

Head First PHP & MySQL
by Lynn Beighley and Michael Morrison

Copyright © 2009 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:		 Kathy Sierra, Bert Bates

Series Editor:		 Brett D. McLaughlin

Editor:			 Sanders Kleinfeld

Design Editor:		 Louise Barr

Cover Designers:		 Louise Barr, Steve Fehler

Production Editor:		 Brittany Smith

Proofreader:			 Colleen Gorman

Indexer:			 Julie Hawks

Page Viewers:	 	 Julien and Drew

Printing History:
December 2008: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First PHP & MySQL, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No hardwood floors, UFOs, Elvis look-alikes, or virtual guitars were harmed in the making of this book. But a
few broken hearts were mended thanks to some careful mismatching!

ISBN: 978-0-596-00630-3

[M]										

Drew is, at this very moment, installing a new kitchen in Lynn’s new old house.

Michael’s nephew Julien
generously lent his
Superman powers to help
get this book finished.

This excerpt is protected by copyright law. It is your
responsibility to obtain permissions necessary for any

proposed use of this material. Please direct your
inquiries to permissions@oreilly.com.

mailto:permissions@oreilly.com

this is a new chapter   345

building personalized web apps7

Remember me?

No one likes to be forgotten, especially users of web
applications. �If an application has any sense of “membership,” meaning that users

somehow interact with the application in a personal way, then the application needs to

remember the users. You’d hate to have to reintroduce yourself to your family every time

you walk through the door at home. You don’t have to because they have this wonderful

thing called memory. But web applications don’t remember people automatically—it’s up

to a savvy web developer to use the tools at their disposal (PHP and MySQL, maybe?) to

build personalized web apps that can actually remember users.

What’s your name again? Johnson, right.
Well, I’m showing no record of you, Mr. Jackson.
Are you sure you signed up for a warranty on
your cryogenic storage cell? Oh, I see, so you’re
calling from inside your cell right now. And what

was your name again?

346    Chapter 7

They say opposites attract
It’s an age-old story: boy meets girl, girl thinks boy is completely nuts, boy
thinks girl has issues, but their differences become the attraction, and
they end up living happily ever after. This story drives the innovative new
dating site, Mis-match.net. Mismatch takes the “opposites attract” theory
to heart by mismatching people based on their differences.

Problem is, Mismatch has yet to get off the ground and is in dire need of
a web developer to finish building the system. That’s where you come in.
Millions of lonely hearts are anxiously awaiting your completion of the
application... don’t let them down!

Mismatch users need to be able to interact with the site on a personal
level. For one thing, this means they need personal profiles where
they enter information about themselves that they can share with
other Mismatch users, such as their gender, birthdate, and location.

Sidney Kelsow
Female
1984-07-19
Tempe, AZ

Personal web applications

thrive on personal information,

which requires users to be

able to access an application

on a personal level.

Sidney loves reality TV,
yoga, and sushi, and is
hoping for a successful
mismatch.

Johan loves professional
wrestling, weightlifting, and
Spam, and is excited about
anyone who’ll reply to him.

Check out
these guns!

I can’t wait to
find my perfect
mismatch.

Johan Nettles
Male
1981-11-03
Athens, GA

a good mismatch is hard to find

you are here 4   347

building personalized web apps

Mismatch is all about personal data
So Mismatch is all about establishing connections through personal data.
These connections must take place within a community of users, each
of whom is able to interact with the site and manage their own personal
data. A database called mismatch_user is used to keep up with
Mismatch users and store their personal information.

How can Mismatch customize
the Edit Profile page for each
different user?

mismatch_user

user_id join_date first_name last_name gender birthdate city state picture

1 2008-04-17
09:43:11

Sidney Kelsow F 1984-07-19 Tempe AZ sidneypic.jpg

...

11 2008-05-23
12:24:06

Johan Nettles M 1981-11-03 Athens GA johanpic.jpg

...

This is the
Mismatch database.

Within the Mismatch
database, the
mismatch_user table
stores users and their
personal profile data.

In addition to viewing a user profile, Mismatch users can
edit their own personal profiles using the Edit Profile page.
But there’s a problem in that the application needs to know
which user’s profile to edit. The Edit Profile page somehow
needs to keep track of the user who is accessing the page.

The Edit and View
Profile pages need
to know whose
profile to access.

Each row of the
mismatch_user
table contains
personal data
for a single user.

Sidney Kelsow
Female
1984-07-19
Tempe, AZ

348    Chapter 7

Mismatch needs user log-ins
The solution to the Mismatch personal data access problem involves user
log-ins, meaning that users need to be able to log into the application.
This gives Mismatch the ability to provide access to information that
is custom-tailored to each different user. For example, a logged-in user
would only have the ability to edit their own profile data, although they
might also be able to view other users’ profiles. User log-ins provide the
key to personalization for the Mismatch application.

A user log-in typically involves two pieces of information, a username
and a password.

Username
The job of the username is to provide each
user with a unique name that can be used to
identify the user within the system. Users can
potentially access and otherwise communicate
with each other through their usernames.

Password
The password is responsible for providing
a degree of security when logging in users,
which helps to safeguard their personal data.
To log in, a user must enter both a username
and password.

sidneykjnettles

Passwords are extremely
sensitive pieces of data and
should never be made visible
within an application, even
inside the database.

Usernames typically consist of alphanumeric characters and are entirely up to the user.

User log-ins
allow web
applications to
get personal
with users.

A username and password allows a user to log in to the Mismatch
application and access personal data, such as editing their profile.

sidneyk

When a user logs in, the application is able to remember the user and provide a personalized experience.

The Edit Profile page
now indicates that
the user is logged in.

The user’s username and
password are all that is
required to let the application know who they are.

adding log-ins to mismatch

you are here 4   349

building personalized web apps

Come up with a user log-in gameplan
Adding user log-in support to Mismatch is no small feat, and it’s important
to work out exactly what is involved before writing code and running
database queries. We know there is an existing table that stores users, so
the first thing is to alter it to store log-in data. We’ll also need a way for
users to enter their log-in data, and this somehow needs to integrate with
the rest of the Mismatch application so that pages such as the Edit Profile
page are only accessible after a successful log-in. Here are the log-in
development steps we’ve worked out so far:

�Use ALTER to add username and
password columns to the table.
The database needs new columns for storing the

log-in data for each user. This consists of a username

and password.

1

username �Build a new Log-In script that prompts the user to enter their username and password.
The Log In form is what will ultimately protect personalized pages in that it prompts for a valid username and password. This information must be entered properly before Mismatch can display user-specific data. So the script must limit access to personalized pages so that they can’t be viewed without a valid log-in.

2

Connect the Log-In script
to the rest of the Mismatch
application.
The Edit Profile and View Profile pages

of the Mismatch application should only

be accessible to logged in users. So we

need to make sure users log in via the

Log In script before being allowed to

access these pages.

3

password

350    Chapter 7

Before going any further, take a moment to tinker with the Mismatch
application and get a feel for how it works.
Download all of the code for the Mismatch application from the Head First Labs web site
at www.headfirstlabs.com/books/hfphp. Post all of the code to your web server
except for the .sql files, which contain SQL statements that build the necessary Mismatch
tables. Make sure to run the statement in each of the .sql files in a MySQL tool so that you
have the initial Mismatch tables to get started with.

When all that’s done, navigate to the index.php page in your web browser, and check out
the application. Keep in mind that the View Profile and Edit Profile pages are initially broken
since they are entirely dependent upon user log-ins, which we’re in the midst of building.

The complete source code for the Mismatch
application is available for download from the
Head First Labs web site:

www.headfirstlabs.com/books/hfphp

Download It!

The main Mismatch page allows
you to see the name and picture
of the latest users, but not much
else without being logged in.

These two links
lead into the
personalized parts
of the application.

mismatch setup

you are here 4   351

building personalized web apps

Prepping the database for log-ins
OK, back to the construction. The mismatch_user table already does
a good job of holding profile information for each user, but it’s lacking
when it comes to user log-in information. More specifically, the table is
missing columns for storing a username and password for each user.

Finish writing an SQL statement to add the username and
password columns to the table positioned as shown, with
username able to hold 32 characters, password able to hold
16 characters, and neither of them allowing NULL data.

mismatch_user

user_id username password join_date first_name last_name gender birthdate city state picture

Username and password data both consist of pure text, so it’s
possible to use the familiar VARCHAR MySQL data type for the
new username and password columns. However, unlike some
other user profile data, the username and password shouldn’t ever
be allowed to remain empty (NULL).

Q: Why can’t you just use user_id instead
of username for uniquely identifying a user?

A: You can if you want. In fact, the purpose of
user_id is to provide an efficient means of
uniquely identifying user rows. However, numeric
IDs tend to be difficult to remember, and users really
like being able to make up their own usernames for
accessing personalized web applications. So it’s
more of a usability decision to allow Johan to be able
to log in as “jnettles” instead of “11”. No one wants to
be relegated to just being a number!

mismatch_user

user_id join_date first_name last_name gender birthdate city state picture

The mismatch_user table needs columns for username and password in order to store user log-in data.

password

...

username

jnettles

baldpaul

dierdre

...

The username and password
columns contain simple
text data but should never
be allowed to go empty.

Few people would want to
try and remember a password
longer than 16 characters!

352    Chapter 7

Good point... passwords require encryption.
Encryption in Mismatch involves converting a password into
an unrecognizable format when stored in the database. Any
application with user log-in support must encrypt passwords so
that users can feel confident that their passwords are safe and
secure. Exposing a user’s password even within the database itself
is not acceptable. So we need a means of encrypting a password
before inserting it into the mismatch_user table. Problem is,
encryption won’t help us much if we don’t have a way for users
to actually enter a username and password to log in...

Finish writing an SQL statement to add the username and
password columns to the table positioned as shown, with
username able to hold 32 characters, password able to hold
16 characters, and neither of them allowing NULL data.

ALTER TABLE mismatch_user ADD username VARCHAR(32) NOT NULL AFTER user_id,

ADD password VARCHAR(16) NOT NULL AFTER username

mismatch_user

user_id username password join_date first_name last_name gender birthdate city state picture

The position of columns in a table doesn’t necessarily matter, although it can serve an organizational purpose in terms of positioning the most important columns first.

The AFTER statement controls where in the table new columns are added.

ALTER TABLE is used to add
new columns to an existing table.

The username column is
added first, so it’s OK
to reference it here.

�Use ALTER to add username and
password columns to the table.1

DONE

Surely you don’t just store a password in
the database as-is... don’t you also need
to encrypt a password before storing it?

sharpen your pencil solution

you are here 4   353

building personalized web apps

Q: So asterisks aren’t actually stored in the database, right?

A: That’s correct. The asterisks displayed in a password form
field simply provide visual security, preventing someone from
looking over your shoulder as you enter the password. When the
form is submitted, the password itself is submitted, not the asterisks.
That’s why it’s important for the password to be encrypted before
inserting it into the database.

Constructing a log-in user interface
With the database altered to hold user log-in data, we still need a way for
users to enter the data and actually log in to the application. This log-in
user interface needs to consist of text edit fields for the username and
password, as well as a button for carrying out the log-in.

mismatch_user

user_id username password ...

9 dierdre *******

10 baldpaul ******

11 jnettles ********

...

Username:
Password:

Log In

jnettles

The password field is
protected so that the
password isn’t readable.

Clicking the Log In button
makes the application check
the username and password
against the database.

If the username and
password check out, the
user is successfully logged in.

An application log-
in requires a user
interface for entering
the username and
password.

		� If you’re worried about
how users will be able to
log in when we haven’t
assigned them user names
and passwords yet... don’t
sweat it.

We’ll get to creating user names and passwords
for users in just a bit. For now it’s important to lay
the groundwork for log-ins, even if we still have
more tasks ahead before it all comes together.

354    Chapter 7

'e511d793f532dbe0e0483538e11977f7b7c33b28'

SHA('tatlover')

Encrypt passwords with SHA()
The log-in user interface is pretty straightforward, but we didn’t address
the need to encrypt the log-in password. MySQL offers a function called
SHA() that applies an encryption algorithm to a string of text. The
result is an encrypted string that is exactly 40 hexadecimal characters
long, regardless of the original password length. So the function actually
generates a 40-character code that uniquely represents the password.

Since SHA() is a MySQL function, not a PHP function, you call it as
part of the query that inserts a password into a table. For example, this
code inserts a new user into the mismatch_user table, making sure to
encrypt the password with SHA() along the way.

mismatch_user

user_id username password ...

9 dierdre 08447b...

10 baldpaul 230dcb...

11 jnettles e511d7...

...

Username:
Password:

Log In

jnettles

INSERT INTO mismatch_user
 (username, password, join_date) VALUES ('jnettles', SHA('tatlover'), NOW())

The MySQL SHA()
function encrypts
a piece of text
into a unique 40-
character code.

This is the actual
password as entered into
the password form field.

The SHA() function encrypts the password into a
40-character hexadecimal code that gets stored
in the password column of the mismatch_user table.

The same SHA() function works on the other end of the log-in equation
by checking to see that the password entered by the user matches up with
the encrypted password stored in the database.

Instead of storing the actual password, we store the 40-character encrypted code.

The actual password

The SHA() function turns
an 8-character password
into a 40-character
encrypted string of text.

the sha() function

you are here 4   355

building personalized web apps

ALTER TABLE mismatch_user
 CHANGE password password VARCHAR(40) NOT NULL

Q: What does SHA() stand for?

A: The SHA() function stands for Secure
Hash Algorithm. A “hash” is a programming
term that refers to a unique, fixed-length string
that uniquely represents a string of text. In the
case of SHA(), the hash is the 40-character
hexadecimal encrypted string of text, which
uniquely represents the original password.

Q: Are there any other ways to encrypt
passwords?

A: Yes. MySQL offers another function similar
to SHA() called MD5() that carries out
a similar type of encryption. But the SHA()
algorithm is considered a little more secure than
MD5(), so it’s better to use SHA() instead.
PHP also offers equivalent functions (sha1()
and md5()) if you need to do any encryption in
PHP code, as opposed to within an SQL query.

Making room for the encrypted password
The SHA() function presents a problem for Mismatch since encrypted
passwords end up being 40 characters long, but our newly created
password column is only 16 characters long. An ALTER is in order to
expand the password column for storing encrypted passwords.

The size of the password column is changed
to 40 so that encrypted passwords will fit.

Decrypting passwords
Once you’ve encrypted a piece of information, the natural instinct is to
think in terms of decrypting it at some point. But the SHA() function is
a one-way encryption with no way back. This is to preserve the security
of the encrypted data—even if someone hacked into your database and
stole all the passwords, they wouldn’t be able to decrypt them. So how is it
possible to log in a user if you can’t decrypt their password?

You don’t need to know a user’s original password to know if they’ve
entered the password correctly at log-in. This is because SHA() generates
the same 40-character code as long as you provide it with the same
string of text. So you can just encrypt the log-in password entered by
the user and compare it to the value in the password column of the
mismatch_user table. This can be accomplished with a single SQL
query that attempts to select a matching user row based on a password.

Comparing

SELECT * FROM mismatch_user
 WHERE password = SHA('tatlover')

This is the password entered
by the user in order to log in.

The SHA() function is called to
encrypt the password so that it
can appear in the WHERE clause.

This SELECT query selects all rows in the mismatch_user
table whose password column matches the entered password,
'tatlover' in this case. Since we’re comparing encrypted versions of
the password, it isn’t necessary to know the original password. A query
to actually log in a user would use SHA(), but it would also need to
SELECT on the user ID, as we see in just a moment.

The SHA()
function provides
one-way
encryption—you
can’t decrypt
data that has
been encrypted.

356    Chapter 7

mysql> SELECT username FROM mismatch_user WHERE password = SHA('heyjoe');

+----------+
| username |
+----------+
| jimi |
+----------+

1 row in set (0.0005 sec)

File Edit Window Help OppositesAttract

Don’t forget to encrypt
the password by calling
the SHA() function.

For a successful log-in,
this must be the same
password used when
inserting the row.

Test Drive
Add the username and password columns to the
mismatch_user table, and then try them out.
Using a MySQL tool, execute the ALTER statement to add the
username and password columns to the mismatch_user table.

ALTER TABLE mismatch_user ADD username VARCHAR(32) NOT NULL AFTER user_id,
 ADD password VARCHAR(16) NOT NULL AFTER username

But our password column actually needs to be able to hold a 40-
character encrypted string, so ALTER the table once more to make room
for the larger password data.

ALTER TABLE mismatch_user
 CHANGE password password VARCHAR(40) NOT NULL

Now, to test out the new columns, let’s do an INSERT for a new user.

INSERT INTO mismatch_user
 (username, password, join_date) VALUES ('jimi', SHA('heyjoe'), NOW())

To double-check that the password was indeed encrypted in the database, take
a look at it by running a SELECT on the new user.

SELECT password FROM mismatch_user WHERE username = 'jimi'

And finally, you can simulate a log-in check by doing a SELECT on the
username and using the SHA() function with the password in a WHERE clause.

SELECT username FROM mismatch_user WHERE password = SHA('heyjoe')

Only one user matches the
encrypted password.

modifying mismatch_user

you are here 4   357

building personalized web apps

So the password is now encrypted,
but we still need to build a log-in form.
Could we just use HTTP authentication
since it requires a username and
password to access protected pages?

Yes! HTTP authentication will certainly
work as a simple user log-in system.
If you recall from the Guitar Wars high score application
in the last chapter, HTTP authentication was used
to restrict access to certain parts of an application by
prompting the user for a username and password. That’s
roughly the same functionality required by Mismatch,
except that now we have an entire database of possible
username/password combinations, as opposed to one
application-wide username and password. Mismatch
users could use the same HTTP authentication window;
however, they’ll just be entering their own personal
username and password.

The standard HTTP
authentication window, which is
browser-specific, can serve as
a simple log-in user interface.

358    Chapter 7

Authorizing users with HTTP
As Guitar Wars illustrated, two headers must be sent in order to restrict
access to a page via an HTTP authentication window. These headers
result in the user being prompted for a username and password in order to
gain access to the Admin page of Guitar Wars.

WWW-Authenticate: Basic realm="Guitar Wars"

HTTP/1.1 401 Unau
thorized

A username and password are
required in order to access
restricted pages in the Guitar
Wars application.

These two headers must be sent
in order to restrict access to a
page via HTTP authentication.

Unless a user enters the
correct username and
password, they cannot
see or use this page.

header('HTTP/1.1 401 Unauthorized');
header('WWW-Authenticate: Basic realm="Mismatch"');

HTTP authentication
requires us to send
two headers.

Sending the headers for HTTP authentication amounts to two lines of
PHP code—a call to the header() function for each header being sent.

This is the realm for the
authentication, which applies
to the entire application.

http authentication for mismatch

you are here 4   359

building personalized web apps

Circle the different parts of the Mismatch application that are impacted by the Log-In script
(login.php) and its usage of HTTP authentication to control access. Then annotate how
those application pieces are impacted.

mismatch_user

Here’s the
Log-In script.

viewprofile.php

login.php

index.php

editprofile.php

360    Chapter 7

Viewing and
editing profiles
is restricted,
meaning that only
logged in users can
access these pages.

mismatch_user

When a user logs in, their
username and password
are checked against the
database to ensure they
are a registered user.

The home page plays no
direct role in user log-ins
because it needs to remain
accessible by all.

If a row isn’t found that matches
the username and password, the Log
In script displays an error message
and prevents further access.

The Edit Profile page not
only relies on the Log In
script for restricted access,
but it also needs the username
in order to determine which
profile to edit.

Q: Why isn’t it necessary to include the home page when
requiring user log-ins?

A: Because the home page is the first place a user lands when
visiting the site, and it’s important to let visitors glimpse the site
before requiring a log-in. So the home page serves as both a teaser
and a starting point—a teaser for visitors and a starting point for
existing users who must log in to go any deeper into the application.

Q: Can logged-in users view anyone’s profile?

A: Yes. The idea is that profiles are visible to all users who log
in, but remain private to guests. In other words, you have to be a
member of Mismatch in order to view another user’s profile.

Q: How does password encryption affect HTTP
authentication?

A: There are two different issues here: transmitting a password
and storing a password. The SHA() MySQL function focuses on
securely storing a password in a database in an encrypted form. The
database doesn’t care how you transmitted the password initially, so
this form of encryption has no impact on HTTP authentication.
However, an argument could be made that encryption should also
take place during the transmission of the password when the HTTP
authentication window submits it to the server. This kind of encryption
is outside the scope of this chapter and, ultimately, only necessary
when dealing with highly sensitive data.

Circle the different parts of the Mismatch application that are impacted by the Log-In script
(login.php) and its usage of HTTP authentication to control access. Then annotate how
those application pieces are impacted.

viewprofile.phplogin.php

index.php

editprofile.php

exercise solution

you are here 4   361

building personalized web apps

Logging In Users with HTTP Authentication
The Log-In script (login.php) is responsible for requesting a username
and password from the user using HTTP authentication headers, grabbing
the username and password values from the $_SERVER superglobal, and
then checking them against the mismatch_user database before providing
access to a restricted page.

<?php
 require_once('connectvars.php');

 if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])) {
 // The username/password weren't entered so send the authentication headers
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Mismatch"');
 exit('<h3>Mismatch</h3>Sorry, you must enter your username and password to log in and access ' .
 'this page.');
 }

 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);

 // Grab the user-entered log-in data
 $user_username = mysqli_real_escape_string($dbc, trim($_SERVER['PHP_AUTH_USER']));
 $user_password = mysqli_real_escape_string($dbc, trim($_SERVER['PHP_AUTH_PW']));

 // Look up the username and password in the database
 $query = "SELECT user_id, username FROM mismatch_user WHERE username = '$user_username' AND " .
 "password = SHA('$user_password')";
 $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 1) {
 // The log-in is OK so set the user ID and username variables
 $row = mysqli_fetch_array($data);
 $user_id = $row['user_id'];
 $username = $row['username'];
 }
 else {
 // The username/password are incorrect so send the authentication headers
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Mismatch"');
 exit('<h2>Mismatch</h2>Sorry, you must enter a valid username and password to log in and ' .
 'access this page.');
 }

 // Confirm the successful log-in
 echo('<p class="login">You are logged in as ' . $username . '.</p>');
?>

If the username and password haven’t been entered, send the authentication headers to prompt the user.

Grab the username
and password
entered by the user. Perform a query to

see if any rows match
the username and
encrypted password.

If a row matches, it means the
log-in is OK, and we can set the
$user_id and $username variables.

If no database row matches the username and password, send the authentication headers
again to re-prompt the user.

All is well at this point, so
confirm the successful log-in. �Build a new Log-In script that

prompts the user to enter their
username and password.

2 DONE

362    Chapter 7

The Log-In script uses HTTP
authentication to prevent
unauthorized access to the View
Profile and Edit Profile pages.

This password is SHA() encrypted
and compared with the password
in the database to determine if
the log-in is allowed.

These two links lead to the protected
pages, which invoke the Log-In script
if a user isn’t logged in.

Test Drive
Create the new Log-In script, and include it in the View Profile
and Edit Profile scripts.
Create a new text file named login.php, and enter the code for the Log-In script in
it (or download the script from the Head First Labs site at www.headfirstlabs.
com/books/hfphp). Then add PHP code to the top of the viewprofile.php
and editprofile.php scripts to include the new Log-In script.

Upload all of the scripts to your web server, and then open the main Mismatch page
in a web browser. Click the View Profile or Edit Profile link to log in and access the
personalized pages. Of course, this will only work if you’ve already added a user with a
username and password to the database.

The home page is not protected by
the Log-In script, but it does serve
as the starting point for navigating
deeper into the application.

test drive mismatch

you are here 4   363

building personalized web apps

<?php
 require_once('login.php');
?>

<html>
<head>
 <title>Mismatch - View Profile</title>
 <link rel="stylesheet" type="text/css" href="style.css" /> </head>
<body>
 <h3>Mismatch - View Profile</h3>

<?php
 require_once('appvars.php');
 require_once('connectvars.php');

 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);
 // Grab the profile data from the database
 if (!isset($_GET['user_id'])) {
 ...

<?php
 require_once('login.php');

?>

<html>
<head>
 <title>Mismatch - Edit Profile</

title>

 <link rel="stylesheet" type="tex
t/css" href="style.css" />

</head>
<body>
 <h3>Mismatch - Edit Profile</h3>

<?php
 require_once('appvars.php');

 require_once('connectvars.php');

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST, D
B_USER, DB_PASSWORD, DB_NAME);

 if (isset($_POST['submit'])) {

 // Grab the profile data from
the POST

 ...

The Log-In script is included
first thing in the View Profile
and Edit Profile scripts to
enforce user log-ins.

Each user is now presented
with their very own customized
Mismatch experience.

Both pages signify the log-in
with a confirmation that is
provided by the Log-In script.

Connect the Log-In script to the
rest of the Mismatch application.3

Any Mismatch page that requires log-in support only has to include the login.php script at the very beginning of its code.

If the username and password
check out, then the user is
logged in, and the rest of the
page is allowed to load.

DONE

viewprofile.php

editprofile.php

364    Chapter 7

New Mismatch users need a way to sign up.
The new Mismatch Log-In script does a good job of using
HTTP authentication to allow users to log in. Problem is,
users don’t have a way to sign up—logging in is a problem
when you haven’t even created a username or password yet.
Mismatch needs a Sign-Up form that allows new users to
join the site by creating a new username and password.

I’d love to log in and start
working on my profile, but I
can’t figure out how to sign up.

Ruby loves horror movies, cube puzzles, and spicy food, but hates Mismatch at the moment for not letting her sign up and use the system.

Username?

Password?

mismatch needs a sign-up form

you are here 4   365

building personalized web apps

Username:
Password:

Sign Up

rubyr

Password: ********(retype)

mismatch_user

user_id username password ...

...

10 baldpaul d8a011...

11 jnettles e511d7...

12 rubyr 062e4a...

...

Clicking the Sign Up button
results in the application
adding the username and
password to the database.

Since the passwords are now
encrypted, they're secure even
when viewing the database.

A form for signing up new users
What does this new Sign-Up form look like? We know it needs to allow the
user to enter their desired username and password... anything else? Since
the user is establishing their password with the new Sign-Up form, and
passwords in web forms are typically masked with asterisks for security
purposes, it’s a good idea to have two password form fields. So the user enters
the password twice, just to make sure there wasn’t a typo.

So the job of the Sign-Up page is to retrieve the username and password
from the user, make sure the username isn’t already used by someone else,
and then add the new user to the mismatch_user database.

One potential problem with the Sign-Up script involves the user attempting
to sign up for a username that already exists. The script needs to be smart
enough to catch this problem and force the user to try a different username.
So the job of the Sign-Up page is to retrieve the username and password
from the user, make sure the username isn’t already used by someone else,
and then add the new user to the mismatch_user database.

The password is double-entered to
help eliminate the risk of an incorrect
password getting set for the user.

366    Chapter 7

<?php
 require_once('appvars.php');

 require_once('connectvars.php');

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSW
ORD, DB_NAME);

 if (isset($_POST['submit'])) {

 // Grab the profile data from the POST

 = mysqli_real_escape_string($dbc,

 trim($_POST[' ']));

 = mysqli_real_escape_string($dbc

, trim($_POST[' ']));

 = mysqli_real_escape_string($dbc

, trim($_POST[' ']));

 if (!empty($username) && !empty($password1) && !

empty($password2) &&

 (==)) {

 // Make sure someone isn't already registered us

ing this username

 $query = "SELECT * FROM mismatch_user WHERE user

name = ' '";

 $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 0) {

 // The username is unique, so insert the data in
to the database

 $query = "INSERT INTO mismatch_user (username,
 password, join_date) VALUES " .

 "(' ', SHA(' '),

 NOW())";

 mysqli_query($dbc, $query);

 // Confirm success with the user

 echo '<p>Your new account has been successfully
 created. You\'re now ready to log in and ' .

 'edit your profile
.</p>';

 mysqli_close($dbc);

 exit();
 }

Don’t forget, you have to
escape an apostrophe if it
appears inside of single quotes.

PHP & MySQL Magnets
The Mismatch Sign-Up script uses a custom form to prompt the user
for their desired username and password. Problem is, the script code
is incomplete. Use the magnets below to finish up the script so new
users can sign up and join the Mismatch community.

Here’s the
Sign-Up form.

finish signup.php

you are here 4   367

building personalized web apps

 else {
 // An account already exists for this username,

 so display an error message

 echo '<p class="error">An account already exis
ts for this username. Please use a different ' .

 'address.</p>';

 	 = "";

 }
 }
 else {
 echo '<p class="error">You must enter all of the

 sign-up data, including the desired password ' .

 'twice.</p>';
 }
 }

 mysqli_close($dbc);

?>

<p>Please enter your username and desired password

 to sign up to Mismatch.</p>

<form method="post" action="<?php echo $_SERVER['
PHP_SELF']; ?>">

 <fieldset>
 <legend>Registration Info</legend>

 <label for="username">Username:</label>

 <input type="text" id=" " name="

 "

 value="<?php if (!empty()) echo

 ; ?>" />

 <label for=" ">Password:</label>

 <input type=" " id="

 " name=" " />

 <label for=" ">Password (retype):<

/label>

 <input type=" " id="

 " name=" " />

 </fieldset>
 <input type="submit" value="Sign Up" name="submi

t" />

</form>

signup.php

$username

$password2

$username

$username

$password1

$password2

$password1

$username

username

password1

password2

$password1

password1
password1password1

password

password2

password2

password2

password

username

username
$username

$username

368    Chapter 7

PHP & MySQL Magnets Solution
The Mismatch Sign-Up script uses a custom form to prompt the user
for their desired username and password. Problem is, the script code
is incomplete. Use the magnets below to finish up the script so new
users can sign up and join the Mismatch community.

<?php
 require_once('appvars.php');

 require_once('connectvars.php');

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSW
ORD, DB_NAME);

 if (isset($_POST['submit'])) {

 // Grab the profile data from the POST

 = mysqli_real_escape_string($dbc,

 trim($_POST[' ']));

 = mysqli_real_escape_string($dbc

, trim($_POST[' ']));

 = mysqli_real_escape_string($dbc

, trim($_POST[' ']));

 if (!empty($username) && !empty($password1) && !

empty($password2) &&

 (==)) {

 // Make sure someone isn't already registered us

ing this username

 $query = "SELECT * FROM mismatch_user WHERE user

name = ' '";

 $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 0) {

 // The username is unique, so insert the data in
to the database

 $query = "INSERT INTO mismatch_user (username,
 password, join_date) VALUES " .

 "(' ', SHA(' '),

 NOW())";

 mysqli_query($dbc, $query);

 // Confirm success with the user

 echo '<p>Your new account has been successfully
 created. You\'re now ready to log in and ' .

 'edit your profile
.</p>';

 mysqli_close($dbc);

 exit();
 }

$password1

$password1 $password2

$username

$username

username$username

$password1

$password2

password1

password2

Confirm the successful
sign-up with the user,
and exit the script.

If no match is found, the
username is unique, so we can
carry out the INSERT.Either password could be used here

since they must be equal to get to this point.

Check to make sure that
none of the form fields
are empty and that
both passwords match.

Perform a query to see if
any existing rows match the
username entered.

Grab all of the user-entered data,
making sure to clean it up first.

Here’s the
Sign-Up form.

the completed signup.php

you are here 4   369

building personalized web apps

Q: Why couldn’t you just use HTTP authentication for signing
up new users?

A: Because the purpose of the Sign-Up script isn’t to restrict
access to pages. The Sign-Up script’s job is to allow the user to
enter a unique username and password, and then add them to the
user database. Sure, it’s possible to use the HTTP authentication
window as an input form for the username and password, but the
authentication functionality is overkill for just signing up a new user.
It’s better to create a custom form for sign-ups—then you get the
benefit of double-checking the password for data entry errors.

Q: So does the Sign-Up script log in users after they sign up?

A: No. And the reason primarily has to do with the fact that the
Log-In script already handles the task of logging in a user, and
there’s no need to duplicate the code in the Sign-Up script. The
Sign-Up script instead presents a link to the Edit Profile page, which
is presumably where the user would want to go after signing in. And
since they aren’t logged in yet, they are presented with the Log-In
window as part of attempting to access the Edit Profile page. So the
Sign-Up script leads the user to the Log-In window via the Edit Profile
page, as opposed to logging them in automatically.

 else {
 // An account already exists for this username,

 so display an error message

 echo '<p class="error">An account already exis
ts for this username. Please use a different ' .

 'address.</p>';

 	 = "";

 }
 }
 else {
 echo '<p class="error">You must enter all of the

 sign-up data, including the desired password ' .

 'twice.</p>';
 }
 }

 mysqli_close($dbc);

?>

<p>Please enter your username and desired password

 to sign up to Mismatch.</p>

<form method="post" action="<?php echo $_SERVER['
PHP_SELF']; ?>">

 <fieldset>
 <legend>Registration Info</legend>

 <label for="username">Username:</label>

 <input type="text" id=" " name="

 "

 value="<?php if (!empty()) echo

 ; ?>" />

 <label for=" ">Password:</label>

 <input type=" " id="

 " name=" " />

 <label for=" ">Password (retype):<

/label>

 <input type=" " id="

 " name=" " />

 </fieldset>
 <input type="submit" value="Sign Up" name="submi

t" />

</form>

signup.php

$username

password1

password1 password1password

password2

password2 password2password

username username

$username $username

The username is not
unique, so display an
error message.

Clear the $username
variable so that the
form field is cleared.

One or more of the form fields are empty, so display an error message.

370    Chapter 7

exit('<h2>Mismatch</h2>Sorry, you must enter a valid username and password to log in and ' .

 'access this page. If you aren\'t a registered member, please sign up.');

Give users a chance to sign up
We have a Sign-Up script, but how do users get to it? We need to let users
know how to sign up. One option is to put a “Sign Up” link on the main
Mismatch page. That’s not a bad idea, but we would ideally need to be able
to turn it on and off based on whether a user is logged in. Another possibility
is to just show a “Sign Up” link as part of the Log-In script.

When a new user clicks the “View Profile” or “Edit Profile” links on the main
page, for example, they’ll be prompted for a username and password by the
Log-In script. Since they don’t yet have a username or password, they will
likely click Cancel to bail out of the log-in. That’s our chance to display a link
to the Sign-Up script by tweaking the log-in failure message displayed by the
Log-In script so that it provides a link to signup.php.

Here’s the original log-in failure code:

exit('<h3>Mismatch</h3>Sorry, you must enter your username and password to log in and access ' .

 'this page.');

This code actually appears in two different places in the Log-In script: when
no username or password are entered and when they are entered incorrectly.
It’s probably a good idea to go ahead and provide a “Sign Up” link in both
places. Here’s what the new code might look like:

This code just shows a log-in
error message with no mention
of how to sign up for Mismatch.

This code is much more
helpful since it generates a link to the Sign-Up script so that the user can sign up.

Nothing fancy here, just
a normal HTML link to
the signup.php script.

adding a sign-up link

you are here 4   371

building personalized web apps

Sign-ups and log-ins turn an
impersonal application into a
community of interested users.

Ruby’s profile is
only accessible
after logging in.

HTTP authentication is used to log in Ruby based on her sign-up information.

Test Drive
Add Sign-Up functionality to Mismatch.
Create a new text file named signup.php, and enter the code for the Sign-Up script in
it (or download the script from the Head First Labs site at www.headfirstlabs.com/
books/hfphp). Then modify the login.php script to add links to the Sign-Up script for
users who can’t log in.

Upload the scripts to your web server, and then open the Sign-Up page in a web browser.
Sign up as a new user and then log in. Then edit your profile and view your profile to
confirm that the sign-up and log-in worked correctly. The application now has that
personalized touch that’s been missing.

Cool! I can log in
to Mismatch and
then edit and view my
personal profile.

372    Chapter 7

I share a computer with two
roommates, and I’d rather
they not have access to my
Mismatch profile. I need to
be able to log out!

Community web sites must allow users to log out so
that others can’t access their personal data from a
shared computer.
Allowing users to log out might sound simple enough, but it presents
a pretty big problem with HTTP authentication. The problem is that
HTTP authentication is intended to be carried out once for a given page
or collection of pages—it’s only reset when the browser is shut down. In
other words, a user is never “logged out” of an HTTP authenticated web
page until the browser is shut down or the user manually clears the HTTP
authenticated session. The latter option is easier to carry out in some
browsers (Firefox, for example) than others (Safari).

Once you log in, you
stay in until you
close the browser.

Even though HTTP authentication presents a handy and simple way to
support user log-ins in the Mismatch application, it doesn’t provide any
control over logging a user out. We need to be able to both remember
users and also allow them to log out whenever they want.

A log-out feature
would allow Sidney to
carefully control access
to her personal profile.

mismatch also needs to let users log out

you are here 4   373

building personalized web apps

Wouldn't it be dreamy if we could
remember the user without keeping them
logged in forever. Am I just a hopeless
PHP romantic?

374    Chapter 7

Client web
browser

Sometimes you just need a cookie
The problem originally solved by HTTP authentication is twofold: there
is the issue of limiting access to certain pages, and there is the issue of
remembering that the user entered information about themselves. The
second problem is the tricky one because it involves an application
remembering who the user is across multiple pages (scripts). Mismatch
accomplishes this feat by checking the username and password stored
in the $_SERVER superglobal. So we took advantage of the fact that
PHP stores away the HTTP authentication username and password in a
superglobal that persists across multiple pages.

Web server

HTTP authentication
stores data persistently
on the client but doesn’t
allow you to delete it
when you’re done.

$_SERVER['PHP_AUTH_PW']

$_SERVER['PHP_AUTH_USER']

But we don’t have the luxury of HTTP authentication anymore because
it can’t support log-outs. So we need to look elsewhere for user persistence
across multiple pages. A possible solution lies in cookies, which are
pieces of data stored by the browser on the user’s computer. Cookies are
a lot like PHP variables except that cookies hang around after you close
the browser, turn off your computer, etc. More importantly, cookies can
be deleted, meaning that you can eliminate them when you’re finished
storing data, such as when a user indicates they want to log out.

Cookies allow you to
persistently store small
pieces of data on the
client that can outlive
any single script... and
can be deleted at will!

Cookie data is stored on the user’s computer by their web browser. You
have access to the cookie data from PHP code, and the cookie is capable
of persisting across not only multiple pages (scripts), but even multiple
browser sessions. So a user closing their browser won’t automatically log
them out of Mismatch. This isn’t a problem for us because we can delete
a cookie at any time from script code, making it possible to offer a log-out
feature. We can give users total control over when they log out.

Store
cookie data

Retrieve
cookie data

The $_SERVER
superglobal stores
the username and
password persistently.

introducing cookies

you are here 4   375

building personalized web apps

What’s in a cookie?
A cookie stores a single piece of data under a unique name, much
like a variable in PHP. Unlike a variable, a cookie can have an expiration
date. When this expiration date arrives, the cookie is destroyed. So cookies
aren’t exactly immortal—they just live longer than PHP variables. You can
create a cookie without an expiration date, in which case it acts just like a
PHP variable—it gets destroyed when the browser closes.

Name
The unique name of the cookie

Value
The value stored in the cookie

Expiration date
The date when the cookie
expires... and meets its demise

Cookies allow you to store a string of text under a certain name, kind of
like a PHP text variable. It’s the fact that cookies outlive normal script
data that makes them so powerful, especially in situations where an
application consists of multiple pages that need to remember a few pieces
of data, such as log-in information.

Setting a cookie’s
expiration date far
into the future makes
it more permanent.

user_id = 1
12/08/2009

user_id = 1
username = sidneyk

01/01/3000

Q: What’s the big deal about cookies
being persistent? Isn’t data stored in a
MySQL database persistent too?

A: Yes, database data is most certainly
persistent. In fact, it’s technically much more
persistent than a cookie because there is
no expiration date involved—if you stick
data in a database, it stays there until you
explicitly remove it. The real issue in regard
to cookies and persistence is convenience.
We don’t need to store the current user’s ID
or username for all eternity just to allow them
to access their profile; we just need a quick
way to know who they are. What we really
need is temporary persistence, which might
seem like an oxymoron until you consider the
fact that we need data to hang around longer
than a page (persistent), but not forever.

Not providing an
expiration date at
all causes a cookie to
be deleted when the
browser is closed.

So Mismatch can mimic the persistence provided by the $_SERVER
superglobal by setting two cookies—one for the username and one for the
password. Although we really don’t need to keep the password around, it
might be more helpful to store away the user ID instead.

376    Chapter 7

PHP provides access to cookies through a function called setcookie()
and a superglobal called $_COOKIE. The setcookie() function is
used to set the value and optional expiration date of a cookie, and the
$_COOKIE superglobal is used to retrieve the value of a cookie.

Use

setcookie('username', 'sidneyk');

username = sidneyk

echo('<p class="login">You are logged in as ' . $_COOKIE['username'] . '.</p>');

The first argument
to setcookie() is the
name of the cookie.

The value to be stored
in the cookie is passed
as the second argument.

The PHP
setcookie() function
allows you to store
data in cookies.

The setcookie() function also accepts an optional third argument
that sets the expiration date of the cookie, which is the date upon which
the cookie is automatically deleted. If you don’t specify an expiration
date, as in the above example, the cookie automatically expires when the
browser is closed.

The name of the cookie is used to reference the cookie value
in the $_COOKIE superglobal.

The power of setting a cookie is that the cookie data persists across
multiple scripts, so we can remember the username without having to
prompt the user to log in every time they move from one page to another
within the application. But don’t forget, we also need to store away the
user’s ID in a cookie since it serves as a primary key for database queries.

setcookie('user_id', '1');

Cookies are always stored as
text, so even though the user
ID is a number, we store it in
a cookie as the string ‘1’.

user_id = 1

Bake cookies with PHP

the setcookie() function

you are here 4   377

building personalized web apps

Switching Mismatch to use cookies involves more than just writing a new
Log-Out script. We must first revisit the Log-In script and change it to use
cookies instead of HTTP authentication. Circle and annotate the parts of
the Log-In code that you think need to change to accommodate cookies.

<?php
 require_once('connectvars.php');

 if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])) { // The username/password weren't entered so send the authentication headers header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Mismatch"'); exit('<h3>Mismatch</h3>Sorry, you must enter your username and password to ' . 'log in and access this page. If you aren\'t a registered member, please ' . 'sign up.');
 }

 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);
 // Grab the user-entered log-in data
 $user_username = mysqli_real_escape_string($dbc, trim($_SERVER['PHP_AUTH_USER'])); $user_password = mysqli_real_escape_string($dbc, trim($_SERVER['PHP_AUTH_PW']));
 // Look up the username and password in the database $query = "SELECT user_id, username FROM mismatch_user WHERE username = " . "'$user_username' AND password = SHA('$user_password')"; $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 1) {
 // The log-in is OK so set the user ID and username variables $row = mysqli_fetch_array($data);
 $user_id = $row['user_id'];
 $username = $row['username'];
 }
 else {
 // The username/password are incorrect so send the authentication headers header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Mismatch"'); exit('<h2>Mismatch</h2>Sorry, you must enter a valid username and password ' . 'to log in and access this page. If you aren\'t a registered member, ' . 'please sign up.');
 }

 // Confirm the successful log-in
 echo('<p class="login">You are logged in as ' . $username . '.</p>'); ?>

login.php

378    Chapter 7

Switching Mismatch to use cookies involves more than just writing a new
Log-Out script. We must first revisit the Log-In script and change it to use
cookies instead of HTTP authentication. Circle and annotate the parts of
the Log-In code that you think need to change to accommodate cookies.

<?php
 require_once('connectvars.php');

 if (!isset($_SERVER['PHP_AUTH_USER']) || !isset($_SERVER['PHP_AUTH_PW'])) { // The username/password weren't entered so send the authentication headers header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Mismatch"'); exit('<h3>Mismatch</h3>Sorry, you must enter your username and password to ' . 'log in and access this page. If you aren\'t a registered member, please ' . 'sign up.');
 }

 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);
 // Grab the user-entered log-in data
 $user_username = mysqli_real_escape_string($dbc, trim($_SERVER['PHP_AUTH_USER'])); $user_password = mysqli_real_escape_string($dbc, trim($_SERVER['PHP_AUTH_PW']));
 // Look up the username and password in the database $query = "SELECT user_id, username FROM mismatch_user WHERE username = " . "'$user_username' AND password = SHA('$user_password')"; $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 1) {
 // The log-in is OK so set the user ID and username variables $row = mysqli_fetch_array($data);
 $user_id = $row['user_id'];
 $username = $row['username'];
 }
 else {
 // The username/password are incorrect so send the authentication headers header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Mismatch"'); exit('<h2>Mismatch</h2>Sorry, you must enter a valid username and password ' . 'to log in and access this page. If you aren\'t a registered member, ' . 'please sign up.');
 }

 // Confirm the successful log-in
 echo('<p class="login">You are logged in as ' . $username . '.</p>'); ?>

We no longer
need to
send HTTP
authentication
headers.

Instead of getting the username and
password from an authentication window,
we need to use a form with POST data.

We need to check for the
existence of a cookie to
see if the user is logged in
or not.

Here we need to set
two cookies instead of
setting script variables.

Since we can’t rely on the HTTP authentication window
for entering the username and password, we need to
create an HTML Log-In form for entering them.

The query doesn’t
have to change at all!

login.php

sharpen your pencil solution

you are here 4   379

building personalized web apps

Rethinking the flow of log-ins
Using cookies instead of HTTP authentication for Mismatch log-ins
involves more than just rethinking the storage of user data. What about
the log-in user interface? The cookie-powered log-in must provide its
own form since it can’t rely on the authentication window for entering a
username and password. Not only do we have to build this form, but we
need to think through how it changes the flow of the application as users
log in and access other pages.

Clicking the new
“Log In” link leads
to the Log-In page,
where a user can
enter their log-in
information to log in.

After successfully logging
in, the user is redirected
back to the home page,
where the menu now reveals
that they are logged in.

Restricted pages are
now accessible since
the user is logged in.

A new form takes the
place of the HTTP
authentication window
for entering the username
and password for log-ins.

The Log-Out script is
accessible via a link that is
part of the log-in status.

The main
navigation menu
includes a Log
Out link that
also shows the
username of the
logged in user.

When not logged in, the
latest members are
displayed as static names.

After logging in, the
latest member names
change to links to their
respective profile views.

Username:
Password:

Log In

sidneyk

index.php

viewprofile.php

index.php

380    Chapter 7

A cookie-powered log-in
The new version of the Log-In script that relies on cookies for log-in
persistence is a bit more complex than its predecessor since it must
provide its own form for entering the username and password. But it’s
more powerful in that it provides log-out functionality.

<?php
 require_once('connectvars.php');

 // Clear the error message
 $error_msg = "";

 // If the user isn't logged in, try to log them in
 if (!isset($_COOKIE['user_id'])) {
 if (isset($_POST['submit'])) {
 // Connect to the database
 $dbc = mysqli_connect(DB_HOST, DB_USER, DB_PASSWORD, DB_NAME);

 // Grab the user-entered log-in data
 $user_username = mysqli_real_escape_string($dbc, trim($_POST['username']));
 $user_password = mysqli_real_escape_string($dbc, trim($_POST['password']));

 if (!empty($user_username) && !empty($user_password)) {
 // Look up the username and password in the database
 $query = "SELECT user_id, username FROM mismatch_user WHERE username = '$user_username' AND " .
 "password = SHA('$user_password')";
 $data = mysqli_query($dbc, $query);

 if (mysqli_num_rows($data) == 1) {
 // The log-in is OK so set the user ID and username cookies, and redirect to the home page
 $row = mysqli_fetch_array($data);
 setcookie('user_id', $row['user_id']);
 setcookie('username', $row['username']);
 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . dirname($_SERVER['PHP_SELF']) . '/index.php';
 header('Location: ' . $home_url);
 }
 else {
 // The username/password are incorrect so set an error message
 $error_msg = 'Sorry, you must enter a valid username and password to log in.';
 }
 }
 else {
 // The username/password weren't entered so set an error message
 $error_msg = 'Sorry, you must enter your username and password to log in.';
 }
 }
 }
?>

<html>
<head>
 <title>Mismatch - Log In</title>
 <link rel="stylesheet" type="text/css" href="style.css" />
</head>
<body>
 <h3>Mismatch - Log In</h3>

Here’s the new
Log-In form.

Error messages are now stored in a variable and displayed, if necessary, later in the script.
Check the user_id cookie to
see if the user is logged in.

If the user isn’t logged
in, see if they’ve
submitted log-in data.

The user-entered data
now comes from form
POST data instead of
an authentication window.

Log in the user by setting
user_id and username cookies.

Redirect the user
to the Mismatch
home page upon a
successful log-in.

Set the error message
variable if anything is
wrong with the log-in data.

The Log-In script is now a full
web page, so it requires all the
standard HTML elements.

login.php

continues on the facing page...

login.php—now cookie-powered!

you are here 4   381

building personalized web apps

<?php
 // If the cookie is empty, show any error message and the log-in form; otherwise confirm the log-in
 if (empty($_COOKIE['user_id'])) {
 echo '<p class="error">' . $error_msg . '</p>';
?>

 <form method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>">
 <fieldset>
 <legend>Log In</legend>
 <label for="username">Username:</label>
 <input type="text" id="username" name="username"
 value="<?php if (!empty($user_username)) echo $user_username; ?>" />

 <label for="password">Password:</label>
 <input type="password" id="password" name="password" />
 </fieldset>
 <input type="submit" value="Log In" name="submit" />
 </form>

<?php
 }
 else {
 // Confirm the successful log in
 echo('<p class="login">You are logged in as ' . $_COOKIE['username'] . '.</p>');
 }
?>

</body>
</html>

Q: Why is it necessary to store both
the user ID and username in cookies?

A: Since both pieces of information
uniquely identify a user within the Mismatch
user database, you could use either one for
the purpose of keeping up with the current
user. However, user_id is a better (more
efficient) user reference with respect to the
database because it is a numeric primary
key. On the other hand, user_id is fairly
cryptic and doesn’t have any meaning to the
user, so username comes in handy for letting
the user know they are logged in, such as
displaying their name on the page. Since
multiple people sometimes share the same
computer, it is important to not just let the
user know they are logged in, but also who
they are logged in as.

Q: Then why not also store the
password in a cookie as part of the log-in
data?

A: The password is only important for
initially verifying that a user is who they
claim to be. Once the password is verified as
part of the log-in process, there is no reason
to keep it around. Besides, passwords
are very sensitive data, so it’s a good idea
to avoid storing them temporarily if at all
possible.

Q: It looks as if the form in the
Log-In script is actually inside the if
statement? Is that possible?

A: Yes. In fact it’s quite common for PHP
code to be “broken up” around HTML code,
as is the case with the Log-In script. Just
because you close a section of PHP code
with ?>, doesn’t mean the logic of the code
is closed. When you open another section of
PHP code with <?php, the logic continues
right where it left off. In the Log-In script, the
HTML form is contained within the first if
branch, while the else branch picks up
after the form code. Breaking out of PHP
code into HTML code like this keeps you
from having to generate the form with a
bunch of messy echo statements.

If the user still isn’t logged
in at this point, go ahead
and show the error message.

These two form fields are used to enter the username and password for logging in.
Everything prior to this curly brace
is still part of the first if clause. If the user is logged in at

this point, just tell them so.

Finish the HTML code to
complete the Log-In web page.

382    Chapter 7

Navigating the Mismatch application
The new Log-In script changes the flow of the Mismatch application,
requiring a simple menu that appears on the home page (index.php).
This menu is important because it provides access to the different major
parts of the application, currently the View Profile and Edit Profile pages,
as well as the ability for users to log in, sign up, and log out depending on
their current log-in state. The fact that the menu changes based on the
user’s log-in state is significant and is ultimately what gives the menu its
power and usefulness.

The menu is generated by PHP code within the index.php script, and
this code uses the $_COOKIE superglobal to look up the username cookie
and see if the user is logged in or not. The user ID cookie could have also
been used, but the username is actually displayed in the menu, so it makes
more sense to check for it instead.

A different menu is shown
depending on whether the
username cookie is set.

This menu appears when a user is not logged in, giving them an opportunity to either log in or sign up.

The index.php script knows to show the
limited menu when
it can’t find the
username cookie.

username = ?

mismatch's dynamic menu

you are here 4   383

building personalized web apps

// Generate the navigation menu
if (isset($_COOKIE['username'])) {
 echo '❤ View Profile
';
 echo '❤ Edit Profile
';
 echo '❤ Log Out (' . $_COOKIE['username'] . ')';
}
else {
 echo '❤ Log In
';
 echo '❤ Sign Up';
}

The username cookie
determines which
menu is displayed

The user_id cookie isn’t
used for the different
menus but is still
important for Mismatch
user persistence.

The little heart symbols next to
each menu item are made possible
by this HTML entity, which is
supported on most browsers.

Menu for logged
in users

Menu for visitors
(users who aren’t
logged in)

The username
cookie also lets
the user know
who is logged in.

user_id = 1

username = sidneyk

384    Chapter 7

We really need to let users log out.
Cookies have made logging into Mismatch and navigating the site a bit
cleaner, but the whole point of switching from HTTP authentication to
cookies was to allow users to log out. We need a new Log-Out script that
deletes the two cookies (user ID and username) so that the user no longer
has access to the application. This will prevent someone from getting on
the same computer later and accessing a user’s private profile data.

Since there is no user interface component involved in actually logging
out a user, it’s sufficient to just redirect them back to the home page after
logging them out.

Hello, remember
me? I still really,
really need to log out.

Sidney is
still waiting
to log out...

The Log-Out script
deletes the user
log-in cookies and
redirects back to
the home page.

logout.php

log out users by deleting cookies

you are here 4   385

building personalized web apps

The Log-Out script for Mismatch is missing a few pieces of code. Write the missing code, making
sure that the log-in cookies get deleted before the Log-Out page is redirected to the home page.

This code sets an expiration date 8 hours into the future, which means the
cookie will be automatically deleted in 8 hours. But we want to delete a
cookie immediately, which requires setting the expiration date to a time in
the past. The amount of time into the past isn’t terribly important—just
pick an arbitrary amount of time, such as an hour, and subtract it from
the current time.

setcookie('username', 'sidneyk', time() + (60 * 60 * 8));

setcookie('username', 'sidneyk', time() - 3600);

Minutes
Seconds HoursThe current time

Together, this expression
sets an expiration date
that is 8 hours from
the current time.

60 seconds * 60 minutes = 3600
seconds, which is 1 hour into the past.

To delete a
cookie, just set its
expiration date to
a time in the past.

Logging out means deleting cookies
Logging out a user involves deleting the two cookies that keep track of the
user. This is done by calling the setcookie() function, and passing an
expiration date that causes the cookies to get deleted at that time.

<?php

 // If the user is logged in, delete the cookie to log them out

 if () {

 // Delete the user ID and username cookies by setting their expirations to an hour ago (3600)

 }

 // Redirect to the home page

 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . dirname($_SERVER['PHP_SELF']) . ' ';

 header('Location: ' . $home_url);

?>

386    Chapter 7

The Log-Out script for Mismatch is missing a few pieces of code. Write the missing code, making
sure that the log-in cookies get deleted before the Log-Out page is redirected to the home page.

Test Drive
Use cookies to add Log-Out functionality to Mismatch.
Modify the Mismatch scripts so that they use cookies to allows users to log in and out (or
download the scripts from the Head First Labs site at www.headfirstlabs.com/
books/hfphp. The cookie modifications involve changes to the index.php, login.php,
logout.php, editprofile.php, and viewprofile.php scripts. The changes
to the latter two scripts are fairly minor, and primarily involve changing $user_id and
$username global variable references so that they use the $_COOKIE superglobal instead.

Upload the scripts to your web server, and then open the main Mismatch page (index.php)
in a web browser. Take note of the navigation menu, and then click the “Log In” link and log
in. Notice how the Log-In script leads you back to the main page, while the menu changes to
reflect your logged in status. Now click “Log Out” to blitz the cookies and log out.

<?php

 // If the user is logged in, delete the cookie to log them out

 if () {

 // Delete the user ID and username cookies by setting their expirations to an hour ago (3600)

 }

 // Redirect to the home page

 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . dirname($_SERVER['PHP_SELF']) . ' ';

 header('Location: ' . $home_url);

?> A location header results in the
browser redirecting to another page.

isset($_COOKIE[‘user_id’])

setcookie(‘user_id’, ‘’, time() - 3600);
setcookie(‘username’, ‘’, time() - 3600);

/index.php

Redirect to the
Mismatch home page,
which is constructed as
an absolute URL.

Only log out a user if they
are already logged in.

Set each cookie to an hour
in the past so that they
are deleted by the system.

the complete logout.php script

you are here 4   387

building personalized web apps

Q: So simply deleting the cookies is all that is required to log out?

A: Yes. Cookies are responsible for storing all of the log-in information for Mismatch (user ID and
username), so deleting them results in a complete log-out.

Q: Why are the cookies set to an hour in the past in order to be deleted? Is there
something significant about an hour?

A: No. A cookie is automatically deleted by the web browser once its expiration date/time passes.
So deleting a cookie involves setting the expiration to any time in the past. An hour (3600 seconds)
is just an arbitrary amount of time chosen to consistently indicate that we’re deleting a cookie.

I’m outta here
for now. See ya!

Logging in and
out of Mismatch
is now controlled
entirely by cookies.

Sidney is pleased
that she can log
out and know that
her Mismatch
profile can’t be
edited by anyone
while she’s away.

Cookies are
created to
remember the
user and log in.

Cookies are thrown
away to forget the
user and log out.

388    Chapter 7

Client web
browser

$_COOKIE

Who cares about
Jason? Don’t most people
have cookies enabled?

Yes, but web applications should be as accessible to
as many people as possible.
Some people just aren’t comfortable using cookies, so they opt for the
added security of having them disabled. Knowing this, it’s worth trying to
accommodate users who can’t rely on cookies to log in. But there’s more.
It turns out that there’s another option that uses the server to store
log-in data, as opposed to the client. And since our scripts are already
running on the server, it only makes sense to store log-in data there as well.

Uh-oh. I have cookies
disabled in my browser,
and I can’t log in. What
am I supposed to do?

Web server

Since cookies are disabled, the
Log-In script fails and just
sends the user back to the home
page without being logged in.

The attempted
log-in starts
here.

The server attempts
to set the user ID
and username cookies
on the browser.

The browser rejects the cookies, preventing the Log-In script from setting them.

Mismatch user Jason, lover of
hiking, body piercings, and Howard
Stern, has cookies disabled in his
browser, which presents a problem
for logging in.

storing user data on the server, instead of the client

you are here 4   389

building personalized web apps

Client web
browser

Sessions aren’t dependent on the client
Cookies are powerful little guys, but they do have their limitations, such
as being subject to limitations beyond your control. But what if we didn’t
have to depend on the browser? What if we could store data directly
on the server? Sessions do just that, and they allow you to store away
individual pieces of information just like with cookies, but the data gets
stored on the server instead of the client. This puts session data outside of
the browser limitations of cookies.

Web server

Sessions allow you to
persistently store small
pieces of data on the
server, independently
of the client.

Sessions store data in session variables, which are logically equivalent
to cookies on the server. When you place data in a session variable using
PHP code, it is stored on the server. You can then access the data in the
session variable from PHP code, and it remains persistent across multiple
pages (scripts). Like with cookies, you can delete a session variable at any
time, making it possible to continue to offer a log-out feature with session-
based code.

Store session data

Retrieve session data

Unlike cookies,
sessions store their
data on the server.

The browser doesn’t factor directly
into the storage of session data since
everything is stored on the server.

username = sidneykuser_id = 1

Surely there’s a catch, right? Sort of. Unlike cookies, sessions don’t
offer as much control over how long a session variable stores data.
Session variables are automatically destroyed as soon as
a session ends, which usually coincides with the user shutting
down the browser. So even though session variables aren’t stored
on the browser, they are indirectly affected by the browser since
they get deleted when a browser session ends.

There isn’t an expiration date associated
with session variables because they are
automatically deleted when a session ends.

Since session data is
stored on the server,
it is more secure and
more reliable than
data stored in cookies.
A user can’t manually delete session data using their browser, which can be a problem with cookies.

390    Chapter 7

The life and times of sessions
Sessions are called sessions for a reason—they have a very clear start
and finish. Data associated with a session lives and dies according to the
lifespan of the session, which you control through PHP code. The only
situation where you don’t have control of the session life cycle is when the
user closes the browser, which results in a session ending, whether you like
it or not.

You must tell a session when you’re ready to start it up by calling the
session_start() PHP function.

The PHP session_start()
function starts a session
and allows you to begin
storing data in session
variables.

session_start();

session_destroy();

Calling the session_start() function doesn’t set any data—its job
is to get the session up and running. The session is identified internally
by a unique session identifier, which you typically don’t have to concern
yourself with. This ID is used by the web browser to associate a session
with multiple pages.

This PHP function
starts a session.

Web server

When a session is
started, a session ID
is set that uniquely
identifies the session.

The session ID is used
behind the scenes to allow
multiple pages to share
access to session data.

The session ID isn’t destroyed until the session is closed, which
happens either when the browser is closed or when you call the
session_destroy() function.

The session_destroy()
function closes a session.

If you close a session yourself with this function, it doesn’t
automatically destroy any session variables you’ve stored. Let’s take
a closer look at how sessions store data to uncover why this is so.

This PHP function
ends a session.

This is the unique
session ID, which
is automatically
generated as part
of a new session.

login.php

editprofile.php
viewprofile.php

index.php
logout.php

tksf820j9hq7f9t7vdt5o1ceb2

Client web
browser

the session_start() and session_destroy() functions

you are here 4   391

building personalized web apps

username = sidneyk

Keeping up with session data
The cool thing about sessions is that they’re very similar to cookies in
terms of how you use them. Once you’ve started a session with a call to
session_start(), you can begin setting session variables, such as
Mismatch log-in data, with the $_SESSION superglobal.

$_SESSION['username'] = 'sidneyk';

echo('<p class="login">You are logged in as ' . $_SESSION['username'] . '.</p>');

$_SESSION = array();

if (isset($_COOKIE[session_name()])) {
 setcookie(session_name(), '', time() - 3600);
}

The name of the session
variable is used as an index into
the $_SESSION superglobal.

The value to be stored
is just assigned to the
$_SESSION superglobal.

The session variable is created and
stored on the server.

To access the session variable, just use the $_SESSION superglobal and the session variable name.

Unlike cookies, session variables don’t require any kind of special function
to set them—you just assign a value to the $_SESSION superglobal,
making sure to use the session variable name as the array index.

What about deleting session variables? Destroying a session via
session_destroy() doesn’t actually destroy session variables, so
you must manually delete your session variables if you want them to be
killed prior to the user shutting down the browser (log-outs!). A quick
and effective way to destroy all of the variables for a session is to set the
$_SESSION superglobal to an empty array.

This code kills all of the session variables in the current session.

But we’re not quite done. Sessions can actually use cookies behind the
scenes. If the browser allows cookies, a session may possibly set a cookie
that temporarily stores the session ID. So to fully close a session via PHP
code, you must also delete any cookie that might have been automatically
created to store the session ID on the browser. Like any other cookie, you
destroy this cookie by setting its expiration to some time in the past. All
you need to know is the name of the cookie, which can be found using the
session_name() function.

Destroy the session cookie
by setting its expiration
to an hour in the past.

First check to see
if a session cookie
actually exists.

If a session is using a
cookie to help remember
the session ID, then the
ID is stored in a cookie
named after the session.

Session variables
are not automatically
deleted when a
session is destroyed.

PH
PS
ES
SI
D
=
tk
sf
82
0j
..
.

392    Chapter 7

Renovate Mismatch with sessions
Reworking the Mismatch application to use a session to store log-in data
isn’t as dramatic as it may sound. In fact, the flow of the application
remains generally the same—you just have to take care of a little extra

bookkeeping involved in starting the session, destroying the
session, and then cleaning up after the session.

Log-in data is now
remembered using a session
instead of cookies.

session_start();

session_destroy();

If cookies are enabled, the
server creates one to hold
the session ID - otherwise
the ID is passed through
the URL of each page.

The session_start() function
gets things started by
opening a session.

Two session
variables are
created to store
the user ID and
username for the
log-in.

The session_destroy()
function ends the session,
preventing it from being
used in another page.

The session variables
are destroyed by
clearing out the
$_SESSION array.

If a cookie was used
to hold the session
ID, it is destroyed.

Start here!
how mismatch works with sessions

you are here 4   393

building personalized web apps

The Log-Out script for Mismatch is undergoing an overhaul to use sessions
instead of pure cookies for log-in persistence. Write the missing code to

“sessionize” the Log-Out script, and then annotate which step of the log-out
process it corresponds to.

Log out with sessions
Logging a user out of Mismatch requires a little more work with sessions
than the previous version with its pure usage of cookies. These steps must
be taken to successfully log a user out of Mismatch using sessions.

�Delete the session variables.1

Check to see if a session cookie
exists, and if so, delete it.2

Destroy the session.3

Redirect the user to the home page.4

OK, so this is a bonus step that isn’t strictly required to log the user out, but is helpful nonetheless.

You don’t know for certain
if a session cookie is being
used without checking.

<?php

 // If the user is logged in, delete the session vars to log them out

 session_start();

 if () {

 // Delete the session vars by clearing the $_SESSION array

 // Delete the session cookie by setting its expiration to an hour ago (3600)

 if (isset($_COOKIE[session_name()])) {

 }

 // Destroy the session

 }

 // Redirect to the home page

 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . dirname($_SERVER['PHP_SELF']) . '/index.php';

 header('Location: ' . $home_url);

?>

394    Chapter 7

The Log-Out script for Mismatch is undergoing an overhaul to use sessions
instead of pure cookies for log-in persistence. Write the missing code to

“sessionize” the Log-Out script, and then annotate which step of the log-out
process it corresponds to.

<?php

 // If the user is logged in, delete the session vars to log them out

 session_start();

 if () {

 // Delete the session vars by clearing the $_SESSION array

 // Delete the session cookie by setting its expiration to an hour ago (3600)

 if (isset($_COOKIE[session_name()])) {

 }

 // Destroy the session

 }

 // Redirect to the home page

 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . dirname($_SERVER['PHP_SELF']) . '/index.php';

 header('Location: ' . $home_url);

?>

$_SESSION = array();

isset($_SESSION[‘user_id’])

session_destroy();

setcookie(session_name(), ‘’, time() - 3600);

Even when logging out, you have
to first start the session in order
to access the session variables.

Now a session variable is used to check the log-in status instead of a cookie.

To clear out the session variables, assign the
$_SESSION superglobal an empty array.

If a session cookie exists, delete it by
setting its expiration to an hour ago.

Destroy the session with
a call to the built-in
session_destroy() function.

4

3

2

1

Redirect the user to the home page.4

Destroy the session.3

Check to see if a session cookie exists, and if so,
delete it.2

Delete the session variables.1

the "sessionized" logout.php

you are here 4   395

building personalized web apps

The move from cookies to sessions impacts more than just the Log-Out
script. Match the other pieces of the Mismatch application with how
they need to change to accommodate sessions.

No change since the script has no direct dependence on
log-in persistence.

Sessions are required to control the navigation menu.
Call the session_start() function to start the
session, and then change $_COOKIE references to
$_SESSION.

Sessions are required to remember who the user is. Call
the session_start() function to start the session,
and then change $_COOKIE references to $_SESSION.

signup.php

editprofile.php

viewprofile.php

index.php

login.php

connectvars.php

appvars.php

396    Chapter 7

The move from cookies to sessions impacts more than just the Log-Out
script. Match the other pieces of the Mismatch application with how
they need to change to accommodate sessions.

No change since the script has no direct dependence on
log-in persistence.

Sessions are required to control the navigation menu.
Call the session_start() function to start the
session, and then change $_COOKIE references to
$_SESSION.

Sessions are required to remember who the user is. Call
the session_start() function to start the session,
and then change $_COOKIE references to $_SESSION.

signup.php

editprofile.php

viewprofile.php

index.php

login.php

connectvars.php

appvars.php

Solution

how do i change solution

you are here 4   397

building personalized web apps

Q: The session_start()
function gets called in a lot of different
places, even after a session has been
started. Are multiple sessions being
created with each call to session_
start()?

A: No. The session_start()
function doesn’t just start a new session—it
also taps into an existing session. So when
a script calls session_start(),
the function first checks to see if a session
already exists by looking for the presence
of a session ID. If no session exists, it
generates a new session ID and creates the
new session. Future calls to session_
start() from within the same application
will recognize the existing session and use it
instead of creating another one.

Q: So how does the session ID
get stored? Is that where sessions
sometimes use cookies?

A: Yes. Even though session data gets
stored on the server and, therefore, gains
the benefit of being more secure and outside
of the browser’s control, there still has to be
a mechanism for a script to know about the
session data.

This is what the session ID is for—it uniquely
identifies a session and the data associated
with it. This ID must somehow persist on the
client in order for multiple pages to be part of
the same session. One way this session ID
persistence is carried out is through a cookie,
meaning that the ID is stored in a cookie,
which is then used to associate a script with
a given session.

Q: If sessions are dependent on
cookies anyway, then what’s the big deal
about using them instead of cookies?

A: Sessions are not entirely dependent
on cookies. It’s important to understand
that cookies serve as an optimization for
preserving the session ID across multiple
scripts, not as a necessity. If cookies are
disabled, the session ID gets passed from
script to script through a URL, similar to how
you’ve seen data passed in a GET request.
So sessions can work perfectly fine without
cookies. The specifics of how sessions
react in response to cookies being disabled
are controlled in the php.ini configuration
file on the web server via the session.
use_cookies, session.use_
only_cookies, and session.
use_trans_sid settings.

Q: It still seems strange that sessions
could use cookies when the whole point
is that sessions are supposed to be
better than cookies. What gives?

A: While sessions do offer some clear
benefits over cookies in certain scenarios,
they don’t necessarily have an either/or
relationship with cookies. Sessions certainly
have the benefit of being stored on the
server instead of the client, which makes
them more secure and dependable. So if you
ever need to store sensitive data persistently,
then a session variable would provide more
security than a cookie. Sessions are also
capable of storing larger amounts of data
than cookies. So there are clear advantages
to using sessions regardless of whether
cookies are available.

For the purposes of Mismatch, sessions offer
a convenient server-side solution for storing
log-in data. For users who have cookies
enabled, sessions provide improved security
and reliability while still using cookies as an
optimization. And in the case of users who
don’t have cookies enabled, sessions can
still work by passing the session ID through
a URL, foregoing cookies altogether.

HTTP authentication is handy for restricting access to
individual pages, but it doesn’t offer a good way to “log
out” a user when they’re finished accessing a page.

Cookies let you store small pieces of data on the client
(web browser), such as the log-in data for a user.

All cookies have an expiration date, which can be far
into the future or as near as the end of the browser
session.







To delete a cookie, you just set its expiration to a time in
the past.

Sessions offer similar storage as cookies but are stored
on the server and, therefore, aren’t subject to the same
browser limitations, such as cookies being disabled.

Session variables have a limited lifespan and are always
destroyed once a session is over (for example, when the
browser is closed).







398    Chapter 7

Complete the session transformation
Even though the different parts of Mismatch affected by sessions use
them to accomplish different things, the scripts ultimately require similar
changes in making the migration from cookies to sessions. For one, they
all must call the session_start() function to get rolling with
sessions initially. Beyond that, all of the changes involve moving from
the $_COOKIE superglobal to the $_SESSION superglobal, which is
responsible for storing session variables.

<?php
 session_start();

?>

All of the session-powered
scripts start out with a call to session_start() to get
the session up and running.

 // If the user isn't logged in, try t

o log them in

 if (!isset($_SESSION['user_id'])) {

 if (isset($_POST['submit'])) {

 // Connect to the database

 $dbc = mysqli_connect(DB_HOST, DB
_USER, DB_PASSWORD, DB_NAME);

 // Grab the user-entered log-in d

ata

 $user_username = mysqli_real_esca
pe_string($dbc, trim($_POST['username']

));

 $user_password = mysqli_real_esca
pe_string($dbc, trim($_POST['password']

));

 if (!empty($user_username) && !em

pty($user_password)) {

 // Look up the username and pas
sword in the database

 $query = "SELECT user_id, usern
ame FROM mismatch_user WHERE username =

 '$user_username' AND " .

 "password = SHA('$user_passwo
rd')";

 $data = mysqli_query($dbc, $que
ry);

 if (mysqli_num_rows($data) == 1

) {

 // The log-in is OK so set th
e user ID and username session vars, an

d redirect to the home page

 $row = mysqli_fetch_array($da
ta);

 $_SESSION['user_id'] = $row['
user_id'];

 $_SESSION['username'] = $row[
'username'];

 $home_url = 'http://' . $_SER
VER['HTTP_HOST'] . dirname($_SERVER['PH

P_SELF']) . '/index.php';

 header('Location: ' . $home_u
rl);

 }
 else {
 // The username/password are

incorrect so set an error message

 $error_msg = 'Sorry, you must
 enter a valid username and password to

 log in.';

 }
 }

The Log-In script uses sessions to remember the user ID and username for log-in persistence, and it does so by relying on the $_SESSION
superglobal instead of $_COOKIE.

login.php

migrating from cookies to sessions

you are here 4   399

building personalized web apps

 // Generate the navigation menu if (isset($_SESSION['username'])) { echo '❤ View Profile
'; echo '❤ Edit Profile
'; echo '❤ Log Out (' . $_SESSION['username'] . ')';
 }
 else {
 echo '❤ Log In
'; echo '❤ Sign Up'; }

 ...

 // Loop through the array of user data, formatting it as HTML echo '<h4>Latest members:</h4>'; echo '<table>';
 while ($row = mysqli_fetch_array($data)) { ...
 if (isset($_SESSION['user_id'])) { echo '<td>' . $row['first_name'] . '</td></tr>'; }
 else {
 echo '<td>' . $row['first_name'] . '</td></tr>'; }
 }
 echo '</table>';

 // Make sure the user is logged in before going any further.

 if (!isset($_SESSION['user_id'])) {

 echo '<p class="login">Please <a hr
ef="login.php">log in to access thi

s page.</p>';

 exit();
 }
 else {
 echo('<p class="login">You are logg

ed in as ' . $_SESSION['username'] .

 '. Log out</
a>.</p>');

 }

 ...

 if (!empty($first_name) && !empty

($last_name) && !empty($gender) && !emp
ty($birthdate) &&

 !empty($city) && !empty($state)
) {

 // Only set the picture column
if there is a new picture

 if (!empty($new_picture)) {

 $query = "UPDATE mismatch_use
r SET first_name = '$first_name', last_

name = '$last_name', " .

 "gender = '$gender', birthd
ate = '$birthdate', city = '$city', sta

te = '$state', " .

 "picture = '$new_picture' W
HERE user_id = '" . $_SESSION['user_id'

] . "'";

 }
 else {
 $query = "UPDATE mismatch_use

r SET first_name = '$first_name', last_
name = '$last_name', " .

 "gender = '$gender', birthd
ate = '$birthdate', city = '$city', sta

te = '$state' " .

 "WHERE user_id = '" . $_SES
SION['user_id'] . "'";

 }
 mysqli_query($dbc, $query);

The Mismatch home page uses
the $_SESSION superglobal
instead of $_COOKIE to access
log-in data while generating
the menu and choosing whether
or not to provide a link to the
“latest members” profiles.

Similar to the Log-In and home pages, the Edit Profile script now uses $_SESSION to access log-in data instead of $_COOKIE.

Although not shown,
the View Profile
script uses sessions
in much the same
way as Edit Profile.

index.php

viewprofile.php

editprofile.php

400    Chapter 7

Tonight’s talk: Cookie and session variable get down and
dirty about who has the best memory

Cookie:
There’s been a lot of talk around here among us
cookies about what exactly goes on over there on
the server. Rumor is you’re trying to move in on our
territory and steal data storage jobs. What gives?

That doesn’t make any sense to me. The browser is
a perfectly good place to store data, and I’m just the
guy to do it.

Uh, well, that’s a completely different issue. And
if the user decides to disable me, then clearly they
don’t have any need to store data.

So I suppose your answer is to store the data on the
server? How convenient.

Alright, Einstein. Since you seem to have it all
figured out, why is it that you still sometimes use me
to store your precious little ID on the browser?

Session variable:

Come on now, steal is a strong word. The truth is
sometimes it just makes more sense to store data on
the server.

What about when the user disables you?

Not true. The user often doesn’t even know a web
application is storing data because in many cases,
it is behind-the-scenes data, like a username. So if
you’re not available, they’re left with nothing.

Exactly. And the cool thing is that the user doesn’t
have the ability to disable anything on the server, so
you don’t have to worry about whether or not the
data is really able to be stored.

Er, well, most people really don’t know about that, so
there’s no need to get into it here. We can talk about
that off the record. The important thing is that I’m
always around, ready to store data on the server.

fireside chat between cookie and session variable

you are here 4   401

building personalized web apps

Cookie:
Come on, tell me how much you need me!

Oh I know you can, but the truth is you’d rather not.
And maybe deep down you really kinda like me.

Ah, so you’re going to resort to picking on the little
guy. Sure, I may not be able to store quite as much
as you, and I’ll admit that living on the client makes
me a little less secure. But it sure is more exciting!
And I have something you can only dream about.

Well, all that storage space and security you’re
so proud of comes at a cost... a short lifespan! I
didn’t want to be the one to have to tell you, but
your entire existence is hinging on a single browser
session. I think that’s how you got your name.

It’s simple. I don’t die with a session, I just expire.
So I can be set to live a long, full life, far beyond the
whim of some click-happy web surfer who thinks
it’s cute to open and close the browser every chance
he gets.

Problem is, those same scripters often set my
expiration to such a short period that I don’t really
get to experience the long life I truly deserve. I
mean, I...

Session variable:

Alright, I will admit that from time to time I do lean
on you a little to help me keep up with things across
multiple pages. But I can get by without you if I
need to.

Look, I don’t have any problem with you. I just wish
you were a little more secure. And you have that size
limitation. You know, not every piece of persistent
data is bite-sized.

Is that so? Do tell.

You mean you can go on living beyond a single
session? How is that possible?!

Wow. What a feeling that must be to experience
immortality. My only hope is that some slacker
scripter accidentally forgets to destroy me when he
closes a session... but the browser will still do me in
whenever it gets shut down.

Hello? Are you there? Geez, expiration is harsh.

402    Chapter 7

Very cool. It’s nice
being able to log in
even without cookies
turned on.

Thanks to sessions, users with cookies disabled can still log in and access
their personal profiles.

Test Drive
Change Mismatch to use sessions instead of cookies.
Modify the Mismatch scripts so that they use sessions instead of cookies to support
log-in persistence (or download the scripts from the Head First Labs site at www.
headfirstlabs.com/books/hfphp). The session modifications involve changes to the
index.php, login.php, logout.php, editprofile.php, and viewprofile.php
scripts, and primarily involve starting the session with a call to the session_start()
function and changing $_COOKIE superglobal references to use $_SESSION instead.

Upload the scripts to your web server, and then open the main Mismatch page (index.php) in
a web browser. Try logging in and out to make sure everything works the same as before. Unless
you had cookies disabled earlier, you shouldn’t notice any difference—that’s a good thing!

test drive the "sessionized" mismatch

you are here 4   403

building personalized web apps

	 Sessions without cookies may not work if your
PHP settings in php.ini aren’t configured
properly on the server.

In order for sessions to work with cookies disabled, there
needs to be another mechanism for passing the session

ID among different pages. This mechanism involves appending the
session ID to the URL of each page, which takes place automatically if
the session.use_trans_id setting is set to 1 (true) in the php.ini
file on the server. If you don’t have the ability to alter this file on your
web server, you’ll have to manually append the session ID to the URL of
session pages if cookies are disabled with code like this:
<a href="viewprofile.php?<?php echo SID; ?>">view your profile

The SID superglobal holds the session
ID, which is being passed along
through the URL so that the View
Profile page knows about the session.

404    Chapter 7

Users are being logged out
of Mismatch without ever
clicking the “Log Out” link.

Users aren’t feeling welcome
Despite serving as a nice little improvement over cookies, something
about the new session-powered Mismatch application isn’t quite right.
Several users have reported getting logged out of the application despite
never clicking the “Log Out” link. The application doesn’t exactly feel
personal anymore... this is a big problem.

The home page is
presented to the
registered users as
if they are visitors
even though they
never logged out.

Frustrated
users are never
a good thing.

This isn’t the
message we
want Mismatch
to send its users.

Hey, we were logged in last time
we checked, and suddenly we’re all
logged out! What gives?

why the automatic logout?

you are here 4   405

building personalized web apps

What do you think is causing users to be
automatically logged out of Mismatch? Is
it something they’ve done inadvertently?

406    Chapter 7

Sessions are short-lived...
The problem with the automatic log-outs in Mismatch has to do with
the limited lifespan of sessions. If you recall, sessions only last as long as
the current browser instance, meaning that all session variables are killed
when the user closes the browser application. In other words, closing the
browser results in a user being logged out whether they like it or not. This
is not only inconvenient, but it’s also a bit confusing because we already
have a log-out feature. Users assume they aren’t logged out unless they’ve
clicked the Log Out link.

user_id = 1

Poof!

Even though you can destroy a session when you’re finished with it, you
can’t prolong it beyond a browser instance. So sessions are more of a short-
term storage solution than cookies, since cookies have an expiration date
that can be set hours, days, months, or even years into the future. Does
that mean sessions are inferior to cookies? No, not at all. But it does mean
that sessions present a problem if you’re trying to remember information
beyond a single browser instance... such as log-in data!

Session variables are
destroyed when the
user ends a session by
closing the browser.

The session variables
are destroyed along
with the session when
the browser is closed.

Logging in with sessions
results in the creation
of two session variables.

The session
variables are used
to remember the
identity of the user.

Once the session
variables are
destroyed, the user is
logged out...whether
they like it or not!

Whether sessions or cookies are used, logging in is what sets the persistent wheels in motion.

The user closes the
browser but may not
realize that they just
logged themselves out.

username = sidneyk

the lifespan of cookies and sessions

you are here 4   407

building personalized web apps

... but cookies can last forever!
Unlike session variables, the lifespan of a cookie isn’t tied to a browser
instance, so cookies can live on and on, at least until their expiration date
arrives. Problem is, users have the ability to destroy all of the cookies
stored on their machine with a simple browser setting, so don’t get too
infatuated with the permanence of cookies—they’re still ultimately only
intended to store temporary data.

Maybe not forever, but plenty long enough to outlast a session.

user_id = 1 time() + 2 hours

Poof!

The lifespan of a cookie
is determined by its
expiration date/time.

Similar to sessions,
cookies are created
at log-in.

Cookies are only
destroyed when
they expire. Cookies are destroyed

when they expire, giving
them a longer lifespan
than session variables.

username = sidneyk

time() + 2 hours

408    Chapter 7

So would it make sense to use both
sessions and cookies, where cookies
help keep users logged in for longer
periods of time? It would work for
users who have cookies enabled.

Yes, it’s not wrong to take advantage of the
unique assets of both sessions and cookies
to make Mismatch log-ins more flexible.
In fact, it can be downright handy. Sessions are better suited
for short-term persistence since they share wider support
and aren’t limited by the browser, while cookies allow you to
remember log-in data for a longer period of time. Sure, not
everyone will be able to benefit from the cookie improvement,
but enough people will that it matters. Any time you can
improve the user experience of a significant portion of your
user base without detracting from others, it’s a win.

As long as you’re not dealing with highly sensitive
data, in which case, the weak security of cookies
would argue for using sessions by themselves.

using cookies and sessions in tandem

you are here 4   409

building personalized web apps

user_id = 1 time() + 30 days

username = sidneyk

time() + 30 days

Sessions + Cookies = Superior log-in persistence
For the ultimate in log-in persistence, you have to get more creative and combine all of
what you’ve learned in this chapter to take advantage of the benefits of both sessions
and cookies. In doing so, you can restructure the Mismatch application so that it excels
at both short-term and long-term user log-in persistence.

Poof!

username = sidneyk

user_id = 1

When a user logs in, both session variables and cookies are set to store the user ID and username.

Closing the browser
results in the session
variables being destroyed,
but not the cookies.The next time the user

opens Mismatch, the cookies
are used to recreate the
session variables...voila!

Rather than keeping users
logged in forever, the cookies are destroyed 30 days later.

Start here!

The user
closes the
web browser,
killing the
session in
the process.

The expiration for
the cookies is set
to 30 days after
the initial log-in.

The log-in data stored
in the cookies is used to
reset the session variables.

username = sidneyk

user_id = 1

user_id = 1 time() + 30 days

username = sidneyk

time() + 30 days

410    Chapter 7

Q: So is short-term vs. long-term persistence the reason to choose
between sessions and cookies?

A: No. This happened to be the strategy that helped guide the design of the
Mismatch application, but every application is different, and there are other
aspects of sessions and cookies that often must be weighed. For example, the
data stored in a session is more secure than the data stored in a cookie. So
even if cookies are enabled and a cookie is being used solely to keep track of
the session ID, the actual data stored in the session is more secure than if it was
being stored directly in a cookie. The reason is because session data is stored on
the server, making it very difficult for unprivileged users to access it. So if you’re
dealing with data that must be secure, sessions get the nod over cookies.

Q: What about the size of data? Does that play a role?

A: Yes. The size of the data matters as well. Sessions are capable of storing
larger pieces of data than cookies, so that’s another reason to lean toward
sessions if you have the need to store data beyond a few simple text strings. Of
course, a MySQL database is even better for storing large pieces of data, so make
sure you don’t get carried away even when working with sessions.

Q: So why would I choose a session or cookie over a MySQL database?

A: Convenience. It takes much more effort to store data in a database, and
don’t forget that databases are ideally suited for holding permanent data. Log-in
data really isn’t all that permanent in the grand scheme of things. That’s where
cookies and sessions enter the picture—they’re better for data that you need to
remember for a little while and then throw away.

no dumb questions on cookies and sessions

you are here 4   411

building personalized web apps

$_SESSION

$_COOKIE

$_SESSION

$_SESSION

$_SESSION
$_SESSION

$_SESSION

$_COOKIE

$_COOKIE

$_COOKIE

$_COOKIE

$_SESSION

PHP Magnets

...
if (mysqli_num_rows($data) == 1) {

 // The log-in is OK so set the user ID and username
 session vars (and cookies),

 // and redirect to the home page

 $row = mysqli_fetch_array($data);

 ['user_id'] = $row['user_id'];

 ['username'] = $row['username'];

 setcookie('user_id', $row['user_id'], time() + (

60 * 60 * 24 * 30)); // expires in 30 days

 setcookie('username', $row['username'], time()
+ (60 * 60 * 24 * 30)); // expires in 30 days

 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . d
irname($_SERVER['PHP_SELF']) . '/index.php';

 header('Location: ' . $home_url);

}
...

<?php
 // If the user is logged in, delete the session vars to log them out
 session_start();

 if (isset(['user_id'])) {

 // Delete the session vars by clearing the $_SESSION array

 = array();

 // Delete the session cookie by setting its expiration to an hour ago (3600)

 if (isset([session_name()])) {

 setcookie(session_name(), '', time() - 3600);
 }

 // Destroy the session
 session_destroy();
 }

 // Delete the user ID and username cookies by setting their expirations to an hour ago (3600) setcookie('user_id', '', time() - 3600);
 setcookie('username', '', time() - 3600);
 ...

<?php
 session_start();

 // If the session vars aren't set

, try to set them with a cookie

 if (!isset(['user

_id'])) {

 if (isset(['use

r_id']) && isset(['
username'])) {

 ['user_id'] =

 ['user_id'];

 ['username'] =

 ['username'];

 }
 }
?>
...

login.php

logout.php

index.php

The Mismatch application has been redesigned to
use both sessions and cookies for the ultimate in user
log-in persistence. Problem is, some of the code is

missing. Use the session and cookie magnets to add back the missing code.

412    Chapter 7

PHP Magnets
Solution
...
if (mysqli_num_rows($data) == 1) {

 // The log-in is OK so set the user ID and username
 session vars (and cookies),

 // and redirect to the home page

 $row = mysqli_fetch_array($data);

 ['user_id'] = $row['user_id'];

 ['username'] = $row['username'];

 setcookie('user_id', $row['user_id'], time() + (

60 * 60 * 24 * 30)); // expires in 30 days

 setcookie('username', $row['username'], time()
+ (60 * 60 * 24 * 30)); // expires in 30 days

 $home_url = 'http://' . $_SERVER['HTTP_HOST'] . d
irname($_SERVER['PHP_SELF']) . '/index.php';

 header('Location: ' . $home_url);

}
...

<?php
 // If the user is logged in, delete the session vars to log them out
 session_start();

 if (isset(['user_id'])) {

 // Delete the session vars by clearing the $_SESSION array

 = array();

 // Delete the session cookie by setting its expiration to an hour ago (3600)

 if (isset([session_name()])) {

 setcookie(session_name(), '', time() - 3600);
 }

 // Destroy the session
 session_destroy();
 }

 // Delete the user ID and username cookies by setting their expirations to an hour ago (3600) setcookie('user_id', '', time() - 3600);
 setcookie('username', '', time() - 3600);
 ...

<?php
 session_start();

 // If the session vars aren't set

, try to set them with a cookie

 if (!isset(['user

_id'])) {

 if (isset(['use

r_id']) && isset(['
username'])) {

 ['user_id'] =

 ['user_id'];

 ['username'] =

 ['username'];

 }
 }
?>
...

login.php

logout.php

index.php

The Mismatch application has been redesigned to use both sessions
and cookies for the ultimate in user log-in persistence. Problem is,
some of the code is missing. Use the session and cookie magnets to
add back the missing code.

$_SESSION

$_COOKIE
$_COOKIE

$_SESSION

$_SESSION

$_COOKIE

$_COOKIE

$_SESSION

$_SESSION

$_SESSION

$_SESSION

$_COOKIE

The new cookies are
set in addition to
the session variables.

Logging out now
requires deleting both
the session cookie and
the new log-in cookies.

If the user isn’t logged in
via the session, check to
see if the cookies are set.

This same cookie/session code
must also go in editprofile.php
and viewprofile.php.

Set the session variables
using the cookies.

php magnets solution

you are here 4   413

building personalized web apps

Combining cookies with sessions
adds longer term persistence to the
excellent short-term persistence
already made possible by sessions.

Oh well, I guess
you can’t win ‘em all.

Awesome! Mismatch now
remembers us regardless
of whether we close our

browsers or not.

Most users are thrilled
with how sessions and
cookies combine to
remember them better.

Using cookies to help make sessions better doesn’t help users who have cookies disabled... you can only do so much.

Test Drive
Change Mismatch to use both sessions and cookies.
Modify the Mismatch scripts so that they use both sessions and cookies to support
log-in persistence (or download the scripts from the Head First Labs site at www.
headfirstlabs.com/books/hfphp. This requires changes to the index.php,
login.php, logout.php, editprofile.php, and viewprofile.php scripts.

Upload the scripts to your web server, and then open the main Mismatch page (index.
php) in a web browser. Try logging in and then closing the web browser, which will cause
the session variables to get destroyed. Re-open the main page and check to see if you’re still
logged in—cookies make this possible since they persist beyond a given browser session.

414    Chapter 7

setcookie()

This built-in PHP function is used
to set a cookie on the browser,
including an optional expiration
date, after which the cookie is
destroyed. If no expiration is
provided, the cookie is deleted
when the browser is closed.

SHA(value)

This MySQL function encrypts a
piece of text, resulting in a string
of 40 hexadecimal characters.
This function provides a great
way to encrypt data that needs
to remain unrecognizable within
the database. It is a one-way
encryption, however, meaning that
there is no “decrypt” function.

Your PHP & MySQL Toolbox
You’ve covered quite a bit of
new territory in building a user

management system as part of the
Mismatch application. Let’s recap some
of the highlights.

$_COOKIE

This built-in PHP superglobal is used to access cookie data. It is an array, and each cookie is stored as an entry in the array. So accessing a cookie value involves specifying the name of the cookie as the array index.

session_destroy()

This built-in PHP function closes
a session, and should be called
when you’re finished with a
particular session. This function
does not destroy session variables;
however, so it’s important to
manually clean those up by clearing
out the $_SESSION superglobal.

session_start()

This built-in PHP function starts
a new session or re-starts a pre-
existing session. You must call this
function prior to accessing any
session variables.

$_SESSION

This built-in PHP superglobal is
used to access session data. It is
an array, and each session variable
is stored as an entry in the array.
So accessing the value of a session
variable involves specifying the
name of the variable as the array
index.

CH
AP

T
ER

 7
php & mysql toolbox

you are here 4   415

building personalized web apps

DescriptionPHP/MySQL Code

Several pieces of code from the Mismatch application have been pulled
out, and we can’t remember what they do. Draw lines connecting each
piece of code with what it does.

setcookie(session_name(), '', time() - 3600);

isset($_SESSION['user_id'])

empty($_COOKIE['user_id'])

SHA('$user_password')

setcookie('user_id', $row['user_id'])

$_SESSION = array()

session_destroy()

session_start()

Encrypt a user’s password into an
unrecognizable format.

Store a user’s unique ID in a cookie.

Destroy a session cookie by setting its
expiration to an hour in the past.

Use a session variable to determine if a user
is logged in or not.

Use a cookie to determine if a user is logged
in or not.

Destroy all session variables.

Close the current session.

Start a new session.

416    Chapter 7

DescriptionPHP/MySQL Code

Several pieces of code from the Mismatch application have been pulled
out, and we can’t remember what they do. Draw lines connecting each
piece of code with what it does.

setcookie(session_name(), '', time() - 3600);

isset($_SESSION['user_id'])

empty($_COOKIE['user_id'])

SHA('$user_password')

setcookie('user_id', $row['user_id'])

$_SESSION = array()

session_destroy()

session_start()

Encrypt a user’s password into an
unrecognizable format.

Store a user’s unique ID in a cookie.

Destroy a session cookie by setting its
expiration to an hour in the past.

Use a session variable to determine if a user
is logged in or not.

Use a cookie to determine if a user is logged
in or not.

Destroy all session variables.

Close the current session.

Start a new session.

who does what solution

