QL (Enterprise JavaBeans Query Language),

10, 179, 463–464
EJBContext interface, 48, 53, 447
EJBContext lookup() method, 61
ejb-jar.xml, 416
EJBs (Enterprise JavaBeans), 10, 33–34

2.1, 180, 431
3.0, 12–13
JAR, 416–418
message-driven beans, 45–46
migration from, to JPA, 457–467
referencing, 52–53
session beans, 35, 37–42
testing, 431–432
transaction management of, 55

ejbSelect methods, 461
element collections, 107
@ElementCollection annotation, 107–108, 116,

122, 124
element-collection element, 397–398
element-collection mappings, 397–398
embeddable() method, 266
@Embeddable annotation, 104
embeddable element, 385
@Embedded annotation, 104
embedded element, 398–399
embedded id class, 280–281
embedded object mappings, 298–299, 398–400
embedded objects, 102, 104–106

embedded id class, 280–281
mapping to secondary tables, 298–299
reusing, 105–106

@EmbeddedId annotation, 280, 388
embedded-id element, 388–389
EMP table, 4, 8
EMP_SAL table, 4
Employee class, 3, 5, 7
EmployeeAddress association class, 6
EmployeeEditServlet servlet, 175

EmployeeService class, 28–30, 64, 66
EmployeeUpdateServlet servlet, 175
ENABLE_SELECTED value, 414
enterprise applications, 1

application component models, 33–34
dependency management, 47–50, 52–53
message-driven beans and, 45–46
servlets and, 46–47
session beans and, 34–42
testing, 429–432
transaction management, 53–59

enterprise design patterns. See design patterns
Enterprise JavaBeans. See EJBs
Enterprise JavaBeans Query Language (EJB QL),

10, 179, 463–464
enterprise transactions, 55–59
entities

attaching entity listeners to, 329–331
automatic state mapping, 22
bulk delete of, 200
bulk update of, 199–200
characteristics of, 18–19
compared to mapped superclasses, 301
concurrency, 346
creating, 20–22
defined, 17
detached, 159–161, 164–177
embedded objects and, 102, 104–106
finding, 25, 151
granularity of, 19
identity of, 18
joins between, 181–182, 216–223
mapping across multiple tables, 297
mapping simple types, 74–81
mapping to tables, 73–74
metadata, 19–20
names of, 22, 208
overview, 17–19
packaging, 416, 418–420
persistence properties, 208
persisting, 18, 24, 150–151
in queries, 208
as regular classes, 273

■ INDEX

487

relationships between, 87–90, 92–94, 96–98,
100–102

removing, 25–26, 152–153
roles of, 87
SELECT clause and, 213–214
testing, 433–436
transactionality of, 18, 27
updating, 26, 172–177
using callback methods on, 328–329

@Entity annotation, 21–22, 73, 208
entity bean conversion

of the business interface, 459–463
of home interface, 463–467

entity beans, 10, 12
challenge of migrating, 458–459
conversion of, 459–467
defined, 457
implementation, 457
remote interfaces, 458

entity element, 385
secondary-table element, 386–387
table element, 386

entity expressions, 181
entity hierarchy, 301, 305
entity listeners, 329–331, 404–406

attaching to entities, 329–331
default, 331
exclude-default-listeners element, 406
exclude-superclass-listeners element, 406
inheritance of, 332

entity manager operations, 150–156
cascading, 153–156
clearing persistence context, 156
finding entities, 151
merging, 161–162, 164
persisting entities, 150–151
removing entities, 152–153

entity managers, 22–28
adding, to stateless session beans, 63–64
application-managed, 136–138, 144–146,

446
choosing, 150
configuration, 22
container-managed, 132, 452–454

database synchronization, 157–159
detachment, 159–161, 164–177
finding entities using, 25
flush modes, 197–198
merging by, 159, 161–162, 164
merging operations, 172–177
persistence context, 22
persistence contexts and, 131
persisting entities with, 24
providers, 22
removing entities using, 25–26
resource-local transactions, 147–149
transaction type, 408
transaction-scoped, 452
types of, 132–138
unit tests and, 436–439
using for integration testing, 439, 441–446

Entity Metadata, 19
entity relationships

cardinality, 89
collection-valued associations, 95–101
directionality, 87–88
mapping overview, 90
ordinality, 89

entity state
accessing, 70–71
field access, 70–71
merging, 159, 161–162, 164
property access, 71
refreshing, 346–349
transaction rollbacks and, 149
transient, 80–81

entity types, as parameters, 187
entity-listener element, 406
@EntityListeners annotation, 329, 331–332
entity-listeners element, 378, 404–406
EntityManager interface, 22, 145

clear() method, 156, 191
construction of Query objects by, 27

createNativeQuery() method, 318–320
createQuery() method, 183–185
factory methods, 183, 185–186
find() method, 151, 196
flush() method, 157

■ INDEX

488

getTransaction() method, 147
merge() method, 161–162, 164
persist() method, 150–151
refresh() method, 346–349
remove() method, 152–153

EntityManagerFactory interface, 22–24, 52,
136–138

EntityManager.lock() method, 354
EntityManager.persist() method, 110
entity-mappings element, 373

access element, 380
catalog element, 380
package element, 379
schema element, 379–380

entity-relationships, 90–95
@EntityResult annotation, 320, 325
entity-scoped query names, 186
EntityTransaction interface, 27, 147–148, 449–

452
@Enumerated annotation, 79–80, 117
enumerated element, 390
enumerated types, 78–80
equal() method, 244, 254
equals() method, 115, 119, 278–279
exclude-default listeners method, 406
@ExcludeDefaultListeners annotation, 331
exclude-default-listeners element, 406
exclude-superclass-listeners element, 406
exclude-unlisted-classes element, 412, 423
executeUpdate() method, 188
exists() method, 254
EXISTS expression, 226, 228, 254
explicitly listed classes, 412–413
expressions

combining, 214–215
constructor, 215
criteria API queries, 254–264

case expressions, 262–264
in expressions, 261–262
function expressions, 264
in, 261–262
literals, 258
overview, 254–256
parameters, 258

predicates, 257
selecting multiple, 250–251
selecting single, 249–250
subqueries, 258–261

path, 212–213
extended entity managers, 132–136

persistence contexts, 141–144
for reporting, 171
stateful session beans and, 170–172

extended persistence contexts, 141–144, 150

■ F
FALSE literal, 229
Fast Lane Reader pattern, 479
fetch() method, 253, 267
fetch element, 76–77, 108
fetch joins, 222–223, 253
fetch mode

lazy, 101–102
overriding, 392
specifying, 101

fetch type, specifying, 76
FetchParent interface, 253
FetchType enumerated type, 76
field access, 70–71
field injection, 49–50
field-level annotations, 69
@FieldResult annotation, 322, 324
fields

default mapping of, 22
transient, 80–81

find() method, 25–27, 140, 151–152, 196, 446
findAll() method, 165–166, 168
fine-grained transfer objects, 469–471
floating point columns, 427
floating point types, 82
flush() method, 157–159
flush modes, 197–198
foreign keys

columns, 91–93
mapping, 321
relationships, 5

from() method, 240, 246–248, 252, 260

■ INDEX

489

FROM clause, 211, 216–220, 222–223, 240, 246–
247

criteria API queries, 252–253
fetch joins, 253
inner and outer joins, 252–253
overview, 252

identification variables, 216
JOIN operator, 181
joins, 216–223
subqueries, 226

From interface, 247
Front Controller, 164
FullTimeEmployee subclass, 7
function() method, 264
function expressions, 230–231, 264
functional tests, 430

■ G
ge() method, 254
@GeneratedValue annotation, 82–87
generated-value element, 387
generators, 381–385

generated-value element, 387
sequence-generator element, 381
table-generator element, 382

get() method, 240, 248–249, 267, 270
getCriteriaBuilder() method, 240, 244
getCurrentResults() method, 194
getManager() method, 460
getMap() method, 268
getMetamodel() method, 266
getModel() method, 268
getReference() method, 152
getResultList() method, 188–189
getResultsList() method, 28, 212
getRollbackOnly() method, 147
getSingleResult() method, 188–191
getSingularAttribute() method, 268
getStatus() method, 59
getter methods

on criteria API objects, 247
property access and, 71

getTransaction() method, 27, 147
global metadata elements, 381–384

global transactions, 55
granularity, of entities, 19
greaterThan() method, 254, 257
greaterThanOrEqualTo() method, 254
greatest() method, 256
GROUP BY clause, 182, 233, 236, 246, 265
groupBy() method, 246, 265
gt() method, 254, 257

■ H
hashCode(), 278–279
hashCode() method, 115, 119
having() method, 246, 265
HAVING clause, 182, 225, 233, 236, 246, 265
Hibernate, 9, 11
home interface, conversion of, 463–467
home methods, migration of, 464
HTTP sessions, 46
HttpSessionBindingListener callback interface,

176

■ I
@Id annotation, 21, 70–71, 73, 387
id class, 278–281, 389
id element, 387–388
id generation, 82–87

automatic, 82–83
using a database sequence, 85–86
using a table, 83–85
using database identity, 86–87

id mappings, 81–87
types for, 81

@IdClass annotation, 278, 280
identification variables, 212

FROM clause, 216
JOIN clause, 218
names of, 225
SELECT clause, 213

identifier mappings, 387–389
identifier variables, scope of, 225
identifiers

allocation size, 84
entity, 18

IllegalArgumentException exception, 161

■ INDEX

490

IllegalStateException exception, 147
impedance mismatch, 3–5, 7, 9
in() method, 255, 261–262
IN operator, 218, 226–227, 255, 261–262
INDEX function, 230
inheritance, 215–216, 300–314

of callback methods, 332
class hierarchies, 300–303, 305
of entity listeners, 332
joined strategy, 308–310
lifecycle events and, 331–335
mapping, 325–326
mixed, 312–314
models, 305–312
object-relational mapping, 7, 9
persistence context, 143
persistent context, 144
single-table strategy, 305–308
table-per-concrete class strategy, 310–312

@Inheritance annotation, 305, 309
inheritance element, 401
inheritance mappings, 401–403
initialValue element, 84
injection dependency, 50
in-memory entities, 18
inner joins, 217–220, 252–253
input parameters, 223
insertable element, 288–289
integration testing, 430–432, 439, 441–447, 449–

455, 457
minimizing database connections for, 445–

446
Spring framework for, 455
switching configurations for, 444–445
transaction management, 446–452
using entity manager, 439, 441–446

inverseJoinColumns element, 99
inversion of control, 49
IS EMPTY operator, 227–228, 255
IS NOT EMPTY operator, 227, 255
IS NOT NULL operator, 254
IS NULL operator, 254
isActive() method, 147
isEmpty() method, 255

isMember() method, 255
isNotEmpty() method, 255
isNotMember() method, 255
isNotNull() method, 254
isNull() method, 254
isolation, of transactions, 54

■ J
J2C (Java Connector Architecture) components,

55
J2EE (Java 2 Enterprise Edition), 10
jar-file element, 413
Java

class hierarchies in, 300
support for persistence in, 9–11
use of, for building database applications, 1

Java 2 Enterprise Edition (J2EE), 10
Java Connector Architecture (J2C) components,

55
Java Data Objects (JDOs), 10–11, 468
Java Database Connectivity specification. See

JDBC specification
Java Development Kit (JDK), 9, 11
Java EE 6 namespaces, 409
Java EE applications

configuration, 67
packaging options, 416–420
persistence.xml file, 67

Java EE components
dependency management, 47–50, 52–53
message-driven beans, 62–63
session beans, 60–62
transactional model, 27
using, 60–64

Java generics, 241
Java Message Service (JMS), 45
Java Naming and Directory Interface (JNDI),

409
Java Persistence API. See JPA
Java Persistence Query Language. See JP QL
Java SE environment

deployment to, 421–424
testing, 429
user interface, 429

■ INDEX

491

Java Transaction API transactions. See JTA
transactions

JavaBeans
defined, 33
message-driven, 45–46
session beans, 34–42

JavaServer Faces, 47
JavaServer Pages Standard Tag Library (JSTL),

165
java.sql types, 80
java.util types, 80
javax.jms.MessageListener, 45
javax.persistence package, 19
JDBC (Java Database Connectivity)

specification, 9–10, 31
matching to persistable types, 75
migration from, 467–468
SQL queries versus, 316–318

JDK (Java Development Kit), 9, 11
JDOs (Java Data Objects), 10–11, 468
JMS (Java Message Service), 45
JNDI (Java Naming and Directory Interface),

409
join() method, 244, 252, 267–268
join columns

compound, 292–293
many-to-many relationships, 98
primary key, 297

JOIN operator, 181
collection association fields, 217–218
single-valued association fields, 219

join tables, 99–100
with additional state, 295
with compound join columns, 293
with compound primary keys, 293

joinCollection() method, 253
@JoinColumn annotation, 91–93, 425, 427

bidirectional one-to-one mappings and, 95
columnDefinition element, 427–428
insertable element, 288–289
length element, 427
nullable element, 426
updatable element, 288–289

join-column element, 392

@JoinColumns annotation, 292–293, 426
joinColumns element, 99
joined inheritance data model, 308–310
joined strategy, 309
joinList() method, 253
joinMap() method, 253
joins, 216–223

defined, 216
fetch, 222–223
inner, 217–220
Map, 220–221
multiple, 220
occurrence of, 217
outer, 217, 221

joinSet() method, 253
@JoinTable annotation, 99–100
join-table element, 394
joinTransaction() method, 144–146, 476
JoinType.INNER argument, 252
JoinType.LEFT argument, 252
JP QL (Java Persistence Query Language), 14,

27–28, 179–182, 207
aggregate queries, 182, 233–236
best practices, 203–205
bulk update and delete, 199–202
defining, 183, 185–186
delete queries, 237–238
executing, 188–198
features of, 180
filtering results, 181
getting started with, 180
joins between entities, 181–182
operators used in, 181
paging, 193–195
parameter types, 187–188
portability of, 207
projecting results, 181
query parameters, 182
result types, 190
sample application, 209–211
select queries, 211–228, 230–231, 233
SQL versus, 180, 207
terminology, 208
update queries, 237

■ INDEX

492

JPA (Java Persistence API)
history of, 12–13
introduction to, 1, 12
migration to, 457–480
overview, 13–15
seldom-used features, 13

JSTL (JavaServer Pages Standard Tag Library),
165

JTA (Java Transaction API) transactions, 27, 55,
138–146, 408

application-managed persistence contexts,
144–146

container-managed entity managers and,
133

extended persistence contexts, 141–144
specifying data source, 409–410
transaction-scoped persistence contexts,

139–140
jta-data-source element, 409, 421
JUnit test framework, 430, 432

■ K
KEY keyword, 252

■ L
large objects (LOBs), 77–78
lazy fetching, 76–77, 101–102
lazy loading

detachment and, 160–161
triggering, 166–167

lazy relationships, 101–102
LAZY value, 76
le() method, 254
least() method, 256
legacy data, 2
length() method, 256
length element, 426
LENGTH function, 230, 256
lessThan() method, 254
lessThanOrEqualTo() method, 254
library directory, 416
lifecycle callback methods

entity listeners, 404–406
for session beans, 37–38

lifecycle callbacks, 326–335
callback methods, 328–329
entity listeners, 329–331
inheritance and, 331–335
lifecycle events, 326–327
for stateful session beans, 41–42

lifecycle events, 326–328, 404
inheritance and, 331–335
invocation order, 332–335
PostLoad, 327
PostPersist, 326
PostRemove, 327
PostUpdate, 327
PrePersist, 326
PreRemove, 327
PreUpdate, 327

lifecycle management, 34
lifecycle methods, 454
lifecycles of stateless session beans, 37–38
like() method, 240, 255
LIKE expression, 224–225, 240, 255
List collection type, 111–114

ordering by entity or element attribute, 111–
112

persistently ordered lists, 112–114
listeners, 378
literal() method, 258
literals, 258
@Lob annotation, 77–78
LOBs (large objects), 77–78
@Local annotation, 36
local classes, 411–413
locate() method, 256
LOCATE function, 230, 256
lock() method, 353–354
locking, 349–359

optimistic, 349–350
read, 352–354
Read Committed isolation and, 351
recovering from optimistic failures, 356–359
versioning, 350–351
write, 354–356

logical annotations, 69
logTransaction() method, 139–140, 142

■ INDEX

493

lookup() method, 48
loose coupling, 34
lower() method, 256
LOWER function, 230, 256
lt() method, 254

■ M
managed classes

additional JARs of, 411, 413
attributes, 385–386
classes in mapping files, 411–412
configuration, 411–413
explicitly listed classes, 411–413
identifier mappings, 387–389
listing, outside of server, 422
local classes, 411–413
mappings and, 385–394, 396–406
tables, 386–387

managedType() method, 266
MANDATORY attribute, 56
@ManyToMany annotation, 98
many-to-many element, 396–397
many-to-many mappings, 97–98, 396–397
many-to-many relationships, 99–100
@ManyToOne annotation, 91
many-to-one element, 392
many-to-one mappings, 90–93, 392–393
Map collection type, 114–125

keying by basic type, 115–118
keying by embeddable type, 119–122

overriding embeddable attributes, 121–
122

sharing embeddable key mappings with
values, 120

keying by entity, 123–124
keying by entity attribute, 118–119
keys and values, 115
rules for maps, 125
untyped maps, 124–125

Map joins, 220–221
@MapKey annotation, 118, 124–125
map-key element, 393
@MapKeyColumn annotation, 116, 118–119,

125

@MapKeyEnumerated annotation, 117, 125
@MapKeyJoinColumn annotation, 123, 125
@MapKeyTemporal annotation, 117, 125
mapped superclasses, 301–303, 305
mappedBy element, 95

@ManyToMany annotation, 98
@OneToMany annotation, 97
@OneToOne annotation, 95

mapped-superclass element, 385
mapping collections. See collection mapping
mapping file defaults, 378–380

access element, 380
catalog element, 380
package element, 379
schema element, 379–380

mapping files, 373–376, 378–380, 382–390, 392–
394, 396, 398–406, 444–445

classes in, 411–412
configuration, 410–411
disabling annotations, 373–375
entity-mappings, 373
generators, 381–384
header for, 373
managed classes, 385–394, 396–406
multiple, 410
persistence unit defaults, 375–378
queries, 381–384
singular, 410

mapping metadata, 69
as part of configuration, 407

mapping-file element, 410
mappings

automatic state, 22
column aliases, 321–322
compound keys, 324–325
embedded object, 398–400
foreign keys, 321
id, 81–87
identifier, 387–389
inheritance, 325–326, 401–403
many-to-many, 97–98
many-to-one, 92–93
many-to-one mappings, 90–91
multiple SQL results, 321

■ INDEX

494

multiple tables, 297–300
one-to-many, 95–97
one-to-one, 93–95
optional, 289
overriding, 385–386
overview, 90
primary keys, 81–87
relationship, 391–394, 396–398
relationship state, 295–297
scalar result columns, 322–324
simple, 389–391
single-values associations, 90–95
SQL result sets, 320, 322–326
unidirectional collection, 100–101
using join columns, 91–93

max() method, 256
MAX function, 235, 256
MDBs (message-driven beans), 12, 34, 45–46

defining, 45–46
using, 62–63

meet-in-the-middle mapping scenarios, 297
MEMBER OF operator, 227, 255
merge() method, 161–162, 164
merge cascade, 163–164
merging, 159, 161–162, 164

Edit Session pattern, 174–177
Session Façade, 172–174
strategies for, 172–177

@MessageDriven annotation, 45
message-driven beans. See MDBs
metadata, 15, 372

annotations, 19
annotations versus XML, 371
collection process, 372
configuration by exception, 20
defining for a persistence unit, 375
entity, 19–20
logic for obtaining, 372
mapping, 69
XML descriptors, 20

metadata-complete attribute, 374–375
META-INF directory, 407, 418–419
META-INF/MANIFEST.MF file, 415
metamodel API, 266–267

metdata-complete attribute, 375
method-level annotations, 69
migration

of business methods, 460–461
challenge of, 458–459
from CMP entity beans, 457–467
of container-managed relationships, 461–

463
entity bean conversion, 459–467
of home methods, 464
from JDBC, 467–468
leveraging design patterns, 469–480
from other ORM solutions, 468–469
of properties, 459–460
of queries, 463–464
refactoring before, 459, 466
Transfer Object pattern, 458

min() method, 256
MIN function, 235, 256
mixed inheritance, 312–314
mobility, 14
mock objects, 435, 438–439
mocking the interface, 435–436
mod() method, 256
MOD function, 230, 256
Model-View-Controller (MVC) architecture,

164–165
multiple tables, 297–300
multiplicity element, 462
multiselect() method, 250–251
multitier application, 15
mutability, 246–247
MVC (Model-View-Controller) architecture,

164–165

■ N
name attribute, 47, 208
name element, 75–76
named parameters, 182, 186

arguments for, 187
binding, 187

named queries, 27, 183, 185–186
best practices, 203–204
parameters with, 186

■ INDEX

495

named-native query element, 383
@NamedNativeQuery annotation, 318
@NamedQueries annotation, 186
@NamedQuery annotation, 185–186
named-query element, 382–383
names

of persistence units, 408, 421
of queries, 186

native queries. See SQL
navigation, path, 212–213
neg() method, 255
NEVER attribute, 57
next() method, 194
no-arg constructor, 37
NONE value, 414
nonintrusiveness, 14
non-jta-data-source element, 421
non-jts-data-source element, 409
NonUniqueResultException, 189
NoResultException, 189
normalized data schema, 308
not() method, 254
NOT EXISTS operator, 254
NOT IN operator, 255
NOT LIKE operator, 255
NOT MEMBER OF operator, 227, 255
NOT operator, 228, 254
NOT_SUPPORTED attribute, 57
notEqual() method, 254
not(exists()) method, 254
not(in()) method, 255
notLike() method, 255
null constraints, 426
null values, 128
nullable element, 426
nullif() method, 255
NULLIF expression, 255
nullLiteral() method, 258
numeric expressions, 229

■ O
OBJECT keyword, 213
object queries, 14

object-relational mapping (O-R mapping;
ORM), 2–6, 8–9

accessing entity state, 70–71
bridging gap between relational database

systems and, 1
class representation, 3–4
column mapping, 75–76
compound join columns, 292–293
compound primary keys, 278–281
embedded objects, 102–106
of enumerated types, 78–80
history of, 9, 12–13
impedance mismatch, 3–5, 7, 9
inheritance and, 7, 9, 300–314
of large objects, 77–78
lazy fetching, 76–77
mapping to a table, 73–74
migration from, 468–469
multiple tables, 297–300
object relationships, 5–7
optional element, 289
overview, 90
persistence annotations and, 69–70
primary keys, 81–87
read-only, 288–289
of relationship state, 295–297
of simple types, 74–81
of temporal types, 80

objects
detached, 14
embedded, 102, 104–106
management of, by entity manager, 22
SELECT clause and, 213–214

@OneToMany annotation, 96–97, 462
one-to-many element, 393–394
one-to-many mappings, 95–97, 100–101, 393–

394
@OneToOne annotation, 93, 95
one-to-one element, 394–395
one-to-one mappings, 93–95, 394–395
onMessage() method, 45–46
optimistic locking, 349–350, 356–359
OptimisticLockException exception, 356–359
optional element, 289

■ INDEX

496

OptmisticLockException, 349–350
or() method, 254, 257
O-R mapping. See object-relational mapping
OR operator, 184, 254, 257
Oracle TopLink, 9
ORDER BY clause, 233, 246, 264–265
orderBy() method, 246, 264
@OrderBy annotation, 111–112, 129
@OrderColumn annotation, 113–114
ordinal values, 78–79
ordinality, 89
ORM. See object-relational mapping
orm_1_0.xsd schema, 373
orm_2_0.xsd schema, 373
orm.xml file, 410–412, 417–418, 420
otherwise() method, 263
outer joins, 217, 221, 252–253
overriding

association, 400, 403
attributes, 399, 403
basic mappings, 390
entity listeners, 405–406
fetch mode, 392
identifier mappings, 387–389
inheritance strategy, 401
tables, 386
XML over annotations, 385–386

■ P
package element, 379
packaging options, 407, 416–420

EJB JAR, 416–418
persistence archive, 419–420
web archives, 418–419

Page Controller, 164
parameter() method, 244, 258
parameter binding, 326
parameterized types, 241
parameters

arguments for, 187
binding, 185
criteria API queries, 258
with dynamic queries, 184–185
entity types as, 187

named, 182, 186–187
with named queries, 186
positional, 182
query, 182
types of, 187–188

PartTimeEmployee subclass, 7
passivation, 41
path expressions, 212–213

collection association fields, 217–219
criteria API queries, 247–249
identification variables and, 216
SELECT clause, 213

performance optimization
through lazy fetching, 76–77
using lazy fetching, 101

@PerisstenceUnit annotation, 52
persist() method, 24, 140, 150–151, 153–155,

446
persistable types

enumerated types, 78–80
large objects, 77–78
mapping, 74–81
temporal types, 80

persistence. See also object-relational mapping
Enterprise JavaBeans, 10
Java Data Objects, 10–11
Java support for, 9–11
JDBC, 9–10

persistence annotations, 69–70
persistence applications

deployment, 415–421
packaging options, 416–420

persistence archive, 31, 419–420
persistence contexts, 22, 131, 443. See also

entity managers
active, 139
application-managed, 144–146
clearing, 156
collision, 142–143
extended, 141–144, 150, 201
flushed, 157–159
inheritance, 143–144
JTA transactions, 139–144
keeping open, 168–172

■ INDEX

497

queries and, 196–198
transaction management and, 138–149
transaction rollbacks and, 149
transaction-scoped, 139–140

persistence model
need for standardized, 11–12
POJO, 11

persistence properties of entities, 208
persistence providers, 22

configuration, 408–409, 422
differences between, 205

persistence unit defaults, 375–378
access element, 377
cascade-persist element, 378
catalog element, 376
delimited-identifiers element, 376
entity-listeners element, 378
schema element, 376

persistence unit root, 418
persistence unit scope, 420–421
persistence units, 22–23, 30

configuration of, 421–423
configuring, 407–413, 415
deployment, 407
managed classes, 385–394, 396–406
mapping files, 410
name of, 408
namespaces, 381
naming, 421
packaging, 407

persistence-by-reachability, 378
@PersistenceContext annotation, 47, 51, 132–

133
PersistenceException exception, 147, 202
@PersistenceUnit annotation, 47, 137
persistence-unit element

persistence unit name, 408
persistence.xml file, 407
transaction type attribute, 408

persistence-unit-defaults element, 375
persistence-unit-metadata element, 375
persistence.xml file, 30–31, 67, 407

class elements, 412, 423
configuration, 407–413, 415

for defining persistence unit in EJB JAR,
416–418

defining persistence unit scope in, 420–421
exclude-unlisted-classes element, 412, 423
integration tests and, 444–445
jar-file element, 413
jta-data-source element, 409–410, 421
managed classes, 411
mapping-file element, 410
non-jta-data-source element, 409–410, 421
for packaging in persistence archive, 419
for packaging in web archives, 418–419
persistence element, 422
persistence-unit element, 407–408
properties element, 415
provider element, 409

persistent identity, 18
persistent properties

abstract schema types, 208
association fields, 208
state fields, 208

physical annotations, 69
pkColumnName element, 84
POJO (Plain Old Java Object) persistence, 11, 14
polymorphism, 215–216
portability of components, 34
positional binding, 182
positional parameter notation, 182
PostActivate callback, 41
PostConstruct callback, 37–38
PostLoad event, 327
PostPersist event, 326
PostRemove event, 327
PostUpdate event, 327
PreDestroy callback, 37–38
predicates, 257
PrePassivate callback, 41
PrePersist event, 326
PreRemove event, 327
PreUpdate event, 327
previous() method, 194
primary key classes, 278–281

embedded id class, 280–281
id class, 278–280

■ INDEX

498

primary key join columns, 297
primary keys

compound, 278–281
mapping, 81–87
transaction rollbacks and, 149

primary tables, 297
@PrimaryKeyJoinColumn annotation, 297, 308
primary-key-join-column element, 387
PrintJob entity, 112–114
PrintQueue entity, 112
prod() method, 255
projection queries, 168
propagation, 452–454
properties element, 415
property access, 71
property methods, 433
provider properties, 424

■ Q
quasi-transactional entities, 18
queries, 14, 27–28

aggregate, 182, 208, 233–236
best practices, 203–205
bulk update and delete, 199–202
criteria API, 244–265

building expressions, 254–264
FROM clause, 252–253
creating definition, 244–245
criteria objects and mutability, 246–247
GROUP BY clause, 265
HAVING clause, 265
ORDER BY clause, 264–265
overview, 244
path expressions, 247–249
query roots, 247–248
SELECT clause, 249–251
structure, 246
WHERE clause, 254

data model example, 208–209
defining, 183–186, 208
delete, 208, 237–238
dynamic, 183, 185
executing, 188–198
execution of, 28

filtering results, 181
formatting, 185
joins between entities, 181–182
JP QL, 180–182
mapping, 385
mapping files and, 381–384
migration of, 463–464
named, 183, 185–186
named-native-query element, 383
named-query element, 382–383
overriding, 383
parameter types, 187–188
parameters, 182
projecting results, 181
projection, 168
read-only, 191–192
report, 208
result types, 190–191
sample application, 209–211
select, 208, 211–228, 230–231, 233
SQL, 315–326
sql-result-set-mapping element, 384
terminology of, 208
uncommitted changes, 195–198
update, 208, 237

query hints, 202–204
Query interface, 183

execution methods, 188–198
getResultList() method, 212
pagination, 194–195
setParameter() method, 187

query languages, 179. See also Java Persistence
Query Language (JP QL)

EJB QL, 179
Java Persistence QL, 179–182
SQL, 179

query methods, 170–172
Query objects, 27, 189–190
query paging, 193–195
query results, 192–193
query roots, 247–248
query translator, 209
@QueryHint annotation, 203
quot() method, 255

■ INDEX

499

■ R
range variable declarations, 216
Read Committed isolation, 351
read locking, 352–354
read-only mappings, 288–289
read-only queries, optimization of, 191–192
refactoring, 437, 457, 459, 466
references, 47
refresh() method, 346–349
relational databases, 1

bridging gap between object-oriented
models and, 1

Java support for persistence to, 9–11
relational model. See object-relational mapping
relationship mappings, 391–394, 396–398

element-collection, 397–398
many-to-many, 396–397
many-to-one, 392–393
one-to-many, 393–394
one-to-one, 93–95
one-to-one mappings, 394–395
using join columns, 91–93

relationship state, mapping, 295–297
relationships, 87–90, 92–94, 96–98, 100–102

advanced, 292–293, 295–297
bidirectional, 96–98
bulk delete and, 201–202
cardinality, 89
collection-valued associations, 95–101
compound join columns, 292–293
directionality, 87–88
element collections versus, 107
expressing, in object-relational mapping, 5–

7
foreign key, 5
inheritance, 7, 9
lazy, 101–102
many-to-many, 89
many-to-one, 89
mapping overview, 90
non-owning (inverse) side, 92
ordinality, 89
owning side, 92
roles, 87

single-valued associations, 90–95
reliability of components, 34
@Remote annotation, 38–39
remote entity bean interfaces, 458
Remote Method Invocation (RMI), 38
remove() method, 25–26, 152–153, 155–156,

201–202, 466
@Remove annotation, 40, 61
Repeatable Read isolation, 352–354
report queries, 204, 208
REQUIRED attribute, 56
REQUIRES_NEW attribute, 56
@Resource annotation, 47, 53, 58
resource annotations

@PersistenceContext, 51
@PersistenceUnit, 52
@Resource, 53

resource references, 47
dependency injection, 49–50
dependency lookup and, 47–48

resource-local transactions, 55, 138, 147–149
resource-location transactions, 55
resourceType element, 53
result set mappings, 384
ResultSet interface, 467–468
RMI (Remote Method Invocation), 38
roles, 87
rollback() method, 59, 147
RollbackException exception, 147
Root interface, 247
RowSet interface, 467–468

■ S
scalability of components, 34
scalar expressions, 228–229
scalar result columns, mapping, 322–324
schema element, 298, 376, 379–380
schema generation, 424–428

defining the column, 427–428
floating point columns, 427
null constraints, 426
string-based columns, 426–427
unique constraints, 425–426

schema names, 74

■ INDEX

500

scope, 420–421
secondary tables, 297
@SecondaryTable annotation, 297, 386
secondary-table element, 386–387
select() method, 240, 246–247, 249–251
SELECT clause, 211–216, 240, 246

combining expressions in, 214–215
constructor expressions, 215
criteria API queries, 249–251

overview, 249
selecting multiple expressions, 250–251
selecting single expressions, 249–250
using aliases, 251

entities and objects, 213–214
inheritance and polymorphism, 215–216
path expressions, 212–213

select queries, 208, 211–228, 230–231, 233
FROM clause, 211, 216–220, 222–223
domain of, 211
execution of, 212
identification variables, 212
JP QL versus SQL, 212
ORDER BY clause, 233
SELECT clause, 211–216
structure of, 211–212
WHERE clause, 223–228, 230–231

selectCase() method, 255, 263
sequence-generator element, 381
Serializable type, 78
server resources, referencing, 53
Service Locator pattern, 431
servlets, 34, 46–47, 55
session beans, 12, 34

adding an entity manager, 63–64
advantages of, 34, 47
best practices, 204
business interface of, 34
defining, 35–37, 39–40
EJB JAR, 416
integration testing, 439, 441–454, 457
lifecycle callbacks, 37–38, 41–42
overview, 34–35
remote business interfaces, 38–39
stateful, 35, 39–42

stateless, 35–39, 204
testing, 432, 435–436
using, 60–62

Session Facade pattern, 172–174, 473
Session Façade pattern, 472, 474
Set interface, 111
setFirstResult() method, 194–195
setFlushMode() method, 197
setHint() method, 202
setMaxResults() method, 194–195
setParameter() method, 187–188
setRollbackOnly() method, 57, 59, 447
setSessionContext() method, 53
setter injection, 50
setter methods

property access and, 71
testing, 433–434

setTransactionTimeout() method, 59, 450
setUp() method, 442–443, 445
shared-cache-mode element, 414
shopping cart

business interface for, 39
implementing, with stateful session beans,

40
simple mappings, 389–391
single quotes (' '), 229
single-table hierarchy, 305–308
single-valued associations, 90–95, 212

many-to-one mappings, 90–91
one-to-one mappings, 93–95

size() method, 256
SIZE function, 230–231, 256
software development for database systems, 1
some() method, 255
SOME operator, 228, 255
source roles, 88
Spring framework, 455
SQL (Structured Query Language), 10, 27, 179,

315–326
defining and executing, 318–320
JDBC and, 9
JDBC queries versus, 316–318
JP QL versus, 180, 207
mapping column aliases, 321–322

■ INDEX

501

mapping compound keys, 324–325
mapping foreign keys, 321
mapping inheritance, 325–326
mapping scalar result columns, 322–324
migration and, 468
multiple result mappings, 321
nonportability of, 10
parameter binding, 326
reasons for using, 316
result set mapping, 320, 322–326

@SqlResultSetMapping annotation, 320
sql-result-set-mapping element, 384
sqrt() method, 256
SQRT function, 230
SQRT JP QL function, 256
standardization, value of, 11–12
state field paths, 212
state fields, 208
@Stateful annotation, 40
stateful session beans, 35, 39–42

defining, 39–40
Edit Session, 174–177
extended entity managers, 133–136, 170–

172
lifecycle callbacks, 41–42
persistence contexts, 142–144
query methods, 170–172
stateless versus, 40
using, 60–62

@Stateless annotation, 35
stateless session beans, 35–39

adding an entity manager, 63–64
best practices, 204
defining, 35–37
lifecycle of, 37–38
remote business interfaces, 38–39
stateful versus, 40
using, 60
using transaction-scoped entity manager,

132–133
static queries, 27
@StaticMetamodel annotation, 269
strategy element, 82–87
string concatenation, 185

String key, 116
string literals, 229
String objects, 78
string pattern matching, 224
string-based columns, 426–427
strings

entities versus, 19
for enumerated values, 79

strongly typed definitions, 265–271
canonical metamodel, 268–270
choosing right type of query, 271
metamodel API, 266–267
overview, 265–268

Structured Query Language. See SQL
subqueries

criteria API queries, 258–261
WHERE clause, 225–226

subquery() method, 258
substring() method, 256
SUBSTRING function, 230, 256
sum() method, 255–256
SUM function, 235, 256
sumAsDouble() method, 256
sumAsLong() method, 256
superclasses, 300

mapped, 301–303
transient, 303

SUPPORTS attribute, 56
@SuppressWarnings annotation, 241
syntax

aggregate queries, 233
conditional expressions, 223–224

system classpath, 424

■ T
@Table annotation, 73, 84, 386
table definitions, 425–426
table element, 386
table names, 73
@TableGenerator annotation, 83
table-generator element, 382
table-per-concrete-class inheritance strategy,

310–312

■ INDEX

502

tables
catalog element, 74
id generation using, 83–85
mapping to, 73–74
multiple, 297–300
primary, 297
schema names, 74
secondary, 297, 386–387
specifying names of, 73
in XML, 386–387

target roles, 88
targetClass element, 108, 124
targetEntity element, 97, 124
tearDown() method, 442–443
@Temporal annotation, 57, 187
temporal types, 80
TemporalType enumeration, 187
test frameworks, 432
testability, 15
testing

acceptance tests, 431
best practices, 457
enterprise applications, 430–432
entities, 433–436
entities in components, 434–436
entity manager, 436–439, 441–446
functional tests, 430
integration, 439, 441–447, 449–455, 457
integration tests, 430–432
outside of server, 431–432
terminology, 430–431
unit, 433–439
unit tests, 430
units tests, 431–432
white box, 431

TestSetup, 445
TopLink, 9
transaction association, 138
transaction attributes, 56
transaction management, 53–59, 138–149, 446–

452
bean-managed, 58
bean-management, 55
changing type of, 55

container-managed, 55–58
JTA, 138–146
resource-local transactions, 138, 147–149
transaction rollbacks, 149

transaction propagation, 139
transaction rollbacks, 149
transaction synchronization, 138
transaction type, 408, 421
Transaction View pattern, 168–169
transactionality of entities, 18
@TransactionManagement annotation, 55
transactions, 27, 33

bean-managed, 58, 449–452
container, 55
container-managed, 56–58, 447, 449
demarcation of, 55–56
enterprise, 55–59
executing queries outside of, 191–192
overview, 54
propagation, 452–454
properties of, 54
resource-local, 55
rollbacks, 59
time limits for, 59
uncomitted, 198
uncommitted, 195–197
UserTransaction interface, 58–59
when to use, 446–447

transaction-scoped entity managers, 132–133,
139–140, 150, 452

transaction-scoped persistence contexts, 139–
140

Transfer Object pattern, 168, 458, 468–472
coarse-grained transfer objects, 471–472
fine-grained transfer objects, 471
fine-grained transger objects, 469–471

@Transient annotation, 72, 80–81
transient classes, 303
transient element, 390
transient state, 80–81
trim() method, 256
TRIM function, 230, 256
TRUE literal, 229
try ... finally block, 59

■ INDEX

503

type() method, 261
TYPE column, 8
TypedQuery interface, 28, 244

■ U
unidirectional collection mappings, 100–101
unidirectional relationships, 87–88
unique constraints, 425–426
@UniqueConstraints annotation, 425
unit testing, 430–439

entities, 433–436
entities in components, 434–436
entity managers, 436–439

unitName element, 51–52
UNSPECIFIED value, 414
updatable element, 288–289
update queries, 208, 237
UPDATE statement, 199–202, 205
upper() method, 256
UPPER function, 230, 256
user interface, defining, 66
UserTransaction interface, 58–59, 449–452

■ V
validation-mode element, 414–415
value() method, 261–262
VALUE keyword, 252
verifyItem() method, 57
version element, 391
version fields, 149
versioning system, 350–351

■ W
WARs, 418–419
web archives, packaging entities in, 418–419
WEB-INF/classes directory, 418–419
when() method, 263
WHEN clause, 231
where() method, 240, 246, 254
WHERE clause, 181, 223–228, 230–231, 240, 246

ANY, ALL, and SOME expressions, 228

basic expression form, 223–224
collection expressions, 227–228
criteria API queries, 254
delete queries, 238
EXISTS expression, 228
BETWEEN expressions, 224
IN expressions, 226–227
function expressions, 231
input parameters, 223
join conditions in, 220
LIKE expressions, 224–225
scalar expressions, 228–229
subqueries, 225–226
update queries, 237

white box testing, 431
wildcard characters, 224
write locking, 354–356

■ X
XML

annotations versus, 371
defining queries in, 186
definition of container-managed

relationship, 461–462
descriptors, 20

XML mapping files, 371–396, 398–406
disabling annotations, 373–375
entity listeners, 404–406
entity-mappings, 373
generators, 381–384
header, 373
identifier mappings, 387–389
lifecycle events, 404
managed classes, 385–394, 396–406
mapping file defaults, 378–380
metadata collection process, 372
orm_2_0.xsd schema, 373
persistence unit defaults, 375–378
queries, 381–384
tables, 386–387

xml-mapping-metadata-complete element, 374

■ INDEX

504

 210

 210

Offer valid through 4/10.

233 Spring Street, New York, NY 10013

	Apress - Pro JPA 2 Mastering the Java Persistence API (November 2009) (ATTiCA)
	Books for Professionals
	Contents at a Glance
	Contents
	Foreword
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	This Book Is For You
	Code Examples
	Contacting Us

	Introduction
	Object-Relational Mapping
	The Impedance Mismatch
	Class Representation
	Relationships
	Inheritance

	Java Support for Persistence
	Proprietary Solutions
	JDBC
	Enterprise JavaBeans
	Java Data Objects

	Why Another Standard?
	The Java Persistence API
	History of the Specification
	EJB 3.0 and JPA 1.0
	JPA 2.0
	JPA and You
	Overview
	POJO Persistence
	Nonintrusiveness
	Object Queries
	Mobile Entities
	Simple Configuration
	Integration and Testability

	Summary

	Getting Started
	Entity Overview
	Persistability
	Identity
	Transactionality
	Granularity

	Entity Metadata
	Annotations
	XML
	Configuration by Exception

	Creating an Entity
	Entity Manager
	Obtaining an Entity Manager
	Persisting an Entity
	Finding an Entity
	Removing an Entity
	Updating an Entity
	Transactions
	Queries

	Putting It All Together
	Packaging It Up
	Persistence Unit
	Persistence Archive

	Summary

	Enterprise Applications
	Application Component Models
	Session Beans
	Stateless Session Beans
	Defining a Stateless Session Bean
	Lifecycle Callbacks
	Remote Business Interfaces
	Stateful Session Beans
	Defining a Stateful Session Bean
	Lifecycle Callbacks
	Singleton Session Beans
	Defining a Singleton Session Bean
	Lifecycle Callbacks
	Singleton Concurrency

	Message-Driven Beans
	Defining a Message-Driven Bean

	Servlets
	Dependency Management
	Dependency Lookup
	Dependency Injection
	Field Injection
	Setter Injection
	Declaring Dependencies
	Referencing a Persistence Context
	Referencing a Persistence Unit
	Referencing Enterprise JavaBeans
	Referencing Server Resources

	Transaction Management
	Transaction Review
	Enterprise Transactions in Java
	Transaction Demarcation
	Container-Managed Transactions
	Bean-Managed Transactions

	Using Java EE Components
	Using a Stateless Session Bean
	Using a Stateful Session Bean
	Using a Singleton Session Bean
	Using a Message-Driven Bean
	Adding the Entity Manager

	Putting It All Together
	Defining the Component
	Defining the User Interface
	Packaging It Up

	Summary

	Object-Relational Mapping
	Persistence Annotations
	Accessing Entity State
	Field Access
	Property Access
	Mixed Access

	Mapping to a Table
	Mapping Simple Types
	Column Mappings
	Lazy Fetching
	Large Objects
	Enumerated Types
	Temporal Types
	Transient State

	Mapping the Primary Key
	Overriding the Primary Key Column
	Primary Key Types
	Identifier Generation
	Automatic Id Generation
	Id Generation Using a Table
	Id Generation Using a Database Sequence
	Id Generation Using Database Identity

	Relationships
	Relationship Concepts
	Roles
	Directionality
	Cardinality
	Ordinality
	Mappings Overview
	Single-Valued Associations
	Many-to-One Mappings
	Using Join Columns
	One-to-One Mappings
	Bidirectional One-to-One Mappings
	Collection-Valued Associations
	One-to-Many Mappings
	Many-to-Many Mappings
	Using Join Tables
	Unidirectional Collection Mappings
	Lazy Relationships

	Embedded Objects
	Summary

	Collection Mapping
	Relationships and Element Collections
	Using Different Collection Types
	Sets or Collections
	Lists
	Ordering By Entity or Element Attribute
	Persistently Ordered Lists
	Maps
	Keys and Values
	Keying By Basic Type
	Keying by Entity Attribute
	Keying by Embeddable Type
	Keying by Entity
	Untyped Maps
	Rules for Maps
	Duplicates
	Null Values

	Best Practices
	Summary

	Entity Manager
	Persistence Contexts
	Entity Managers
	Container-Managed Entity Managers
	Transaction-Scoped
	Extended
	Application-Managed Entity Managers

	Transaction Management
	JTA Transaction Management
	Transaction-Scoped Persistence Contexts
	Extended Persistence Contexts
	Application-Managed Persistence Contexts
	Resource-Local Transactions
	Transaction Rollback and Entity State

	Choosing an Entity Manager
	Entity Manager Operations
	Persisting an Entity
	Finding an Entity
	Removing an Entity
	Cascading Operations
	Cascade Persist
	Cascade Remove
	Clearing the Persistence Context

	Synchronization with the Database
	Detachment and Merging
	Detachment
	Merging Detached Entities
	Working with Detached Entities
	Planning for Detachment
	Avoiding Detachment
	Merge Strategies

	Summary

	Using Queries
	Java Persistence Query Language
	Getting Started
	Filtering Results
	Projecting Results
	Joins Between Entities
	Aggregate Queries
	Query Parameters

	Defining Queries
	Dynamic Query Definition
	Named Query Definition

	Parameter Types
	Executing Queries
	Working with Query Results
	Untyped Results
	Optimizing Read-Only Queries
	Special Result Types
	Query Paging
	Queries and Uncommitted Changes
	Query Timeouts

	Bulk Update and Delete
	Using Bulk Update and Delete
	Bulk Delete and Relationships

	Query Hints
	Query Best Practices
	Named Queries
	Report Queries
	Vendor Hints
	Stateless Session Beans
	Bulk Update and Delete
	Provider Differences

	Summary

	Query Language
	Introduction
	Terminology
	Example Data Model
	Example Application

	Select Queries
	SELECT Clause
	Path Expressions
	Entities and Objects
	Combining Expressions
	Constructor Expressions
	Inheritance and Polymorphism
	FROM Clause
	Identification Variables
	Joins
	WHERE Clause
	Input Parameters
	Basic Expression Form
	BETWEEN Expressions
	LIKE Expressions
	Subqueries
	IN Expressions
	Collection Expressions
	EXISTS Expressions
	ANY, ALL, and SOME Expressions
	Scalar Expressions
	Literals
	Function Expressions
	CASE Expressions
	ORDER BY Clause

	Aggregate Queries
	Aggregate Functions
	AVG
	COUNT
	MAX
	MIN
	SUM
	GROUP BY Clause
	HAVING Clause

	Update Queries
	Delete Queries
	Summary

	Criteria API
	Overview
	The Criteria API
	Parameterized Types
	Dynamic Queries

	Building Criteria API Queries
	Creating a Query Definition
	Basic Structure
	Criteria Objects and Mutability
	Query Roots and Path Expressions
	Query Roots
	Path Expressions
	The SELECT Clause
	Selecting Single Expressions
	Selecting Multiple Expressions
	Using Aliases
	The FROM Clause
	Inner and Outer Joins
	Fetch Joins
	The WHERE Clause
	Building Expressions
	Predicates
	Literals
	Parameters
	Subqueries
	In Expressions
	Case Expressions
	Function Expressions
	The ORDER BY Clause
	The GROUP BY and HAVING Clauses

	Strongly Typed Query Definitions
	The Metamodel API
	Strongly Typed API Overview
	The Canonical Metamodel
	Using the Canonical Metamodel
	Generating the Canonical Metamodel
	Choosing the Right Type of Query

	Summary

	Advanced Object-Relational Mapping
	Table and Column Names
	Complex Embedded Objects
	Advanced Embedded Mappings
	Overriding Embedded Relationships

	Compound Primary Keys
	Id Class
	Embedded Id Class

	Derived Identifiers
	Basic Rules for Derived Identifiers
	Shared Primary Key
	Multiple Mapped Attributes
	Using EmbeddedId

	Advanced Mapping Elements
	Read-Only Mappings
	Optionality

	Advanced Relationships
	Using Join Tables
	Avoiding Join Tables
	Compound Join Columns
	Orphan Removal
	Mapping Relationship State

	Multiple Tables
	Inheritance
	Class Hierarchies
	Mapped Superclasses
	Transient Classes in the Hierarchy
	Abstract and Concrete Classes
	Inheritance Models
	Single-Table Strategy
	Joined Strategy
	Table-per-Concrete-Class Strategy
	Mixed Inheritance

	Summary

	Advanced Topics
	SQL Queries
	Native Queries versus JDBC
	Defining and Executing SQL Queries
	SQL Result Set Mapping
	Mapping Foreign Keys
	Multiple Result Mappings
	Mapping Column Aliases
	Mapping Scalar Result Columns
	Mapping Compound Keys
	Mapping Inheritance
	Parameter Binding

	Lifecycle Callbacks
	Lifecycle Events
	PrePersist and PostPersist
	PreRemove and PostRemove
	PreUpdate and PostUpdate
	PostLoad
	Callback Methods
	Enterprise Contexts
	Entity Listeners
	Attaching Entity Listeners to Entities
	Default Entity Listeners
	Inheritance and Lifecycle Events
	Inheriting Callback Methods
	Inheriting Entity Listeners
	Lifecycle Event Invocation Order

	Validation
	Using Constraints
	Invoking Validation
	Validation Groups
	Creating New Constraints
	Constraint Annotations
	Constraint Implementation Classes
	Validation in JPA
	Enabling Validation
	Setting Lifecycle Validation Groups

	Concurrency
	Entity Operations
	Entity Access

	Refreshing Entity State
	Locking
	Optimistic Locking
	Versioning
	Advanced Optimistic Locking Modes
	Recovering from Optimistic Failures
	Pessimistic Locking
	Pessimistic Locking Modes
	Pessimistic Scope
	Pessimistic Timeouts
	Recovering From Pessimistic Failures

	Caching
	Sorting Through the Layers
	Shared Cache
	Static Configuration of the Cache
	Dynamic Cache Management

	Utility Classes
	PersistenceUtil
	PersistenceUnitUtil

	Summary

	XML Mapping Files
	The Metadata Puzzle
	The Mapping File
	Disabling Annotations
	xml-mapping-metadata-complete
	metadata-complete
	Persistence Unit Defaults
	schema
	catalog
	delimited-identifiers
	access
	cascade-persist
	entity-listeners
	Mapping File Defaults
	package
	schema
	catalog
	access
	Queries and Generators
	sequence-generator
	table-generator
	named-query
	named-native-query
	sql-result-set-mapping
	Managed Classes and Mappings
	Attributes
	Tables
	Identifier Mappings
	Simple Mappings
	Relationship and Collection Mappings
	Embedded Object Mappings
	Inheritance Mappings
	Lifecycle Events
	Entity Listeners

	Summary

	Packaging and Deployment
	Configuring Persistence Units
	Persistence Unit Name
	Transaction Type
	Persistence Provider
	Data Source
	Mapping Files
	Managed Classes
	Local Classes
	Classes in Mapping Files
	Explicitly Listed Classes
	Additional JARs of Managed Classes
	Shared Cache Mode
	Validation Mode
	Adding Vendor Properties

	Building and Deploying
	Deployment Classpath
	Packaging Options
	EJB JAR
	Web Archive
	Persistence Archive
	Persistence Unit Scope

	Outside the Server
	Configuring the Persistence Unit
	Transaction Type
	Data Source
	Providers
	Listing the Entities
	Specifying Properties at Runtime
	System Classpath

	Schema Generation
	Unique Constraints
	Null Constraints
	String-Based Columns
	Floating Point Columns
	Defining the Column

	Summary

	Testing
	Testing Enterprise Applications
	Terminology
	Testing Outside the Server
	Test Frameworks

	Unit Testing
	Testing Entities
	Testing Entities in Components
	The Entity Manager in Unit Tests

	Integration Testing
	Using the Entity Manager
	Test Setup and Teardown
	Switching Configurations for Testing
	Minimizing Database Connections
	Components and Persistence
	Transaction Management
	Container-Managed Entity Managers
	Other Services
	Using an Embedded EJB Container for Integration Testing

	Best Practices
	Summary

	Migration
	Migrating from CMP Entity Beans
	Scoping the Challenge
	Entity Bean Conversion
	Converting the Business Interface
	Converting the Home Interface

	Migrating from JDBC
	Migrating from Other ORM Solutions
	Leveraging Design Patterns
	Transfer Object
	Fine-Grained Transfer Objects
	Coarse-Grained Transfer Objects
	Session Façade
	Data Access Object
	Business Object
	Fast Lane Reader
	Active Record

	Summary

	Index

